prefer attribute 'unfolded thm' to 'simplified'
Thu, 12 Sep 2013 09:04:46 -0700
changeset 53594 8a9fb53294f4
parent 53593 a7bcbb5a17d8
child 53595 5078034ade16
prefer attribute 'unfolded thm' to 'simplified'
--- a/src/HOL/NthRoot.thy	Thu Sep 12 09:03:52 2013 -0700
+++ b/src/HOL/NthRoot.thy	Thu Sep 12 09:04:46 2013 -0700
@@ -410,17 +410,17 @@
 lemma real_sqrt_eq_iff [simp]: "(sqrt x = sqrt y) = (x = y)"
 unfolding sqrt_def by (rule real_root_eq_iff [OF pos2])
-lemmas real_sqrt_gt_0_iff [simp] = real_sqrt_less_iff [where x=0, simplified]
-lemmas real_sqrt_lt_0_iff [simp] = real_sqrt_less_iff [where y=0, simplified]
-lemmas real_sqrt_ge_0_iff [simp] = real_sqrt_le_iff [where x=0, simplified]
-lemmas real_sqrt_le_0_iff [simp] = real_sqrt_le_iff [where y=0, simplified]
-lemmas real_sqrt_eq_0_iff [simp] = real_sqrt_eq_iff [where y=0, simplified]
+lemmas real_sqrt_gt_0_iff [simp] = real_sqrt_less_iff [where x=0, unfolded real_sqrt_zero]
+lemmas real_sqrt_lt_0_iff [simp] = real_sqrt_less_iff [where y=0, unfolded real_sqrt_zero]
+lemmas real_sqrt_ge_0_iff [simp] = real_sqrt_le_iff [where x=0, unfolded real_sqrt_zero]
+lemmas real_sqrt_le_0_iff [simp] = real_sqrt_le_iff [where y=0, unfolded real_sqrt_zero]
+lemmas real_sqrt_eq_0_iff [simp] = real_sqrt_eq_iff [where y=0, unfolded real_sqrt_zero]
-lemmas real_sqrt_gt_1_iff [simp] = real_sqrt_less_iff [where x=1, simplified]
-lemmas real_sqrt_lt_1_iff [simp] = real_sqrt_less_iff [where y=1, simplified]
-lemmas real_sqrt_ge_1_iff [simp] = real_sqrt_le_iff [where x=1, simplified]
-lemmas real_sqrt_le_1_iff [simp] = real_sqrt_le_iff [where y=1, simplified]
-lemmas real_sqrt_eq_1_iff [simp] = real_sqrt_eq_iff [where y=1, simplified]
+lemmas real_sqrt_gt_1_iff [simp] = real_sqrt_less_iff [where x=1, unfolded real_sqrt_one]
+lemmas real_sqrt_lt_1_iff [simp] = real_sqrt_less_iff [where y=1, unfolded real_sqrt_one]
+lemmas real_sqrt_ge_1_iff [simp] = real_sqrt_le_iff [where x=1, unfolded real_sqrt_one]
+lemmas real_sqrt_le_1_iff [simp] = real_sqrt_le_iff [where y=1, unfolded real_sqrt_one]
+lemmas real_sqrt_eq_1_iff [simp] = real_sqrt_eq_iff [where y=1, unfolded real_sqrt_one]
 lemma isCont_real_sqrt: "isCont sqrt x"
 unfolding sqrt_def by (rule isCont_real_root)