author paulson
Fri, 18 Aug 1995 15:20:02 +0200
changeset 1231 91d2c1bb5803
parent 1073 b3f190995bc9
child 1524 524879632d88
permissions -rw-r--r--
clarified comment

(*  Title: 	Provers/classical
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

Theorem prover for classical reasoning, including predicate calculus, set
theory, etc.

Rules must be classified as intr, elim, safe, hazardous.

A rule is unsafe unless it can be applied blindly without harmful results.
For a rule to be safe, its premises and conclusion should be logically
equivalent.  There should be no variables in the premises that are not in
the conclusion.

infix 1 THEN_MAYBE;

signature CLASSICAL_DATA =
  val mp	: thm    	(* [| P-->Q;  P |] ==> Q *)
  val not_elim	: thm		(* [| ~P;  P |] ==> R *)
  val classical	: thm		(* (~P ==> P) ==> P *)
  val sizef 	: thm -> int	(* size function for BEST_FIRST *)
  val hyp_subst_tacs: (int -> tactic) list

(*Higher precedence than := facilitates use of references*)
infix 4 addSIs addSEs addSDs addIs addEs addDs 
        setwrapper compwrapper addbefore addafter;

signature CLASSICAL =
  type claset
  type netpair
  val empty_cs		: claset
  val addDs 		: claset * thm list -> claset
  val addEs 		: claset * thm list -> claset
  val addIs 		: claset * thm list -> claset
  val addSDs		: claset * thm list -> claset
  val addSEs		: claset * thm list -> claset
  val addSIs		: claset * thm list -> claset
  val setwrapper 	: claset * (tactic->tactic) -> claset
  val compwrapper 	: claset * (tactic->tactic) -> claset
  val addbefore 	: claset * tactic -> claset
  val addafter 		: claset * tactic -> claset

  val print_cs		: claset -> unit
  val rep_claset	: 
      claset -> {safeIs: thm list, safeEs: thm list, 
		 hazIs: thm list, hazEs: thm list,
		 wrapper: tactic -> tactic,
		 safe0_netpair: netpair, safep_netpair: netpair,
		 haz_netpair: netpair, dup_netpair: netpair}
  val getwrapper	: claset -> tactic -> tactic
  val THEN_MAYBE	: tactic * tactic -> tactic

  val best_tac 		: claset -> int -> tactic
  val contr_tac 	: int -> tactic
  val depth_tac		: claset -> int -> int -> tactic
  val deepen_tac	: claset -> int -> int -> tactic
  val dup_elim		: thm -> thm
  val dup_intr		: thm -> thm
  val dup_step_tac	: claset -> int -> tactic
  val eq_mp_tac		: int -> tactic
  val fast_tac 		: claset -> int -> tactic
  val haz_step_tac 	: claset -> int -> tactic
  val joinrules 	: thm list * thm list -> (bool * thm) list
  val mp_tac		: int -> tactic
  val safe_tac 		: claset -> tactic
  val safe_step_tac 	: claset -> int -> tactic
  val slow_step_tac 	: claset -> int -> tactic
  val slow_best_tac 	: claset -> int -> tactic
  val slow_tac 		: claset -> int -> tactic
  val step_tac 		: claset -> int -> tactic
  val swap		: thm                 (* ~P ==> (~Q ==> P) ==> Q *)
  val swapify 		: thm list -> thm list
  val swap_res_tac 	: thm list -> int -> tactic
  val inst_step_tac 	: claset -> int -> tactic
  val inst0_step_tac 	: claset -> int -> tactic
  val instp_step_tac 	: claset -> int -> tactic

functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL = 

local open Data in

(** Useful tactics for classical reasoning **)

val imp_elim = make_elim mp;

(*Solve goal that assumes both P and ~P. *)
val contr_tac = eresolve_tac [not_elim]  THEN'  assume_tac;

(*Finds P-->Q and P in the assumptions, replaces implication by Q.
  Could do the same thing for P<->Q and P... *)
fun mp_tac i = eresolve_tac [not_elim, imp_elim] i  THEN  assume_tac i;

(*Like mp_tac but instantiates no variables*)
fun eq_mp_tac i = ematch_tac [not_elim, imp_elim] i  THEN  eq_assume_tac i;

val swap = rule_by_tactic (etac thin_rl 1) (not_elim RS classical);

(*Creates rules to eliminate ~A, from rules to introduce A*)
fun swapify intrs = intrs RLN (2, [swap]);

(*Uses introduction rules in the normal way, or on negated assumptions,
  trying rules in order. *)
fun swap_res_tac rls = 
    let fun addrl (rl,brls) = (false, rl) :: (true, rl RSN (2,swap)) :: brls
    in  assume_tac 	ORELSE' 
	contr_tac 	ORELSE' 
        biresolve_tac (foldr addrl (rls,[]))

(*Duplication of hazardous rules, for complete provers*)
fun dup_intr th = standard (th RS classical);

fun dup_elim th = th RSN (2, revcut_rl) |> assumption 2 |> Sequence.hd |> 
                  rule_by_tactic (TRYALL (etac revcut_rl));

(*** Classical rule sets ***)

type netpair = (int*(bool*thm)) * (int*(bool*thm));

datatype claset =
  CS of {safeIs		: thm list,		(*safe introduction rules*)
	 safeEs		: thm list,		(*safe elimination rules*)
	 hazIs		: thm list,		(*unsafe introduction rules*)
	 hazEs		: thm list,		(*unsafe elimination rules*)
	 wrapper	: tactic->tactic,	(*for transforming step_tac*)
	 safe0_netpair	: netpair,		(*nets for trivial cases*)
	 safep_netpair	: netpair,		(*nets for >0 subgoals*)
	 haz_netpair  	: netpair,		(*nets for unsafe rules*)
	 dup_netpair	: netpair};		(*nets for duplication*)

(*Desired invariants are
	safe0_netpair = build safe0_brls,
	safep_netpair = build safep_brls,
	haz_netpair = build (joinrules(hazIs, hazEs)),
	dup_netpair = build (joinrules(map dup_intr hazIs, 
				       map dup_elim hazEs))}

where build = build_netpair(Net.empty,Net.empty), 
      safe0_brls contains all brules that solve the subgoal, and
      safep_brls contains all brules that generate 1 or more new subgoals.
Nets must be built incrementally, to save space and time.

val empty_cs = 
  CS{safeIs	= [],
     safeEs	= [],
     hazIs	= [],
     hazEs	= [],
     wrapper 	= I,
     safe0_netpair = (Net.empty,Net.empty),
     safep_netpair = (Net.empty,Net.empty),
     haz_netpair   = (Net.empty,Net.empty),
     dup_netpair   = (Net.empty,Net.empty)};

fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
 (writeln"Introduction rules";  	prths hazIs;
  writeln"Safe introduction rules";  	prths safeIs;
  writeln"Elimination rules";  		prths hazEs;
  writeln"Safe elimination rules";  	prths safeEs;

fun rep_claset (CS args) = args;

fun getwrapper (CS{wrapper,...}) = wrapper;

(** Adding (un)safe introduction or elimination rules.

    In case of overlap, new rules are tried BEFORE old ones!!

(*For use with biresolve_tac.  Combines intr rules with swap to handle negated
  assumptions.  Pairs elim rules with true. *)
fun joinrules (intrs,elims) =  
    (map (pair true) (elims @ swapify intrs)  @
     map (pair false) intrs);

(*Priority: prefer rules with fewest subgoals, 
  then rules added most recently (preferring the head of the list).*)
fun tag_brls k [] = []
  | tag_brls k (brl::brls) =
      (1000000*subgoals_of_brl brl + k, brl) :: 
      tag_brls (k+1) brls;

fun insert_tagged_list kbrls np = foldr insert_tagged_brl (kbrls, np);

(*Insert into netpair that already has nI intr rules and nE elim rules.
  Count the intr rules double (to account for swapify).  Negate to give the
  new insertions the lowest priority.*)
fun insert (nI,nE) = insert_tagged_list o (tag_brls (~(2*nI+nE))) o joinrules;

(** Safe rules **)

fun (CS{safeIs, safeEs, hazIs, hazEs, wrapper, 
	safe0_netpair, safep_netpair, haz_netpair, dup_netpair}) 
    addSIs  ths  =
  let val (safe0_rls, safep_rls) = (*0 subgoals vs 1 or more*)
          take_prefix (fn rl => nprems_of rl=0) ths
      val nI = length safeIs + length ths
      and nE = length safeEs
  in CS{safeIs	= ths@safeIs,
        safe0_netpair = insert (nI,nE) (safe0_rls, []) safe0_netpair,
	safep_netpair = insert (nI,nE) (safep_rls, []) safep_netpair,
	safeEs	= safeEs,
	hazIs	= hazIs,
	hazEs	= hazEs,
	wrapper = wrapper,
	haz_netpair = haz_netpair,
	dup_netpair = dup_netpair}

fun (CS{safeIs, safeEs, hazIs, hazEs, wrapper, 
	safe0_netpair, safep_netpair, haz_netpair, dup_netpair}) 
    addSEs  ths  =
  let val (safe0_rls, safep_rls) = (*0 subgoals vs 1 or more*)
          take_prefix (fn rl => nprems_of rl=1) ths
      val nI = length safeIs
      and nE = length safeEs + length ths
     CS{safeEs	= ths@safeEs,
        safe0_netpair = insert (nI,nE) ([], safe0_rls) safe0_netpair,
	safep_netpair = insert (nI,nE) ([], safep_rls) safep_netpair,
	safeIs	= safeIs,
	hazIs	= hazIs,
	hazEs	= hazEs,
	wrapper = wrapper,
	haz_netpair = haz_netpair,
	dup_netpair = dup_netpair}

fun cs addSDs ths = cs addSEs (map make_elim ths);

(** Hazardous (unsafe) rules **)

fun (CS{safeIs, safeEs, hazIs, hazEs, wrapper, 
	safe0_netpair, safep_netpair, haz_netpair, dup_netpair}) 
    addIs  ths  =
  let val nI = length hazIs + length ths
      and nE = length hazEs
     CS{hazIs	= ths@hazIs,
	haz_netpair = insert (nI,nE) (ths, []) haz_netpair,
	dup_netpair = insert (nI,nE) (map dup_intr ths, []) dup_netpair,
	safeIs 	= safeIs, 
	safeEs	= safeEs,
	hazEs	= hazEs,
	wrapper 	= wrapper,
	safe0_netpair = safe0_netpair,
	safep_netpair = safep_netpair}

fun (CS{safeIs, safeEs, hazIs, hazEs, wrapper, 
	safe0_netpair, safep_netpair, haz_netpair, dup_netpair}) 
    addEs  ths  =
  let val nI = length hazIs 
      and nE = length hazEs + length ths
     CS{hazEs	= ths@hazEs,
	haz_netpair = insert (nI,nE) ([], ths) haz_netpair,
	dup_netpair = insert (nI,nE) ([], map dup_elim ths) dup_netpair,
	safeIs	= safeIs, 
	safeEs	= safeEs,
	hazIs	= hazIs,
	wrapper	= wrapper,
	safe0_netpair = safe0_netpair,
	safep_netpair = safep_netpair}

fun cs addDs ths = cs addEs (map make_elim ths);

(** Setting or modifying the wrapper tactical **)

(*Set a new wrapper*)
fun (CS{safeIs, safeEs, hazIs, hazEs, 
	safe0_netpair, safep_netpair, haz_netpair, dup_netpair, ...}) 
    setwrapper new_wrapper  =
  CS{wrapper 	= new_wrapper,
     safeIs	= safeIs,
     safeEs	= safeEs,
     hazIs	= hazIs,
     hazEs	= hazEs,
     safe0_netpair = safe0_netpair,
     safep_netpair = safep_netpair,
     haz_netpair = haz_netpair,
     dup_netpair = dup_netpair};

(*Compose a tactical with the existing wrapper*)
fun cs compwrapper wrapper' = cs setwrapper (wrapper' o getwrapper cs);

(*Execute tac1, but only execute tac2 if there are at least as many subgoals
  as before.  This ensures that tac2 is only applied to an outcome of tac1.*)
fun tac1 THEN_MAYBE tac2 = 
  STATE (fn state =>
	 tac1  THEN  
	 COND (has_fewer_prems (nprems_of state)) all_tac tac2);

(*Cause a tactic to be executed before/after the step tactic*)
fun cs addbefore tac2 = cs compwrapper (fn tac1 => tac2 THEN_MAYBE tac1);
fun cs addafter tac2  = cs compwrapper (fn tac1 => tac1 THEN_MAYBE tac2);

(*** Simple tactics for theorem proving ***)

(*Attack subgoals using safe inferences -- matching, not resolution*)
fun safe_step_tac (CS{safe0_netpair,safep_netpair,...}) = 
  FIRST' [eq_assume_tac,
	  bimatch_from_nets_tac safe0_netpair,
	  FIRST' hyp_subst_tacs,
	  bimatch_from_nets_tac safep_netpair] ;

(*Repeatedly attack subgoals using safe inferences -- it's deterministic!*)
fun safe_tac cs = REPEAT_DETERM_FIRST (safe_step_tac cs);

(*But these unsafe steps at least solve a subgoal!*)
fun inst0_step_tac (CS{safe0_netpair,safep_netpair,...}) =
  assume_tac 			  APPEND' 
  contr_tac 			  APPEND' 
  biresolve_from_nets_tac safe0_netpair;

(*These are much worse since they could generate more and more subgoals*)
fun instp_step_tac (CS{safep_netpair,...}) =
  biresolve_from_nets_tac safep_netpair;

(*These steps could instantiate variables and are therefore unsafe.*)
fun inst_step_tac cs = inst0_step_tac cs APPEND' instp_step_tac cs;

fun haz_step_tac (CS{haz_netpair,...}) = 
  biresolve_from_nets_tac haz_netpair;

(*Single step for the prover.  FAILS unless it makes progress. *)
fun step_tac cs i = 
  getwrapper cs 
    (FIRST [safe_tac cs, inst_step_tac cs i, haz_step_tac cs i]);

(*Using a "safe" rule to instantiate variables is unsafe.  This tactic
  allows backtracking from "safe" rules to "unsafe" rules here.*)
fun slow_step_tac cs i = 
  getwrapper cs 
    (safe_tac cs ORELSE (inst_step_tac cs i APPEND haz_step_tac cs i));

(*** The following tactics all fail unless they solve one goal ***)

(*Dumb but fast*)
fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));

(*Slower but smarter than fast_tac*)
fun best_tac cs = 
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));

fun slow_tac cs = SELECT_GOAL (DEPTH_SOLVE (slow_step_tac cs 1));

fun slow_best_tac cs = 
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (slow_step_tac cs 1));

(*** Complete tactic, loosely based upon LeanTaP.  This tactic is the outcome
  of much experimentation!  Changing APPEND to ORELSE below would prove
  easy theorems faster, but loses completeness -- and many of the harder
  theorems such as 43. ***)

(*Non-deterministic!  Could always expand the first unsafe connective.
  That's hard to implement and did not perform better in experiments, due to
  greater search depth required.*)
fun dup_step_tac (cs as (CS{dup_netpair,...})) = 
  biresolve_from_nets_tac dup_netpair;

(*Searching to depth m.*)
fun depth_tac cs m i = STATE(fn state => 
    (REPEAT_DETERM1 (safe_step_tac cs 1) THEN_ELSE
     (DEPTH_SOLVE (depth_tac cs m 1),
      inst0_step_tac cs 1  APPEND
      COND (K(m=0)) no_tac
        ((instp_step_tac cs 1 APPEND dup_step_tac cs 1)
	 THEN DEPTH_SOLVE (depth_tac cs (m-1) 1))))

(*Iterative deepening tactical.  Allows us to "deepen" any search tactic*)
fun DEEPEN tacf m i = STATE(fn state => 
   if has_fewer_prems i state then no_tac
   else (writeln ("Depth = " ^ string_of_int m);
	 tacf m i  ORELSE  DEEPEN tacf (m+2) i));

fun safe_depth_tac cs m = 
    (fn (prem,i) =>
      let val deti =
	  (*No Vars in the goal?  No need to backtrack between goals.*)
	  case term_vars prem of
	      []	=> DETERM 
	    | _::_	=> I
      in  SELECT_GOAL (TRY (safe_tac cs) THEN 
		       DEPTH_SOLVE (deti (depth_tac cs m 1))) i

fun deepen_tac cs = DEEPEN (safe_depth_tac cs);