--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/closure_procedure.ML Mon Aug 23 13:43:02 2021 +0200
@@ -0,0 +1,919 @@
+(* Generated from Closure_Tactic.thy; DO NOT EDIT! *)
+
+structure Closure_Procedure : sig
+ datatype inta = Int_of_integer of int
+ val integer_of_int : inta -> int
+ datatype 'a fm = Atom of 'a | And of 'a fm * 'a fm | Or of 'a fm * 'a fm |
+ Neg of 'a fm
+ datatype trm = Const of string | App of trm * trm | Var of inta
+ datatype prf_trm = PThm of string | Appt of prf_trm * trm |
+ AppP of prf_trm * prf_trm | AbsP of trm * prf_trm | Bound of trm |
+ Conv of trm * prf_trm * prf_trm
+ type ('a, 'b) mapping
+ datatype closure_atom = EQ of inta * inta | In of inta * inta |
+ InTcl of inta * inta | InRtcl of inta * inta | InConv of inta * inta |
+ InReflcl of inta * inta
+ val contr_list : (bool * closure_atom) list -> prf_trm option
+ val full_contr_prf : (bool * closure_atom) fm -> prf_trm option
+end = struct
+
+datatype inta = Int_of_integer of int;
+
+fun integer_of_int (Int_of_integer k) = k;
+
+fun equal_inta k l = integer_of_int k = integer_of_int l;
+
+type 'a equal = {equal : 'a -> 'a -> bool};
+val equal = #equal : 'a equal -> 'a -> 'a -> bool;
+
+val equal_int = {equal = equal_inta} : inta equal;
+
+fun less_eq_int k l = integer_of_int k <= integer_of_int l;
+
+type 'a ord = {less_eq : 'a -> 'a -> bool, less : 'a -> 'a -> bool};
+val less_eq = #less_eq : 'a ord -> 'a -> 'a -> bool;
+val less = #less : 'a ord -> 'a -> 'a -> bool;
+
+fun less_int k l = integer_of_int k < integer_of_int l;
+
+val ord_int = {less_eq = less_eq_int, less = less_int} : inta ord;
+
+type 'a preorder = {ord_preorder : 'a ord};
+val ord_preorder = #ord_preorder : 'a preorder -> 'a ord;
+
+type 'a order = {preorder_order : 'a preorder};
+val preorder_order = #preorder_order : 'a order -> 'a preorder;
+
+val preorder_int = {ord_preorder = ord_int} : inta preorder;
+
+val order_int = {preorder_order = preorder_int} : inta order;
+
+type 'a linorder = {order_linorder : 'a order};
+val order_linorder = #order_linorder : 'a linorder -> 'a order;
+
+val linorder_int = {order_linorder = order_int} : inta linorder;
+
+fun eq A_ a b = equal A_ a b;
+
+fun equal_proda A_ B_ (x1, x2) (y1, y2) = eq A_ x1 y1 andalso eq B_ x2 y2;
+
+fun equal_prod A_ B_ = {equal = equal_proda A_ B_} : ('a * 'b) equal;
+
+fun less_eq_prod A_ B_ (x1, y1) (x2, y2) =
+ less A_ x1 x2 orelse less_eq A_ x1 x2 andalso less_eq B_ y1 y2;
+
+fun less_prod A_ B_ (x1, y1) (x2, y2) =
+ less A_ x1 x2 orelse less_eq A_ x1 x2 andalso less B_ y1 y2;
+
+fun ord_prod A_ B_ = {less_eq = less_eq_prod A_ B_, less = less_prod A_ B_} :
+ ('a * 'b) ord;
+
+fun preorder_prod A_ B_ =
+ {ord_preorder = ord_prod (ord_preorder A_) (ord_preorder B_)} :
+ ('a * 'b) preorder;
+
+fun order_prod A_ B_ =
+ {preorder_order = preorder_prod (preorder_order A_) (preorder_order B_)} :
+ ('a * 'b) order;
+
+fun linorder_prod A_ B_ =
+ {order_linorder = order_prod (order_linorder A_) (order_linorder B_)} :
+ ('a * 'b) linorder;
+
+datatype nat = Zero_nat | Suc of nat;
+
+datatype num = One | Bit0 of num | Bit1 of num;
+
+datatype color = R | B;
+
+datatype ('a, 'b) rbta = Empty |
+ Branch of color * ('a, 'b) rbta * 'a * 'b * ('a, 'b) rbta;
+
+datatype ('b, 'a) rbt = RBT of ('b, 'a) rbta;
+
+datatype 'a set = Set of 'a list | Coset of 'a list;
+
+datatype 'a fm = Atom of 'a | And of 'a fm * 'a fm | Or of 'a fm * 'a fm |
+ Neg of 'a fm;
+
+datatype trm = Const of string | App of trm * trm | Var of inta;
+
+datatype prf_trm = PThm of string | Appt of prf_trm * trm |
+ AppP of prf_trm * prf_trm | AbsP of trm * prf_trm | Bound of trm |
+ Conv of trm * prf_trm * prf_trm;
+
+datatype ('a, 'b) mapping = Mapping of ('a, 'b) rbt;
+
+datatype closure_atom = EQ of inta * inta | In of inta * inta |
+ InTcl of inta * inta | InRtcl of inta * inta | InConv of inta * inta |
+ InReflcl of inta * inta;
+
+fun id x = (fn xa => xa) x;
+
+fun impl_of B_ (RBT x) = x;
+
+fun foldb f (Branch (c, lt, k, v, rt)) x = foldb f rt (f k v (foldb f lt x))
+ | foldb f Empty x = x;
+
+fun fold A_ x xc = foldb x (impl_of A_ xc);
+
+fun gen_keys kts (Branch (c, l, k, v, r)) = gen_keys ((k, r) :: kts) l
+ | gen_keys ((k, t) :: kts) Empty = k :: gen_keys kts t
+ | gen_keys [] Empty = [];
+
+fun keysb x = gen_keys [] x;
+
+fun keys A_ x = keysb (impl_of A_ x);
+
+fun maps f [] = []
+ | maps f (x :: xs) = f x @ maps f xs;
+
+fun empty A_ = RBT Empty;
+
+fun map f [] = []
+ | map f (x21 :: x22) = f x21 :: map f x22;
+
+fun image f (Set xs) = Set (map f xs);
+
+fun foldl f a [] = a
+ | foldl f a (x :: xs) = foldl f (f a x) xs;
+
+fun foldr f [] = id
+ | foldr f (x :: xs) = f x o foldr f xs;
+
+fun balance (Branch (R, a, w, x, b)) s t (Branch (R, c, y, z, d)) =
+ Branch (R, Branch (B, a, w, x, b), s, t, Branch (B, c, y, z, d))
+ | balance (Branch (R, Branch (R, a, w, x, b), s, t, c)) y z Empty =
+ Branch (R, Branch (B, a, w, x, b), s, t, Branch (B, c, y, z, Empty))
+ | balance (Branch (R, Branch (R, a, w, x, b), s, t, c)) y z
+ (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (R, Branch (B, a, w, x, b), s, t,
+ Branch (B, c, y, z, Branch (B, va, vb, vc, vd)))
+ | balance (Branch (R, Empty, w, x, Branch (R, b, s, t, c))) y z Empty =
+ Branch (R, Branch (B, Empty, w, x, b), s, t, Branch (B, c, y, z, Empty))
+ | balance
+ (Branch (R, Branch (B, va, vb, vc, vd), w, x, Branch (R, b, s, t, c))) y z
+ Empty =
+ Branch
+ (R, Branch (B, Branch (B, va, vb, vc, vd), w, x, b), s, t,
+ Branch (B, c, y, z, Empty))
+ | balance (Branch (R, Empty, w, x, Branch (R, b, s, t, c))) y z
+ (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (R, Branch (B, Empty, w, x, b), s, t,
+ Branch (B, c, y, z, Branch (B, va, vb, vc, vd)))
+ | balance
+ (Branch (R, Branch (B, ve, vf, vg, vh), w, x, Branch (R, b, s, t, c))) y z
+ (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (R, Branch (B, Branch (B, ve, vf, vg, vh), w, x, b), s, t,
+ Branch (B, c, y, z, Branch (B, va, vb, vc, vd)))
+ | balance Empty w x (Branch (R, b, s, t, Branch (R, c, y, z, d))) =
+ Branch (R, Branch (B, Empty, w, x, b), s, t, Branch (B, c, y, z, d))
+ | balance (Branch (B, va, vb, vc, vd)) w x
+ (Branch (R, b, s, t, Branch (R, c, y, z, d))) =
+ Branch
+ (R, Branch (B, Branch (B, va, vb, vc, vd), w, x, b), s, t,
+ Branch (B, c, y, z, d))
+ | balance Empty w x (Branch (R, Branch (R, b, s, t, c), y, z, Empty)) =
+ Branch (R, Branch (B, Empty, w, x, b), s, t, Branch (B, c, y, z, Empty))
+ | balance Empty w x
+ (Branch (R, Branch (R, b, s, t, c), y, z, Branch (B, va, vb, vc, vd))) =
+ Branch
+ (R, Branch (B, Empty, w, x, b), s, t,
+ Branch (B, c, y, z, Branch (B, va, vb, vc, vd)))
+ | balance (Branch (B, va, vb, vc, vd)) w x
+ (Branch (R, Branch (R, b, s, t, c), y, z, Empty)) =
+ Branch
+ (R, Branch (B, Branch (B, va, vb, vc, vd), w, x, b), s, t,
+ Branch (B, c, y, z, Empty))
+ | balance (Branch (B, va, vb, vc, vd)) w x
+ (Branch (R, Branch (R, b, s, t, c), y, z, Branch (B, ve, vf, vg, vh))) =
+ Branch
+ (R, Branch (B, Branch (B, va, vb, vc, vd), w, x, b), s, t,
+ Branch (B, c, y, z, Branch (B, ve, vf, vg, vh)))
+ | balance Empty s t Empty = Branch (B, Empty, s, t, Empty)
+ | balance Empty s t (Branch (B, va, vb, vc, vd)) =
+ Branch (B, Empty, s, t, Branch (B, va, vb, vc, vd))
+ | balance Empty s t (Branch (v, Empty, vb, vc, Empty)) =
+ Branch (B, Empty, s, t, Branch (v, Empty, vb, vc, Empty))
+ | balance Empty s t (Branch (v, Branch (B, ve, vf, vg, vh), vb, vc, Empty)) =
+ Branch
+ (B, Empty, s, t, Branch (v, Branch (B, ve, vf, vg, vh), vb, vc, Empty))
+ | balance Empty s t (Branch (v, Empty, vb, vc, Branch (B, vf, vg, vh, vi))) =
+ Branch
+ (B, Empty, s, t, Branch (v, Empty, vb, vc, Branch (B, vf, vg, vh, vi)))
+ | balance Empty s t
+ (Branch (v, Branch (B, ve, vj, vk, vl), vb, vc, Branch (B, vf, vg, vh, vi)))
+ = Branch
+ (B, Empty, s, t,
+ Branch
+ (v, Branch (B, ve, vj, vk, vl), vb, vc, Branch (B, vf, vg, vh, vi)))
+ | balance (Branch (B, va, vb, vc, vd)) s t Empty =
+ Branch (B, Branch (B, va, vb, vc, vd), s, t, Empty)
+ | balance (Branch (B, va, vb, vc, vd)) s t (Branch (B, ve, vf, vg, vh)) =
+ Branch (B, Branch (B, va, vb, vc, vd), s, t, Branch (B, ve, vf, vg, vh))
+ | balance (Branch (B, va, vb, vc, vd)) s t (Branch (v, Empty, vf, vg, Empty))
+ = Branch
+ (B, Branch (B, va, vb, vc, vd), s, t, Branch (v, Empty, vf, vg, Empty))
+ | balance (Branch (B, va, vb, vc, vd)) s t
+ (Branch (v, Branch (B, vi, vj, vk, vl), vf, vg, Empty)) =
+ Branch
+ (B, Branch (B, va, vb, vc, vd), s, t,
+ Branch (v, Branch (B, vi, vj, vk, vl), vf, vg, Empty))
+ | balance (Branch (B, va, vb, vc, vd)) s t
+ (Branch (v, Empty, vf, vg, Branch (B, vj, vk, vl, vm))) =
+ Branch
+ (B, Branch (B, va, vb, vc, vd), s, t,
+ Branch (v, Empty, vf, vg, Branch (B, vj, vk, vl, vm)))
+ | balance (Branch (B, va, vb, vc, vd)) s t
+ (Branch (v, Branch (B, vi, vn, vo, vp), vf, vg, Branch (B, vj, vk, vl, vm)))
+ = Branch
+ (B, Branch (B, va, vb, vc, vd), s, t,
+ Branch
+ (v, Branch (B, vi, vn, vo, vp), vf, vg, Branch (B, vj, vk, vl, vm)))
+ | balance (Branch (v, Empty, vb, vc, Empty)) s t Empty =
+ Branch (B, Branch (v, Empty, vb, vc, Empty), s, t, Empty)
+ | balance (Branch (v, Empty, vb, vc, Branch (B, ve, vf, vg, vh))) s t Empty =
+ Branch
+ (B, Branch (v, Empty, vb, vc, Branch (B, ve, vf, vg, vh)), s, t, Empty)
+ | balance (Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Empty)) s t Empty =
+ Branch
+ (B, Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Empty), s, t, Empty)
+ | balance
+ (Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Branch (B, ve, vj, vk, vl)))
+ s t Empty =
+ Branch
+ (B, Branch
+ (v, Branch (B, vf, vg, vh, vi), vb, vc, Branch (B, ve, vj, vk, vl)),
+ s, t, Empty)
+ | balance (Branch (v, Empty, vf, vg, Empty)) s t (Branch (B, va, vb, vc, vd))
+ = Branch
+ (B, Branch (v, Empty, vf, vg, Empty), s, t, Branch (B, va, vb, vc, vd))
+ | balance (Branch (v, Empty, vf, vg, Branch (B, vi, vj, vk, vl))) s t
+ (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (B, Branch (v, Empty, vf, vg, Branch (B, vi, vj, vk, vl)), s, t,
+ Branch (B, va, vb, vc, vd))
+ | balance (Branch (v, Branch (B, vj, vk, vl, vm), vf, vg, Empty)) s t
+ (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (B, Branch (v, Branch (B, vj, vk, vl, vm), vf, vg, Empty), s, t,
+ Branch (B, va, vb, vc, vd))
+ | balance
+ (Branch (v, Branch (B, vj, vk, vl, vm), vf, vg, Branch (B, vi, vn, vo, vp)))
+ s t (Branch (B, va, vb, vc, vd)) =
+ Branch
+ (B, Branch
+ (v, Branch (B, vj, vk, vl, vm), vf, vg, Branch (B, vi, vn, vo, vp)),
+ s, t, Branch (B, va, vb, vc, vd));
+
+fun rbt_ins A_ f k v Empty = Branch (R, Empty, k, v, Empty)
+ | rbt_ins A_ f k v (Branch (B, l, x, y, r)) =
+ (if less A_ k x then balance (rbt_ins A_ f k v l) x y r
+ else (if less A_ x k then balance l x y (rbt_ins A_ f k v r)
+ else Branch (B, l, x, f k y v, r)))
+ | rbt_ins A_ f k v (Branch (R, l, x, y, r)) =
+ (if less A_ k x then Branch (R, rbt_ins A_ f k v l, x, y, r)
+ else (if less A_ x k then Branch (R, l, x, y, rbt_ins A_ f k v r)
+ else Branch (R, l, x, f k y v, r)));
+
+fun paint c Empty = Empty
+ | paint c (Branch (uu, l, k, v, r)) = Branch (c, l, k, v, r);
+
+fun rbt_insert_with_key A_ f k v t = paint B (rbt_ins A_ f k v t);
+
+fun rbt_insert A_ = rbt_insert_with_key A_ (fn _ => fn _ => fn nv => nv);
+
+fun insert A_ xc xd xe =
+ RBT (rbt_insert ((ord_preorder o preorder_order o order_linorder) A_) xc xd
+ (impl_of A_ xe));
+
+fun rbt_lookup A_ Empty k = NONE
+ | rbt_lookup A_ (Branch (uu, l, x, y, r)) k =
+ (if less A_ k x then rbt_lookup A_ l k
+ else (if less A_ x k then rbt_lookup A_ r k else SOME y));
+
+fun lookup A_ x =
+ rbt_lookup ((ord_preorder o preorder_order o order_linorder) A_)
+ (impl_of A_ x);
+
+fun membera A_ [] y = false
+ | membera A_ (x :: xs) y = eq A_ x y orelse membera A_ xs y;
+
+fun member A_ x (Coset xs) = not (membera A_ xs x)
+ | member A_ x (Set xs) = membera A_ xs x;
+
+fun filter p [] = []
+ | filter p (x :: xs) = (if p x then x :: filter p xs else filter p xs);
+
+fun less_nat m (Suc n) = less_eq_nat m n
+ | less_nat n Zero_nat = false
+and less_eq_nat (Suc m) n = less_nat m n
+ | less_eq_nat Zero_nat n = true;
+
+fun rbt_baliR t1 ab bb (Branch (R, t2, aa, ba, Branch (R, t3, a, b, t4))) =
+ Branch (R, Branch (B, t1, ab, bb, t2), aa, ba, Branch (B, t3, a, b, t4))
+ | rbt_baliR t1 ab bb (Branch (R, Branch (R, t2, aa, ba, t3), a, b, Empty)) =
+ Branch (R, Branch (B, t1, ab, bb, t2), aa, ba, Branch (B, t3, a, b, Empty))
+ | rbt_baliR t1 ab bb
+ (Branch (R, Branch (R, t2, aa, ba, t3), a, b, Branch (B, va, vb, vc, vd))) =
+ Branch
+ (R, Branch (B, t1, ab, bb, t2), aa, ba,
+ Branch (B, t3, a, b, Branch (B, va, vb, vc, vd)))
+ | rbt_baliR t1 a b Empty = Branch (B, t1, a, b, Empty)
+ | rbt_baliR t1 a b (Branch (B, va, vb, vc, vd)) =
+ Branch (B, t1, a, b, Branch (B, va, vb, vc, vd))
+ | rbt_baliR t1 a b (Branch (v, Empty, vb, vc, Empty)) =
+ Branch (B, t1, a, b, Branch (v, Empty, vb, vc, Empty))
+ | rbt_baliR t1 a b (Branch (v, Branch (B, ve, vf, vg, vh), vb, vc, Empty)) =
+ Branch (B, t1, a, b, Branch (v, Branch (B, ve, vf, vg, vh), vb, vc, Empty))
+ | rbt_baliR t1 a b (Branch (v, Empty, vb, vc, Branch (B, vf, vg, vh, vi))) =
+ Branch (B, t1, a, b, Branch (v, Empty, vb, vc, Branch (B, vf, vg, vh, vi)))
+ | rbt_baliR t1 a b
+ (Branch (v, Branch (B, ve, vj, vk, vl), vb, vc, Branch (B, vf, vg, vh, vi)))
+ = Branch
+ (B, t1, a, b,
+ Branch
+ (v, Branch (B, ve, vj, vk, vl), vb, vc,
+ Branch (B, vf, vg, vh, vi)));
+
+fun equal_color R B = false
+ | equal_color B R = false
+ | equal_color B B = true
+ | equal_color R R = true;
+
+fun bheight Empty = Zero_nat
+ | bheight (Branch (c, lt, k, v, rt)) =
+ (if equal_color c B then Suc (bheight lt) else bheight lt);
+
+fun rbt_joinR l a b r =
+ (if less_eq_nat (bheight l) (bheight r) then Branch (R, l, a, b, r)
+ else (case l
+ of Branch (R, la, ab, ba, ra) =>
+ Branch (R, la, ab, ba, rbt_joinR ra a b r)
+ | Branch (B, la, ab, ba, ra) =>
+ rbt_baliR la ab ba (rbt_joinR ra a b r)));
+
+fun rbt_baliL (Branch (R, Branch (R, t1, ab, bb, t2), aa, ba, t3)) a b t4 =
+ Branch (R, Branch (B, t1, ab, bb, t2), aa, ba, Branch (B, t3, a, b, t4))
+ | rbt_baliL (Branch (R, Empty, ab, bb, Branch (R, t2, aa, ba, t3))) a b t4 =
+ Branch (R, Branch (B, Empty, ab, bb, t2), aa, ba, Branch (B, t3, a, b, t4))
+ | rbt_baliL
+ (Branch (R, Branch (B, va, vb, vc, vd), ab, bb, Branch (R, t2, aa, ba, t3)))
+ a b t4 =
+ Branch
+ (R, Branch (B, Branch (B, va, vb, vc, vd), ab, bb, t2), aa, ba,
+ Branch (B, t3, a, b, t4))
+ | rbt_baliL Empty a b t2 = Branch (B, Empty, a, b, t2)
+ | rbt_baliL (Branch (B, va, vb, vc, vd)) a b t2 =
+ Branch (B, Branch (B, va, vb, vc, vd), a, b, t2)
+ | rbt_baliL (Branch (v, Empty, vb, vc, Empty)) a b t2 =
+ Branch (B, Branch (v, Empty, vb, vc, Empty), a, b, t2)
+ | rbt_baliL (Branch (v, Empty, vb, vc, Branch (B, ve, vf, vg, vh))) a b t2 =
+ Branch (B, Branch (v, Empty, vb, vc, Branch (B, ve, vf, vg, vh)), a, b, t2)
+ | rbt_baliL (Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Empty)) a b t2 =
+ Branch (B, Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Empty), a, b, t2)
+ | rbt_baliL
+ (Branch (v, Branch (B, vf, vg, vh, vi), vb, vc, Branch (B, ve, vj, vk, vl)))
+ a b t2 =
+ Branch
+ (B, Branch
+ (v, Branch (B, vf, vg, vh, vi), vb, vc, Branch (B, ve, vj, vk, vl)),
+ a, b, t2);
+
+fun rbt_joinL l a b r =
+ (if less_eq_nat (bheight r) (bheight l) then Branch (R, l, a, b, r)
+ else (case r
+ of Branch (R, la, ab, ba, ra) =>
+ Branch (R, rbt_joinL l a b la, ab, ba, ra)
+ | Branch (B, la, ab, ba, ra) =>
+ rbt_baliL (rbt_joinL l a b la) ab ba ra));
+
+fun rbt_join l a b r =
+ let
+ val bhl = bheight l;
+ val bhr = bheight r;
+ in
+ (if less_nat bhr bhl then paint B (rbt_joinR l a b r)
+ else (if less_nat bhl bhr then paint B (rbt_joinL l a b r)
+ else Branch (B, l, a, b, r)))
+ end;
+
+fun rbt_split A_ Empty k = (Empty, (NONE, Empty))
+ | rbt_split A_ (Branch (uu, l, a, b, r)) x =
+ (if less A_ x a then let
+ val (l1, (beta, l2)) = rbt_split A_ l x;
+ in
+ (l1, (beta, rbt_join l2 a b r))
+ end
+ else (if less A_ a x then let
+ val (r1, (beta, r2)) = rbt_split A_ r x;
+ in
+ (rbt_join l a b r1, (beta, r2))
+ end
+ else (l, (SOME b, r))));
+
+fun plus_nat (Suc m) n = plus_nat m (Suc n)
+ | plus_nat Zero_nat n = n;
+
+val one_nat : nat = Suc Zero_nat;
+
+fun nat_of_num (Bit1 n) = let
+ val m = nat_of_num n;
+ in
+ Suc (plus_nat m m)
+ end
+ | nat_of_num (Bit0 n) = let
+ val m = nat_of_num n;
+ in
+ plus_nat m m
+ end
+ | nat_of_num One = one_nat;
+
+fun small_rbt t = less_nat (bheight t) (nat_of_num (Bit0 (Bit0 One)));
+
+fun flip_rbt t1 t2 = less_nat (bheight t2) (bheight t1);
+
+fun rbt_union_swap_rec A_ f gamma t1 t2 =
+ let
+ val (gammaa, (t2a, t1a)) =
+ (if flip_rbt t2 t1 then (not gamma, (t1, t2)) else (gamma, (t2, t1)));
+ val fa = (if gammaa then (fn k => fn v => fn va => f k va v) else f);
+ in
+ (if small_rbt t2a then foldb (rbt_insert_with_key A_ fa) t2a t1a
+ else (case t1a of Empty => t2a
+ | Branch (_, l1, a, b, r1) =>
+ let
+ val (l2, (beta, r2)) = rbt_split A_ t2a a;
+ in
+ rbt_join (rbt_union_swap_rec A_ f gammaa l1 l2) a
+ (case beta of NONE => b | SOME c => fa a b c)
+ (rbt_union_swap_rec A_ f gammaa r1 r2)
+ end))
+ end;
+
+fun rbt_union_with_key A_ f t1 t2 =
+ paint B (rbt_union_swap_rec A_ f false t1 t2);
+
+fun rbt_union_with B_ f = rbt_union_with_key B_ (fn _ => f);
+
+fun combine A_ xc xd xe =
+ RBT (rbt_union_with ((ord_preorder o preorder_order o order_linorder) A_) xc
+ (impl_of A_ xd) (impl_of A_ xe));
+
+fun hd (x21 :: x22) = x21;
+
+fun remdups A_ [] = []
+ | remdups A_ (x :: xs) =
+ (if membera A_ xs x then remdups A_ xs else x :: remdups A_ xs);
+
+fun dnf_and_fm (Or (phi_1, phi_2)) psi =
+ Or (dnf_and_fm phi_1 psi, dnf_and_fm phi_2 psi)
+ | dnf_and_fm (Atom v) (Or (phi_1, phi_2)) =
+ Or (dnf_and_fm (Atom v) phi_1, dnf_and_fm (Atom v) phi_2)
+ | dnf_and_fm (And (v, va)) (Or (phi_1, phi_2)) =
+ Or (dnf_and_fm (And (v, va)) phi_1, dnf_and_fm (And (v, va)) phi_2)
+ | dnf_and_fm (Neg v) (Or (phi_1, phi_2)) =
+ Or (dnf_and_fm (Neg v) phi_1, dnf_and_fm (Neg v) phi_2)
+ | dnf_and_fm (Atom v) (Atom va) = And (Atom v, Atom va)
+ | dnf_and_fm (Atom v) (And (va, vb)) = And (Atom v, And (va, vb))
+ | dnf_and_fm (Atom v) (Neg va) = And (Atom v, Neg va)
+ | dnf_and_fm (And (v, va)) (Atom vb) = And (And (v, va), Atom vb)
+ | dnf_and_fm (And (v, va)) (And (vb, vc)) = And (And (v, va), And (vb, vc))
+ | dnf_and_fm (And (v, va)) (Neg vb) = And (And (v, va), Neg vb)
+ | dnf_and_fm (Neg v) (Atom va) = And (Neg v, Atom va)
+ | dnf_and_fm (Neg v) (And (va, vb)) = And (Neg v, And (va, vb))
+ | dnf_and_fm (Neg v) (Neg va) = And (Neg v, Neg va);
+
+fun dnf_fm (And (phi_1, phi_2)) = dnf_and_fm (dnf_fm phi_1) (dnf_fm phi_2)
+ | dnf_fm (Or (phi_1, phi_2)) = Or (dnf_fm phi_1, dnf_fm phi_2)
+ | dnf_fm (Atom v) = Atom v
+ | dnf_fm (Neg v) = Neg v;
+
+fun folda A_ f (Mapping t) a = fold A_ f t a;
+
+fun keysa A_ (Mapping t) = Set (keys A_ t);
+
+fun rbt_bulkload A_ xs = foldr (fn (a, b) => rbt_insert A_ a b) xs Empty;
+
+fun bulkload A_ xa =
+ RBT (rbt_bulkload ((ord_preorder o preorder_order o order_linorder) A_) xa);
+
+fun amap_fm h (Atom a) = h a
+ | amap_fm h (And (phi_1, phi_2)) = And (amap_fm h phi_1, amap_fm h phi_2)
+ | amap_fm h (Or (phi_1, phi_2)) = Or (amap_fm h phi_1, amap_fm h phi_2)
+ | amap_fm h (Neg phi) = Neg (amap_fm h phi);
+
+fun emptya A_ = Mapping (empty A_);
+
+fun lookupa A_ (Mapping t) = lookup A_ t;
+
+fun update A_ k v (Mapping t) = Mapping (insert A_ k v t);
+
+fun gen_length n (x :: xs) = gen_length (Suc n) xs
+ | gen_length n [] = n;
+
+fun size_list x = gen_length Zero_nat x;
+
+fun card A_ (Set xs) = size_list (remdups A_ xs);
+
+fun map_filter f [] = []
+ | map_filter f (x :: xs) =
+ (case f x of NONE => map_filter f xs | SOME y => y :: map_filter f xs);
+
+fun conj_list (And (phi_1, phi_2)) = conj_list phi_1 @ conj_list phi_2
+ | conj_list (Atom a) = [a];
+
+fun trm_of_fm f (Atom a) = f a
+ | trm_of_fm f (And (phi_1, phi_2)) =
+ App (App (Const "conj", trm_of_fm f phi_1), trm_of_fm f phi_2)
+ | trm_of_fm f (Or (phi_1, phi_2)) =
+ App (App (Const "disj", trm_of_fm f phi_1), trm_of_fm f phi_2)
+ | trm_of_fm f (Neg phi) = App (Const "Not", trm_of_fm f phi);
+
+fun combinea B_ f (Mapping t1) (Mapping t2) = Mapping (combine B_ f t1 t2);
+
+fun dnf_and_fm_prf (Or (phi_1, phi_2)) psi =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "then_conv")
+ [PThm "conj_disj_distribR_conv",
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_and_fm_prf phi_1 psi),
+ dnf_and_fm_prf phi_2 psi]]
+ | dnf_and_fm_prf (Atom v) (Or (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "then_conv")
+ [PThm "conj_disj_distribL_conv",
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_and_fm_prf (Atom v) phi_1),
+ dnf_and_fm_prf (Atom v) phi_2]]
+ | dnf_and_fm_prf (And (v, va)) (Or (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "then_conv")
+ [PThm "conj_disj_distribL_conv",
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_and_fm_prf (And (v, va)) phi_1),
+ dnf_and_fm_prf (And (v, va)) phi_2]]
+ | dnf_and_fm_prf (Neg v) (Or (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "then_conv")
+ [PThm "conj_disj_distribL_conv",
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_and_fm_prf (Neg v) phi_1),
+ dnf_and_fm_prf (Neg v) phi_2]]
+ | dnf_and_fm_prf (Atom v) (Atom va) = PThm "all_conv"
+ | dnf_and_fm_prf (Atom v) (And (va, vb)) = PThm "all_conv"
+ | dnf_and_fm_prf (Atom v) (Neg va) = PThm "all_conv"
+ | dnf_and_fm_prf (And (v, va)) (Atom vb) = PThm "all_conv"
+ | dnf_and_fm_prf (And (v, va)) (And (vb, vc)) = PThm "all_conv"
+ | dnf_and_fm_prf (And (v, va)) (Neg vb) = PThm "all_conv"
+ | dnf_and_fm_prf (Neg v) (Atom va) = PThm "all_conv"
+ | dnf_and_fm_prf (Neg v) (And (va, vb)) = PThm "all_conv"
+ | dnf_and_fm_prf (Neg v) (Neg va) = PThm "all_conv";
+
+fun dnf_fm_prf (And (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "then_conv")
+ [foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_fm_prf phi_1), dnf_fm_prf phi_2],
+ dnf_and_fm_prf (dnf_fm phi_1) (dnf_fm phi_2)]
+ | dnf_fm_prf (Or (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", dnf_fm_prf phi_1), dnf_fm_prf phi_2]
+ | dnf_fm_prf (Atom v) = PThm "all_conv"
+ | dnf_fm_prf (Neg v) = PThm "all_conv";
+
+fun of_alist A_ xs = foldr (fn (a, b) => update A_ a b) xs (emptya A_);
+
+fun tabulate A_ ks f = Mapping (bulkload A_ (map (fn k => (k, f k)) ks));
+
+fun the (SOME x2) = x2;
+
+fun from_conj_prf trm_of_atom p (And (a, b)) =
+ foldl (fn aa => fn ba => AppP (aa, ba)) (PThm "conjE")
+ [Bound (trm_of_fm trm_of_atom (And (a, b))),
+ AbsP (trm_of_fm trm_of_atom a,
+ AbsP (trm_of_fm trm_of_atom b,
+ from_conj_prf trm_of_atom (from_conj_prf trm_of_atom p b)
+ a))]
+ | from_conj_prf trm_of_atom p (Atom a) = p;
+
+fun contr_fm_prf trm_of_atom contr_atom_prf (Or (c, d)) =
+ (case (contr_fm_prf trm_of_atom contr_atom_prf c,
+ contr_fm_prf trm_of_atom contr_atom_prf d)
+ of (NONE, _) => NONE | (SOME _, NONE) => NONE
+ | (SOME p1, SOME p2) =>
+ SOME (foldl (fn a => fn b => AppP (a, b)) (PThm "disjE")
+ [Bound (trm_of_fm trm_of_atom (Or (c, d))),
+ AbsP (trm_of_fm trm_of_atom c, p1),
+ AbsP (trm_of_fm trm_of_atom d, p2)]))
+ | contr_fm_prf trm_of_atom contr_atom_prf (And (a, b)) =
+ (case contr_atom_prf (conj_list (And (a, b))) of NONE => NONE
+ | SOME p => SOME (from_conj_prf trm_of_atom p (And (a, b))))
+ | contr_fm_prf trm_of_atom contr_atom_prf (Atom a) = contr_atom_prf [a];
+
+fun ordered_keys A_ (Mapping t) = keys A_ t;
+
+fun fst (x1, x2) = x1;
+
+fun map_option f NONE = NONE
+ | map_option f (SOME x2) = SOME (f x2);
+
+fun minus_nat (Suc m) (Suc n) = minus_nat m n
+ | minus_nat Zero_nat n = Zero_nat
+ | minus_nat m Zero_nat = m;
+
+fun insort_key B_ f x [] = [x]
+ | insort_key B_ f x (y :: ys) =
+ (if less_eq ((ord_preorder o preorder_order o order_linorder) B_) (f x)
+ (f y)
+ then x :: y :: ys else y :: insort_key B_ f x ys);
+
+fun amap_f_m_prf ap (Atom a) = AppP (PThm "atom_conv", ap a)
+ | amap_f_m_prf ap (And (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", amap_f_m_prf ap phi_1), amap_f_m_prf ap phi_2]
+ | amap_f_m_prf ap (Or (phi_1, phi_2)) =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "combination_conv")
+ [AppP (PThm "arg_conv", amap_f_m_prf ap phi_1), amap_f_m_prf ap phi_2]
+ | amap_f_m_prf ap (Neg phi) = AppP (PThm "arg_conv", amap_f_m_prf ap phi);
+
+fun trm_of_closure_atom (EQ (x, y)) = App (App (Const "eq", Var x), Var y)
+ | trm_of_closure_atom (In (x, y)) = App (App (Const "in", Var x), Var y)
+ | trm_of_closure_atom (InTcl (x, y)) =
+ App (App (Const "in_trancl", Var x), Var y)
+ | trm_of_closure_atom (InRtcl (x, y)) =
+ App (App (Const "in_rtrancl", Var x), Var y)
+ | trm_of_closure_atom (InReflcl (x, y)) =
+ App (App (Const "in_reflcl", Var x), Var y)
+ | trm_of_closure_atom (InConv (x, y)) =
+ App (App (Const "in_converse", Var x), Var y);
+
+fun trm_of_closure_literal (true, a) = trm_of_closure_atom a
+ | trm_of_closure_literal (false, a) =
+ App (Const "Not", trm_of_closure_atom a);
+
+fun eq1_member_list (true, EQ (x, y)) =
+ [((x, y), Bound (trm_of_closure_literal (true, EQ (x, y)))),
+ ((y, x),
+ AppP (PThm "eq_sym", Bound (trm_of_closure_literal (true, EQ (x, y)))))]
+ | eq1_member_list (false, va) = []
+ | eq1_member_list (v, In (vb, vc)) = []
+ | eq1_member_list (v, InTcl (vb, vc)) = []
+ | eq1_member_list (v, InRtcl (vb, vc)) = []
+ | eq1_member_list (v, InConv (vb, vc)) = []
+ | eq1_member_list (v, InReflcl (vb, vc)) = [];
+
+fun eq1_list x = maps eq1_member_list x;
+
+fun is_in_eq eqm =
+ (fn (x, y) =>
+ (if equal_inta x y then SOME (Appt (PThm "eq_refl", Var x))
+ else lookupa (linorder_prod linorder_int linorder_int) eqm (x, y)));
+
+fun insort_insert_key (B1_, B2_) f x xs =
+ (if member B1_ (f x) (image f (Set xs)) then xs else insort_key B2_ f x xs);
+
+fun veq_list (A1_, A2_) eqm x =
+ insort_insert_key (A1_, A2_) (fn xa => xa) x
+ (map_filter (fn xa => (if let
+ val (_, z) = xa;
+ in
+ eq A1_ z x
+ end
+ then SOME (fst xa) else NONE))
+ (ordered_keys (linorder_prod A2_ A2_) eqm));
+
+fun veq_rep_mapping eqm [] = emptya linorder_int
+ | veq_rep_mapping eqm (v :: vs) =
+ let
+ val veqs = veq_list (equal_int, linorder_int) eqm v;
+ in
+ combinea linorder_int (fn x => fn _ => x)
+ (tabulate linorder_int veqs
+ (fn x => (hd veqs, the (is_in_eq eqm (hd veqs, x)))))
+ (veq_rep_mapping eqm (filter (not o membera equal_int veqs) vs))
+ end;
+
+fun contr1_list is_in_eq is_in_in1 is_in_tcl (false, EQ (x, y)) =
+ map_option
+ (fn p2 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "contr")
+ [Bound (trm_of_closure_literal (false, EQ (x, y))), p2])
+ (is_in_eq (x, y))
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (false, In (x, y)) =
+ map_option
+ (fn p2 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "contr")
+ [Bound (trm_of_closure_literal (false, In (x, y))), p2])
+ (is_in_in1 (x, y))
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (false, InTcl (x, y)) =
+ map_option
+ (fn p2 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "contr")
+ [Bound (trm_of_closure_literal (false, InTcl (x, y))), p2])
+ (is_in_tcl (x, y))
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (false, InRtcl (x, y)) =
+ (case is_in_eq (x, y)
+ of NONE =>
+ map_option
+ (fn p2 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "contr")
+ [AppP (PThm "not_rtrancl_into_not_trancl",
+ Bound (trm_of_closure_literal (false, InRtcl (x, y)))),
+ p2])
+ (is_in_tcl (x, y))
+ | SOME p =>
+ SOME (foldl (fn a => fn b => AppP (a, b)) (PThm "contr")
+ [Bound (trm_of_closure_literal (false, InRtcl (x, y))),
+ AppP (PThm "rtrancl_refl", p)]))
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (true, va) = NONE
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (v, InConv (vb, vc)) = NONE
+ | contr1_list is_in_eq is_in_in1 is_in_tcl (v, InReflcl (vb, vc)) = NONE;
+
+fun contr_list_aux is_in_eq is_in_in1 is_in_tcl [] = NONE
+ | contr_list_aux is_in_eq is_in_in1 is_in_tcl (l :: ls) =
+ (case contr1_list is_in_eq is_in_in1 is_in_tcl l
+ of NONE => contr_list_aux is_in_eq is_in_in1 is_in_tcl ls
+ | SOME a => SOME a);
+
+fun relcomp1_mapping B_ (C1_, C2_) combine x y1 pxy pm pma =
+ folda (linorder_prod C2_ C2_)
+ (fn (y2, z) => fn pyz => fn pmb =>
+ (if eq C1_ y1 y2 andalso not (eq C1_ y2 z)
+ then update (linorder_prod B_ C2_) (x, z) (combine pxy pyz) pmb
+ else pmb))
+ pm pma;
+
+fun relcomp_mapping (B1_, B2_) combine pm1 pm2 pma =
+ folda (linorder_prod B2_ B2_)
+ (fn (x, y) => fn pxy => fn pm =>
+ (if eq B1_ x y then pm
+ else relcomp1_mapping B2_ (B1_, B2_) combine x y pxy pm2 pm))
+ pm1 pma;
+
+fun ntrancl_mapping (B1_, B2_) combine Zero_nat m = m
+ | ntrancl_mapping (B1_, B2_) combine (Suc k) m =
+ let
+ val trclm = ntrancl_mapping (B1_, B2_) combine k m;
+ in
+ relcomp_mapping (B1_, B2_) combine trclm m trclm
+ end;
+
+fun trancl_mapping (B1_, B2_) combine m =
+ ntrancl_mapping (B1_, B2_) combine
+ (minus_nat (card (equal_prod B1_ B1_) (keysa (linorder_prod B2_ B2_) m))
+ one_nat)
+ m;
+
+fun tcl1_member_list veqrm l =
+ (case l of (true, EQ (_, _)) => []
+ | (true, In (x, y)) =>
+ let
+ val (rep_x, prep_x) = the (lookupa linorder_int veqrm x);
+ val (rep_y, prep_y) = the (lookupa linorder_int veqrm y);
+ val p =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "eq_in_trancl")
+ [prep_x, prep_y,
+ AppP (PThm "r_into_trancl",
+ Bound (trm_of_closure_literal (true, In (x, y))))];
+ in
+ [((rep_x, rep_y), p)]
+ end
+ | (true, InTcl (x, y)) =>
+ let
+ val (rep_x, prep_x) = the (lookupa linorder_int veqrm x);
+ val (rep_y, prep_y) = the (lookupa linorder_int veqrm y);
+ val p =
+ foldl (fn a => fn b => AppP (a, b)) (PThm "eq_in_trancl")
+ [prep_x, prep_y,
+ Bound (trm_of_closure_literal (true, InTcl (x, y)))];
+ in
+ [((rep_x, rep_y), p)]
+ end
+ | (true, InRtcl (_, _)) => [] | (true, InConv (_, _)) => []
+ | (true, InReflcl (_, _)) => [] | (false, _) => []);
+
+fun tcl1_mapping A_ veqrm a =
+ of_alist (linorder_prod A_ A_) (maps (tcl1_member_list veqrm) a);
+
+fun tcl_mapping (A1_, A2_) veqrm a =
+ trancl_mapping (A1_, A2_)
+ (fn p1 => fn p2 =>
+ foldl (fn aa => fn b => AppP (aa, b)) (PThm "trancl_trans") [p1, p2])
+ (tcl1_mapping A2_ veqrm a);
+
+fun in1_member_list veqrm l =
+ (case l of (true, EQ (_, _)) => []
+ | (true, In (x, y)) =>
+ let
+ val (rep_x, prep_x) = the (lookupa linorder_int veqrm x);
+ val (rep_y, prep_y) = the (lookupa linorder_int veqrm y);
+ in
+ [((rep_x, rep_y),
+ foldl (fn a => fn b => AppP (a, b)) (PThm "eq_in")
+ [prep_x, prep_y,
+ Bound (trm_of_closure_literal (true, In (x, y)))])]
+ end
+ | (true, InTcl (_, _)) => [] | (true, InRtcl (_, _)) => []
+ | (true, InConv (_, _)) => [] | (true, InReflcl (_, _)) => []
+ | (false, _) => []);
+
+fun in1_mapping A_ veqrm a =
+ of_alist (linorder_prod A_ A_) (maps (in1_member_list veqrm) a);
+
+fun vars_list (uu, EQ (x, y)) = [x, y]
+ | vars_list (uv, In (x, y)) = [x, y]
+ | vars_list (uw, InTcl (x, y)) = [x, y]
+ | vars_list (ux, InRtcl (x, y)) = [x, y]
+ | vars_list (uy, InConv (x, y)) = [x, y]
+ | vars_list (uz, InReflcl (x, y)) = [x, y];
+
+fun varss_list x = (remdups equal_int o maps vars_list) x;
+
+fun eq1_mapping a =
+ of_alist (linorder_prod linorder_int linorder_int) (eq1_list a);
+
+fun eq_mapping a =
+ trancl_mapping (equal_int, linorder_int)
+ (fn p1 => fn p2 =>
+ foldl (fn aa => fn b => AppP (aa, b)) (PThm "eq_trans") [p1, p2])
+ (eq1_mapping a);
+
+fun is_in_tcl A_ B_ veqrm tclm =
+ (fn (x, y) =>
+ (case (lookupa A_ veqrm x, lookupa A_ veqrm y) of (NONE, _) => NONE
+ | (SOME (_, _), NONE) => NONE
+ | (SOME (rep_x, prep_x), SOME (rep_y, prep_y)) =>
+ map_option
+ (fn p3 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "eq_in_trancl")
+ [AppP (PThm "eq_sym", prep_x), AppP (PThm "eq_sym", prep_y), p3])
+ (lookupa (linorder_prod B_ B_) tclm (rep_x, rep_y))));
+
+fun is_in_in1 A_ B_ veqrm in1m =
+ (fn (x, y) =>
+ (case (lookupa A_ veqrm x, lookupa A_ veqrm y) of (NONE, _) => NONE
+ | (SOME (_, _), NONE) => NONE
+ | (SOME (rep_x, prep_x), SOME (rep_y, prep_y)) =>
+ map_option
+ (fn p3 =>
+ foldl (fn a => fn b => AppP (a, b)) (PThm "eq_in")
+ [AppP (PThm "eq_sym", prep_x), AppP (PThm "eq_sym", prep_y), p3])
+ (lookupa (linorder_prod B_ B_) in1m (rep_x, rep_y))));
+
+fun contr_list a =
+ let
+ val eqm = eq_mapping a;
+ val isineq = is_in_eq (eq_mapping a);
+ val veq_repm = veq_rep_mapping eqm (varss_list a);
+ val in1m = in1_mapping linorder_int veq_repm a;
+ val isin1 = is_in_in1 linorder_int linorder_int veq_repm in1m;
+ val tclm = tcl_mapping (equal_int, linorder_int) veq_repm a;
+ val isintcl = is_in_tcl linorder_int linorder_int veq_repm tclm;
+ in
+ contr_list_aux isineq isin1 isintcl a
+ end;
+
+fun contr_prf atom_conv phi =
+ contr_fm_prf trm_of_closure_literal contr_list
+ (dnf_fm (amap_fm atom_conv phi));
+
+fun normalise (true, InRtcl (x, y)) =
+ Or (Atom (true, EQ (x, y)),
+ And (Atom (false, EQ (x, y)), Atom (true, InTcl (x, y))))
+ | normalise (true, InReflcl (x, y)) =
+ Or (Atom (true, EQ (x, y)),
+ And (Atom (false, EQ (x, y)), Atom (true, In (x, y))))
+ | normalise (false, InReflcl (x, y)) =
+ And (Atom (false, EQ (x, y)), Atom (false, In (x, y)))
+ | normalise (b, InConv (x, y)) = Atom (b, In (y, x))
+ | normalise (false, EQ (v, vb)) = Atom (false, EQ (v, vb))
+ | normalise (false, In (v, vb)) = Atom (false, In (v, vb))
+ | normalise (false, InTcl (v, vb)) = Atom (false, InTcl (v, vb))
+ | normalise (false, InRtcl (v, vb)) = Atom (false, InRtcl (v, vb))
+ | normalise (v, EQ (vb, vc)) = Atom (v, EQ (vb, vc))
+ | normalise (v, In (vb, vc)) = Atom (v, In (vb, vc))
+ | normalise (v, InTcl (vb, vc)) = Atom (v, InTcl (vb, vc));
+
+fun normalise_prf (true, InRtcl (x, y)) = PThm "rtrancl_eq_or_trancl_conv"
+ | normalise_prf (true, InReflcl (x, y)) = PThm "reflcl_eq_or_in_conv"
+ | normalise_prf (false, InReflcl (x, y)) = PThm "not_reflcl_eq_and_in_conv"
+ | normalise_prf (true, InConv (x, y)) = PThm "in_converse_conv"
+ | normalise_prf (false, InConv (x, y)) = PThm "not_in_converse_conv"
+ | normalise_prf (false, EQ (v, vb)) = PThm "all_conv"
+ | normalise_prf (false, In (v, vb)) = PThm "all_conv"
+ | normalise_prf (false, InTcl (v, vb)) = PThm "all_conv"
+ | normalise_prf (false, InRtcl (v, vb)) = PThm "all_conv"
+ | normalise_prf (v, EQ (vb, vc)) = PThm "all_conv"
+ | normalise_prf (v, In (vb, vc)) = PThm "all_conv"
+ | normalise_prf (v, InTcl (vb, vc)) = PThm "all_conv";
+
+fun full_contr_prf phi =
+ map_option
+ ((fn a =>
+ Conv (trm_of_fm trm_of_closure_literal phi,
+ amap_f_m_prf normalise_prf phi, a)) o
+ (fn a =>
+ Conv (trm_of_fm trm_of_closure_literal (amap_fm normalise phi),
+ dnf_fm_prf (amap_fm normalise phi), a)))
+ (contr_prf normalise phi);
+
+end; (*struct Closure_Procedure*)