
λ →

∀
=Isa

be
lle

β
α

Isar

Code generation from Isabelle/HOL theories

Florian Haftmann

8 June 2008

Abstract

This tutorial gives a motivation-driven introduction to a generic code gen-
erator framework in Isabelle for generating executable code in functional
programming languages from logical specifications.

Chapter 1

Code generation from Isabelle
theories

1.1 Introduction

1.1.1 Motivation

Executing formal specifications as programs is a well-established topic in the
theorem proving community. With increasing application of theorem proving
systems in the area of software development and verification, its relevance
manifests for running test cases and rapid prototyping. In logical calculi
like constructive type theory, a notion of executability is implicit due to the
nature of the calculus. In contrast, specifications in Isabelle can be highly
non-executable. In order to bridge the gap between logic and executable
specifications, an explicit non-trivial transformation has to be applied: code
generation.

This tutorial introduces a generic code generator for the Isabelle system
[6]. Generic in the sense that the target language for which code shall ul-
timately be generated is not fixed but may be an arbitrary state-of-the-art
functional programming language (currently, the implementation supports
SML [5], OCaml [4] and Haskell [7]). We aim to provide a versatile envi-
ronment suitable for software development and verification, structuring the
process of code generation into a small set of orthogonal principles while
achieving a big coverage of application areas with maximum flexibility.

Conceptually the code generator framework is part of Isabelle’s Pure meta
logic; the object logic HOL which is an extension of Pure already comes with
a reasonable framework setup and thus provides a good working horse for
raising code-generation-driven applications. So, we assume some familiarity
and experience with the ingredients of the HOL Main theory (see also [6]).

1.1.2 Overview

The code generator aims to be usable with no further ado in most cases
while allowing for detailed customization. This manifests in the structure

1

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 2

of this tutorial: we start with a generic example §1.2 and introduce code
generation concepts §1.3. Section §1.4 explains how to use the framework
naively, presuming a reasonable default setup. Then, section §1.5 deals with
advanced topics, introducing further aspects of the code generator framework
in a motivation-driven manner. Last, section §1.6 introduces the framework’s
internal programming interfaces.

! Ultimately, the code generator which this tutorial deals with is supposed to
replace the already established code generator by Stefan Berghofer [1]. So,

for the moment, there are two distinct code generators in Isabelle. Also note
that while the framework itself is object-logic independent, only HOL provides a
reasonable framework setup.

1.2 An example: a simple theory of search

trees

When writing executable specifications using HOL, it is convenient to use
three existing packages: the datatype package for defining datatypes, the
function package for (recursive) functions, and the class package for over-
loaded definitions.

We develope a small theory of search trees; trees are represented as a
datatype with key type ′a and value type ′b:

datatype (′a, ′b) searchtree = Leaf ′a::linorder ′b
| Branch (′a, ′b) searchtree ′a (′a, ′b) searchtree

Note that we have constrained the type of keys to the class of total orders,
linorder.

We define find and update functions:

primrec
find :: (′a::linorder , ′b) searchtree ⇒ ′a ⇒ ′b option where
find (Leaf key val) it = (if it = key then Some val else None)
| find (Branch t1 key t2) it = (if it ≤ key then find t1 it else find t2 it)

fun
update :: ′a::linorder × ′b ⇒ (′a, ′b) searchtree ⇒ (′a, ′b) searchtree where
update (it , entry) (Leaf key val) = (

if it = key then Leaf key entry
else if it ≤ key
then Branch (Leaf it entry) it (Leaf key val)
else Branch (Leaf key val) it (Leaf it entry)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 3

)
| update (it , entry) (Branch t1 key t2) = (

if it ≤ key
then (Branch (update (it , entry) t1) key t2)
else (Branch t1 key (update (it , entry) t2))

)

For testing purpose, we define a small example using natural numbers nat
(which are a linorder) as keys and list of nats as values:

definition
example :: (nat , nat list) searchtree

where
example = update (Suc (Suc (Suc (Suc 0))), [Suc (Suc 0), Suc (Suc 0)]) (update

(Suc (Suc (Suc 0)), [Suc (Suc (Suc 0))])
(update (Suc (Suc 0), [Suc (Suc 0)]) (Leaf (Suc 0) [])))

Then we generate code

export-code example in SML file examples/tree.ML

which looks like:

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

type ’a ord = {less_eq : ’a -> ’a -> bool , less : ’a -> ’a -> bool};

fun less_eq (A_:’a ord) = #less_eq A_;

fun less (A_:’a ord) = #less A_;

fun eqop A_ a = eq A_ a;

end; (∗ s t r u c t HOL∗)

structure Orderings =

struct

type ’a order = {Orderings__ord_order : ’a HOL.ord};

fun ord_order (A_:’a order) = #Orderings__ord_order A_;

type ’a linorder = {Orderings__order_linorder : ’a order };

fun order_linorder (A_:’a linorder) = #Orderings__order_linorder A_;

end; (∗ s t r u c t O rde r i n g s ∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun eq_nat Zero_nat Zero_nat = true

| eq_nat (Suc m) (Suc n) = eq_nat m n

| eq_nat Zero_nat (Suc a) = false

| eq_nat (Suc a) Zero_nat = false;

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 4

val eq_nata = {eq = eq_nat} : nat HOL.eq;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

val ord_nat = {less_eq = less_eq_nat , less = less_nat} : nat HOL.ord;

val order_nat = {Orderings__ord_order = ord_nat} : nat Orderings.order;

val linorder_nat = {Orderings__order_linorder = order_nat} :

nat Orderings.linorder;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

datatype (’a, ’b) searchtree =

Branch of (’a, ’b) searchtree * ’a * (’a, ’b) searchtree |

Leaf of ’a * ’b;

fun update (A1_ , A2_) (it, entry) (Branch (t1 , key , t2)) =

(if HOL.less_eq ((Orderings.ord_order o Orderings.order_linorder) A2_)

it key

then Branch (update (A1_ , A2_) (it, entry) t1, key , t2)

else Branch (t1, key , update (A1_ , A2_) (it, entry) t2))

| update (A1_ , A2_) (it, entry) (Leaf (key , vala)) =

(if HOL.eqop A1_ it key then Leaf (key , entry)

else (if HOL.less_eq

((Orderings.ord_order o Orderings.order_linorder) A2_) it

key

then Branch (Leaf (it, entry), it, Leaf (key , vala))

else Branch (Leaf (key , vala), it, Leaf (it, entry))));

val example : (Nat.nat , (Nat.nat list)) searchtree =

update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat))),

[Nat.Suc (Nat.Suc Nat.Zero_nat), Nat.Suc (Nat.Suc Nat.Zero_nat)])

(update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat)),

[Nat.Suc (Nat.Suc (Nat.Suc Nat.Zero_nat))])

(update (Nat.eq_nata , Nat.linorder_nat)

(Nat.Suc (Nat.Suc Nat.Zero_nat), [Nat.Suc (Nat.Suc Nat.Zero_nat)])

(Leaf (Nat.Suc Nat.Zero_nat , []))));

end; (∗ s t r u c t Codegen ∗)

1.3 Code generation concepts and process

The code generator employs a notion of executability for three foundational
executable ingredients known from functional programming: defining equa-
tions, datatypes, and type classes. A defining equation as a first approxima-
tion is a theorem of the form f t1 t2 . . . tn ≡ t (an equation headed by a

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 5

Isabelle/HOL
Isar theory

selection

SML

...

Haskell

preprocessing defining equations

serialization

translation

intermediate language

Figure 1.1: code generator – processing overview

constant f with arguments t1 t2 . . . tn and right hand side t). Code gener-
ation aims to turn defining equations into a functional program by running
through a process (see figure 1.1):

• Out of the vast collection of theorems proven in a theory, a reasonable
subset modeling defining equations is selected.

• On those selected theorems, certain transformations are carried out
(preprocessing). Their purpose is to turn theorems representing non-
or badly executable specifications into equivalent but executable coun-
terparts. The result is a structured collection of code theorems.

• These code theorems then are translated into an Haskell-like interme-
diate language.

• Finally, out of the intermediate language the final code in the desired
target language is serialized.

From these steps, only the two last are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

1.4 Basics

1.4.1 Invoking the code generator

Thanks to a reasonable setup of the HOL theories, in most cases code gen-
eration proceeds without further ado:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 6

primrec
fac :: nat ⇒ nat where

fac 0 = 1
| fac (Suc n) = Suc n ∗ fac n

This executable specification is now turned to SML code:

export-code fac in SML file examples/fac.ML

The export code command takes a space-separated list of constants to-
gether with serialization directives These start with a target language iden-
tifier, followed by a file specification where to write the generated code to.

Internally, the defining equations for all selected constants are taken,
including any transitively required constants, datatypes and classes, resulting
in the following code:

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

val one_nat : nat = Suc Zero_nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)

| plus_nat Zero_nat n = n;

fun times_nat (Suc m) n = plus_nat n (times_nat m n)

| times_nat Zero_nat n = Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun fac (Nat.Suc n) = Nat.times_nat (Nat.Suc n) (fac n)

| fac Nat.Zero_nat = Nat.one_nat;

end; (∗ s t r u c t Codegen ∗)

The code generator will complain when a required ingredient does not pro-
vide a executable counterpart, e.g. generating code for constants not yielding
a defining equation (e.g. the Hilbert choice operation SOME):

definition
pick-some :: ′a list ⇒ ′a where
pick-some xs = (SOME x . x ∈ set xs)

export-code pick-some in SML file examples/fail-const .ML

will fail.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 7

1.4.2 Theorem selection

The list of all defining equations in a theory may be inspected using the
print codesetup command:

print-codesetup

which displays a table of constant with corresponding defining equations (the
additional stuff displayed shall not bother us for the moment).

The typical HOL tools are already set up in a way that function definitions
introduced by definition, primrec, fun, function, constdefs, recdef are
implicitly propagated to this defining equation table. Specific theorems may
be selected using an attribute: code func. As example, a weight selector
function:

primrec
pick :: (nat × ′a) list ⇒ nat ⇒ ′a where
pick (x#xs) n = (let (k , v) = x in

if n < k then v else pick xs (n − k))

We want to eliminate the explicit destruction of x to (k , v):

lemma [code func]:
pick ((k , v)#xs) n = (if n < k then v else pick xs (n − k))
by simp

export-code pick in SML file examples/pick1.ML

This theorem now is used for generating code:

structure HOL =

struct

fun leta s f = f s;

end; (∗ s t r u c t HOL∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

fun minus_nat (Suc m) (Suc n) = minus_nat m n

| minus_nat Zero_nat n = Zero_nat

| minus_nat m Zero_nat = m;

end; (∗ s t r u c t Nat ∗)

structure Product_Type =

struct

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 8

fun split f (a, b) = f a b;

end; (∗ s t r u c t Product Type ∗)

structure Codegen =

struct

fun pick ((k, v) :: xs) n =

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k))

| pick (x :: xs) n =

let

val a = x;

val (k, v) = a;

in

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k))

end;

end; (∗ s t r u c t Codegen ∗)

It might be convenient to remove the pointless original equation, using the
func del attribute:

lemmas [code func del] = pick .simps

export-code pick in SML file examples/pick2.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

fun minus_nat (Suc m) (Suc n) = minus_nat m n

| minus_nat Zero_nat n = Zero_nat

| minus_nat m Zero_nat = m;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun pick ((k, v) :: xs) n =

(if Nat.less_nat n k then v else pick xs (Nat.minus_nat n k));

end; (∗ s t r u c t Codegen ∗)

Syntactic redundancies are implicitly dropped. For example, using a modified
version of the fac function as defining equation, the then redundant (since
syntactically subsumed) original defining equations are dropped, resulting in
a warning:

lemma [code func]:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 9

fac n = (case n of 0 ⇒ 1 | Suc m ⇒ n ∗ fac m)
by (cases n) simp-all

export-code fac in SML file examples/fac-case.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

val one_nat : nat = Suc Zero_nat;

fun nat_case f1 f2 Zero_nat = f1

| nat_case f1 f2 (Suc nat) = f2 nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)

| plus_nat Zero_nat n = n;

fun times_nat (Suc m) n = plus_nat n (times_nat m n)

| times_nat Zero_nat n = Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun fac n =

(case n of Nat.Zero_nat => Nat.one_nat

| Nat.Suc m => Nat.times_nat n (fac m));

end; (∗ s t r u c t Codegen ∗)

! The attributes code and code del associated with the existing code generator
also apply to the new one: code implies code func, and code del implies code

func del.

1.4.3 Type classes

Type classes enter the game via the Isar class package. For a short intro-
duction how to use it, see [2]; here we just illustrate its impact on code
generation.

In a target language, type classes may be represented natively (as in
the case of Haskell). For languages like SML, they are implemented using
dictionaries. Our following example specifies a class “null”, assigning to each
of its inhabitants a “null” value:

class null = type +
fixes null :: ′a

primrec

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 10

head :: ′a::null list ⇒ ′a where
head [] = null
| head (x#xs) = x

We provide some instances for our null :

instantiation option and list :: (type) null
begin

definition
null = None

definition
null = []

instance ..

end

Constructing a dummy example:

definition
dummy = head [Some (Suc 0), None]

Type classes offer a suitable occasion to introduce the Haskell serializer.
Its usage is almost the same as SML, but, in accordance with conventions
some Haskell systems enforce, each module ends up in a single file. The
module hierarchy is reflected in the file system, with root directory given as
file specification.

export-code dummy in Haskell file examples/

module Codegen where {

import qualified Nat;

class Null a where {

nulla :: a;

};

heada :: forall a. (Codegen.Null a) => [a] -> a;

heada (x : xs) = x;

heada [] = Codegen.nulla;

null_option :: forall a. Maybe a;

null_option = Nothing;

instance Codegen.Null (Maybe a) where {

nulla = Codegen.null_option;

};

dummy :: Maybe Nat.Nat;

dummy = Codegen.heada [Just (Nat.Suc Nat.Zero_nat), Nothing];

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 11

}

(we have left out all other modules).

The whole code in SML with explicit dictionary passing:

export-code dummy in SML file examples/class.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

type ’a null = {null : ’a};

fun null (A_:’a null) = #null A_;

fun head A_ (x :: xs) = x

| head A_ [] = null A_;

val null_option : ’a option = NONE;

fun null_optiona () = {null = null_option} : (’a option) null;

val dummy : Nat.nat option =

head (null_optiona ()) [SOME (Nat.Suc Nat.Zero_nat), NONE];

end; (∗ s t r u c t Codegen ∗)

or in OCaml:

export-code dummy in OCaml file examples/class.ocaml

module Nat =

struct

type nat = Suc of nat | Zero_nat ;;

end;; (∗ s t r u c t Nat ∗)

module Codegen =

struct

type ’a null = {null : ’a};;

let null _A = _A.null;;

let rec head _A = function x :: xs -> x

| [] -> null _A;;

let rec null_option = None;;

let null_optiona () = ({null = null_option} : (’a option) null);;

let rec dummy

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 12

= head (null_optiona ()) [Some (Nat.Suc Nat.Zero_nat); None];;

end;; (∗ s t r u c t Codegen ∗)

The explicit association of constants to classes can be inspected using the
print classes command.

1.5 Recipes and advanced topics

In this tutorial, we do not attempt to give an exhaustive description of the
code generator framework; instead, we cast a light on advanced topics by
introducing them together with practically motivated examples. Concerning
further reading, see

• the Isabelle/Isar Reference Manual [8] for exhaustive syntax diagrams.

• or [3] which deals with foundational issues of the code generator frame-
work.

1.5.1 Library theories

The HOL Main theory already provides a code generator setup which should
be suitable for most applications. Common extensions and modifications
are available by certain theories of the HOL library; beside being useful in
applications, they may serve as a tutorial for customizing the code generator
setup.

Code-Integer represents HOL integers by big integer literals in target lan-
guages.

Code-Char represents HOL characters by character literals in target lan-
guages.

Code-Char-chr like Code-Char, but also offers treatment of character codes;
includes Code-Integer.

Efficient-Nat implements natural numbers by integers, which in general will
result in higher efficency; pattern matching with 0 / Suc is eliminated;
includes Code-Integer.

Code-Index provides an additional datatype index which is mapped to
target-language built-in integers. Useful for code setups which involve
e.g. indexing of target-language arrays.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 13

Code-Message provides an additional datatype message-string which is iso-
morphic to strings; message-strings are mapped to target-language
strings. Useful for code setups which involve e.g. printing (error) mes-
sages.

! When importing any of these theories, they should form the last items in an
import list. Since these theories adapt the code generator setup in a non-

conservative fashion, strange effects may occur otherwise.

1.5.2 Preprocessing

Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. There are
three possibilities to customize preprocessing: inline theorems, inline proce-
dures and generic preprocessors.

Inline theorems are rewriting rules applied to each defining equation. Due
to the interpretation of theorems of defining equations, rewrites are applied
to the right hand side and the arguments of the left hand side of an equation,
but never to the constant heading the left hand side. Inline theorems may
be declared an undeclared using the code inline or code inline del attribute
respectively. Some common applications:

• replacing non-executable constructs by executable ones:

lemma [code inline]:

x ∈ set xs ←→ x mem xs by (induct xs) simp-all

• eliminating superfluous constants:

lemma [code inline]:

1 = Suc 0 by simp

• replacing executable but inconvenient constructs:

lemma [code inline]:

xs = [] ←→ List .null xs by (induct xs) simp-all

The current set of inline theorems may be inspected using the print code-
setup command.

Inline procedures are a generalized version of inline theorems written in
ML – rewrite rules are generated dependent on the function theorems for a

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 14

certain function. One application is the implicit expanding of nat numerals
to 0 / Suc representation. See further §1.6

Generic preprocessors provide a most general interface, transforming a
list of function theorems to another list of function theorems, provided that
neither the heading constant nor its type change. The 0 / Suc pattern
elimination implemented in theory EfficientNat (§1.5.1) uses this interface.

! The order in which single preprocessing steps are carried out currently is not
specified; in particular, preprocessing is no fix point process. Keep this in mind

when setting up the preprocessor.
Further, the attribute code unfold associated with the existing code generator

also applies to the new one: code unfold implies code inline.

1.5.3 Concerning operational equality

Surely you have already noticed how equality is treated by the code generator:

primrec
collect-duplicates :: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list where

collect-duplicates xs ys [] = xs
| collect-duplicates xs ys (z#zs) = (if z ∈ set xs

then if z ∈ set ys
then collect-duplicates xs ys zs
else collect-duplicates xs (z#ys) zs

else collect-duplicates (z#xs) (z#ys) zs)

The membership test during preprocessing is rewritten, resulting in op
mem, which itself performs an explicit equality check.

export-code collect-duplicates in SML file examples/collect-duplicates.ML

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

fun eqop A_ a = eq A_ a;

end; (∗ s t r u c t HOL∗)

structure List =

struct

fun member A_ x (y :: ys) =

(if HOL.eqop A_ y x then true else member A_ x ys)

| member A_ x [] = false;

end; (∗ s t r u c t L i s t ∗)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 15

structure Codegen =

struct

fun collect_duplicates A_ xs ys (z :: zs) =

(if List.member A_ z xs

then (if List.member A_ z ys then collect_duplicates A_ xs ys zs

else collect_duplicates A_ xs (z :: ys) zs)

else collect_duplicates A_ (z :: xs) (z :: ys) zs)

| collect_duplicates A_ xs ys [] = xs;

end; (∗ s t r u c t Codegen ∗)

Obviously, polymorphic equality is implemented the Haskell way using a
type class. How is this achieved? HOL introduces an explicit class eq with
a corresponding operation eq-class .eq such that eq-class .eq x y = (x = y).
The preprocessing framework does the rest. For datatypes, instances of eq
are implicitly derived when possible. For other types, you may instantiate
eq manually like any other type class.

Though this eq class is designed to get rarely in the way, a subtlety
enters the stage when definitions of overloaded constants are dependent on
operational equality. For example, let us define a lexicographic ordering on
tuples:

instantiation ∗ :: (ord , ord) ord
begin

definition
[code func del]: p1 < p2 ←→ (let (x1, y1) = p1; (x2, y2) = p2 in

x1 < x2 ∨ (x1 = x2 ∧ y1 < y2))

definition
[code func del]: p1 ≤ p2 ←→ (let (x1, y1) = p1; (x2, y2) = p2 in

x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2))

instance ..

end

lemma ord-prod [code func]:
(x1 :: ′a::ord , y1 :: ′b::ord) < (x2, y2) ←→ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2)
(x1 :: ′a::ord , y1 :: ′b::ord) ≤ (x2, y2) ←→ x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2)
unfolding less-prod-def less-eq-prod-def by simp-all

Then code generation will fail. Why? The definition of op ≤ depends on
equality on both arguments, which are polymorphic and impose an additional
eq class constraint, thus violating the type discipline for class operations.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 16

The solution is to add eq explicitly to the first sort arguments in the code
theorems:

lemma ord-prod-code [code func]:
(x1 :: ′a::{ord , eq}, y1 :: ′b::ord) < (x2, y2) ←→

x1 < x2 ∨ (x1 = x2 ∧ y1 < y2)
(x1 :: ′a::{ord , eq}, y1 :: ′b::ord) ≤ (x2, y2) ←→

x1 < x2 ∨ (x1 = x2 ∧ y1 ≤ y2)
unfolding ord-prod by rule+

Then code generation succeeds:

export-code op ≤ :: ′a::{eq , ord} × ′b::ord ⇒ ′a × ′b ⇒ bool
in SML file examples/lexicographic.ML

structure HOL =

struct

type ’a eq = {eq : ’a -> ’a -> bool};

fun eq (A_:’a eq) = #eq A_;

type ’a ord = {less_eq : ’a -> ’a -> bool , less : ’a -> ’a -> bool};

fun less_eq (A_:’a ord) = #less_eq A_;

fun less (A_:’a ord) = #less A_;

end; (∗ s t r u c t HOL∗)

structure Codegen =

struct

fun less_eq (A1_ , A2_) B_ (x1 , y1) (x2, y2) =

HOL.less A2_ x1 x2 orelse HOL.eq A1_ x1 x2 andalso HOL.less_eq B_ y1 y2;

end; (∗ s t r u c t Codegen ∗)

In general, code theorems for overloaded constants may have more re-
strictive sort constraints than the underlying instance relation between class
and type constructor as long as the whole system of constraints is coregular;
code theorems violating coregularity are rejected immediately. Consequently,
it might be necessary to delete disturbing theorems in the code theorem ta-
ble, as we have done here with the original definitions less-prod-def and
less-eq-prod-def.

In some cases, the automatically derived defining equations for equal-
ity on a particular type may not be appropriate. As example, watch the
following datatype representing monomorphic parametric types (where type
constructors are referred to by natural numbers):

datatype monotype = Mono nat monotype list

Then code generation for SML would fail with a message that the gen-
erated code conains illegal mutual dependencies: the theorem Mono tyco1

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 17

typargs1 = Mono tyco2 typargs2 ≡ tyco1 = tyco2 ∧ typargs1 = typargs2 al-
ready requires the instance monotype :: eq, which itself requires Mono tyco1
typargs1 = Mono tyco2 typargs2 ≡ tyco1 = tyco2 ∧ typargs1 = typargs2;
Haskell has no problem with mutually recursive instance and function defi-
nitions, but the SML serializer does not support this.

In such cases, you have to provide you own equality equations involving
auxiliary constants. In our case, list-all2 can do the job:

lemma monotype-eq-list-all2 [code func]:
Mono tyco1 typargs1 = Mono tyco2 typargs2 ←→

tyco1 = tyco2 ∧ list-all2 (op =) typargs1 typargs2
by (simp add : list-all2-eq [symmetric])

does not depend on instance monotype :: eq :

export-code op = :: monotype ⇒ monotype ⇒ bool
in SML file examples/monotype.ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun eq_nat Zero_nat Zero_nat = true

| eq_nat (Suc m) (Suc n) = eq_nat m n

| eq_nat Zero_nat (Suc a) = false

| eq_nat (Suc a) Zero_nat = false;

end; (∗ s t r u c t Nat ∗)

structure List =

struct

fun null (x :: xs) = false

| null [] = true;

fun list_all2 p (x :: xs) (y :: ys) = p x y andalso list_all2 p xs ys

| list_all2 p xs [] = null xs

| list_all2 p [] ys = null ys;

end; (∗ s t r u c t L i s t ∗)

structure Codegen =

struct

datatype monotype = Mono of Nat.nat * monotype list;

fun eq_monotype (Mono (tyco1 , typargs1)) (Mono (tyco2 , typargs2)) =

Nat.eq_nat tyco1 tyco2 andalso

List.list_all2 eq_monotype typargs1 typargs2;

end; (∗ s t r u c t Codegen ∗)

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 18

1.5.4 Programs as sets of theorems

As told in §1.3, code generation is based on a structured collection of code
theorems. For explorative purpose, this collection may be inspected using
the code thms command:

code-thms op mod :: nat ⇒ nat ⇒ nat

prints a table with all defining equations for op mod, including all defining
equations those equations depend on recursivly. code thms provides a con-
venient mechanism to inspect the impact of a preprocessor setup on defining
equations.

Similarly, the code deps command shows a graph visualizing dependen-
cies between defining equations.

1.5.5 Constructor sets for datatypes

Conceptually, any datatype is spanned by a set of constructors of type τ =
. . . ⇒ κ α1 . . . αn where {α1, . . ., αn} is excactly the set of all type variables
in τ . The HOL datatype package by default registers any new datatype in
the table of datatypes, which may be inspected using the print codesetup
command.

In some cases, it may be convenient to alter or extend this table; as an
example, we will develope an alternative representation of natural numbers
as binary digits, whose size does increase logarithmically with its value, not
linear 1. First, the digit representation:

definition Dig0 :: nat ⇒ nat where
Dig0 n = 2 ∗ n

definition Dig1 :: nat ⇒ nat where
Dig1 n = Suc (2 ∗ n)

We will use these two ”¿digits”¡ to represent natural numbers in binary digits,
e.g.:

lemma 42: 42 = Dig0 (Dig1 (Dig0 (Dig1 (Dig0 1))))
by (simp add : Dig0-def Dig1-def)

Of course we also have to provide proper code equations for the operations,
e.g. op +:

lemma plus-Dig [code func]:
0 + n = n

1Indeed, the Efficient-Nat theory 1.5.1 does something similar

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 19

m + 0 = m
1 + Dig0 n = Dig1 n
Dig0 m + 1 = Dig1 m
1 + Dig1 n = Dig0 (n + 1)
Dig1 m + 1 = Dig0 (m + 1)
Dig0 m + Dig0 n = Dig0 (m + n)
Dig0 m + Dig1 n = Dig1 (m + n)
Dig1 m + Dig0 n = Dig1 (m + n)
Dig1 m + Dig1 n = Dig0 (m + n + 1)
by (simp-all add : Dig0-def Dig1-def)

We then instruct the code generator to view 0, 1, Dig0 and Dig1 as datatype
constructors:

code-datatype 0::nat 1::nat Dig0 Dig1

For the former constructor Suc, we provide a code equation and remove some
parts of the default code generator setup which are an obstacle here:

lemma Suc-Dig [code func]:
Suc n = n + 1
by simp

declare One-nat-def [code inline del]
declare add-Suc-shift [code func del]

This yields the following code:

export-code op + :: nat ⇒ nat ⇒ nat in SML file examples/nat-binary .ML

structure Nat =

struct

datatype nat = Dig1 of nat | Dig0 of nat | One_nat | Zero_nat;

fun plus_nat (Dig1 m) (Dig1 n) = Dig0 (plus_nat (plus_nat m n) One_nat)

| plus_nat (Dig1 m) (Dig0 n) = Dig1 (plus_nat m n)

| plus_nat (Dig0 m) (Dig1 n) = Dig1 (plus_nat m n)

| plus_nat (Dig0 m) (Dig0 n) = Dig0 (plus_nat m n)

| plus_nat (Dig1 m) One_nat = Dig0 (plus_nat m One_nat)

| plus_nat One_nat (Dig1 n) = Dig0 (plus_nat n One_nat)

| plus_nat (Dig0 m) One_nat = Dig1 m

| plus_nat One_nat (Dig0 n) = Dig1 n

| plus_nat m Zero_nat = m

| plus_nat Zero_nat n = n;

end; (∗ s t r u c t Nat ∗)

From this example, it can be easily glimpsed that using own constructor
sets is a little delicate since it changes the set of valid patterns for values of
that type. Without going into much detail, here some practical hints:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 20

• When changing the constuctor set for datatypes, take care to provide
an alternative for the case combinator (e.g. by replacing it using the
preprocessor).

• Values in the target language need not to be normalized – different
values in the target language may represent the same value in the logic
(e.g. Dig1 0 = 1).

• Usually, a good methodology to deal with the subleties of pattern
matching is to see the type as an abstract type: provide a set of op-
erations which operate on the concrete representation of the type, and
derive further operations by combinations of these primitive ones, with-
out relying on a particular representation.

1.5.6 Customizing serialization

Basics

Consider the following function and its corresponding SML code:

primrec
in-interval :: nat × nat ⇒ nat ⇒ bool where
in-interval (k , l) n ←→ k ≤ n ∧ n ≤ lexport-code in-interval in SML file

examples/bool-literal .ML

structure HOL =

struct

datatype boola = False | True;

fun anda x True = x

| anda x False = False

| anda True x = x

| anda False x = False;

end; (∗ s t r u c t HOL∗)

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = HOL.False

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = HOL.True;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 21

fun in_interval (k, l) n =

HOL.anda (Nat.less_eq_nat k n) (Nat.less_eq_nat n l);

end; (∗ s t r u c t Codegen ∗)

Though this is correct code, it is a little bit unsatisfactory: boolean values
and operators are materialized as distinguished entities with have nothing to
do with the SML-builtin notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML “bool” would be used. To
map the HOL “bool” on SML “bool”, we may use custom serializations :

code type bool
(SML "bool")

code const True and False and "op ∧"
(SML "true" and "false" and "_ andalso _")

The code type commad takes a type constructor as arguments together
with a list of custom serializations. Each custom serialization starts with a
target language identifier followed by an expression, which during code serial-
ization is inserted whenever the type constructor would occur. For constants,
code const implements the corresponding mechanism. Each “_” in a serial-
ization expression is treated as a placeholder for the type constructor’s (the
constant’s) arguments.

export-code in-interval in SML file examples/bool-mlbool .ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun in_interval (k, l) n =

(Nat.less_eq_nat k n) andalso (Nat.less_eq_nat n l);

end; (∗ s t r u c t Codegen ∗)

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serializer by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 22

code const "op ∧"
(SML infixl 1 "andalso")

export-code in-interval in SML file examples/bool-infix .ML

structure Nat =

struct

datatype nat = Suc of nat | Zero_nat;

fun less_nat m (Suc n) = less_eq_nat m n

| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n

| less_eq_nat Zero_nat n = true;

end; (∗ s t r u c t Nat ∗)

structure Codegen =

struct

fun in_interval (k, l) n =

Nat.less_eq_nat k n andalso Nat.less_eq_nat n l;

end; (∗ s t r u c t Codegen ∗)

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code type *
(SML infix 2 "*")

code const Pair
(SML "!((_),/ (_))")

The initial bang “!” tells the serializer to never put parentheses around
the whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serializations
provide; however their usage requires careful thinking in order not to intro-
duce inconsistencies – or, in other words: custom serializations are completely
axiomatic.

A further noteworthy details is that any special character in a custom
serialization may be quoted using “’”; thus, in “fn ’_ => _” the first “_”
is a proper underscore while the second “_” is a placeholder.

The HOL theories provide further examples for custom serializations.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 23

Haskell serialization

For convenience, the default HOL setup for Haskell maps the eq class to
its counterpart in Haskell, giving custom serializations for the class (code
class) and its operation:

code class eq
(Haskell "Eq" where "op =" ≡ "(==)")

code const "op ="
(Haskell infixl 4 "==")

A problem now occurs whenever a type which is an instance of eq in HOL
is mapped on a Haskell-builtin type which is also an instance of Haskell Eq :

typedecl bar

instantiation bar :: eq
begin

definition eq-class.eq (x ::bar) y ←→ x = y

instance by default (simp add : eq-bar-def)

end

code type bar
(Haskell "Integer")

The code generator would produce an additional instance, which of course
is rejected. To suppress this additional instance, use code instance:

code instance bar :: eq
(Haskell -)

Pretty printing

The serializer provides ML interfaces to set up pretty serializations for ex-
pressions like lists, numerals and characters; these are monolithic stubs and
should only be used with the theories introduces in §1.5.1.

1.5.7 Cyclic module dependencies

Sometimes the awkward situation occurs that dependencies between defini-
tions introduce cyclic dependencies between modules, which in the Haskell

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 24

world leaves you to the mercy of the Haskell implementation you are using,
while for SML code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

code-modulename SML
A ABC
B ABC
C ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialization time.

1.5.8 Incremental code generation

Code generation is incremental : theorems and abstract intermediate code are
cached and extended on demand. The cache may be partially or fully dropped
if the underlying executable content of the theory changes. Implementation
of caching is supposed to transparently hid away the details from the user.
Anyway, caching reaches the surface by using a slightly more general form
of the code thms, code deps and export code commands: the list of
constants may be omitted. Then, all constants with code theorems in the
current cache are referred to.

1.6 ML interfaces

Since the code generator framework not only aims to provide a nice Isar
interface but also to form a base for code-generation-based applications, here
a short description of the most important ML interfaces.

1.6.1 Executable theory content: Code

This Pure module implements the core notions of executable content of a
theory.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 25

Managing executable content

ml Reference

Code.add_func: thm -> theory -> theory
Code.del_func: thm -> theory -> theory
Code.add_funcl: string * thm list Susp.T -> theory -> theory
Code.add_inline: thm -> theory -> theory
Code.del_inline: thm -> theory -> theory
Code.add_inline_proc: string * (theory -> cterm list -> thm list)

-> theory -> theory
Code.del_inline_proc: string -> theory -> theory
Code.add_preproc: string * (theory -> thm list -> thm list)

-> theory -> theory
Code.del_preproc: string -> theory -> theory
Code.add_datatype: (string * typ) list -> theory -> theory
Code.get_datatype: theory -> string

-> (string * sort) list * (string * typ list) list
Code.get_datatype_of_constr: theory -> string -> string option

Code.add_func thm thy adds function theorem thm to executable content.

Code.del_func thm thy removes function theorem thm from executable content,
if present.

Code.add_funcl (const , lthms) thy adds suspended defining equations lthms for
constant const to executable content.

Code.add_inline thm thy adds inlining theorem thm to executable content.

Code.del_inline thm thy remove inlining theorem thm from executable content,
if present.

Code.add_inline_proc (name, f) thy adds inline procedure f (named name)
to executable content; f is a computation of rewrite rules dependent on the
current theory context and the list of all arguments and right hand sides of
the defining equations belonging to a certain function definition.

Code.del_inline_proc name thy removes inline procedure named name from
executable content.

Code.add_preproc (name, f) thy adds generic preprocessor f (named name) to
executable content; f is a transformation of the defining equations belonging
to a certain function definition, depending on the current theory context.

Code.del_preproc name thy removes generic preprcoessor named name from
executable content.

Code.add_datatype cs thy adds a datatype to executable content, with genera-
tion set cs.

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 26

Code.get_datatype_of_constr thy const returns type constructor correspond-
ing to constructor const ; returns NONE if const is no constructor.

1.6.2 Auxiliary

ml Reference

CodeUnit.read_const: theory -> string -> string
CodeUnit.head_func: thm -> string * ((string * sort) list * typ)
CodeUnit.rewrite_func: thm list -> thm -> thm

CodeUnit.read_const thy s reads a constant as a concrete term expression s.

CodeUnit.head_func thm extracts the constant and its type from a defining
equation thm.

CodeUnit.rewrite_func rews thm rewrites a defining equation thm with a set
of rewrite rules rews; only arguments and right hand side are rewritten, not
the head of the defining equation.

1.6.3 Implementing code generator applications

Implementing code generator applications on top of the framework set out so
far usually not only involves using those primitive interfaces but also storing
code-dependent data and various other things.

! Some interfaces discussed here have not reached a final state yet. Changes
likely to occur in future.

Data depending on the theory’s executable content

Due to incrementality of code generation, changes in the theory’s executable
content have to be propagated in a certain fashion. Additionally, such
changes may occur not only during theory extension but also during the-
ory merge, which is a little bit nasty from an implementation point of view.
The framework provides a solution to this technical challenge by providing
a functorial data slot CodeDataFun; on instantiation of this functor, the fol-
lowing types and operations are required:

type T
val empty : T
val merge: Pretty .pp → T ∗ T → T
val purge: theory option → CodeUnit .const list option → T → T

CHAPTER 1. CODE GENERATION FROM ISABELLE THEORIES 27

T the type of data to store.

empty initial (empty) data.

merge merging two data slots.

purge thy consts propagates changes in executable content; if possible, the
current theory context is handed over as argument thy (if there is no
current theory context (e.g. during theory merge, NONE); consts indi-
cates the kind of change: NONE stands for a fundamental change which
invalidates any existing code, SOME consts hints that executable con-
tent for constants consts has changed.

An instance of CodeDataFun provides the following interface:

get : theory → T
change: theory → (T → T) → T
change-yield : theory → (T → ′a ∗ T) → ′a ∗ T

get retrieval of the current data.

change update of current data (cached!) by giving a continuation.

change-yield update with side result.

Happy proving, happy hacking!

Bibliography

[1] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs: TYPES’2000, volume 2277 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[2] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
http://isabelle.in.tum.de/doc/classes.pdf.

[3] Florian Haftmann and Tobias Nipkow. A code generator framework for
Isabelle/HOL. Technical Report 364/07, Department of Computer Science,
University of Kaiserslautern, 08 2007.

[4] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[5] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[7] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[8] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

28

http://isabelle.in.tum.de/doc/classes.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
http://www.haskell.org/definition/
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Code generation from Isabelle theories
	Introduction
	Motivation
	Overview

	An example: a simple theory of search trees
	Code generation concepts and process
	Basics
	Invoking the code generator
	Theorem selection
	Type classes

	Recipes and advanced topics
	Library theories
	Preprocessing
	Concerning operational equality
	Programs as sets of theorems
	Constructor sets for datatypes
	Customizing serialization
	Cyclic module dependencies
	Incremental code generation

	ML interfaces
	Executable theory content: Code
	Auxiliary
	Implementing code generator applications

