src/ZF/ZF.thy
 author wenzelm Wed, 12 Oct 1994 11:09:11 +0100 changeset 632 f9a3f77f71e8 parent 615 84ac5f101bd1 child 675 59a4fa76b590 permissions -rw-r--r--
fixed infix names in print_translations;
```
(*  Title:      ZF/ZF.thy
ID:         \$Id\$
Author:     Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright   1993  University of Cambridge

Zermelo-Fraenkel Set Theory
*)

ZF = FOL +

types
i

arities
i :: term

consts

"0"           :: "i"                  ("0")   (*the empty set*)
Pow           :: "i => i"                     (*power sets*)
Inf           :: "i"                          (*infinite set*)

(* Bounded Quantifiers *)

Ball, Bex     :: "[i, i => o] => o"

(* General Union and Intersection *)

Union, Inter  :: "i => i"

(* Variations on Replacement *)

PrimReplace   :: "[i, [i, i] => o] => i"
Replace       :: "[i, [i, i] => o] => i"
RepFun        :: "[i, i => i] => i"
Collect       :: "[i, i => o] => i"

(* Descriptions *)

The           :: "(i => o) => i"      (binder "THE " 10)
if            :: "[o, i, i] => i"

(* Finite Sets *)

Upair, cons   :: "[i, i] => i"
succ          :: "i => i"

(* Ordered Pairing *)

Pair          :: "[i, i] => i"
fst, snd      :: "i => i"
split         :: "[[i, i] => i, i] => i"
fsplit        :: "[[i, i] => o, i] => o"

(* Sigma and Pi Operators *)

Sigma, Pi     :: "[i, i => i] => i"

(* Relations and Functions *)

domain        :: "i => i"
range         :: "i => i"
field         :: "i => i"
converse      :: "i => i"
Lambda        :: "[i, i => i] => i"
restrict      :: "[i, i] => i"

(* Infixes in order of decreasing precedence *)

"``"          :: "[i, i] => i"    (infixl 90) (*image*)
"-``"         :: "[i, i] => i"    (infixl 90) (*inverse image*)
"`"           :: "[i, i] => i"    (infixl 90) (*function application*)
(*"*"           :: "[i, i] => i"    (infixr 80) (*Cartesian product*)*)
"Int"         :: "[i, i] => i"    (infixl 70) (*binary intersection*)
"Un"          :: "[i, i] => i"    (infixl 65) (*binary union*)
"-"           :: "[i, i] => i"    (infixl 65) (*set difference*)
(*"->"          :: "[i, i] => i"    (infixr 60) (*function space*)*)
"<="          :: "[i, i] => o"    (infixl 50) (*subset relation*)
":"           :: "[i, i] => o"    (infixl 50) (*membership relation*)
(*"~:"          :: "[i, i] => o"    (infixl 50) (*negated membership relation*)*)

types
is

syntax
""            :: "i => is"                    ("_")
"@Enum"       :: "[i, is] => is"              ("_,/ _")
"~:"          :: "[i, i] => o"                (infixl 50)
"@Finset"     :: "is => i"                    ("{(_)}")
"@Tuple"      :: "[i, is] => i"               ("<(_,/ _)>")
"@Collect"    :: "[idt, i, o] => i"           ("(1{_: _ ./ _})")
"@Replace"    :: "[idt, idt, i, o] => i"      ("(1{_ ./ _: _, _})")
"@RepFun"     :: "[i, idt, i] => i"           ("(1{_ ./ _: _})")
"@INTER"      :: "[idt, i, i] => i"           ("(3INT _:_./ _)" 10)
"@UNION"      :: "[idt, i, i] => i"           ("(3UN _:_./ _)" 10)
"@PROD"       :: "[idt, i, i] => i"           ("(3PROD _:_./ _)" 10)
"@SUM"        :: "[idt, i, i] => i"           ("(3SUM _:_./ _)" 10)
"->"          :: "[i, i] => i"                (infixr 60)
"*"           :: "[i, i] => i"                (infixr 80)
"@lam"        :: "[idt, i, i] => i"           ("(3lam _:_./ _)" 10)
"@Ball"       :: "[idt, i, o] => o"           ("(3ALL _:_./ _)" 10)
"@Bex"        :: "[idt, i, o] => o"           ("(3EX _:_./ _)" 10)

translations
"x ~: y"      == "~ (x : y)"
"{x, xs}"     == "cons(x, {xs})"
"{x}"         == "cons(x, 0)"
"<x, y, z>"   == "<x, <y, z>>"
"<x, y>"      == "Pair(x, y)"
"{x:A. P}"    == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(A, %x y. Q)"
"{b. x:A}"    == "RepFun(A, %x. b)"
"INT x:A. B"  == "Inter({B. x:A})"
"UN x:A. B"   == "Union({B. x:A})"
"PROD x:A. B" => "Pi(A, %x. B)"
"SUM x:A. B"  => "Sigma(A, %x. B)"
"A -> B"      => "Pi(A, _K(B))"
"A * B"       => "Sigma(A, _K(B))"
"lam x:A. f"  == "Lambda(A, %x. f)"
"ALL x:A. P"  == "Ball(A, %x. P)"
"EX x:A. P"   == "Bex(A, %x. P)"

rules

(* Bounded Quantifiers *)

Ball_def      "Ball(A, P) == ALL x. x:A --> P(x)"
Bex_def       "Bex(A, P) == EX x. x:A & P(x)"
subset_def    "A <= B == ALL x:A. x:B"

(* ZF axioms -- see Suppes p.238
Axioms for Union, Pow and Replace state existence only,
uniqueness is derivable using extensionality. *)

extension     "A = B <-> A <= B & B <= A"
Union_iff     "A : Union(C) <-> (EX B:C. A:B)"
Pow_iff       "A : Pow(B) <-> A <= B"
succ_def      "succ(i) == cons(i, i)"

(*We may name this set, though it is not uniquely defined.*)
infinity      "0:Inf & (ALL y:Inf. succ(y): Inf)"

(*This formulation facilitates case analysis on A.*)
foundation    "A=0 | (EX x:A. ALL y:x. y~:A)"

(*Schema axiom since predicate P is a higher-order variable*)
replacement   "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> \
\        b : PrimReplace(A,P) <-> (EX x:A. P(x,b))"

(* Derived form of replacement, restricting P to its functional part.
The resulting set (for functional P) is the same as with
PrimReplace, but the rules are simpler. *)

Replace_def   "Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))"

(* Functional form of replacement -- analgous to ML's map functional *)

RepFun_def    "RepFun(A,f) == {y . x:A, y=f(x)}"

(* Separation and Pairing can be derived from the Replacement
and Powerset Axioms using the following definitions. *)

Collect_def   "Collect(A,P) == {y . x:A, x=y & P(x)}"

(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)

Upair_def   "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def    "cons(a,A) == Upair(a,a) Un A"

(* Difference, general intersection, binary union and small intersection *)

Diff_def      "A - B    == { x:A . ~(x:B) }"
Inter_def     "Inter(A) == { x:Union(A) . ALL y:A. x:y}"
Un_def        "A Un  B  == Union(Upair(A,B))"
Int_def       "A Int B  == Inter(Upair(A,B))"

(* Definite descriptions -- via Replace over the set "1" *)

the_def       "The(P)    == Union({y . x:{0}, P(y)})"
if_def        "if(P,a,b) == THE z. P & z=a | ~P & z=b"

(* Ordered pairs and disjoint union of a family of sets *)

(* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def      "<a,b>  == {{a,a}, {a,b}}"
fst_def       "fst == split(%x y.x)"
snd_def       "snd == split(%x y.y)"
split_def     "split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)"
fsplit_def    "fsplit(R,z) == EX x y. z=<x,y> & R(x,y)"
Sigma_def     "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"

(* Operations on relations *)

(*converse of relation r, inverse of function*)
converse_def  "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"

domain_def    "domain(r) == {x. w:r, EX y. w=<x,y>}"
range_def     "range(r) == domain(converse(r))"
field_def     "field(r) == domain(r) Un range(r)"
image_def     "r `` A  == {y : range(r) . EX x:A. <x,y> : r}"
vimage_def    "r -`` A == converse(r)``A"

(* Abstraction, application and Cartesian product of a family of sets *)

lam_def       "Lambda(A,b) == {<x,b(x)> . x:A}"
apply_def     "f`a == THE y. <a,y> : f"
Pi_def        "Pi(A,B)  == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}"

(* Restrict the function f to the domain A *)
restrict_def  "restrict(f,A) == lam x:A.f`x"

end

ML

(* 'Dependent' type operators *)

val print_translation =
[("Pi", dependent_tr' ("@PROD", "op ->")),
("Sigma", dependent_tr' ("@SUM", "op *"))];
```