(* Title: ZF/simpdata
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Rewriting for ZF set theory -- based on FOL rewriting
*)
fun prove_fun s =
(writeln s; prove_goal ZF.thy s
(fn prems => [ (cut_facts_tac prems 1), (fast_tac ZF_cs 1) ]));
val mem_rews = map prove_fun
[ "a:0 <-> False",
"a : A Un B <-> a:A | a:B",
"a : A Int B <-> a:A & a:B",
"a : A-B <-> a:A & ~a:B",
"a : cons(b,B) <-> a=b | a:B",
"i : succ(j) <-> i=j | i:j",
"<a,b>: Sigma(A,B) <-> a:A & b:B(a)",
"a : Collect(A,P) <-> a:A & P(a)" ];
(** Tactics for type checking -- from CTT **)
fun is_rigid_elem (Const("Trueprop",_) $ (Const("op :",_) $ a $ _)) =
not (is_Var (head_of a))
| is_rigid_elem _ = false;
(*Try solving a:A by assumption provided a is rigid!*)
val test_assume_tac = SUBGOAL(fn (prem,i) =>
if is_rigid_elem (Logic.strip_assums_concl prem)
then assume_tac i else no_tac);
(*Type checking solves a:?A (a rigid, ?A maybe flexible).
match_tac is too strict; would refuse to instantiate ?A*)
fun typechk_step_tac tyrls =
FIRSTGOAL (test_assume_tac ORELSE' filt_resolve_tac tyrls 3);
fun typechk_tac tyrls = REPEAT (typechk_step_tac tyrls);
val ZF_typechecks = [if_type,lam_type,SigmaI,apply_type,split_type];
(*To instantiate variables in typing conditions;
to perform type checking faster than rewriting can
NOT TERRIBLY USEFUL because it does not simplify conjunctions*)
fun type_auto_tac tyrls hyps = SELECT_GOAL
(DEPTH_SOLVE (typechk_step_tac (tyrls@hyps)
ORELSE ares_tac [TrueI,ballI,allI,conjI,impI] 1));
(** New version of mk_rew_rules **)
(*Should False yield False<->True, or should it solve goals some other way?*)
(*Analyse a rigid formula*)
val atomize_pairs =
[("Ball", [bspec]),
("All", [spec]),
("op -->", [mp]),
("op &", [conjunct1,conjunct2])];
(*Analyse a:b, where b is rigid*)
val atomize_mem_pairs =
[("Collect", [CollectD1,CollectD2]),
("op -", [DiffD1,DiffD2]),
("op Int", [IntD1,IntD2])];
(*Analyse a theorem to atomic rewrite rules*)
fun atomize th =
let fun tryrules pairs t =
case head_of t of
Const(a,_) =>
(case assoc(pairs,a) of
Some rls => flat (map atomize ([th] RL rls))
| None => [th])
| _ => [th]
in case concl_of th of (*The operator below is Trueprop*)
_ $ (Const("op :",_) $ a $ b) => tryrules atomize_mem_pairs b
| _ $ (Const("True",_)) => [] (*True is DELETED*)
| _ $ (Const("False",_)) => [] (*should False do something??*)
| _ $ A => tryrules atomize_pairs A
end;
fun ZF_mk_rew_rules th = map mk_eq (atomize th);
fun auto_tac rls hyps = SELECT_GOAL (DEPTH_SOLVE_1 (ares_tac (rls@hyps) 1));
structure ZF_SimpData : SIMP_DATA =
struct
val refl_thms = FOL_SimpData.refl_thms
val trans_thms = FOL_SimpData.trans_thms
val red1 = FOL_SimpData.red1
val red2 = FOL_SimpData.red2
val mk_rew_rules = ZF_mk_rew_rules
val norm_thms = FOL_SimpData.norm_thms
val subst_thms = FOL_SimpData.subst_thms
val dest_red = FOL_SimpData.dest_red
end;
structure ZF_Simp = SimpFun(ZF_SimpData);
open ZF_Simp;
(*Redeclared because the previous FOL_ss belongs to a different instance
of type simpset*)
val FOL_ss = empty_ss addcongs FOL_congs addrews FOL_rews
setauto auto_tac[TrueI,ballI];
(** Basic congruence and rewrite rules for ZF set theory **)
val ZF_congs =
[ball_cong,bex_cong,Replace_cong,RepFun_cong,Collect_cong,the_cong,
if_cong,Sigma_cong,split_cong,Pi_cong,lam_cong] @ basic_ZF_congs;
val ZF_rews = [empty_subsetI, ball_rew, if_true, if_false,
beta, eta, restrict,
fst_conv, snd_conv, split];
val ZF_ss = FOL_ss addcongs ZF_congs addrews (ZF_rews@mem_rews);