src/Provers/split_paired_all.ML
 author wenzelm Mon, 16 Nov 1998 13:54:35 +0100 changeset 5897 b3548f939dd2 parent 5704 1ddf7e1e8b19 child 7879 4547f0bd9454 permissions -rw-r--r--
removed genelim.ML;

(*  Title:      Provers/split_paired_all.ML
ID:         \$Id\$
Author:     Markus Wenzel, TU Muenchen

Derived rule for turning meta-level surjective pairing into split rule:

p == (fst p, snd p)
--------------------------------------
!!a b. PROP (a, b) == !! x. PROP P x

*)

signature SPLIT_PAIRED_ALL =
sig
val rule: thm -> thm
end;

structure SplitPairedAll: SPLIT_PAIRED_ALL =
struct

fun all x T t = Term.all T \$ Abs (x, T, t);

infixr ==>;
val op ==> = Logic.mk_implies;

fun rule raw_surj_pair =
let
val ct = Thm.cterm_of (Thm.sign_of_thm raw_surj_pair);

val surj_pair = Drule.unvarify (standard raw_surj_pair);
val used = Term.add_term_names (#prop (Thm.rep_thm surj_pair), []);

val (p, con \$ _ \$ _) = Logic.dest_equals (#prop (rep_thm surj_pair));
val pT as Type (_, [aT, bT]) = fastype_of p;
val P = Free (variant used "P", pT --> propT);

(*"!!a b. PROP (a, b)"*)
val all_a_b = all "a" aT (all "b" bT (P \$ (con \$ Bound 1 \$ Bound 0)));
(*"!!x. PROP P x"*)
val all_x = all "x" pT (P \$ Bound 0);

(*lemma "P p == P (fst p, snd p)"*)
val lem1 = Thm.combination (Thm.reflexive (ct P)) surj_pair;

(*lemma "!!a b. PROP (a, b) ==> PROP P p"*)
val lem2 = prove_goalw_cterm [lem1] (ct (all_a_b ==> P \$ p))
(fn prems => [resolve_tac prems 1]);

(*lemma "!!a b. PROP (a, b) ==> !!x. PROP P x"*)
val lem3 = prove_goalw_cterm [] (ct (all_a_b ==> all_x))
(fn prems => [rtac lem2 1, resolve_tac prems 1]);

(*lemma "!!x. PROP P x ==> !!a b. PROP (a, b)"*)
val lem4 = prove_goalw_cterm [] (ct (all_x ==> all_a_b))
(fn prems => [resolve_tac prems 1]);
in standard (Thm.equal_intr lem4 lem3) end;

end;