
Technical Report TUM-I0723, Technische Universität München, 2007 1

Tutorial to Locales and Locale Interpretation

Clemens Ballarin

Abstract

Locales are Isabelle’s mechanism to deal with parametric theories.
We present typical examples of locale specifications, along with inter-
pretations between locales to change their hierarchic dependencies and
interpretations to reuse locales in theory contexts and proofs.

This tutorial is intended for locale novices; familiarity with Isabelle
and Isar is presumed.

1 Introduction

Locales are based on contexts. A context can be seen as a formula schema∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ . . .

where variables x1, . . . , xn are called parameters and the premises A1, . . . , Am

assumptions. A formula C is a theorem in the context if it is a conclusion∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ C.

Isabelle/Isar’s notion of context goes beyond this logical view. Its contexts
record, in a consecutive order, proved conclusions along with attributes,
which may control proof procedures. Contexts also contain syntax informa-
tion for parameters and for terms depending on them.

2 Simple Locales

Locales can be seen as persistent contexts. In its simplest form, a locale
declaration consists of a sequence of context elements declaring parameters
(keyword fixes) and assumptions (keyword assumes). The following is the
specification of partial orders, as locale partial_order.

locale partial_order =
fixes le :: "’a ⇒ ’a ⇒ bool" (infixl "v" 50)
assumes refl [intro, simp]: "x v x"

and anti_sym [intro]: "[[x v y; y v x]] =⇒ x = y"
and trans [trans]: "[[x v y; y v z]] =⇒ x v z"

definition definition through an equation
inductive inductive definition
fun, function recursive function
abbreviation syntactic abbreviation
theorem, etc. theorem statement with proof
theorems, etc. redeclaration of theorems

Table 1: Isar commands that accept a target.

The parameter of this locale is le, with infix syntax v. There is an implicit
type parameter ’a. It is not necessary to declare parameter types: most
general types will be inferred from the context elements for all parameters.
The above declaration not only introduces the locale, it also defines the
locale predicate partial_order with definition partial_order_def:

partial_order ?le ≡
(∀ x. ?le x x) ∧
(∀ x y. ?le x y −→ ?le y x −→ x = y) ∧
(∀ x y z. ?le x y −→ ?le y z −→ ?le x z)

The specification of a locale is fixed, but its list of conclusions may be ex-
tended through Isar commands that take a target argument. In the follow-
ing, definition and theorem are illustrated. Table 1 lists Isar commands
that accept a target. There are various ways of specifying the target. A tar-
get for a single command may be indicated with keyword in in the following
way:

definition (in partial_order)
less :: "’a ⇒ ’a ⇒ bool" (infixl "@" 50)
where "(x @ y) = (x v y ∧ x 6= y)"

A definition in a locale depends on the locale parameters. Here, a global
constant partial_order.less is declared, which is lifted over the locale pa-
rameter le. Its definition is the global theorem partial_order.less_def:

partial_order ?le =⇒
partial_order.less ?le ?x ?y = (?le ?x ?y ∧ ?x 6= ?y)

At the same time, the locale is extended by syntax information hiding this
construction in the context of the locale. That is, partial_order.less le

is printed and parsed as infix @. Finally, the conclusion of the definition is
added to the locale, less_def:

(?x @ ?y) = (?x v ?y ∧ ?x 6= ?y)

2

As an example of a theorem statement in the locale, here is the derivation
of a transitivity law.

lemma (in partial_order) less_le_trans [trans]:
"[[x @ y; y v z]] =⇒ x @ z"
unfolding less_def by (blast intro: trans)

In the context of the proof, assumptions and theorems of the locale may be
used. Attributes are effective: anti_sym was declared as introduction rule,
hence it is in the context’s set of rules used by the classical reasoner by
default.

When working with locales, sequences of commands with the same target
are frequent. A block of commands, delimited by begin and end, makes a
theory-like style of working possible. All commands inside the block refer
to the same target. A block may immediately follow a locale declaration,
which makes that locale the target. Alternatively the target for a block may
be given with the context command.
In the block below, notions of infimum and supremum together with theo-
rems are introduced for partial orders.

context partial_order begin

definition
is_inf where "is_inf x y i =
(i v x ∧ i v y ∧ (∀ z. z v x ∧ z v y −→ z v i))"

definition
is_sup where "is_sup x y s =
(x v s ∧ y v s ∧ (∀ z. x v z ∧ y v z −→ s v z))"

theorem is_inf_uniq: "[[is_inf x y i; is_inf x y i’]] =⇒ i = i’"
〈proof 〉

theorem is_sup_uniq: "[[is_sup x y s; is_sup x y s’]] =⇒ s = s’"
〈proof 〉

end

In fact, many more theorems need to be shown for a usable theory of partial
orders. The above two serve as illustrative examples.

Two commands are provided to inspect locales: print locales lists the
names of all locales of the theory; print locale n prints the parameters
and assumptions of locale n; print locale! n additionally outputs the con-
clusions.
The syntax of the locale commands discussed in this tutorial is shown in
Table 4. See the Isabelle/Isar Reference Manual [6] for full documentation.

3

3 Import

Algebraic structures are commonly defined by adding operations and prop-
erties to existing structures. For example, partial orders are extended to
lattices and total orders. Lattices are extended to distributive lattices.
With locales, this inheritance is achieved through import of a locale. The
import comes before the context elements.

locale lattice = partial_order +
assumes ex_inf: "∃ inf. partial_order.is_inf le x y inf"

and ex_sup: "∃ sup. partial_order.is_sup le x y sup"
begin

Note that the assumptions above refer to the predicates for infimum and
supremum defined in partial_order. In the current implementation of lo-
cales, syntax from definitions of the imported locale is unavailable in the
locale declaration, neither are their names. Hence we refer to the constants
of the theory. The names and syntax is available below, in the context of
the locale.

definition
meet (infixl "u" 70) where "x u y = (THE inf. is_inf x y inf)"

definition
join (infixl "t" 65) where "x t y = (THE sup. is_sup x y sup)"

end

Locales for total orders and distributive lattices follow. Each comes with an
example theorem.

locale total_order = partial_order +
assumes total: "x v y ∨ y v x"

lemma (in total_order) less_total: "x @ y ∨ x = y ∨ y @ x"
〈proof 〉

locale distrib_lattice = lattice +
assumes meet_distr:
"lattice.meet le x (lattice.join le y z) =
lattice.join le (lattice.meet le x y) (lattice.meet le x z)"

lemma (in distrib_lattice) join_distr:
"x t (y u z) = (x t y) u (x t z)"
〈proof 〉

The locale hierachy obtained through these declarations is shown in Fig-
ure 1(a).

4

partial_order

lattice

distrib_lattice

total_order

(a) Declared hierachy

partial_order

lattice

distrib_lattice total_order

(b) Total orders are lattices

partial_order

lattice

distrib_lattice

total_order

(c) Total orders are
distributive lattices

Figure 1: Hierarchy of Lattice Locales.

4 Changing the Locale Hierarchy

Total orders are lattices. Hence, by deriving the lattice axioms for to-
tal orders, the hierarchy may be changed and lattice be placed between
partial_order and total_order, as shown in Figure 1(b). Changes to the
locale hierarchy may be declared with the interpretation command.

interpretation total_order ⊆ lattice

This enters the context of locale total_order, in which the goal

1. lattice op v

must be shown. First, the locale predicate needs to be unfolded — for example
using its definition or by introduction rules provided by the locale package. The
methods intro_locales and unfold_locales automate this. They are aware of
the current context and dependencies between locales and automatically discharge
goals implied by these. While unfold_locales always unfolds locale predicates
to assumptions, intro_locales only unfolds definitions along the locale hierarchy,
leaving a goal consisting of predicates defined by the locale package. Occasionally
the latter is of advantage since the goal is smaller.
For the current goal, we would like to get hold of the assumptions of lattice, hence
unfold_locales is appropriate.

proof unfold_locales

5

Since both lattice and total_order inherit partial_order, the assumptions of
the latter are discharged, and the only subgoals that remain are the assumptions
introduced in lattice

1.
∧
x y. ∃ inf. is_inf x y inf

2.
∧
x y. ∃ sup. is_sup x y sup

The proof for the first subgoal is

fix x y
from total have "is_inf x y (if x v y then x else y)"

by (auto simp: is_inf_def)
then show "∃ inf. is_inf x y inf" ..

The proof for the second subgoal is analogous and not reproduced here.

qed

Similarly, total orders are distributive lattices.

interpretation total_order ⊆ distrib_lattice
〈proof 〉

The locale hierarchy is now as shown in Figure 1(c).

5 Use of Locales in Theories and Proofs

Locales enable to prove theorems abstractly, relative to sets of assumptions.
These theorems can then be used in other contexts where the assumptions
themselves, or instances of the assumptions, are theorems. This form of
theorem reuse is called interpretation.
The changes of the locale hierarchy from the previous sections are examples
of interpretations. The command interpretation l1 ⊆ l2 is said to interpret
locale l2 in the context of l1. It causes all theorems of l2 to be made available
in l1. The interpretation is dynamic: not only theorems already present in
l2 are available in l1. Theorems that will be added to l2 in future will
automatically be propagated to l1.
Locales can also be interpreted in the contexts of theories and structured
proofs. These interpretations are dynamic, too. Theorems added to locales
will be propagated to theories. In this section the interpretation in theories
is illustrated; interpretation in proofs is analogous. As an example consider,
the type of natural numbers nat. The order relation ≤ is a total order over
nat, divisibility dvd is a distributive lattice.
We start with the interpretation that ≤ is a partial order. The facilities of
the interpretation command are explored in three versions.

6

5.1 First Version: Replacement of Parameters Only

In the most basic form, interpretation just replaces the locale parameters by
terms. The following command interprets the locale partial_order in the
global context of the theory. The parameter le is replaced by op ≤.

interpretation nat: partial_order ["op ≤ :: nat ⇒ nat ⇒ bool"]

The locale name is succeeded by a parameter instantiation. In general, this is a list
of terms, which refer to the parameters in the order of declaration in the locale.
The locale name is preceded by an optional interpretation prefix, which is used to
qualify names from the locale in the global context.
The command creates the goal

1. partial_order op ≤

which can be shown easily:1

by unfold_locales auto

Now theorems from the locale are available in the theory, interpreted for
natural numbers, for example nat.trans:

[[?x ≤ ?y; ?y ≤ ?z]] =⇒ ?x ≤ ?z

In order to avoid unwanted hiding of theorems, interpretation accepts a
qualifier, nat in the example, which is applied to all names processed by the
interpretation. If present the qualifier is mandatory — that is, the above
theorem cannot be referred to simply as trans.

5.2 Second Version: Replacement of Definitions

The above interpretation also creates the theorem nat.less_le_trans:

[[partial_order.less op ≤ ?x ?y; ?y ≤ ?z]]
=⇒ partial_order.less op ≤ ?x ?z

Here, partial_order.less op ≤ represents the strict order, although < is
defined on nat. Interpretation enables to map concepts introduced in locales
through definitions to the corresponding concepts of the theory.2

This is achieved by unfolding suitable equations during interpretation. These
equations are given after the keyword where and require proofs. The revised
command, replacing @ by <, is:

1Note that op binds tighter than functions application: parentheses around op ≤ are
not necessary.

2This applies not only to definition but also to inductive, fun and function.

7

interpretation nat: partial_order ["op ≤ :: [nat, nat] ⇒ bool"]
where "partial_order.less op ≤ (x::nat) y = (x < y)"

proof -

The goals are

1. partial_order op ≤
2. partial_order.less op ≤ x y = (x < y)

The proof that ≤ is a partial order is a above.

show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"
by unfold_locales auto

The second goal is shown by unfolding the definition of partial_order.less.

show "partial_order.less op ≤ (x::nat) y = (x < y)"
unfolding partial_order.less_def [OF ‘partial_order op ≤‘]
by auto

qed

Note that the above proof is not in the context of a locale. Hence, the
correct interpretation of partial_order.less_def is obtained manually with
OF.

5.3 Third Version: Local Interpretation

In the above example, the fact that ≤ is a partial order for the natural
numbers was used in the proof of the second goal. In general, proofs of the
equations may involve theorems implied by the fact the assumptions of the
instantiated locale hold for the instantiating structure. If these theorems
have been shown abstractly in the locale they can be made available con-
veniently in the context through an auxiliary local interpretation (keyword
interpret). This interpretation is inside the proof of the global interpreta-
tion. The third revision of the example illustrates this.

interpretation nat: partial_order ["op ≤ :: nat ⇒ nat ⇒ bool"]
where "partial_order.less (op ≤) (x::nat) y = (x < y)"

proof -
show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"

by unfold_locales auto
then interpret nat: partial_order ["op ≤ :: [nat, nat] ⇒ bool"] .
show "partial_order.less (op ≤) (x::nat) y = (x < y)"

unfolding nat.less_def by auto
qed

The inner interpretation does not require an elaborate new proof, it is im-
mediate from the preceeding fact and proved with “.”. This interpretation

8

enriches the local proof context by the very theorems also obtained in the
interpretation from Section 5.1, and nat.less_def may directly be used to
unfold the definition. Theorems from the local interpretation disappear af-
ter leaving the proof context — that is, after the closing qed — and are
then replaced by those with the desired substitutions of the strict order.

5.4 Further Interpretations

Further interpretations are necessary to reuse theorems from the other lo-
cales. In lattice the operations u and t are substituted by min and max.
The entire proof for the interpretation is reproduced in order to give an
example of a more elaborate interpretation proof.

interpretation nat: lattice ["op ≤ :: nat ⇒ nat ⇒ bool"]
where "lattice.meet op ≤ (x::nat) y = min x y"

and "lattice.join op ≤ (x::nat) y = max x y"
proof -

show "lattice (op ≤ :: nat ⇒ nat ⇒ bool)"

We have already shown that this is a partial order,

apply unfold_locales

hence only the lattice axioms remain to be shown:

1.
∧
x y. ∃ inf. partial_order.is_inf op ≤ x y inf

2.
∧
x y. ∃ sup. partial_order.is_sup op ≤ x y sup

After unfolding is_inf and is_sup,

apply (unfold nat.is_inf_def nat.is_sup_def)

the goals become

1.
∧
x y. ∃ inf≤x. inf ≤ y ∧ (∀ z. z ≤ x ∧ z ≤ y −→ z ≤ inf)

2.
∧
x y. ∃ sup≥x. y ≤ sup ∧ (∀ z. x ≤ z ∧ y ≤ z −→ sup ≤ z)

which can be solved by Presburger arithmetic.

by arith+

In order to show the equations, we put ourselves in a situation where the lattice
theorems can be used in a convenient way.

then interpret nat: lattice ["op ≤ :: nat ⇒ nat ⇒ bool"] .
show "lattice.meet op ≤ (x::nat) y = min x y"

by (bestsimp simp: nat.meet_def nat.is_inf_def)
show "lattice.join op ≤ (x::nat) y = max x y"

by (bestsimp simp: nat.join_def nat.is_sup_def)
qed

That the relation ≤ is a total order completes this sequence of interpreta-
tions.

9

nat.less_def from locale partial_order:
(?x < ?y) = (?x ≤ ?y ∧ ?x 6= ?y)

nat.meet_left from locale lattice:
min ?x ?y ≤ ?x

nat.join_distr from locale distrib_lattice:
max ?x (min ?y ?z) = min (max ?x ?y) (max ?x ?z)

nat.less_total from locale total_order:
?x < ?y ∨ ?x = ?y ∨ ?y < ?x

Table 2: Interpreted theorems for ≤ on the natural numbers.

interpretation nat: total_order ["op ≤ :: nat ⇒ nat ⇒ bool"]
by unfold_locales arith

Theorems that are available in the theory at this point are shown in Table 2.
Note that since the locale hierarchy reflects that total orders are distribu-
tive lattices, an explicit interpretation of distributive lattices for the order
relation on natural numbers is not neccessary.
Why not push this idea further and just give the last interpretation as a
single interpretation instead of the sequence of three? The reasons for this
are twofold:

• Often it is easier to work in an incremental fashion, because later
interpretations require theorems provided by earlier interpretations.

• Assume that a definition is made in some locale l1, and that l2 imports
l1. Let an equation for the definition be proved in an interpretation of
l2. The equation will be unfolded in interpretations of theorems added
to l2 or below in the import hierarchy, but not for theorems added
above l2. Hence, an equation interpreting a definition should always
be given in an interpretation of the locale where the definition is made,
not in an interpretation of a locale further down the hierarchy.

5.5 Lattice dvd on nat

Divisibility on the natural numbers is a distributive lattice but not a total
order. Interpretation again proceeds incrementally.

interpretation nat_dvd: partial_order ["op dvd :: nat ⇒ nat ⇒ bool"]
where "partial_order.less op dvd (x::nat) y = (x dvd y ∧ x 6= y)"

〈proof 〉

Note that there is no symbol for strict divisibility. Instead, interpretation
substitutes x dvd y ∧ x 6= y.

10

nat_dvd.less_def from locale partial_order:
(?x dvd ?y ∧ ?x 6= ?y) = (?x dvd ?y ∧ ?x 6= ?y)

nat_dvd.meet_left from locale lattice:
gcd (?x, ?y) dvd ?x

nat_dvd.join_distr from locale distrib_lattice:
lcm (?x, gcd (?y, ?z)) = gcd (lcm (?x, ?y), lcm (?x, ?z))

Table 3: Interpreted theorems for dvd on the natural numbers.

interpretation nat_dvd: lattice ["op dvd :: nat ⇒ nat ⇒ bool"]
where nat_dvd_meet_eq:

"lattice.meet op dvd (x::nat) y = gcd (x, y)"
and nat_dvd_join_eq:
"lattice.join op dvd (x::nat) y = lcm (x, y)"

〈proof 〉

Equations nat_dvd_meet_eq and nat_dvd_join_eq are named since they are
handy in the proof of the subsequent interpretation.

interpretation nat_dvd:
distrib_lattice ["op dvd :: nat ⇒ nat ⇒ bool"]
apply unfold_locales

1.
∧
x y z.
lattice.meet op dvd x (lattice.join op dvd y z) =
lattice.join op dvd (lattice.meet op dvd x y)
(lattice.meet op dvd x z)

apply (unfold nat_dvd_meet_eq nat_dvd_join_eq)

1.
∧
x y z. gcd (x, lcm (y, z)) = lcm (gcd (x, y), gcd (x, z))

apply (rule gcd_lcm_distr) done

Theorems that are available in the theory after these interpretations are
shown in Table 3.

The full syntax of the interpretation commands is shown in Table 4. The
grammar refers to expr, which stands for a locale expression. Locale expres-
sions are discussed in Section 6.

11

6 Locale Expressions

A map ϕ between partial orders v and � is called order preserving if x v y

implies ϕ x � ϕ y. This situation is more complex than those encountered
so far: it involves two partial orders, and it is desirable to use the existing
locale for both.
Inspecting the grammar of locale commands in Table 4 reveals that the
import of a locale can be more than just a single locale. In general, the
import is a locale expression. Locale expressions enable to combine locales
and rename parameters. A locale name is a locale expression. If e1 and e2

are locale expressions then e1 + e2 is their merge. If e is an expression, then
e q1 . . . qn is a renamed expression where the parameters in e are renamed to
q1 . . . qn. Using a locale expression, a locale for order preserving maps can
be declared in the following way.

locale order_preserving =
partial_order + partial_order le’ (infixl "�" 50) +
fixes ϕ :: "’a ⇒ ’b"
assumes hom_le: "x v y =⇒ ϕ x � ϕ y"

The second line contains the expression, which is the merge of two partial
order locales. The parameter of the second one is le’ with new infix syntax
�. The parameters of the entire locale are le, le’ and ϕ. This is their
canonical order, which is obtained by a left-to-right traversal of the expres-
sion, where only the new parameters are appended to the end of the list.
The parameters introduced in the locale elements of the declaration follow.
In renamings parameters are referred to by position in the canonical order;
an underscore is used to skip a parameter position, which is then not re-
named. Renaming deletes the syntax of a parameter unless a new mixfix
annotation is given.
Parameter renamings are morphisms between locales. These can be lifted
to terms and theorems and thus be applied to assumptions and conclusions.
The assumption of a merge is the conjunction of the assumptions of the
merged locale. The conclusions of a merge are obtained by appending the
conclusions of the left locale and of the right locale.

The locale order_preserving contains theorems for both orders v and �.
How can one refer to a theorem for a particular order, v or �? Names
in locales are qualified by the locale parameters. More precisely, a name
is qualified by the parameters of the locale in which its declaration occurs.
Here are examples:

le.less_le_trans: [[?x @ ?y; ?y v ?z]] =⇒ ?x @ ?z

le_le’_ϕ.hom_le: ?x v ?y =⇒ ϕ ?x � ϕ ?y

When renaming a locale, the morphism is also applied to the qualifiers.

12

Hence theorems for the partial order � are qualified by le’. For example,
le’.less_le_trans:

[[partial_order.less op � ?x ?y; ?y � ?z]]
=⇒ partial_order.less op � ?x ?z

This example reveals that there is no infix syntax for the strict version of �!
This can, of course, not be introduced automatically, but it can be declared
manually through an abbreviation.

abbreviation (in order_preserving)
less’ (infixl "≺" 50) where "less’ ≡ partial_order.less le’"

Now the theorem is displayed nicely as [[?x ≺ ?y; ?y � ?z]] =⇒ ?x ≺ ?z.

Not only names of theorems are qualified. In fact, all names are qualified,
in particular names introduced by definitions and abbreviations. The name
of the strict order of v is le.less and therefore le’.less is the name of the
strict order of �. Hence, the equation in the above abbreviation could have
been written as less’ ≡ le’.less.

Two more locales illustrate working with locale expressions. A map ϕ is a
lattice homomorphism if it preserves meet and join.

locale lattice_hom = lattice + lattice le’ (infixl "�" 50) +
fixes ϕ
assumes hom_meet:

"ϕ (lattice.meet le x y) = lattice.meet le’ (ϕ x) (ϕ y)"
and hom_join:
"ϕ (lattice.join le x y) = lattice.join le’ (ϕ x) (ϕ y)"

abbreviation (in lattice_hom)
meet’ (infixl "u’’" 50) where "meet’ ≡ le’.meet"

abbreviation (in lattice_hom)
join’ (infixl "t’’" 50) where "join’ ≡ le’.join"

A homomorphism is an endomorphism if both orders coincide.

locale lattice_end =
lattice_hom le (infixl "v" 50) le (infixl "v" 50)

The inheritance diagram of the situation we have now is shown in Fig-
ure 2, where the dashed line depicts an interpretation which is introduced
below. Renamings are indicated by v7→� etc. The expression imported by
lattice_end identifies the first and second parameter of lattice_hom. By
looking at the inheritance diagram it would seem that two identical copies
of each of the locales partial_order and lattice are imported. This is not
the case! Inheritance paths with identical morphisms are detected and the
conclusions of the respecitve locales appear only once.

13

partial_order

order_preserving

v7→v

v7→�

lattice

lattice_hom

v7→v

v7→�

lattice_end

v7→v

�7→v

Figure 2: Hierarchy of Homomorphism Locales.

It can be shown easily that a lattice homomorphism is order preserving. As
the final example of this section, a locale interpretation is used to assert
this.

interpretation lattice_hom ⊆ order_preserving 〈proof 〉

Theorems and other declarations — syntax, in particular — from the locale
order_preserving are now active in lattice_hom, for example
le’.less_le_trans: [[?x ≺ ?y; ?y � ?z]] =⇒ ?x ≺ ?z

7 Further Reading

More information on locales and their interpretation is available. For the
locale hierarchy of import and interpretation dependencies see [1]; interpre-
tations in theories and proofs are covered in [2]. In the latter, we show
how interpretation in proofs enables to reason about families of algebraic
structures, which cannot be expressed with locales directly.
Haftmann and Wenzel [3] overcome a restriction of axiomatic type classes
through a combination with locale interpretation. The result is a Haskell-
style class system with a facility to generate Haskell code. Classes are suffi-
cient for simple specifications with a single type parameter. The locales for
orders and lattices presented in this tutorial fall into this category. Order
preserving maps, homomorphisms and vector spaces, on the other hand, do
not.
The original work of Kammüller on locales [5] may be of interest from a

14

historical perspective. The mathematical background on orders and lattices
is taken from Jacobson’s textbook on algebra [4, Chapter 8].

Acknowledgements. Alexander Krauss, Tobias Nipkow, Christian Ster-
nagel and Makarius Wenzel have made useful comments on a draft of this
document.

15

Miscellaneous
attr-name ::= name | attribute | name attribute

Context Elements
fixes ::= name [“::” type] [“(” structure “)” | mixfix]
assumes ::= [attr-name “:”] proposition
element ::= fixes fixes (and fixes)∗

| assumes assumes (and assumes)∗

Locale Expressions
rename ::= name [mixfix] | “ ”
expr ::= renamed-expr (“+” renamed-expr)∗

renamed-expr ::= (qualified-name | “(” expr “)”) rename∗

Declaration of Locales
locale ::= element+

| locale-expr [“+” element+]
toplevel ::= locale name [“=” locale]

Interpretation
equation ::= [attr-name “:”] prop
insts ::= [“[” term+ “]”]

[where equation (and equation)∗]
toplevel ::= interpretation name (“<” | “⊆”) expr proof

| interpretation [attr-name “:”] expr insts proof
| interpret [attr-name “:”] expr insts proof

Diagnostics
toplevel ::= print locale [“!”] locale

| print locales

Table 4: Syntax of Locale Commands.

16

References

[1] C. Ballarin. Interpretation of locales in Isabelle: Managing dependencies
between locales. Technical Report TUM-I0607, Technische Universität
München, 2006.

[2] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof
contexts. In J. M. Borwein and W. M. Farmer, editors, Mathemati-
cal knowledge management, MKM 2006, Wokingham, UK, LNCS 4108,
pages 31–43. Springer, 2006.

[3] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
TYPES 2006, Nottingham, UK, LNCS 4502, pages 160–174. Springer,
2007.

[4] N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.

[5] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A section-
ing concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Log-
ics: TPHOLs’99, Nice, France, LNCS 1690, pages 149–165. Springer,
1999.

[6] M. Wenzel. The Isabelle/Isar reference manual. Part of the Isabelle
distribution, http://isabelle.in.tum.de/doc/isar-ref.pdf.

17

http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Simple Locales
	Import
	Changing the Locale Hierarchy
	Use of Locales in Theories and Proofs
	First Version: Replacement of Parameters Only
	Second Version: Replacement of Definitions
	Third Version: Local Interpretation
	Further Interpretations
	Lattice dvd on nat

	Locale Expressions
	Further Reading

