Contents

I Basic Concepts

1 Introduction
 1.1 Overview

2 The Isabelle/Isar Framework
 2.1 The Pure framework
 2.1.1 Primitive inferences
 2.1.2 Reasoning with rules
 2.2 The Isar proof language
 2.2.1 Context elements
 2.2.2 Structured statements
 2.2.3 Structured proof refinement
 2.2.4 Calculational reasoning
 2.3 Example: First-Order Logic
 2.3.1 Equational reasoning
 2.3.2 Basic group theory
 2.3.3 Propositional logic
 2.3.4 Classical logic
 2.3.5 Quantifiers
 2.3.6 Canonical reasoning patterns

II General Language Elements

3 Outer syntax
 3.1 Lexical matters
 3.2 Common syntax entities
 3.2.1 Names
 3.2.2 Comments
 3.2.3 Type classes, sorts and arities
 3.2.4 Types and terms
 3.2.5 Term patterns and declarations
 3.2.6 Attributes and theorems
CONTENTS

4 Document preparation 37
 4.1 Markup commands 38
 4.2 Document Antiquotations 40
 4.3 Markup via command tags 45
 4.4 Draft presentation 46

5 Theory specifications 47
 5.1 Defining theories 47
 5.2 Local theory targets 48
 5.3 Basic specification elements 49
 5.4 Generic declarations 51
 5.5 Locales 52
 5.5.1 Locale expressions 52
 5.5.2 Locale declarations 54
 5.5.3 Locale interpretations 57
 5.6 Classes 59
 5.6.1 The class target 62
 5.6.2 Old-style axiomatic type classes 62
 5.7 Unrestricted overloading 63
 5.8 Incorporating ML code 64
 5.9 Primitive specification elements 66
 5.9.1 Type classes and sorts 66
 5.9.2 Types and type abbreviations 67
 5.9.3 Co-regularity of type classes and arities 68
 5.9.4 Constants and definitions 68
 5.10 Axioms and theorems 71
 5.11 Oracles 71
 5.12 Name spaces 72

6 Proofs 74
 6.1 Proof structure 74
 6.1.1 Blocks 74
 6.1.2 Omitting proofs 75
 6.2 Statements 76
 6.2.1 Context elements 76
 6.2.2 Term abbreviations 77
 6.2.3 Facts and forward chaining 79
 6.2.4 Goals 80
 6.3 Refinement steps 83
 6.3.1 Proof method expressions 83
 6.3.2 Initial and terminal proof steps 85
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3</td>
<td>Fundamental methods and attributes</td>
<td>87</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Emulating tactic scripts</td>
<td>89</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Defining proof methods</td>
<td>91</td>
</tr>
<tr>
<td>6.4</td>
<td>Generalized elimination</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>Calculational reasoning</td>
<td>93</td>
</tr>
<tr>
<td>6.6</td>
<td>Proof by cases and induction</td>
<td>95</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Rule contexts</td>
<td>95</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Proof methods</td>
<td>98</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Declaring rules</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>Inner syntax — the term language</td>
<td>104</td>
</tr>
<tr>
<td>7.1</td>
<td>Printing logical entities</td>
<td>104</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Diagnostic commands</td>
<td>104</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Details of printed content</td>
<td>106</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Printing limits</td>
<td>108</td>
</tr>
<tr>
<td>7.2</td>
<td>Mixfix annotations</td>
<td>108</td>
</tr>
<tr>
<td>7.3</td>
<td>Explicit term notation</td>
<td>111</td>
</tr>
<tr>
<td>7.4</td>
<td>The Pure syntax</td>
<td>111</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Priority grammars</td>
<td>111</td>
</tr>
<tr>
<td>7.4.2</td>
<td>The Pure grammar</td>
<td>113</td>
</tr>
<tr>
<td>7.5</td>
<td>Lexical matters</td>
<td>116</td>
</tr>
<tr>
<td>7.6</td>
<td>Syntax and translations</td>
<td>117</td>
</tr>
<tr>
<td>7.7</td>
<td>Syntax translation functions</td>
<td>119</td>
</tr>
<tr>
<td>7.8</td>
<td>Inspecting the syntax</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>Other commands</td>
<td>122</td>
</tr>
<tr>
<td>8.1</td>
<td>Inspecting the context</td>
<td>122</td>
</tr>
<tr>
<td>8.2</td>
<td>History commands</td>
<td>124</td>
</tr>
<tr>
<td>8.3</td>
<td>System commands</td>
<td>125</td>
</tr>
<tr>
<td>9</td>
<td>Generic tools and packages</td>
<td>126</td>
</tr>
<tr>
<td>9.1</td>
<td>Configuration options</td>
<td>126</td>
</tr>
<tr>
<td>9.2</td>
<td>Basic proof tools</td>
<td>127</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Miscellaneous methods and attributes</td>
<td>127</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Low-level equational reasoning</td>
<td>129</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Further tactic emulations</td>
<td>130</td>
</tr>
<tr>
<td>9.3</td>
<td>The Simplifier</td>
<td>133</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Simplification methods</td>
<td>133</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Declaring rules</td>
<td>135</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Simplification procedures</td>
<td>136</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Forward simplification</td>
<td>137</td>
</tr>
</tbody>
</table>
9.4 The Classical Reasoner ... 137
 9.4.1 Basic methods ... 137
 9.4.2 Automated methods ... 138
 9.4.3 Combined automated methods 139
 9.4.4 Declaring rules ... 141
 9.4.5 Classical operations 142
9.5 Object-logic setup .. 142

III Object-Logics .. 144

10 Isabelle/HOL .. 145
 10.1 Primitive types .. 145
 10.2 Adhoc tuples .. 146
 10.3 Records .. 147
 10.3.1 Basic concepts .. 147
 10.3.2 Record specifications 148
 10.3.3 Record operations 149
 10.3.4 Derived rules and proof tools 150
 10.4 Datatypes ... 151
 10.5 Recursive functions ... 152
 10.5.1 Proof methods related to recursive definitions 154
 10.5.2 Old-style recursive function definitions (TFL) 155
 10.6 Inductive and coinductive definitions 157
 10.6.1 Derived rules ... 159
 10.6.2 Monotonicity theorems 159
 10.7 Arithmetic proof support 160
 10.8 Intuitionistic proof search 160
 10.9 Coherent Logic .. 160
 10.10Checking and refuting propositions 161
 10.11Invoking automated reasoning tools – The Sledgehammer .. 162
 10.12Unstructured case analysis and induction 164
 10.13Executable code .. 165
 10.14Definition by specification 174

11 Isabelle/HOLCF .. 176
 11.1 Mixfix syntax for continuous operations 176
 11.2 Recursive domains .. 176
CONTENTS

<table>
<thead>
<tr>
<th>12 Isabelle/ZF</th>
<th>178</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Type checking</td>
<td>178</td>
</tr>
<tr>
<td>12.2 (Co)Inductive sets and datatypes</td>
<td>178</td>
</tr>
<tr>
<td>12.2.1 Set definitions</td>
<td>178</td>
</tr>
<tr>
<td>12.2.2 Primitive recursive functions</td>
<td>180</td>
</tr>
<tr>
<td>12.2.3 Cases and induction: emulating tactic scripts</td>
<td>181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV Appendix</th>
<th>182</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Isabelle/Isar quick reference</td>
<td>183</td>
</tr>
<tr>
<td>A.1 Proof commands</td>
<td>183</td>
</tr>
<tr>
<td>A.1.1 Primitives and basic syntax</td>
<td>183</td>
</tr>
<tr>
<td>A.1.2 Abbreviations and synonyms</td>
<td>184</td>
</tr>
<tr>
<td>A.1.3 Derived elements</td>
<td>184</td>
</tr>
<tr>
<td>A.1.4 Diagnostic commands</td>
<td>184</td>
</tr>
<tr>
<td>A.2 Proof methods</td>
<td>185</td>
</tr>
<tr>
<td>A.3 Attributes</td>
<td>186</td>
</tr>
<tr>
<td>A.4 Rule declarations and methods</td>
<td>186</td>
</tr>
<tr>
<td>A.5 Emulating tactic scripts</td>
<td>187</td>
</tr>
<tr>
<td>A.5.1 Commands</td>
<td>187</td>
</tr>
<tr>
<td>A.5.2 Methods</td>
<td>187</td>
</tr>
</tbody>
</table>

| B Predefined Isabelle symbols | 188 |

<table>
<thead>
<tr>
<th>C ML tactic expressions</th>
<th>194</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Resolution tactics</td>
<td>194</td>
</tr>
<tr>
<td>C.2 Simplifier tactics</td>
<td>195</td>
</tr>
<tr>
<td>C.3 Classical Reasoner tactics</td>
<td>195</td>
</tr>
<tr>
<td>C.4 Miscellaneous tactics</td>
<td>195</td>
</tr>
<tr>
<td>C.5 Tacticals</td>
<td>196</td>
</tr>
</tbody>
</table>
Part I

Basic Concepts
Chapter 1

Introduction

1.1 Overview

The Isabelle system essentially provides a generic infrastructure for building deductive systems (programmed in Standard ML), with a special focus on interactive theorem proving in higher-order logics. Many years ago, even end-users would refer to certain ML functions (goal commands, tactics, tacticals etc.) to pursue their everyday theorem proving tasks.

In contrast Isar provides an interpreted language environment of its own, which has been specifically tailored for the needs of theory and proof development. Compared to raw ML, the Isabelle/Isar top-level provides a more robust and comfortable development platform, with proper support for theory development graphs, managed transactions with unlimited undo etc. The Isabelle/Isar version of the Proof General user interface [1, 2] provides a decent front-end for interactive theory and proof development in this advanced theorem proving environment, even though it is somewhat biased towards old-style proof scripts.

Apart from the technical advances over bare-bones ML programming, the main purpose of the Isar language is to provide a conceptually different view on machine-checked proofs [35, 36]. Isar stands for Intelligible semi-automated reasoning. Drawing from both the traditions of informal mathematical proof texts and high-level programming languages, Isar offers a versatile environment for structured formal proof documents. Thus properly written Isar proofs become accessible to a broader audience than unstructured tactic scripts (which typically only provide operational information for the machine). Writing human-readable proof texts certainly requires some additional efforts by the writer to achieve a good presentation, both of formal and informal parts of the text. On the other hand, human-readable formal texts gain some value in their own right, independently of the mechanic proof-checking process.

Despite its grand design of structured proof texts, Isar is able to assimilate the old tactical style as an “improper” sub-language. This provides an easy upgrade path for existing tactic scripts, as well as some means for interactive
experimentation and debugging of structured proofs. Isabelle/Isar supports a broad range of proof styles, both readable and unreadable ones.

The generic Isabelle/Isar framework (see chapter 2) works reasonably well for any Isabelle object-logic that conforms to the natural deduction view of the Isabelle/Pure framework. Specific language elements introduced by the major object-logics are described in chapter 10 (Isabelle/HOL), chapter 11 (Isabelle/HOLCF), and chapter 12 (Isabelle/ZF). The main language elements are already provided by the Isabelle/Pure framework. Nevertheless, examples given in the generic parts will usually refer to Isabelle/HOL as well.

Isar commands may be either proper document constructors, or improper commands. Some proof methods and attributes introduced later are classified as improper as well. Improper Isar language elements, which are marked by “∗” in the subsequent chapters; they are often helpful when developing proof documents, but their use is discouraged for the final human-readable outcome. Typical examples are diagnostic commands that print terms or theorems according to the current context; other commands emulate old-style tactical theorem proving.
Chapter 2

The Isabelle/Isar Framework

Isabelle/Isar is intended as a generic framework for developing formal mathematical documents with full proof checking. Definitions and proofs are organized as theories. An assembly of theory sources may be presented as a printed document; see also chapter 4.

The main objective of Isar is the design of a human-readable structured proof language, which is called the “primary proof format” in Isar terminology. Such a primary proof language is somewhere in the middle between the extremes of primitive proof objects and actual natural language. In this respect, Isar is a bit more formalistic than Mizar, using logical symbols for certain reasoning schemes where Mizar would prefer English words; see [41] for further comparisons of these systems.

So Isar challenges the traditional way of recording informal proofs in mathematical prose, as well as the common tendency to see fully formal proofs directly as objects of some logical calculus (e.g. \(\lambda \)-terms in a version of type theory). In fact, Isar is better understood as an interpreter of a simple block-structured language for describing the data flow of local facts and goals, interspersed with occasional invocations of proof methods. Everything is reduced to logical inferences internally, but these steps are somewhat marginal compared to the overall bookkeeping of the interpretation process. Thanks to careful design of the syntax and semantics of Isar language elements, a formal record of Isar instructions may later appear as an intelligible text to the attentive reader.

The Isar proof language has emerged from careful analysis of some inherent virtues of the existing logical framework of Isabelle/Pure, notably composition of higher-order natural deduction rules, which is a generalization of Gentzen’s original calculus. The approach of generic inference systems in Pure is continued by Isar towards actual proof texts.

Concrete applications require another intermediate layer: an object-logic. Isabelle/HOL (simply-typed set-theory) is being used most of the time; Isabelle/ZF is less extensively developed, although it would probably fit better for classical mathematics.
In order to illustrate natural deduction in Isar, we shall refer to the background theory and library of Isabelle/HOL. This includes common notions of predicate logic, naive set-theory etc. using fairly standard mathematical notation. From the perspective of generic natural deduction there is nothing special about the logical connectives of HOL (\(\land, \lor, \forall, \exists\), etc.), only the resulting reasoning principles are relevant to the user. There are similar rules available for set-theory operators (\(\cap, \cup, \bigcap, \bigcup\), etc.), or any other theory developed in the library (lattice theory, topology etc.).

Subsequently we briefly review fragments of Isar proof texts corresponding directly to such general deduction schemes. The examples shall refer to set-theory, to minimize the danger of understanding connectives of predicate logic as something special.

The following deduction performs \(\cap\)-introduction, working forwards from assumptions towards the conclusion. We give both the Isar text, and depict the primitive rule involved, as determined by unification of the problem against rules that are declared in the library context.

\[
\text{assume } x \in A \text{ and } x \in B \quad \text{then have } x \in A \cap B \ldots
\]

Note that \texttt{assume} augments the proof context, \texttt{then} indicates that the current fact shall be used in the next step, and \texttt{have} states an intermediate goal. The two dots “..” refer to a complete proof of this claim, using the indicated facts and a canonical rule from the context. We could have been more explicit here by spelling out the final proof step via the \texttt{by} command:

\[
\text{assume } x \in A \text{ and } x \in B \\
\text{then have } x \in A \cap B \text{ by \ (rule IntI)}
\]

The format of the \(\cap\)-introduction rule represents the most basic inference, which proceeds from given premises to a conclusion, without any nested proof context involved.

The next example performs backwards introduction on \(\bigcap A\), the intersection of all sets within a given set. This requires a nested proof of set membership within a local context, where \(A\) is an arbitrary-but-fixed member of the collection:

\[
\text{have } x \in \bigcap A \\
\text{proof} \\
\text{fix } A \\
\text{assume } A \in A \\
\text{show } x \in A \text{ \ (proof) } \\
\text{qed}
\]

\[
[A][A \in A] \\
\vdots \\
x \in A \\
\vdots \\
x \in \bigcap A
\]
This Isar reasoning pattern again refers to the primitive rule depicted above. The system determines it in the “proof” step, which could have been spelt out more explicitly as “\texttt{proof (rule InterI)}”. Note that the rule involves both a local parameter A and an assumption $A \in \mathcal{A}$ in the nested reasoning. This kind of compound rule typically demands a genuine sub-proof in Isar, working backwards rather than forwards as seen before. In the proof body we encounter the \texttt{fix-assume-show} outline of nested sub-proofs that is typical for Isar. The final \texttt{show} is like \texttt{have} followed by an additional refinement of the enclosing claim, using the rule derived from the proof body.

The next example involves $\bigcup \mathcal{A}$, which can be characterized as the set of all x such that $\exists A. x \in A \land A \in \mathcal{A}$. The elimination rule for $x \in \bigcup \mathcal{A}$ does not mention \exists and \land at all, but admits to obtain directly a local A such that $x \in A$ and $A \in \mathcal{A}$ hold. This corresponds to the following Isar proof and inference rule, respectively:

\begin{verbatim}
assume x ∈ ∪A
then have C
proof
 fix A
 assume x ∈ A and A ∈ A
 show C (proof)
qed
\end{verbatim}

Although the Isar proof follows the natural deduction rule closely, the text reads not as natural as anticipated. There is a double occurrence of an arbitrary conclusion C, which represents the final result, but is irrelevant for now. This issue arises for any elimination rule involving local parameters. Isar provides the derived language element \texttt{obtain}, which is able to perform the same elimination proof more conveniently:

\begin{verbatim}
assume x ∈ ∪A
then obtain A where x ∈ A and A ∈ A ..
\end{verbatim}

Here we avoid to mention the final conclusion C and return to plain forward reasoning. The rule involved in the “..” proof is the same as before.

\section{The Pure framework}

The Pure logic \cite{25, 26} is an intuitionistic fragment of higher-order logic \cite{6}. In type-theoretic parlance, there are three levels of λ-calculus with corresponding arrows $\Rightarrow/\land/\implies$:
\(\alpha \Rightarrow \beta\) syntactic function space (terms depending on terms)
\(\forall x. B(x)\) universal quantification (proofs depending on terms)
\(A \implies B\) implication (proofs depending on proofs)

Here only the types of syntactic terms, and the propositions of proof terms have been shown. The \(\lambda\)-structure of proofs can be recorded as an optional feature of the Pure inference kernel [4], but the formal system can never depend on them due to proof irrelevance.

On top of this most primitive layer of proofs, Pure implements a generic calculus for nested natural deduction rules, similar to [31]. Here object-logic inferences are internalized as formulae over \(\forall\) and \(\implies\). Combining such rule statements may involve higher-order unification [24].

2.1.1 Primitive inferences

Term syntax provides explicit notation for abstraction \(\lambda x :: \alpha. \ b(x)\) and application \(b\ a\), while types are usually implicit thanks to type-inference; terms of type \(\text{prop}\) are called propositions. Logical statements are composed via \(\forall x :: \alpha. \ B(x)\) and \(A \implies B\). Primitive reasoning operates on judgments of the form \(\Gamma \vdash \varphi\), with standard introduction and elimination rules for \(\forall\) and \(\implies\) that refer to fixed parameters \(x_1, \ldots, x_m\) and hypotheses \(A_1, \ldots, A_n\) from the context \(\Gamma\); the corresponding proof terms are left implicit. The subsequent inference rules define \(\Gamma \vdash \varphi\) inductively, relative to a collection of axioms:

\[
\begin{align*}
(A \text{ axiom}) & \quad \Gamma \vdash A \quad A \vdash A \\
\Gamma \vdash B(x) \quad x \notin \Gamma & \quad \Gamma \vdash \forall x. B(x) \\
\Gamma \vdash B & \quad \Gamma_1 \vdash A \implies B \quad \Gamma_2 \vdash A \\
\Gamma - A \vdash A \implies B & \quad \Gamma_1 \cup \Gamma_2 \vdash B
\end{align*}
\]

Furthermore, Pure provides a built-in equality \(\equiv :: \alpha \Rightarrow \alpha \Rightarrow \text{prop}\) with axioms for reflexivity, substitution, extensionality, and \(\alpha\beta\eta\)-conversion on \(\lambda\)-terms.

An object-logic introduces another layer on top of Pure, e.g. with types \(i\) for individuals and \(o\) for propositions, term constants \(\text{Trueprop} :: o \Rightarrow \text{prop}\) as (implicit) derivability judgment and connectives like \(\land :: o \Rightarrow o \Rightarrow o\) or \(\forall :: (i \Rightarrow o) \Rightarrow o\), and axioms for object-level rules such as \(\text{conjI}: A \Rightarrow B \Rightarrow A \land B\) or \(\text{allI}: (\forall x. \ B \ x) \Rightarrow \forall x. \ B \ x\). Derived object rules are
CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK

represented as theorems of Pure. After the initial object-logic setup, further axiomatizations are usually avoided; plain definitions and derived principles are used exclusively.

2.1.2 Reasoning with rules

Primitive inferences mostly serve foundational purposes. The main reasoning mechanisms of Pure operate on nested natural deduction rules expressed as formulae, using \land to bind local parameters and \Rightarrow to express entailment. Multiple parameters and premises are represented by repeating these connectives in a right-associative manner.

Since \land and \Rightarrow commute thanks to the theorem $(A \Rightarrow (\land x. B x)) \equiv (\land x. A \Rightarrow B x)$, we may assume w.l.o.g. that rule statements always observe the normal form where quantifiers are pulled in front of implications at each level of nesting. This means that any Pure proposition may be presented as a Hereditary Harrop Formula [13] which is of the form $\land x_1 \ldots x_m. H_1 \Rightarrow \ldots H_n \Rightarrow A$ for $m, n \geq 0$, and A atomic, and H_1, \ldots, H_n being recursively of the same format. Following the convention that outermost quantifiers are implicit, Horn clauses $A_1 \Rightarrow \ldots A_n \Rightarrow A$ are a special case of this.

For example, \cap-introduction rule encountered before is represented as a Pure theorem as follows:

\[
\text{IntI: } x \in A \Rightarrow x \in B \Rightarrow x \in A \cap B
\]

This is a plain Horn clause, since no further nesting on the left is involved. The general \cap-introduction corresponds to a Hereditary Harrop Formula with one additional level of nesting:

\[
\text{InterI: } (\land A. A \in A \Rightarrow x \in A) \Rightarrow x \in \cap A
\]

Goals are also represented as rules: $A_1 \Rightarrow \ldots A_n \Rightarrow C$ states that the sub-goals A_1, \ldots, A_n entail the result C; for $n = 0$ the goal is finished. To allow C being a rule statement itself, we introduce the protective marker $\# :: \text{prop} \Rightarrow \text{prop}$, which is defined as identity and hidden from the user. We initialize and finish goal states as follows:

\[
\frac{C \Rightarrow \# C \text{ (init)}}{\# C \text{ (finish)}}
\]

Goal states are refined in intermediate proof steps until a finished form is achieved. Here the two main reasoning principles are resolution, for back-chaining a rule against a sub-goal (replacing it by zero or more sub-goals),
and assumption, for solving a sub-goal (finding a short-circuit with local assumptions). Below \(\overline{\pi} \) stands for \(x_1, \ldots, x_n \) \((n \geq 0) \).

rule: \(\overline{\overline{A}} \overline{\pi} \Rightarrow \overline{B} \overline{\pi} \)

goal: \((\bigwedge \overline{\pi}. \overline{H} \overline{\pi} \Rightarrow \overline{B'} \overline{\pi}) \Rightarrow C \)

goal unifier: \((\lambda \overline{\pi}. \overline{B} (\overline{\pi} \overline{\pi})) \theta = \overline{B'} \theta \)

\[(\bigwedge \overline{\pi}. \overline{H} \overline{\pi} \Rightarrow \overline{A} (\overline{\pi} \overline{\pi})) \theta \Rightarrow C \theta \quad \text{(resolution)} \]

assn unifiers: \(A \theta = H_i \theta \) \(\text{for some } H_i \)

\[(\bigwedge \overline{\pi}. \overline{H} \overline{\pi} \Rightarrow A \overline{\pi}) \Rightarrow C \overline{\pi} \quad \text{(assumption)} \]

The following trace illustrates goal-oriented reasoning in Isabelle/Pure:

\[
(A \land B \Rightarrow B \land A) \Rightarrow \#(A \land B \Rightarrow B \land A) \quad \text{(init)}
\]
\[
(A \land B \Rightarrow B) \Rightarrow (A \land B \Rightarrow A) \Rightarrow \#... \quad \text{(resolution } B \Rightarrow A \Rightarrow B \land A)\]
\[
(A \land B \Rightarrow A \land B) \Rightarrow (A \land B \Rightarrow A) \Rightarrow \#... \quad \text{(resolution } A \land B \Rightarrow B)\]
\[
(A \land B \Rightarrow A \land B) \Rightarrow \#... \quad \text{(assumption)}
\]
\[
(A \land B \Rightarrow B \land A) \Rightarrow \#\ldots \quad \text{(resolution } A \land B \Rightarrow A)\]
\[
A \land B \Rightarrow B \land A \quad \text{(finish)}
\]

Compositions of assumption after resolution occurs quite often, typically in elimination steps. Traditional Isabelle tactics accommodate this by a combined elim_resolution principle. In contrast, Isar uses a slightly more refined combination, where the assumptions to be closed are marked explicitly, using again the protective marker \#:

sub-proof: \(\overline{G} \overline{\pi} \Rightarrow \overline{B} \overline{\pi} \)

goal: \((\bigwedge \overline{\pi}. \overline{H} \overline{\pi} \Rightarrow \overline{B'} \overline{\pi}) \Rightarrow C \)

goal unifier: \((\lambda \overline{\pi}. \overline{B} (\overline{\pi} \overline{\pi})) \theta = \overline{B'} \theta \)

assn unifiers: \((\lambda \overline{\pi}. \overline{G} (\overline{\pi} \overline{\pi})) \theta = \overline{H}_i \theta \)

\[(\bigwedge \overline{\pi}. \overline{H} \overline{\pi} \Rightarrow \overline{G'} (\overline{\pi} \overline{\pi})) \theta \Rightarrow C \theta \quad \text{(refinement)} \]

Here the sub-proof rule stems from the main fix-assume-show outline of Isar (cf. §2.2.3): each assumption indicated in the text results in a marked premise \(G \) above. The marking enforces resolution against one of the subgoal’s premises. Consequently, fix-assume-show enables to fit the result of a sub-proof quite robustly into a pending sub-goal, while maintaining a good measure of flexibility.
2.2 The Isar proof language

Structured proofs are presented as high-level expressions for composing entities of Pure (propositions, facts, and goals). The Isar proof language allows to organize reasoning within the underlying rule calculus of Pure, but Isar is not another logical calculus!

Isar is an exercise in sound minimalism. Approximately half of the language is introduced as primitive, the rest defined as derived concepts. The following grammar describes the core language (category \textit{proof}), which is embedded into theory specification elements such as \texttt{theorem}; see also §2.2.2 for the separate category \textit{statement}.

\begin{verbatim}
theory-stmt = theorem statement proof | definition ... | ...
proof = prfx* proof method? stmt* qed method?
prfx = using facts
 | unfolding facts
stmt = \{ stmt* \}
 | next
 | note name = facts
 | let term = term
 | fix var+
 | assume \langle inference\rangle name: props
 | then? goal
goal = have name: props proof
 | show name: props proof
\end{verbatim}

Simultaneous propositions or facts may be separated by the \texttt{and} keyword.

The syntax for terms and facts is inherited from Pure (and the object-logic). A \textit{pattern} is a \textit{term} with schematic variables, to be bound by higher-order matching.

Facts may be referenced by name or proposition. For example, the result of \texttt{“have a : A ⟨proof⟩”} becomes available both as \texttt{a} and \texttt{⟨A⟩}. Moreover, fact expressions may involve attributes that modify either the theorem or the background context. For example, the expression \texttt{“a [OF b]”} refers to the composition of two facts according to the \textit{resolution} inference of §2.1.2, while \texttt{“a [intro]”} declares a fact as introduction rule in the context.

The special fact called \texttt{“this”} always refers to the last result, as produced by \texttt{note, assume, have, or show}. Since \texttt{note} occurs frequently together with \texttt{then} we provide some abbreviations:

\begin{verbatim}
from a ≡ note a then
with a ≡ from a and this
\end{verbatim}
The method category is essentially a parameter and may be populated later. Methods use the facts indicated by then or using, and then operate on the goal state. Some basic methods are predefined: “−” leaves the goal unchanged, “this” applies the facts as rules to the goal, “rule” applies the facts to another rule and the result to the goal (both “this” and “rule” refer to resolution of §2.1.2). The secondary arguments to “rule” may be specified explicitly as in “(rule a)”, or picked from the context. In the latter case, the system first tries rules declared as elim or dest, followed by those declared as intro.

The default method for proof is “rule” (arguments picked from the context), for qed it is “−”. Further abbreviations for terminal proof steps are “by method\textsubscript{1} method\textsubscript{2}” for “proof method\textsubscript{1} qed method\textsubscript{2}”, and “..” for “by rule, and “,” for “by this”. The unfolding element operates directly on the current facts and goal by applying equalities.

Block structure can be indicated explicitly by “{ ... }”, although the body of a sub-proof already involves implicit nesting. In any case, next jumps into the next section of a block, i.e. it acts like closing an implicit block scope and opening another one; there is no direct correspondence to subgoals here.

The remaining elements fix and assume build up a local context (see §2.2.1), while show refines a pending sub-goal by the rule resulting from a nested sub-proof (see §2.2.3). Further derived concepts will support calculational reasoning (see §2.2.4).

2.2.1 Context elements

In judgments $\Gamma \vdash \phi$ of the primitive framework, Γ essentially acts like a proof context. Isar elaborates this idea towards a higher-level notion, with additional information for type-inference, term abbreviations, local facts, hypotheses etc.

The element fix $x :: \alpha$ declares a local parameter, i.e. an arbitrary-but-fixed entity of a given type; in results exported from the context, x may become anything. The assume \langleinference\rangle element provides a general interface to hypotheses: “assume \langleinference\rangle A” produces $A \vdash A$ locally, while the included inference tells how to discharge A from results $A \vdash B$ later on. There is no user-syntax for \langleinference\rangle, i.e. it may only occur internally when derived commands are defined in ML.

At the user-level, the default inference for assume is discharge as given below. The additional variants presume and def are defined as follows:
CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK

\[\text{presume } A \equiv \text{assume } \langle \text{weak-discharge} \rangle A \]
\[\text{def } x \equiv a \equiv \text{fix } x \text{ assume } \langle \text{expansion} \rangle x \equiv a \]

\[
\begin{align*}
\Gamma \vdash B \\
\Gamma - A \vdash \#A \Rightarrow B \quad \text{(discharge)}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash B \\
\Gamma - A \vdash A \Rightarrow B \quad \text{(weak-discharge)}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash B x \\
\Gamma - (x \equiv a) \vdash B a \quad \text{(expansion)}
\end{align*}
\]

Note that \textit{discharge} and \textit{weak-discharge} differ in the marker for \(A \), which is relevant when the result of a \textbf{fix-assume-show} outline is composed with a pending goal, cf. §2.2.3.

The most interesting derived context element in Isar is \textit{obtain} [36, §5.3], which supports generalized elimination steps in a purely forward manner. The \texttt{obtain} command takes a specification of parameters \(\tau \) and assumptions \(\bar{A} \) to be added to the context, together with a proof of a case rule stating that this extension is conservative (i.e. may be removed from closed results later on):

\[
\langle \text{facts} \rangle \quad \text{obtain } \tau \text{ where } \bar{A} \tau \langle \text{proof} \rangle \equiv
\]
\[\]
\[
\text{have case: } \bigwedge \text{thesis. } (\bigwedge \tau. \bar{A} \tau \Rightarrow \text{thesis}) \Rightarrow \text{thesis} \]
\[
\text{proof} - \]
\[
\text{fix thesis}
\]
\[
\text{assume [intro]: } \bigwedge \tau. \bar{A} \tau \Rightarrow \text{thesis}
\]
\[
\text{show thesis using } \langle \text{facts} \rangle \langle \text{proof} \rangle
\]
\[
\text{qed}
\]
\[
\text{fix } \tau \text{ assume } \langle \text{elimination case} \rangle \bar{A} \tau
\]

\[
\begin{align*}
\text{case: } & \Gamma \vdash \bigwedge \text{thesis. } (\bigwedge \tau. \bar{A} \tau \Rightarrow \text{thesis}) \Rightarrow \text{thesis} \\
\text{result: } & \Gamma \cup \bar{A} \bar{\tau} \vdash B
\end{align*}
\]

\[\Gamma \vdash B \quad \text{(elimination)}\]

Here the name “\textit{thesis}” is a specific convention for an arbitrary-but-fixed proposition; in the primitive natural deduction rules shown before we have occasionally used \(C \). The whole statement of “\texttt{obtain } x \text{ where } A \ x” may be read as a claim that \(A \ x \) may be assumed for some arbitrary-but-fixed \(x \). Also note that “\texttt{obtain } A \text{ and } B” without parameters is similar to “\texttt{have } A \text{ and } B”, but the latter involves multiple sub-goals.
The subsequent Isar proof texts explain all context elements introduced above using the formal proof language itself. After finishing a local proof within a block, we indicate the exported result via note.

\[
\begin{align*}
\{ & \quad \{ \quad \text{fix } x \\
& \quad \text{have } B \; x \; \langle \text{proof} \rangle \\
& \quad \text{note } \langle \forall x. \; B \; x \rangle \\
\} & \quad \{ \quad \text{assume } A \\
& \quad \text{have } B \; \langle \text{proof} \rangle \\
& \quad \text{note } \langle A \Rightarrow B \rangle \\
\} \\
\{ & \quad \{ \quad \text{def } x \equiv a \\
& \quad \text{have } B \; x \; \langle \text{proof} \rangle \\
& \quad \text{note } \langle B \; a \rangle \\
\} & \quad \{ \quad \text{obtain } x \; \text{where } A \; x \; \langle \text{proof} \rangle \\
& \quad \text{have } B \; \langle \text{proof} \rangle \\
& \quad \text{note } \langle B \rangle \\
\} \\
\end{align*}
\]

This illustrates the meaning of Isar context elements without goals getting in between.

2.2.2 Structured statements

The category *statement* of top-level theorem specifications is defined as follows:

\[
\begin{align*}
\text{statement} & \equiv \text{name: props and } \ldots \\
& \quad | \text{context*\; conclusion} \\
\text{context} & \equiv \text{fixes\; vars and } \ldots \\
& \quad | \text{assumes\; name: props and } \ldots \\
\text{conclusion} & \equiv \text{shows\; name: props and } \ldots \\
& \quad | \text{obtains\; vars and } \ldots \text{ where\; name: props and } \ldots \\
& \quad | \ldots
\end{align*}
\]

A simple *statement* consists of named propositions. The full form admits local context elements followed by the actual conclusions, such as \text{"fixes \; x\; assumes \; A \; x\; shows \; B \; x"}. The final result emerges as a Pure rule after discharging the context: \(\bigwedge x. \; A \; x \Rightarrow B \; x \).

The *obtains* variant is another abbreviation defined below; unlike *obtain* (cf. §2.2.1) there may be several “cases” separated by “\(|\)”, each consisting of several parameters (vars) and several premises (props). This specifies multi-branch elimination rules.

\[
\begin{align*}
\text{obtains} \; \bar{x} \; \text{where } \bar{A} \; \bar{x} & \; | \; \ldots \; \equiv \\
& \quad \text{fixes\; thesis} \\
& \quad \text{assumes\; [intro]: } \bigwedge \bar{x}. \; \bar{A} \; \bar{x} \Rightarrow \text{thesis} \; \text{ and } \; \ldots \\
& \quad \text{shows\; thesis}
\end{align*}
\]
Presenting structured statements in such an “open” format usually simplifies the subsequent proof, because the outer structure of the problem is already laid out directly. E.g. consider the following canonical patterns for shows and obtains, respectively:

```
theorem
  fixes x and y
  assumes A x and B y
  shows C x y
proof –
  from ⟨A x⟩ and ⟨B y⟩
  show C x y ⟨proof⟩
qed
```

```
theorem
  obtains x and y
  where A x and B y
proof –
  have A a and B b ⟨proof⟩
  then show thesis ..
qed
```

Here local facts ⟨A x⟩ and ⟨B y⟩ are referenced immediately; there is no need to decompose the logical rule structure again. In the second proof the final “then show thesis ..” involves the local rule case \(\land x y \ A x \Rightarrow B y \Rightarrow \) thesis for the particular instance of terms \(a \) and \(b \) produced in the body.

2.2.3 Structured proof refinement

By breaking up the grammar for the Isar proof language, we may understand a proof text as a linear sequence of individual proof commands. These are interpreted as transitions of the Isar virtual machine (Isar/VM), which operates on a block-structured configuration in single steps. This allows users to write proof texts in an incremental manner, and inspect intermediate configurations for debugging.

The basic idea is analogous to evaluating algebraic expressions on a stack machine: \((a + b) \cdot c\) then corresponds to a sequence of single transitions for each symbol \((,\ a\ +\ b\ ,\) \(\cdot\ ,\ c\). In Isar the algebraic values are facts or goals, and the operations are inferences.

The Isar/VM state maintains a stack of nodes, each node contains the local proof context, the linguistic mode, and a pending goal (optional). The mode determines the type of transition that may be performed next, it essentially alternates between forward and backward reasoning, with an intermediate stage for chained facts (see figure 2.1).

For example, in state mode Isar acts like a mathematical scratch-pad, accepting declarations like fix, assume, and claims like have, show. A goal statement changes the mode to prove, which means that we may now refine the problem via unfolding or proof. Then we are again in state mode of a proof body, which may issue show statements to solve pending sub-goals. A concluding qed will return to the original state mode one level upwards.
CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK

Figure 2.1: Isar/VM modes

The subsequent Isar/VM trace indicates block structure, linguistic mode, goal state, and inferences:

\[
\begin{align*}
\text{have} & \quad A \rightarrow B \quad \text{begin} \quad \text{prove} \\
\text{proof} & \quad \text{assume} \quad A \\
\text{show} & \quad B \quad \langle \text{proof} \rangle \\
\text{qed} & \quad \text{end}
\end{align*}
\]

\[
\begin{align*}
\text{proof} & \quad (A \rightarrow B) \implies \#(A \rightarrow B) \quad \text{(init)} \\
\text{assume} & \quad A \quad \text{state} \\
\text{show} & \quad B \quad \text{state} \quad (A \implies B) \implies \#(A \rightarrow B) \quad \text{(resolution \ impl)} \\
\text{end} & \quad \#(A \rightarrow B) \\
\end{align*}
\]

Here the refinement inference from §2.1.2 mediates composition of Isar sub-proofs nicely. Observe that this principle incorporates some degree of freedom in proof composition. In particular, the proof body allows parameters and assumptions to be re-ordered, or commuted according to Hereditary Harrop Form. Moreover, context elements that are not used in a sub-proof may be omitted altogether. For example:

\[
\begin{align*}
\text{have} & \quad \forall x, y. A x \implies B y \implies C x y \\
\text{proof} & \quad - \\
\text{fix} & \quad x \text{ and } y \\
\text{assume} & \quad A x \text{ and } B y \\
\text{show} & \quad C x y \quad \langle \text{proof} \rangle \\
\text{qed} & \quad -
\end{align*}
\]

\[
\begin{align*}
\text{have} & \quad \forall x, y. A x \implies B y \implies C x y \\
\text{proof} & \quad - \\
\text{fix} & \quad y \text{ assume } A x \\
\text{fix} & \quad y \text{ assume } B y \\
\text{show} & \quad C x y \quad \langle \text{proof} \rangle \\
\text{qed} & \quad -
\end{align*}
\]

Such “peephole optimizations” of Isar texts are practically important to improve readability, by rearranging contexts elements according to the natural
flow of reasoning in the body, while still observing the overall scoping rules.

This illustrates the basic idea of structured proof processing in Isar. The main mechanisms are based on natural deduction rule composition within the Pure framework. In particular, there are no direct operations on goal states within the proof body. Moreover, there is no hidden automated reasoning involved, just plain unification.

2.2.4 Calculational reasoning

The existing Isar infrastructure is sufficiently flexible to support calculational reasoning (chains of transitivity steps) as derived concept. The generic proof elements introduced below depend on rules declared as trans in the context. It is left to the object-logic to provide a suitable rule collection for mixed relations of $=$, $<$, \leq, \subseteq, \subset etc. Due to the flexibility of rule composition (§2.1.2), substitution of equals by equals is covered as well, even substitution of inequalities involving monotonicity conditions; see also [36, §6] and [3].

The generic calculational mechanism is based on the observation that rules such as trans: $x = y \Longrightarrow y = z \Longrightarrow x = z$ proceed from the premises towards the conclusion in a deterministic fashion. Thus we may reason in forward mode, feeding intermediate results into rules selected from the context. The course of reasoning is organized by maintaining a secondary fact called “calculation”, apart from the primary “this” already provided by the Isar primitives. In the definitions below, OF refers to resolution (§2.1.2) with multiple rule arguments, and trans represents to a suitable rule from the context:

\[
\begin{align*}
\text{also}_0 & \equiv \text{note calculation } = \text{this} \\
\text{also}_{n+1} & \equiv \text{note calculation } = \text{trans } [\text{OF calculation this}] \\
\text{finally} & \equiv \text{also from calculation}
\end{align*}
\]

The start of a calculation is determined implicitly in the text: here also sets calculation to the current result; any subsequent occurrence will update calculation by combination with the next result and a transitivity rule. The calculational sequence is concluded via finally, where the final result is exposed for use in a concluding claim.

Here is a canonical proof pattern, using have to establish the intermediate results:

\[
\begin{align*}
\text{have } a & = b \text{ sorry} \\
\text{also have } \ldots & = c \text{ sorry} \\
\text{also have } \ldots & = d \text{ sorry} \\
\text{finally have } a & = d \\
\end{align*}
\]
The term “…” above is a special abbreviation provided by the Isabelle/Isar syntax layer: it statically refers to the right-hand side argument of the previous statement given in the text. Thus it happens to coincide with relevant sub-expressions in the calculational chain, but the exact correspondence is dependent on the transitivity rules being involved.

Symmetry rules such as \(x = y \implies y = x \) are like transitivities with only one premise. Isar maintains a separate rule collection declared via the \textit{sym} attribute, to be used in fact expressions “\(a \ [\text{symmetric}] \)”, or single-step proofs “\textbf{assume} \(x = y \) \textbf{then have} \(y = x ..".\)

2.3 Example: First-Order Logic

\begin{verbatim}
theory First_Order_Logic
imports Pure
begin

In order to commence a new object-logic within Isabelle/Pure we introduce abstract syntactic categories \(i \) for individuals and \(o \) for object-propositions. The latter is embedded into the language of Pure propositions by means of a separate judgment.

typedecl i
typedecl o

judgment
 \textit{Trueprop} :: \(o \implies \text{prop} \) (\(_5 \))

Note that the object-logic judgement is implicit in the syntax: writing \(A \) produces \textit{Trueprop} \(A \) internally. From the Pure perspective this means “\(A \) is derivable in the object-logic”.

2.3.1 Equational reasoning

Equality is axiomatized as a binary predicate on individuals, with reflexivity as introduction, and substitution as elimination principle. Note that the latter is particularly convenient in a framework like Isabelle, because syntactic congruences are implicitly produced by unification of \(B \) \(x \) against expressions containing occurrences of \(x \).

\begin{verbatim}
axiomatization
 equal :: \(i \implies i \implies o \) (infix = 50)
where
 refl [intro]: \(x = x \) and
Substitution is very powerful, but also hard to control in full generality. We derive some common symmetry / transitivity schemes of as particular consequences.

```plaintext
theorem sym [sym]:
    assumes x = y
    shows y = x
proof –
    have x = x ..
    with ⟨x = y⟩ show y = x ..
qed
```

```plaintext
theorem forw_subst [trans]:
    assumes y = x and B x
    shows B y
proof –
    from ⟨y = x⟩ have x = y ..
    from this and ⟨B x⟩ show B y ..
qed
```

```plaintext
theorem back_subst [trans]:
    assumes B x and x = y
    shows B y
proof –
    from ⟨x = y⟩ and ⟨B x⟩
    show B y ..
qed
```

```plaintext
theorem trans [trans]:
    assumes x = y and y = z
    shows x = z
proof –
    from ⟨y = z⟩ and ⟨x = y⟩
    show x = z ..
qed
```

2.3.2 Basic group theory

As an example for equational reasoning we consider some bits of group theory. The subsequent locale definition postulates group operations and axioms; we also derive some consequences of this specification.

```plaintext
locale group =
```
CHAPTER 2. THE ISABELLE/ISAR FRAMEWORK

fixes prod :: \(i \Rightarrow i \Rightarrow i \) (infix \(\circ \) 70)
and inv :: \(i \Rightarrow i \) ((\(i^{-1} \)) [1000] 999)
and unit :: \(i \) (1)
assumes assoc: \((x \circ y) \circ z = x \circ (y \circ z) \)
and left_unit: \(1 \circ x = x \)
and left_inv: \(x^{-1} \circ x = 1 \)
begin

theorem right_inv: \(x \circ x^{-1} = 1 \)
proof –
 have \(x \circ x^{-1} = 1 \circ (x \circ x^{-1}) \) by (rule left_unit [symmetric])
 also have \(\ldots = (1 \circ x) \circ x^{-1} \) by (rule assoc [symmetric])
 also have \(1 = (x^{-1})^{-1} \circ x^{-1} \) by (rule left_inv [symmetric])
 also have \(\ldots \circ x = (x^{-1})^{-1} \circ (x^{-1} \circ x) \) by (rule assoc)
 also have \(x^{-1} \circ x = 1 \) by (rule left_inv)
 also have \(((x^{-1})^{-1} \circ \ldots) \circ x^{-1} = (x^{-1})^{-1} \circ (1 \circ x^{-1}) \) by (rule assoc)
 also have \(1 \circ x^{-1} = x^{-1} \) by (rule left_unit)
 also have \((x^{-1})^{-1} \circ \ldots = 1 \) by (rule left_inv)
 finally show \(x \circ x^{-1} = 1 \).
qed

theorem right_unit: \(x \circ 1 = x \)
proof –
 have \(1 = x^{-1} \circ x \) by (rule left_inv [symmetric])
 also have \(\ldots = (x \circ x^{-1}) \circ x \) by (rule assoc [symmetric])
 also have \(x \circ x^{-1} = 1 \) by (rule right_inv)
 also have \(\ldots \circ x = x \) by (rule left_unit)
 finally show \(x \circ 1 = x \).
qed

Reasoning from basic axioms is often tedious. Our proofs work by producing various instances of the given rules (potentially the symmetric form) using the pattern “\texttt{have eq by (rule r)}” and composing the chain of results via also/finaly. These steps may involve any of the transitivity rules declared in §2.3.1, namely \(\text{trans \; in \; combining \; the \; first \; two \; results \; in} \rightinv \) and in the final steps of both proofs, \(\text{forw\; subst \; in \; the \; first \; combination \; of} \rightunit \), and \(\text{back\; subst \; in \; all \; other \; calculational \; steps.} \)

Occasional substitutions in calculations are adequate, but should not be over-emphasized. The other extreme is to compose a chain by plain transitivity only, with replacements occurring always in topmost position. For example:

have \(x \circ 1 = x \circ (x^{-1} \circ x) \) unfolding left_inv ..
also have \(\ldots = (x \circ x^{-1}) \circ x \) unfolding assoc ..
also have \(1 \circ x\) unfolding right_inv ..
also have \(x\) unfolding left_unit ..
finally have \(x \circ 1 = x\).

Here we have re-used the built-in mechanism for unfolding definitions in order to normalize each equational problem. A more realistic object-logic would include proper setup for the Simpler (§9.3), the main automated tool for equational reasoning in Isabelle. Then “unfolding left_inv ..” would become “by (simp only: left_inv)” etc.

end

2.3.3 Propositional logic

We axiomatize basic connectives of propositional logic: implication, disjunction, and conjunction. The associated rules are modeled after Gentzen’s system of Natural Deduction [7].

axiomatization

\[\text{imp} :: o \Rightarrow o \Rightarrow o \quad \text{(infixr } \rightarrow 25)\] where
\[\text{impI} \; \text{[intro]}: (A \Rightarrow B) \Rightarrow A \rightarrow B \quad \text{and}\]
\[\text{impD} \; \text{[dest]}: (A \rightarrow B) \Rightarrow A \Rightarrow B\]

axiomatization

\[\text{disj} :: o \Rightarrow o \Rightarrow o \quad \text{(infixr } \lor 30)\] where
\[\text{disjI}_1 \; \text{[intro]}: A \Rightarrow A \lor B \quad \text{and} \]
\[\text{disjI}_2 \; \text{[intro]}: B \Rightarrow A \lor B \quad \text{and} \]
\[\text{disjE} \; \text{[elim]}: A \lor B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C\]

axiomatization

\[\text{conj} :: o \Rightarrow o \Rightarrow o \quad \text{(infixr } \land 35)\] where
\[\text{conjI} \; \text{[intro]}: A \Rightarrow B \Rightarrow A \land B \quad \text{and} \]
\[\text{conjD}_1: A \land B \Rightarrow A \quad \text{and} \]
\[\text{conjD}_2: A \land B \Rightarrow B\]

The conjunctive destructions have the disadvantage that decomposing \(A \land B\) involves an immediate decision which component should be projected. The more convenient simultaneous elimination \(A \land B \Rightarrow (A \Rightarrow B \Rightarrow C) \Rightarrow C\) can be derived as follows:

theorem conjE [elim]:

assumes \(A \land B\)

obtains \(A\) and \(B\)

proof

from \((A \land B)\) show \(A\) by (rule conjD_1)
from \((A \land B)\) show \(B\) by (rule conjD_2)
Here is an example of swapping conjuncts with a single intermediate elimination step:

\begin{itemize}
 \item assume \(A \land B \)
 \item then obtain \(B \) and \(A \)
 \item then have \(B \land A \)
\end{itemize}

Note that the analogous elimination rule for disjunction \textbf{"assumes} \(A \lor B \) \textbf{obtains} \(A \mid B \)" coincides with the original axiomatization of \textit{disjE}.

We continue propositional logic by introducing absurdity with its characteristic elimination. Plain truth may then be defined as a proposition that is trivially true.

\begin{itemize}
 \item \textbf{axiomatization}
 \item \textit{false} :: \(o \ (\bot) \) \textbf{where}
 \item \textit{falseE} \ [\textit{elim}] : \(\bot \Rightarrow A \)
 \item \textbf{definition}
 \item \textit{true} :: \(o \ (\top) \) \textbf{where}
 \item \(\top \equiv \bot \rightarrow \bot \)
 \item \textbf{theorem} \textit{trueI} \ [\textit{intro}] : \(\top \)
 \item \textbf{unfolding} \textit{true_def} ..
\end{itemize}

Now negation represents an implication towards absurdity:

\begin{itemize}
 \item \textbf{definition}
 \item \textit{not} :: \(o \Rightarrow o \ (\neg \ [40] 40) \) \textbf{where}
 \item \(\neg A \equiv A \rightarrow \bot \)
 \item \textbf{theorem} \textit{notI} \ [\textit{intro}] :
 \item \textbf{assumes} \(A \Rightarrow \bot \)
 \item \textbf{shows} \(\neg A \)
 \item \textbf{unfolding} \textit{not_def}
 \item \textbf{proof}
 \item assume \(A \)
 \item then show \(\bot \) by \(\langle \text{rule } (A \Rightarrow \bot) \rangle \)
 \item \textbf{qed}
 \item \textbf{theorem} \textit{notE} \ [\textit{elim}] :
 \item \textbf{assumes} \(\neg A \) and \(A \)
 \item \textbf{shows} \(B \)
 \item \textbf{proof}
 \item from \((\neg A) \) have \(A \rightarrow \bot \) \textbf{unfolding} \textit{not_def} .
2.3.4 Classical logic

Subsequently we state the principle of classical contradiction as a local assumption. Thus we refrain from forcing the object-logic into the classical perspective. Within that context, we may derive well-known consequences of the classical principle.

```isar
locale classical =
  assumes classical: (¬ C ⇒ C) ⇒ C
begin

theorem double_negation:
  assumes ¬ ¬ C
  shows C
proof (rule classical)
  assume ¬ C
  with ⟨¬ ¬ C⟩ show ⊥ ..
qed

theorem tertium_non_datur: C ∨ ¬ C
proof (rule double_negation)
  show ¬ ¬ (C ∨ ¬ C)
proof
  assume ¬ (C ∨ ¬ C)
  have ¬ C
  proof
    assume C then have C ∨ ¬ C ..
    with ⟨¬ (C ∨ ¬ C)⟩ show ⊥ ..
    qed
  then have C ∨ ¬ C ..
  with ⟨¬ (C ∨ ¬ C)⟩ show ⊥ ..
  qed
  qed
```

These examples illustrate both classical reasoning and non-trivial propositional proofs in general. All three rules characterize classical logic independently, but the original rule is already the most convenient to use, because it leaves the conclusion unchanged. Note that (¬ C ⇒ C) ⇒ C fits again into our format for eliminations, despite the additional twist that the context refers to the main conclusion. So we may write classical as the Isar state-
ment “obtains \(\neg\) thesis”. This also explains nicely how classical reasoning really works: whatever the main thesis might be, we may always assume its negation!

end

2.3.5 Quantifiers

Representing quantifiers is easy, thanks to the higher-order nature of the underlying framework. According to the well-known technique introduced by Church [6], quantifiers are operators on predicates, which are syntactically represented as \(\lambda\)-terms of type \(i \Rightarrow o\). Binder notation turns \(\text{All} (\lambda x. B x)\) into \(\forall x. B x\) etc.

axiomatization

\[\text{All} :: (i \Rightarrow o) \Rightarrow o \quad \text{(binder } \forall \text{ 10) where}\]

\[\text{allI [intro]}: (\forall x. B x) \Rightarrow \forall x. B x \quad \text{and}\]

\[\text{allD [dest]}: (\forall x. B x) \Rightarrow B a\]

axiomatization

\[\text{Ex} :: (i \Rightarrow o) \Rightarrow o \quad \text{(binder } \exists \text{ 10) where}\]

\[\text{exI [intro]}: B a \Rightarrow (\exists x. B x) \quad \text{and}\]

\[\text{exE [elim]}: (\exists x. B x) \Rightarrow (\forall x. B x \Rightarrow C) \Rightarrow C\]

The statement of \(\text{exE}\) corresponds to “assumes \(\exists x. B x\) obtains \(x\) where \(B x\)” in Isar. In the subsequent example we illustrate quantifier reasoning involving all four rules:

theorem

\[\text{assumes} \quad \exists x. \forall y. R x y\]

shows \(\forall y. \exists x. R x y\)

proof

\[- \forall \text{ introduction}\]

\[\text{obtain} \quad \text{where} \quad \forall y. R x y \quad \text{using} \quad (\exists x. \forall y. R x y) \quad .. \quad \exists \text{ elimination}\]

\[\text{fix} \quad \text{y have} \quad R x y \quad \text{using} \quad (\forall y. R x y) \quad .. \quad \forall \text{ destruction}\]

\[\text{then show} \quad \exists x. R x y \quad .. \quad \exists \text{ introduction}\]

qed

2.3.6 Canonical reasoning patterns

The main rules of first-order predicate logic from §2.3.3 and §2.3.5 can now be summarized as follows, using the native Isar statement format of §2.2.2.
impI: assumes $A \Rightarrow B$ shows $A \rightarrow B$
impD: assumes $A \rightarrow B$ and A shows B
disjI₁: assumes A shows $A \vee B$
disjI₂: assumes B shows $A \vee B$
disjE: assumes $A \vee B$ obtains $A \vdash B$
cconjI: assumes A and B shows $A \wedge B$
cconjE: assumes $A \wedge B$ obtains A and B
falseE: assumes \bot shows A
trueI: shows \top
notI: assumes $A \Rightarrow \bot$ shows $\neg A$
notE: assumes $\neg A$ and A shows B
allI: assumes $\forall x. B x$ shows $\forall x. B x$
allE: assumes $\forall x. B x$ shows $B a$
exI: assumes $B a$ shows $\exists x. B x$
exE: assumes $\exists x. B x$ obtains a where $B a$

This essentially provides a declarative reading of Pure rules as Isar reasoning patterns: the rule statements tells how a canonical proof outline shall look like. Since the above rules have already been declared as intro, elim, dest — each according to its particular shape — we can immediately write Isar proof texts as follows:

\begin{verbatim}
have A \rightarrow B
proof
 assume A
 show B ⟨proof⟩
qed

have A ⟹ B
then have A \lor B ..

have B ⟨proof⟩
then have A \lor B ..

have A \wedge B ⟨proof⟩
then obtain A and B ..
\end{verbatim}
have ⊥ ⟨proof⟩
then have A ..

have ¬ A
proof
 assume A
 then show ⊥ ⟨proof⟩
qed

have ∀ x. B x
proof
 fix x
 show B x ⟨proof⟩
qed

have ∃ x. B x
proof
 show B a ⟨proof⟩
qed

Of course, these proofs are merely examples. As sketched in §2.2.3, there is a fair amount of flexibility in expressing Pure deductions in Isar. Here the user is asked to express himself adequately, aiming at proof texts of literary quality.

end
Part II

General Language Elements
Outer syntax

The rather generic framework of Isabelle/Isar syntax emerges from three main syntactic categories: commands of the top-level Isar engine (covering theory and proof elements), methods for general goal refinements (analogous to traditional “tactics”), and attributes for operations on facts (within a certain context). Subsequently we give a reference of basic syntactic entities underlying Isabelle/Isar syntax in a bottom-up manner. Concrete theory and proof language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents, the most important aspect to be noted is the difference of inner versus outer syntax. Inner syntax is that of Isabelle types and terms of the logic, while outer syntax is that of Isabelle/Isar theory sources (specifications and proofs). As a general rule, inner syntax entities may occur only as atomic entities within outer syntax. For example, the string "x + y" and identifier z are legal term specifications within a theory, while x + y without quotes is not.

Printed theory documents usually omit quotes to gain readability (this is a matter of \LaTeX macro setup, say via \isabellestyle, see also [38]). Experienced users of Isabelle/Isar may easily reconstruct the lost technical information, while mere readers need not care about quotes at all.

Isabelle/Isar input may contain any number of input termination characters “;” (semicolon) to separate commands explicitly. This is particularly useful in interactive shell sessions to make clear where the current command is intended to end. Otherwise, the interpreter loop will continue to issue a secondary prompt “#” until an end-of-command is clearly recognized from the input syntax, e.g. encounter of the next command keyword.

More advanced interfaces such as Proof General [1] do not require explicit semicolons, the amount of input text is determined automatically by inspecting the present content of the Emacs text buffer. In the printed presentation of Isabelle/Isar documents semicolons are omitted altogether for readability.

Proof General requires certain syntax classification tables in order to achieve properly synchronized interaction with the Isabelle/Isar process. These tables need to be consistent with the Isabelle version and particular logic image to be used.
in a running session (common object-logics may well change the outer syntax). The standard setup should work correctly with any of the “official” logic images derived from Isabelle/HOL (including HOLCF etc.). Users of alternative logics may need to tell Proof General explicitly, e.g. by giving an option -k ZF (in conjunction with -l ZF, to specify the default logic image). Note that option -L does both of this at the same time.

3.1 Lexical matters

The outer lexical syntax consists of three main categories of syntax tokens:

1. **major keywords** — the command names that are available in the present logic session;
2. **minor keywords** — additional literal tokens required by the syntax of commands;
3. **named tokens** — various categories of identifiers etc.

Major keywords and minor keywords are guaranteed to be disjoint. This helps user-interfaces to determine the overall structure of a theory text, without knowing the full details of command syntax. Internally, there is some additional information about the kind of major keywords, which approximates the command type (theory command, proof command etc.).

Keywords override named tokens. For example, the presence of a command called `term` inhibits the identifier `term`, but the string "`term`" can be used instead. By convention, the outer syntax always allows quoted strings in addition to identifiers, wherever a named entity is expected.

When tokenizing a given input sequence, the lexer repeatedly takes the longest prefix of the input that forms a valid token. Spaces, tabs, newlines and formfeeds between tokens serve as explicit separators.

The categories for named tokens are defined once and for all as follows.

\[
\begin{align*}
\text{ident} & = \text{letter quasiletter}^* \\
\text{longident} & = \text{ident}(\text{ident})^+ \\
\text{symident} & = \text{sym}^+ \mid \text{\textless ident\textgreater} \\
\text{nat} & = \text{digit}^+ \\
\text{var} & = ?\text{ident} \mid ?\text{ident.nat} \\
\text{typefree} & = '\text{ident}
\end{align*}
\]
A `var` or `typevar` describes an unknown, which is internally a pair of base name and index (ML type `indexname`). These components are either separated by a dot as in `?x.1` or `?x7.3` or run together as in `?x1`. The latter form is possible if the base name does not end with digits. If the index is 0, it may be dropped altogether: `?x` and `?x0` and `?x.0` all refer to the same unknown, with basename `x` and index 0.

The syntax of `string` admits any characters, including newlines; ““” (double-quote) and “‘” (backslash) need to be escaped by a backslash; arbitrary character codes may be specified as “\ddd”, with three decimal digits. Alternative strings according to `altstring` are analogous, using single backquotes instead.

The body of `verbatim` may consist of any text not containing “{*}. This allows convenient inclusion of quotes without further escapes. There is no way to escape “{*}”. If the quoted text is \LaTeX source, one may usually add some blank or comment to avoid the critical character sequence.

Source comments take the form (* ... *) and may be nested, although the user-interface might prevent this. Note that this form indicates source comments only, which are stripped after lexical analysis of the input. The Isar syntax also provides proper document comments that are considered as part of the text (see §3.2.2).
Common mathematical symbols such as \forall are represented in Isabelle as \forall. There are infinitely many Isabelle symbols like this, although proper presentation is left to front-end tools such as \LaTeX or Proof General with the X-Symbol package. A list of predefined Isabelle symbols that work well with these tools is given in appendix B. Note that \lambda does not belong to the letter category, since it is already used differently in the Pure term language.

3.2 Common syntax entities

We now introduce several basic syntactic entities, such as names, terms, and theorem specifications, which are factored out of the actual Isar language elements to be described later.

3.2.1 Names

Entity name usually refers to any name of types, constants, theorems etc. that are to be declared or defined (so qualified identifiers are excluded here). Quoted strings provide an escape for non-identifier names or those ruled out by outer syntax keywords (e.g. quoted "let"). Already existing objects are usually referenced by nameref.

\begin{center}
\begin{tikzpicture}
 \node {name}
 child {node {ident}
 child {node {symident}}
 child {node {string}}
 child {node {nat}}}
 child {node {parname}
 child {node {\{ name \}}}}
 child {node {nameref}
 child {node {name}}
 child {node {longident}}}
\end{tikzpicture}
\end{center}
3.2.2 Comments

Large chunks of plain text are usually given verbatim, i.e. enclosed in \{* \ldots *\}. For convenience, any of the smaller text units conforming to nameref are admitted as well. A marginal comment is of the form \texttildelow text. Any number of these may occur within Isabelle/Isar commands.

3.2.3 Type classes, sorts and arities

Classes are specified by plain names. Sorts have a very simple inner syntax, which is either a single class name \(c\) or a list \(\{c_1, \ldots, c_n\}\) referring to the intersection of these classes. The syntax of type arities is given directly at the outer level.
3.2.4 Types and terms

The actual inner Isabelle syntax, that of types and terms of the logic, is far too sophisticated in order to be modelled explicitly at the outer theory level. Basically, any such entity has to be quoted to turn it into a single token (the parsing and type-checking is performed internally later). For convenience, a slightly more liberal convention is adopted: quotes may be omitted for any type or term that is already atomic at the outer level. For example, one may just write x instead of quoted "x". Note that symbolic identifiers (e.g. ++ or \(\forall \)) are available as well, provided these have not been superseded by commands or other keywords already (such as = or +).

Positional instantiations are indicated by giving a sequence of terms, or the placeholder “_” (underscore), which means to skip a position.
insts

Type declarations and definitions usually refer to typespec on the left-hand side. This models basic type constructor application at the outer syntax level. Note that only plain postfix notation is available here, but no infixes.

typespec

3.2.5 Term patterns and declarations

Wherever explicit propositions (or term fragments) occur in a proof text, casual binding of schematic term variables may be given specified via patterns of the form “(is \(p_1 \ldots p_n \))”. This works both for term and prop.

termpat

proppat

Declarations of local variables \(x :: \tau \) and logical propositions \(a : \varphi \) represent different views on the same principle of introducing a local scope. In practice, one may usually omit the typing of \(\textit{vars} \) (due to type-inference), and the naming of propositions (due to implicit references of current facts). In any case, Isar proof elements usually admit to introduce multiple such items simultaneously.
The treatment of multiple declarations corresponds to the complementary focus of *vars* versus *props*. In “$x_1 \ldots x_n :: \tau$” the typing refers to all variables, while in $a : \varphi_1 \ldots \varphi_n$ the naming refers to all propositions collectively. Isar language elements that refer to *vars* or *props* typically admit separate typings or namings via another level of iteration, with explicit and separators; e.g. see *fix* and *assume* in §6.2.1.

3.2.6 Attributes and theorems

Attributes have their own “semi-inner” syntax, in the sense that input conforming to *args* below is parsed by the attribute a second time. The attribute argument specifications may be any sequence of atomic entities (identifiers, strings etc.), or properly bracketed argument lists. Below *atom* refers to any atomic entity, including any keyword conforming to *symident*.
Theorem specifications come in several flavors: \textit{axmdecl} and \textit{thmdecl} usually refer to axioms, assumptions or results of goal statements, while \textit{thmdef} collects lists of existing theorems. Existing theorems are given by \textit{thmref} and \textit{thmrefs}, the former requires an actual singleton result.

There are three forms of theorem references:

1. named facts \(a\),
2. selections from named facts \(a(i)\) or \(a(j - k)\),
3. literal fact propositions using \textit{altstring} syntax ‘\(ϕ\)’ (see also method \textit{fact}).

Any kind of theorem specification may include lists of attributes both on the left and right hand sides; attributes are applied to any immediately preceding fact. If names are omitted, the theorems are not stored within the theorem database of the theory or proof context, but any given attributes are applied nonetheless.

An extra pair of brackets around attributes (like “\([[\text{simproc } a]]\)”) abbreviates a theorem reference involving an internal dummy fact, which will be ignored later on. So only the effect of the attribute on the background context will persist. This form of in-place declarations is particularly useful with commands like \textbf{declare} and \textbf{using}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Diagram of outer syntax attributes.}
\end{figure}
Isabelle/Isar provides a simple document preparation system based on regular PDF-LATEX technology, with full support for hyper-links and bookmarks. Thus the results are well suited for WWW browsing and as printed copies.

Isabelle generates LATEX output while running a logic session (see also [38]). Getting started with a working configuration for common situations is quite easy by using the Isabelle mkdir and make tools. First invoke

```
isabelle mkdir Foo
```

to initialize a separate directory for session Foo (it is safe to experiment, since isabelle mkdir never overwrites existing files). Ensure that Foo/ROOT.ML holds ML commands to load all theories required for this session; furthermore Foo/document/root.tex should include any special LATEX macro packages required for your document (the default is usually sufficient as a start).

The session is controlled by a separate IsaMakefile (with crude source dependencies by default). This file is located one level up from the Foo directory location. Now invoke

```
isabelle make Foo
```

to run the Foo session, with browser information and document preparation enabled. Unless any errors are reported by Isabelle or LATEX, the output will appear inside the directory defined by the ISABELLE_BROWSER_INFO setting (as reported by the batch job in verbose mode).

You may also consider to tune the usedir options in IsaMakefile, for example to switch the output format between pdf and dvi, or activate the -D option to retain a second copy of the generated LATEX sources (for manual inspection or separate runs of latex).

See The Isabelle System Manual [38] for further details on Isabelle logic sessions and theory presentation. The Isabelle/HOL tutorial [19] also covers theory presentation to some extent.
4.1 Markup commands

header: toplevel → toplevel
chapter: local_theory → local_theory
section: local_theory → local_theory
subsection: local_theory → local_theory
subsubsection: local_theory → local_theory
text: local_theory → local_theory
text_raw: local_theory → local_theory
sect: proof → proof
subsect: proof → proof
subsubsect: proof → proof
txt: proof → proof
txt_raw: proof → proof

Markup commands provide a structured way to insert text into the document generated from a theory. Each markup command takes a single text argument, which is passed as argument to a corresponding \LaTeX macro. The default macros provided by \texttt{~/lib/texinputs/isabelle.sty} can be redefined according to the needs of the underlying document and \LaTeX styles.

Note that formal comments (§3.2.2) are similar to markup commands, but have a different status within Isabelle/Isar syntax.
header provides plain text markup just preceding the formal beginning of a theory. The corresponding \LaTeX\ macro is `\isamarkupheader`, which acts like `section` by default.

chapter, **section**, **subsection**, and **subsubsection** mark chapter and section headings within the main theory body or local theory targets. The corresponding \LaTeX\ macros are `\isamarkupchapter`, `\isamarkupsection`, `\isamarkupsubsection` etc.

sect, **subsect**, and **subsubsect** mark section headings within proofs. The corresponding \LaTeX\ macros are `\isamarkupsect`, `\isamarkupsubsect` etc.

text and **txt** specify paragraphs of plain text. This corresponds to a \LaTeX\ environment `\begin{isamarkuptext}...\end{isamarkuptext}` etc.

text_raw and **txt_raw** insert \LaTeX\ source into the output, without additional markup. Thus the full range of document manipulations becomes available, at the risk of messing up document output.

Except for **text_raw** and **txt_raw**, the text passed to any of the above markup commands may refer to formal entities via *document antiquotations*, see also §4.2. These are interpreted in the present theory or proof context, or the named *target*.

The proof markup commands closely resemble those for theory specifications, but have a different formal status and produce different \LaTeX\ macros. The default definitions coincide for analogous commands such as **section** and **sect**.
4.2 Document Antiquotations

The overall content of an Isabelle/Isar theory may alternate between formal and informal text. The main body consists of formal specification and proof commands, interspersed with markup commands (§4.1) or document comments (§3.2.2). The argument of markup commands quotes informal text to be printed in the resulting document, but may again refer to formal entities via document antiquotations.

For example, embedding of “@\{term [show_types] f x = a + x\}” within a text block makes \(f \cdot a \Rightarrow (\cdot a \cdot a') = (\cdot a \cdot a') + x \) appear in the final \LaTeX\ document.

Antiquotations usually spare the author tedious typing of logical entities in full detail. Even more importantly, some degree of consistency-checking between the main body of formal text and its informal explanation is achieved, since terms and types appearing in antiquotations are checked within the current theory or proof context.
antiquotation

theory [options [name]

 thm [options [styles [thmrefs]

 lemma [options [prop [by [method]

 prop [options [styles [prop]

 term [options [styles [term]

 term_type [options [styles [term]

 typeof [options [styles [term]

 const [options [term]

 abbrev [options [term]

 typ [options [type]

 text [options [name]

 goals [options]

 subgoals [options]

 prf [options [thmrefs]

 full_prf [options [thmrefs]

ML [options [name]

ML_type [options [name]

ML_struct [options [name]

options

[]
Note that the syntax of antiquotations may not include source comments (* . . . *) nor verbatim text {* . . . *}.

@{theory A} prints the name A, which is guaranteed to refer to a valid ancestor theory in the current context.

@{thm a_1 . . . a_n} prints theorems a_1 . . . a_n. Full fact expressions are allowed here, including attributes (§3.2.6).

@{prop \varphi} prints a well-typed proposition \varphi.

@{lemma \varphi by m} proves a well-typed proposition \varphi by method m and prints the original \varphi.

@{term t} prints a well-typed term t.

@{term_type t} prints a well-typed term t annotated with its type.

@{typeof t} prints the type of a well-typed term t.

@{const c} prints a logical or syntactic constant c.

@{abbrev c x_1 . . . x_n} prints a constant abbreviation c x_1 . . . x_n \equiv \text{rhs} as defined in the current context.

@{typ \tau} prints a well-formed type \tau.
@\{text s\} prints uninterpreted source text \textit{s}. This is particularly useful to print portions of text according to the Isabelle document style, without demanding well-formedness, e.g. small pieces of terms that should not be parsed or type-checked yet.

@\{goals\} prints the current \textit{dynamic} goal state. This is mainly for support of tactic-emulation scripts within Isar. Presentation of goal states does not conform to the idea of human-readable proof documents!

When explaining proofs in detail it is usually better to spell out the reasoning via proper Isar proof commands, instead of peeking at the internal machine configuration.

@\{subgoals\} is similar to @\{goals\}, but does not print the main goal.

@\{prf \(a_1\ldots a_n\}\} prints the (compact) proof terms corresponding to the theorems \(a_1\ldots a_n\). Note that this requires proof terms to be switched on for the current logic session.

@\{full_prf \(a_1\ldots a_n\}\} is like @\{prf \(a_1\ldots a_n\}\}, but prints the full proof terms, i.e. also displays information omitted in the compact proof term, which is denoted by “_” placeholders there.

@\{ML s\}, @\{ML_type s\}, and @\{ML_struct s\} check text \textit{s} as ML value, type, and structure, respectively. The source is printed verbatim.

\textbf{Styled antiquotations}

The antiquotations \textit{thm}, \textit{prop} and \textit{term} admit an extra \textit{style} specification to modify the printed result. A style is specified by a name with a possibly empty number of arguments; multiple styles can be sequenced with commas.

The following standard styles are available:

\textit{lhs} extracts the first argument of any application form with at least two arguments — typically meta-level or object-level equality, or any other binary relation.

\textit{rhs} is like \textit{lhs}, but extracts the second argument.

\textit{concl} extracts the conclusion \(C\) from a rule in Horn-clause normal form
\[A_1 \implies \ldots A_n \implies C. \]

\textit{prem n} extract premise number \(n\) from from a rule in Horn-clause normal form
\[A_1 \implies \ldots A_n \implies C. \]
General options

The following options are available to tune the printed output of antiquotations. Note that many of these coincide with global ML flags of the same names.

\(show_types = \text{bool} \) and \(show_sorts = \text{bool} \) control printing of explicit type and sort constraints.

\(show_structs = \text{bool} \) controls printing of implicit structures.

\(long_names = \text{bool} \) forces names of types and constants etc. to be printed in their fully qualified internal form.

\(short_names = \text{bool} \) forces names of types and constants etc. to be printed unqualified. Note that internalizing the output again in the current context may well yield a different result.

\(unique_names = \text{bool} \) determines whether the printed version of qualified names should be made sufficiently long to avoid overlap with names declared further back. Set to \(\text{false} \) for more concise output.

\(eta_contract = \text{bool} \) prints terms in \(\eta \)-contracted form.

\(display = \text{bool} \) indicates if the text is to be output as multi-line “display material”, rather than a small piece of text without line breaks (which is the default).

In this mode the embedded entities are printed in the same style as the main theory text.

\(break = \text{bool} \) controls line breaks in non-display material.

\(quotes = \text{bool} \) indicates if the output should be enclosed in double quotes.

\(mode = \text{name} \) adds \(\text{name} \) to the print mode to be used for presentation. Note that the standard setup for \(\LaTeX \) output is already present by default, including the modes \(\text{latex} \) and \(\text{xsymbols} \).

\(margin = \text{nat} \) and \(indent = \text{nat} \) change the margin or indentation for pretty printing of display material.

\(goals_limit = \text{nat} \) determines the maximum number of goals to be printed (for goal-based antiquotation).
CHAPTER 4. DOCUMENT PREPARATION

source = bool prints the original source text of the antiquotation arguments, rather than its internal representation. Note that formal checking of \textit{thm}, \textit{term}, etc. is still enabled; use the \textit{text} antiquotation for unchecked output.

Regular \textit{term} and \textit{typ} antiquotations with source = false involve a full round-trip from the original source to an internalized logical entity back to a source form, according to the syntax of the current context. Thus the printed output is not under direct control of the author, it may even fluctuate a bit as the underlying theory is changed later on.

In contrast, source = true admits direct printing of the given source text, with the desirable well-formedness check in the background, but without modification of the printed text.

For boolean flags, “name = true” may be abbreviated as “name”. All of the above flags are disabled by default, unless changed from ML, say in the \texttt{ROOT.ML} of the logic session.

4.3 Markup via command tags

Each Isabelle/Isar command may be decorated by additional presentation tags, to indicate some modification in the way it is printed in the document.

tags

\begin{center}
\begin{tikzpicture}
\node (tags) {tags};
\node [below=of tags] (t) {tag};
\node [below=of t] (s) {\texttt{\%}};
\node [right=of s] (i) {ident};
\node [right=of i] (s) {string};
\end{tikzpicture}
\end{center}

tag

Some tags are pre-declared for certain classes of commands, serving as default markup if no tags are given in the text:

- \texttt{theory} \hspace{1em} theory begin/end
- \texttt{proof} \hspace{1em} all proof commands
- \texttt{ML} \hspace{1em} all commands involving ML code

The Isabelle document preparation system [38] allows tagged command regions to be presented specifically, e.g. to fold proof texts, or drop parts of the text completely.
For example “by \texttt{invisible auto}” causes that piece of proof to be treated as \textit{invisible} instead of \textit{proof} (the default), which may be shown or hidden depending on the document setup. In contrast, “by \texttt{visible auto}” forces this text to be shown invariably.

Explicit tag specifications within a proof apply to all subsequent commands of the same level of nesting. For example, “\texttt{proof \texttt{visible} \ldots qed}” forces the whole sub-proof to be typeset as \textit{visible} (unless some of its parts are tagged differently).

Command tags merely produce certain markup environments for typesetting. The meaning of these is determined by \LaTeX macros, as defined in \texttt{∼∼/lib/texinputs/isabelle.sty} or by the document author. The Isabelle document preparation tools also provide some high-level options to specify the meaning of arbitrary tags to “keep”, “drop”, or “fold” the corresponding parts of the text. Logic sessions may also specify “document versions”, where given tags are interpreted in some particular way. Again see [38] for further details.

4.4 Draft presentation

\begin{center}
\begin{verbatim}
display_drafts* : any →
print_drafts* : any →
\end{verbatim}
\end{center}

display_drafts \texttt{paths} and print_drafts \texttt{paths} perform simple output of a given list of raw source files. Only those symbols that do not require additional \LaTeX packages are displayed properly, everything else is left verbatim.
Chapter 5

Theory specifications

The Isabelle/Isar theory format integrates specifications and proofs, supporting interactive development with unlimited undo operation. There is an integrated document preparation system (see chapter 4), for typesetting formal developments together with informal text. The resulting hyper-linked PDF documents can be used both for WWW presentation and printed copies.

The Isar proof language (see chapter 6) is embedded into the theory language as a proper sub-language. Proof mode is entered by stating some theorem or lemma at the theory level, and left again with the final conclusion (e.g. via qed). Some theory specification mechanisms also require a proof, such as typedef in HOL, which demands non-emptiness of the representing sets.

5.1 Defining theories

\begin{verbatim}
theory : toplevel \rightarrow\ theory
end : theory \rightarrow toplevel
\end{verbatim}

Isabelle/Isar theories are defined via theory files, which may contain both specifications and proofs; occasionally definitional mechanisms also require some explicit proof. The theory body may be sub-structured by means of local theory targets, such as locale and class.

The first proper command of a theory is theory, which indicates imports of previous theories and optional dependencies on other source files (usually in ML). Just preceding the initial theory command there may be an optional header declaration, which is only relevant to document preparation: see also the other section markup commands in §4.1.

A theory is concluded by a final end command, one that does not belong to a local theory target. No further commands may follow such a global end, although some user-interfaces might pretend that trailing input is admissible.
theory \ A \ imports \ B_1 \ldots \ B_n \ begin \ starts \ a \ new \ theory \ A \ based \ on \ the \ merge \ of \ existing \ theories \ B_1 \ldots \ B_n.

Due \ to \ the \ possibility \ to \ import \ more \ than \ one \ ancestor, \ the \ resulting \ theory \ structure \ of \ an \ Isabelle \ session \ forms \ a \ directed \ acyclic \ graph (DAG). Isabelle’s \ theory \ loader \ ensures \ that \ the \ sources \ contributing \ to \ the \ development \ graph \ are \ always \ up-to-date: \ changed \ files \ are \ automatically \ reloaded \ whenever \ a \ theory \ header \ specification \ is \ processed.

The \ optional \ uses \ specification \ declares \ additional \ dependencies \ on \ extra \ files (usually ML sources). Files \ will \ be \ loaded \ immediately (as ML), unless \ the \ name \ is \ parenthesized. The \ latter \ case \ records \ a \ dependency \ that \ needs \ to \ be \ resolved \ later \ in \ the \ text, \ usually \ via \ explicit \ use \ for \ ML \ files; \ other \ file \ formats \ require \ specific \ load \ commands \ defined \ by \ the \ corresponding \ tools \ or \ packages.

end \ concludes \ the \ current \ theory \ definition. \ Note \ that \ local \ theory \ targets \ involve \ a \ local \ end, \ which \ is \ clear \ from \ the \ nesting.

\section{Local theory targets}

A local theory target is a context managed separately within the enclosing theory. Contexts \ may \ introduce \ parameters (fixed variables) \ and \ assumptions (hypotheses). Definitions and theorems depending on the context may be added incrementally later on. Named \ contexts \ refer \ to \ locales (cf. \ §5.5) \ or \ type \ classes (cf. \ §5.6); \ the \ name \ “−” \ signifies \ the \ global \ theory \ context.
TARGET

context c begin

target

context c begin

context c begin recomences an existing locale or class context c. Note that locale and class definitions allow to include the begin keyword as well, in order to continue the local theory immediately after the initial specification.

end concludes the current local theory and continues the enclosing global theory. Note that a global end has a different meaning: it concludes the theory itself (§5.1).

(in c) given after any local theory command specifies an immediate target, e.g. “definition (in c) . . .” or “theorem (in c) . . .”. This works both in a local or global theory context; the current target context will be suspended for this command only. Note that “(in −)” will always produce a global result independently of the current target context.

The exact meaning of results produced within a local theory context depends on the underlying target infrastructure (locale, type class etc.). The general idea is as follows, considering a context named c with parameter x and assumption A[x].

Definitions are exported by introducing a global version with additional arguments; a syntactic abbreviation links the long form with the abstract version of the target context. For example, a ≡ t[x] becomes c.a ?x ≡ t[?x] at the theory level (for arbitrary ?x), together with a local abbreviation c ≡ c.a x in the target context (for the fixed parameter x).

Theorems are exported by discharging the assumptions and generalizing the parameters of the context. For example, a: B[x] becomes c.a: A[?x] ⇒ B[?x], again for arbitrary ?x.

5.3 Basic specification elements

axiomatization : theory → theory (axiomatic!)
definition : local_theory → local_theory
defn : attribute
abbreviation : local_theory → local_theory
print_abbrevs* : context →
These specification mechanisms provide a slightly more abstract view than the underlying primitives of \texttt{consts}, \texttt{defs} (see §5.9.4), and \texttt{axioms} (see §5.10). In particular, type-inference is commonly available, and result names need not be given.

\textbf{axiomatization} \quad target \quad \texttt{fixes} \quad \texttt{where} \quad \texttt{specs}

\textbf{definition} \quad target \quad \texttt{decl} \quad \texttt{where} \quad \texttt{thmdecl}

\textbf{abbreviation} \quad target \quad \texttt{mode} \quad \texttt{decl} \quad \texttt{where}

\textit{fixes}

\textbf{name} \quad \textbf{::} \quad \texttt{type} \quad \texttt{mixfix}

\textit{specs}

\textbf{props}

\textit{decl}

\textbf{name} \quad \textbf{::} \quad \texttt{type} \quad \texttt{mixfix}

\textbf{axiomatization} \ c_1 \ldots c_m \ \textbf{where} \ \varphi_1 \ldots \varphi_n \ \text{introduces several constants simultaneously and states axiomatic properties for these. The constants are marked as being specified once and for all, which prevents additional specifications being issued later on.}
Note that axiomatic specifications are only appropriate when declaring a new logical system; axiomatic specifications are restricted to global theory contexts. Normal applications should only use definitional mechanisms!

definition c where eq produces an internal definition $c \equiv t$ according to the specification given as eq, which is then turned into a proven fact. The given proposition may deviate from internal meta-level equality according to the rewrite rules declared as $defn$ by the object-logic. This usually covers object-level equality $x = y$ and equivalence $A \leftrightarrow B$. End-users normally need not change the $defn$ setup.

Definitions may be presented with explicit arguments on the LHS, as well as additional conditions, e.g. $f\, x\, y = t$ instead of $f \equiv \lambda x\, y.\, t$ and $y \neq 0 \implies g\, x\, y = u$ instead of an unrestricted $g \equiv \lambda x\, y.\, u$.

abbreviation c where eq introduces a syntactic constant which is associated with a certain term according to the meta-level equality eq.

Abbreviations participate in the usual type-inference process, but are expanded before the logic ever sees them. Pretty printing of terms involves higher-order rewriting with rules stemming from reverted abbreviations. This needs some care to avoid overlapping or looping syntactic replacements!

The optional *mode* specification restricts output to a particular print mode; using “input” here achieves the effect of one-way abbreviations. The mode may also include an “output” qualifier that affects the concrete syntax declared for abbreviations, cf. *syntax* in §7.6.

print_abbrevs prints all constant abbreviations of the current context.

5.4 Generic declarations

Arbitrary operations on the background context may be wrapped-up as generic declaration elements. Since the underlying concept of local theories may be subject to later re-interpretation, there is an additional dependency on a morphism that tells the difference of the original declaration context wrt. the application context encountered later on. A fact declaration is an important special case: it consists of a theorem which is applied to the context by means of an attribute.

declaration : $local_theory \rightarrow local_theory$

declare : $local_theory \rightarrow local_theory$
5.5 Locales

Locales are parametric named local contexts, consisting of a list of declaration elements that are modeled after the Isar proof context commands (cf. §6.2.1).

5.5.1 Locale expressions

A *locale expression* denotes a structured context composed of instances of existing locales. The context consists of a list of instances of declaration elements from the locales. Two locale instances are equal if they are of the same locale and the parameters are instantiated with equivalent terms. Declaration elements from equal instances are never repeated, thus avoiding duplicate declarations.
A locale instance consists of a reference to a locale and either positional or named parameter instantiations. Identical instantiations (that is, those that instante a parameter by itself) may be omitted. The notation ‘?’ enables to omit the instantiation for a parameter inside a positional instantiation.

Terms in instantiations are from the context the locale expressions is declared in. Local names may be added to this context with the optional for clause. In addition, syntax declarations from one instance are effective when parsing subsequent instances of the same expression.

Instances have an optional qualifier which applies to names in declarations. Names include local definitions and theorem names. If present, the qualifier itself is either optional (“?”), which means that it may be omitted on input of the qualified name, or mandatory (“!”). If neither “?” nor “!” are present, the command’s default is used. For interpretation and interpret the default is “mandatory”, for locale and sublocale the default is “optional”.

5.5.2 Locale declarations

locale : theory \rightarrow local_theory
print_locale*: context \rightarrow
print_locales*: context \rightarrow
intro_locales : method
unfold_locales : method

locale

print_locale

contextelem

localeexpr

+ contextelem
locale loc = import + body defines a new locale loc as a context consisting of a certain view of existing locales (import) plus some additional elements (body). Both import and body are optional; the degenerate form locale loc defines an empty locale, which may still be useful to collect declarations of facts later on. Type-inference on locale expressions automatically takes care of the most general typing that the combined context elements may acquire.

The import consists of a structured locale expression; see §6.2.1 above. Its for clause defines the local parameters of the import. In addition, locale parameters whose instantiation is omitted automatically extend the (possibly empty) for clause: they are inserted at its beginning. This means that these parameters may be referred to from within the expression and also in the subsequent context elements and provides a notational convenience for the inheritance of parameters in locale declarations.

The body consists of context elements.

fixes x :: τ (mx) declares a local parameter of type τ and mixfix annotation mx (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this context.

constrains $x :: \tau$ introduces a type constraint τ on the local parameter x. This element is deprecated. The type constraint should be introduced in the for clause or the relevant **fixes** element.

assumes $a: \varphi_1 \ldots \varphi_n$ introduces local premises, similar to **assume** within a proof (cf. §6.2.1).

defines $a: x \equiv t$ defines a previously declared parameter. This is similar to **def** within a proof (cf. §6.2.1), but **defines** takes an equational proposition instead of variable-term pair. The left-hand side of the equation may have additional arguments, e.g. “**defines** $f x_1 \ldots x_n \equiv t$”.

notes $a = b_1 \ldots b_n$ reconsiders facts within a local context. Most notably, this may include arbitrary declarations in any attribute specifications included here, e.g. a local simp rule.

The initial **import** specification of a locale expression maintains a dynamic relation to the locales being referenced (benefiting from any later fact declarations in the obvious manner).

Note that “(is $p_1 \ldots p_n$)” patterns given in the syntax of **assumes** and **defines** above are illegal in locale definitions. In the long goal format of §6.2.4, term bindings may be included as expected, though.

Locale specifications are “closed up” by turning the given text into a predicate definition **loc_axioms** and deriving the original assumptions as local lemmas (modulo local definitions). The predicate statement covers only the newly specified assumptions, omitting the content of included locale expressions. The full cumulative view is only provided on export, involving another predicate **loc** that refers to the complete specification text.

In any case, the predicate arguments are those locale parameters that actually occur in the respective piece of text. Also note that these predicates operate at the meta-level in theory, but the locale packages attempts to internalize statements according to the object-logic setup (e.g. replacing \bigwedge by \forall, and \Rightarrow by \rightarrow in HOL; see also §9.5). Separate introduction rules **loc_axioms.intro** and **loc.intro** are provided as well.

print_locale **locale** prints the contents of the named locale. The command omits **notes** elements by default. Use **print_locale!** to have them included.
print_locales prints the names of all locales of the current theory.

intro_locales and unfold_locales repeatedly expand all introduction rules of locale predicates of the theory. While intro_locales only applies the loc_intro introduction rules and therefore does not descend to assumptions, unfold_locales is more aggressive and applies loc_axioms_intro as well. Both methods are aware of locale specifications entailed by the context, both from target statements, and from interpretations (see below). New goals that are entailed by the current context are discharged automatically.

5.5.3 Locale interpretations

Locale expressions may be instantiated, and the instantiated facts added to the current context. This requires a proof of the instantiated specification and is called locale interpretation. Interpretation is possible in locales sublocale, theories (command interpretation) and also within a proof body (command interpret).

sublocale : theory \rightarrow \text{proof}(prove)
interpretation : theory \rightarrow \text{proof}(prove)
interpret : \text{proof}(state) | \text{proof}(chain) \rightarrow \text{proof}(prove)
print_interps\^*: context \rightarrow

\begin{center}
\begin{tikzpicture}
\node (sublocale) at (0,0) {sublocale};
\node (nameref) at (1,0) {nameref};
\node (localeexpr) at (2,0) {localeexpr};
\node (interpretation) at (0,-1) {interpretation};
\node (localeexprx) at (1,-1) {localeexprx};
\node (equations) at (2,-1) {equations};
\node (interpret) at (0,-2) {interpret};
\node (localeexpr2) at (1,-2) {localeexpr};
\node (print_interps) at (0,-3) {print_interps\^*};
\node (nameref2) at (1,-3) {nameref};

\draw[->] (sublocale) -- (nameref);
\draw[->] (nameref) -- (localeexpr);
\draw[->] (interpretation) -- (localeexprx);
\draw[->] (localeexprx) -- (equations);
\draw[->] (interpretation) -- (localeexprx);
\draw[->] (localeexpr2) -- (interpret);
\draw[->] (interpret) -- (localeexpr2);
\draw[->] (print_interps) -- (nameref2);
\end{tikzpicture}
\end{center}
equations

\textbf{sublocale} name \subseteq expr interprets expr in the locale name. A proof that the specification of name implies the specification of expr is required. As in the localized version of the theorem command, the proof is in the context of name. After the proof obligation has been discharged, the facts of expr become part of locale name as derived context elements and are available when the context name is subsequently entered. Note that, like import, this is dynamic: facts added to a locale part of expr after interpretation become also available in name.

Only specification fragments of expr that are not already part of name (be it imported, derived or a derived fragment of the import) are considered in this process. This enables circular interpretations to the extent that no infinite chains are generated in the locale hierarchy.

If interpretations of name exist in the current theory, the command adds interpretations for expr as well, with the same qualifier, although only for fragments of expr that are not interpreted in the theory already.

\textbf{interpretation} expr \textbf{where} eqns interprets expr in the theory. The command generates proof obligations for the instantiated specifications (assumes and defines elements). Once these are discharged by the user, instantiated facts are added to the theory in a post-processing phase.

Additional equations, which are unfolded during post-processing, may be given after the keyword \textbf{where}. This is useful for interpreting concepts introduced through definition specification elements. The equations must be proved.

The command is aware of interpretations already active in the theory, but does not simplify the goal automatically. In order to simplify the proof obligations use methods \texttt{intro_locales} or \texttt{unfold_locales}. Post-processing is not applied to facts of interpretations that are already active. This avoids duplication of interpreted facts, in particular. Note that, in the case of a locale with import, parts of the interpretation may already be active. The command will only process facts for new parts.
Adding facts to locales has the effect of adding interpreted facts to the theory for all active interpretations also. That is, interpretations dynamically participate in any facts added to locales.

interpret \(expr \) interprets \(expr \) in the proof context and is otherwise similar to interpretation in theories.

print_interps \(locale \) lists all interpretations of \(locale \) in the current theory, including those due to a combination of an **interpretation** and one or several **sublocale** declarations.

Since attributes are applied to interpreted theorems, interpretation may modify the context of common proof tools, e.g. the Simplifier or Classical Reasoner. As the behavior of such tools is *not* stable under interpretation morphisms, manual declarations might have to be added to the target context of the interpretation to revert such declarations.

An interpretation in a theory may subsume previous interpretations. This happens if the same specification fragment is interpreted twice and the instantiation of the second interpretation is more general than the interpretation of the first. The locale package does not attempt to remove subsumed interpretations.

5.6 Classes

A class is a particular locale with *exactly one* type variable \(\alpha \). Beyond the underlying locale, a corresponding type class is established which is interpreted logically as axiomatic type class [34] whose logical content are the assumptions of the locale. Thus, classes provide the full generality of locales combined with the commodity of type classes (notably type-inference). See [9] for a short tutorial.

```
class : theory \rightarrow local_theory
instantiation : theory \rightarrow local_theory
instance : local_theory \rightarrow local_theory
instance : theory \rightarrow proof(prove)
subclass : local_theory \rightarrow local_theory
print_classes* : context \rightarrow
class_deps* : context \rightarrow
intro_classes : method
```
class $c = \text{superclasses} + \text{body}$ defines a new class c, inheriting from superclasses. This introduces a locale c with import of all locales superclasses.

Any **fixes** in body are lifted to the global theory level (class operations f_1, \ldots, f_n of class c), mapping the local type parameter α to a schematic type variable $\alpha :: c$.

Likewise, **assumes** in body are also lifted, mapping each local parameter $f :: \tau[\alpha]$ to its corresponding global constant $f :: \tau[?\alpha :: c]$. The corresponding introduction rule is provided as $c_\text{class_axioms.intro}$. This rule should be rarely needed directly — the intro_classes method takes care of the details of class membership proofs.

instantiation $t :: (s_1, \ldots, s_n)s$ **begin** opens a theory target (cf. §5.2) which allows to specify class operations f_1, \ldots, f_n corresponding to sort s at the particular type instance $(\alpha_1 :: s_1, \ldots, \alpha_n :: s_n) t$. A plain **instance** command in the target body poses a goal stating these type arities. The target is concluded by an **end** command.

Note that a list of simultaneous type constructors may be given; this corresponds nicely to mutually recursive type definitions, e.g. in Isabelle/HOL.

instance in an instantiation target body sets up a goal stating the type arities claimed at the opening instantiation. The proof would usually proceed by intro_classes, and then establish the characteristic theorems of the type classes involved. After finishing the proof, the background theory will be augmented by the proven type arities.

On the theory level, **instance** $t :: (s_1, \ldots, s_n)s$ provides a convenient way to instantiate a type class with no need to specify operations: one can continue with the instantiation proof immediately.

subclass c in a class context for class d sets up a goal stating that class c is logically contained in class d. After finishing the proof, class d is proven to be subclass c and the locale c is interpreted into d simultaneously.

A weakened form of this is available through a further variant of **instance**: **instance** $c_1 \subseteq c_2$ opens a proof that class c_2 implies c_1 without reference to the underlying locales; this is useful if the properties to prove the logical connection are not sufficient on the locale level but on the theory level.

print_classes prints all classes in the current theory.
class_deps visualizes all classes and their subclass relations as a Hasse diagram.

intro_classes repeatedly expands all class introduction rules of this theory. Note that this method usually needs not be named explicitly, as it is already included in the default proof step (e.g. of proof). In particular, instantiation of trivial (syntactic) classes may be performed by a single “..” proof step.

5.6.1 The class target

A named context may refer to a locale (cf. §5.2). If this locale is also a class c, apart from the common locale target behaviour the following happens.

- Local constant declarations $g[\alpha]$ referring to the local type parameter α and local parameters $f[\alpha]$ are accompanied by theory-level constants $g[?\alpha :: c]$ referring to theory-level class operations $f[?\alpha :: c]$.

- Local theorem bindings are lifted as are assumptions.

- Local syntax refers to local operations $g[\alpha]$ and global operations $g[?\alpha :: c]$ uniformly. Type inference resolves ambiguities. In rare cases, manual type annotations are needed.

5.6.2 Old-style axiomatic type classes

axclass : theory \rightarrow theory

Axiomatic type classes are Isabelle/Pure’s primitive interface to type classes. For practical applications, you should consider using classes (cf. §5.9.1) which provide high level interface.

axclass $c \subseteq c_1, \ldots, c_n$ axms defines an axiomatic type class as the intersection of existing classes, with additional axioms holding. Class axioms may not contain more than one type variable. The class axioms (with implicit sort constraints added) are bound to the given names.
Furthermore a class introduction rule is generated (being bound as \texttt{c_class.intro}); this rule is employed by method \texttt{intro_classes} to support instantiation proofs of this class.

The “class axioms” (which are derived from the internal class definition) are stored as theorems according to the given name specifications; the name space prefix \texttt{c_class} is added here. The full collection of these facts is also stored as \texttt{c_class.axioms}.

5.7 Unrestricted overloading

Isabelle/Pure’s definitional schemes support certain forms of overloading (see §5.9.4). Overloading means that a constant being declared as \(c :: \alpha \text{ decl} \) may be defined separately on type instances \(c :: (\beta_1, \ldots, \beta_n) \ t \text{ decl} \) for each type constructor \(t \). At most occasions overloading will be used in a Haskell-like fashion together with type classes by means of \texttt{instantiation} (see §5.6). Sometimes low-level overloading is desirable. The \texttt{overloading} target provides a convenient view for end-users.

\begin{verbatim}
overloading \(x_1 \equiv c_1 :: \tau_1 \) and \(x_n \equiv c_n :: \tau_n \) begin
\end{verbatim}

\texttt{overloading \(x_1 \equiv c_1 :: \tau_1 \) and \(x_n \equiv c_n :: \tau_n \) begin} opens a theory target (cf. §5.2) which allows to specify constants with overloaded definitions. These are identified by an explicitly given mapping from variable names \(x_i \) to constants \(c_i \) at particular type instances. The definitions themselves are established using common specification tools, using the names \(x_i \) as reference to the corresponding constants. The target is concluded by \texttt{end}.

A \texttt{(unchecked)} option disables global dependency checks for the corresponding definition, which is occasionally useful for exotic overloading (see §5.9.4 for a precise description). It is at the discretion of the user to avoid malformed theory specifications!
5.8 Incorporating ML code

use : \textit{local_theory} \rightarrow \textit{local_theory}
ML : \textit{local_theory} \rightarrow \textit{local_theory}
ML_prf : \textit{proof} \rightarrow \textit{proof}
ML_val : \textit{any} \rightarrow
ML_command : \textit{any} \rightarrow
setup : \textit{theory} \rightarrow \textit{theory}
local_setup : \textit{local_theory} \rightarrow \textit{local_theory}
attribute_setup : \textit{theory} \rightarrow \textit{theory}

bind_thms: \text{string} * \text{thm list} \rightarrow \text{unit}
binding_thm: \text{string} * \text{thm} \rightarrow \text{unit}

\begin{center}
\text{use} \\ \text{name}
\end{center}

\begin{center}
\text{ML} \\ \text{text}
\end{center}

\begin{center}
\text{ML_prf} \\ \text{ML_val} \\ \text{ML_command} \\ \text{setup} \\ \text{local_setup}
\end{center}

\begin{center}
\text{attribute_setup} \\ \text{name} = \text{text} \text{text}
\end{center}

\textbf{use file} reads and executes ML commands from file. The current theory context is passed down to the ML toplevel and may be modified, using \texttt{Context.>>} or derived ML commands. The file name is checked with the \texttt{uses} dependency declaration given in the theory header (see also §5.1).

Top-level ML bindings are stored within the (global or local) theory context.

\textbf{ML text} is similar to \texttt{use}, but executes ML commands directly from the given text. Top-level ML bindings are stored within the (global or local) theory context.
ML_prf is analogous to ML but works within a proof context.

Top-level ML bindings are stored within the proof context in a purely sequential fashion, disregarding the nested proof structure. ML bindings introduced by ML_prf are discarded at the end of the proof.

ML_val and ML_command are diagnostic versions of ML, which means that the context may not be updated. ML_val echos the bindings produced at the ML toplevel, but ML_command is silent.

setup text changes the current theory context by applying text, which refers to an ML expression of type theory -> theory. This enables to initialize any object-logic specific tools and packages written in ML, for example.

local_setup is similar to setup for a local theory context, and an ML expression of type local_theory -> local_theory. This allows to invoke local theory specification packages without going through concrete outer syntax, for example.

attribute_setup name = text description defines an attribute in the current theory. The given text has to be an ML expression of type attribute context_parser, cf. basic parsers defined in structure Args and Attrib.

In principle, attributes can operate both on a given theorem and the implicit context, although in practice only one is modified and the other serves as parameter. Here are examples for these two cases:

attribute_setup my_rule = ⟨⟨
Attrib.thms >> (fn ths =>
 Thm.rule_attribute (fn context: Context.generic => fn th: thm =>
 let val th' = th OF ths
 in th' end)) ⟩⟩ my rule

attribute_setup my_declaration = ⟨⟨
Attrib.thms >> (fn ths =>
 Thm.declaration_attribute (fn th: thm => fn context: Context.generic =>
 let val context' = context
 in context' end)) ⟩⟩ my declaration

bind_thms (name, thms) stores a list of theorems produced in ML both in the theory context and the ML toplevel, associating it with the provided name. Theorems are put into a global “standard” format before being stored.
bind_thm is similar to bind_thms but refers to a singleton theorem.

5.9 Primitive specification elements

5.9.1 Type classes and sorts

\begin{itemize}
 \item \textbf{classes} : $\text{theory} \rightarrow \text{theory}$
 \item \textbf{classrel} : $\text{theory} \rightarrow \text{theory}$ (axiomatic!)
 \item \textbf{defaultsort} : $\text{theory} \rightarrow \text{theory}$
 \item \textbf{class_deps}* : $\text{context} \rightarrow$
\end{itemize}

\begin{center}
\begin{tikzpicture}
 \node (classes) {\textbf{classes}};
 \node (classdecl) [below of=classes] {\textbf{classdecl}};
 \node (classrel) [right of=classes] {\textbf{classrel}};
 \node (nameref) [below of=classrel] {\textbf{nameref}};
 \node (and) [below of=nameref] {\textbf{and}};
 \node (defaultsort) [below of=classrel] {\textbf{defaultsort}};
 \node (sort) [below of=defaultsort] {\textbf{sort}};
 \draw [->] (classes) -- (classdecl);
 \draw [->] (classrel) -- (nameref);
 \draw [->] (nameref) -- (and);
 \draw [->] (defaultsort) -- (sort);
\end{tikzpicture}
\end{center}

\textbf{classes} $c \subseteq c_1, \ldots, c_n$ declares class c to be a subclass of existing classes c_1, \ldots, c_n. Isabelle implicitly maintains the transitive closure of the class hierarchy. Cyclic class structures are not permitted.

\textbf{classrel} $c_1 \subseteq c_2$ states subclass relations between existing classes c_1 and c_2. This is done axiomatically! The \textbf{instance} command (see §5.6.2) provides a way to introduce proven class relations.

\textbf{defaultsort} s makes sort s the new default sort for any type variable that is given explicitly in the text, but lacks a sort constraint (wrt. the current context). Type variables generated by type inference are not affected. Usually the default sort is only changed when defining a new object-logic. For example, the default sort in Isabelle/HOL is \texttt{type}, the class of all HOL types.

When merging theories, the default sorts of the parents are logically intersected, i.e. the representations as lists of classes are joined.
class_deps visualizes the subclass relation, using Isabelle’s graph browser tool (see also [38]).

5.9.2 Types and type abbreviations

\[
\begin{align*}
types : & \quad \text{theory} \rightarrow \text{theory} \\
typedecl : & \quad \text{theory} \rightarrow \text{theory} \\
arities : & \quad \text{theory} \rightarrow \text{theory} \quad \text{(axiomatic!)}
\end{align*}
\]

types \((\alpha_1, \ldots, \alpha_n)\ t = \tau\) introduces a *type synonym* \((\alpha_1, \ldots, \alpha_n)\ t\) for the existing type \(\tau\). Unlike actual type definitions, as are available in Isabelle/HOL for example, type synonyms are merely syntactic abbreviations without any logical significance. Internally, type synonyms are fully expanded.

typedecl \((\alpha_1, \ldots, \alpha_n)\ t\) declares a new type constructor \(t\). If the object-logic defines a base sort \(s\), then the constructor is declared to operate on that, via the axiomatic specification **arities** \(t :: (s, \ldots, s)s\).

arities \(t :: (s_1, \ldots, s_n)s\) augments Isabelle’s order-sorted signature of types by new type constructor arities. This is done axiomatically! The **instance** command (see §5.6.2) provides a way to introduce proven type arities.
5.9.3 Co-regularity of type classes and arities

The class relation together with the collection of type-constructor arities must obey the principle of co-regularity as defined below.

For the subsequent formulation of co-regularity we assume that the class relation is closed by transitivity and reflexivity. Moreover the collection of arities \(t :: (\overline{s})c \) is completed such that \(t :: (\overline{s})c \) and \(c \subseteq c' \) implies \(t :: (\overline{s})c' \) for all such declarations.

Treating sorts as finite sets of classes (meaning the intersection), the class relation \(c_1 \subseteq c_2 \) is extended to sorts as follows:

\[
s_1 \subseteq s_2 \equiv \forall \ c_2 \in s_2. \ \exists \ c_1 \in s_1. \ c_1 \subseteq c_2
\]

This relation on sorts is further extended to tuples of sorts (of the same length) in the component-wise way.

Co-regularity of the class relation together with the arities relation means:

\[t :: (\overline{s}_1)c_1 \Rightarrow t :: (\overline{s}_2)c_2 \Rightarrow c_1 \subseteq c_2 \Rightarrow \overline{s}_1 \subseteq \overline{s}_2 \]

for all such arities. In other words, whenever the result classes of some type-constructor arities are related, then the argument sorts need to be related in the same way.

Co-regularity is a very fundamental property of the order-sorted algebra of types. For example, it entails principle types and most general unifiers, e.g. see [21].

5.9.4 Constants and definitions

Definitions essentially express abbreviations within the logic. The simplest form of a definition is \(c :: \sigma \equiv t \), where \(c \) is a newly declared constant. Isabelle also allows derived forms where the arguments of \(c \) appear on the left, abbreviating a prefix of \(\lambda \)-abstractions, e.g. \(c \equiv \lambda x \ y. \ t \) may be written more conveniently as \(c \ x \ y \equiv t \). Moreover, definitions may be weakened by adding arbitrary pre-conditions: \(A \Rightarrow c \ x \ y \equiv t \).

The built-in well-formedness conditions for definitional specifications are:

- Arguments (on the left-hand side) must be distinct variables.
- All variables on the right-hand side must also appear on the left-hand side.
- All type variables on the right-hand side must also appear on the left-hand side; this prohibits \(0 :: nat \equiv length ([] :: \alpha \ list) \) for example.
• The definition must not be recursive. Most object-logics provide definitional principles that can be used to express recursion safely.

The right-hand side of overloaded definitions may mention overloaded constants recursively at type instances corresponding to the immediate argument types \(\beta_1, \ldots, \beta_n \). Incomplete specification patterns impose global constraints on all occurrences, e.g. \(d :: \alpha \times \alpha \) on the left-hand side means that all corresponding occurrences on some right-hand side need to be an instance of this, general \(d :: \alpha \times \beta \) will be disallowed.

\[
\text{consts} : \text{theory} \rightarrow \text{theory} \\
\text{defs} : \text{theory} \rightarrow \text{theory} \\
\text{constdefs} : \text{theory} \rightarrow \text{theory}
\]
CHAPTER 5. THEORY SPECIFICATIONS

constdecl

\[
\text{name} :: \text{type} \quad \text{mixfix}
\]

constdef

\[
\text{prop}
\]

consts \(c :: \sigma \) declares constant \(c \) to have any instance of type scheme \(\sigma \). The optional mixfix annotations may attach concrete syntax to the constants declared.

defs \(\text{name: eqn} \) introduces \(\text{eqn} \) as a definitional axiom for some existing constant.

The \((\text{unchecked})\) option disables global dependency checks for this definition, which is occasionally useful for exotic overloading. It is at the discretion of the user to avoid malformed theory specifications!

The \((\text{overloaded})\) option declares definitions to be potentially overloaded. Unless this option is given, a warning message would be issued for any definitional equation with a more special type than that of the corresponding constant declaration.

constdefs combines constant declarations and definitions, with type-inference taking care of the most general typing of the given specification (the optional type constraint may refer to type-inference dummies “.” as usual). The resulting type declaration needs to agree with that of the specification; overloading is not supported here!

The constant name may be omitted altogether, if neither type nor syntax declarations are given. The canonical name of the definitional axiom for constant \(c \) will be \(c.\text{def} \), unless specified otherwise. Also note that the given list of specifications is processed in a strictly sequential manner, with type-checking being performed independently.

An optional initial context of \((\text{structure})\) declarations admits use of indexed syntax, using the special symbol \(<\text{index}>\) (printed as “\(i\)”). The latter concept is particularly useful with locales (see also §5.5).
5.10 Axioms and theorems

axioms : $\text{theory} \rightarrow \text{theory}$ \hspace{1cm} (axiomatic!)

lemmas : $\text{local_theory} \rightarrow \text{local_theory}$

theorems : $\text{local_theory} \rightarrow \text{local_theory}$

axioms φ introduces arbitrary statements as axioms of the meta-logic.
In fact, axioms are “axiomatic theorems”, and may be referred later just as any other theorem.

Axioms are usually only introduced when declaring new logical systems.
Everyday work is typically done the hard way, with proper definitions and proven theorems.

lemmas $a = b_1 \ldots b_n$ retrieves and stores existing facts in the theory context, or the specified target context (see also §5.2). Typical applications would also involve attributes, to declare Simplifier rules, for example.

theorems is essentially the same as lemmas, but marks the result as a different kind of facts.

5.11 Oracles

Oracles allow Isabelle to take advantage of external reasoners such as arithmetic decision procedures, model checkers, fast tautology checkers or computer algebra systems. Invoked as an oracle, an external reasoner can create arbitrary Isabelle theorems.

It is the responsibility of the user to ensure that the external reasoner is as trustworthy as the application requires. Another typical source of errors is the linkup between Isabelle and the external tool, not just its concrete implementation, but also the required translation between two different logical environments.
Isabelle merely guarantees well-formedness of the propositions being asserted, and records within the internal derivation object how presumed theorems depend on unproven suppositions.

oracle : \(\text{theory} \rightarrow \text{theory} \)

\[\text{oracle} \quad \text{name} = \quad \text{text} \]

oracle \(\text{name} = \text{text} \) turns the given ML expression \(\text{text} \) of type `'a \rightarrow \text{cterm}` into an ML function of type `'a \rightarrow \text{thm}`, which is bound to the global identifier \(\text{name} \). This acts like an infinitary specification of axioms! Invoking the oracle only works within the scope of the resulting theory.

See \(\sim\sim/src/FOL/ex/Iff_Oracle.thy \) for a worked example of defining a new primitive rule as oracle, and turning it into a proof method.

5.12 Name spaces

global : \(\text{theory} \rightarrow \text{theory} \)
local : \(\text{theory} \rightarrow \text{theory} \)
hide : \(\text{theory} \rightarrow \text{theory} \)

\[\text{hide} \quad \text{name} \quad \text{nameref} \]

Isabelle organizes any kind of name declarations (of types, constants, theorems etc.) by separate hierarchically structured name spaces. Normally the user does not have to control the behavior of name spaces by hand, yet the following commands provide some way to do so.

global and **local** change the current name declaration mode. Initially, theories start in **local** mode, causing all names to be automatically qualified by the theory name. Changing this to **global** causes all names to be declared without the theory prefix, until **local** is declared again.

Note that global names are prone to get hidden accidently later, when qualified names of the same base name are introduced.
hide space names fully removes declarations from a given name space
(which may be class, type, const, or fact); with the (open) option,
only the base name is hidden. Global (unqualified) names may never
be hidden.

Note that hiding name space accesses has no impact on logical dec-
larations — they remain valid internally. Entities that are no longer
accessible to the user are printed with the special qualifier “??” pre-
fixed to the full internal name.
Proofs

Proof commands perform transitions of Isar/VM machine configurations, which are block-structured, consisting of a stack of nodes with three main components: logical proof context, current facts, and open goals. Isar/VM transitions are typed according to the following three different modes of operation:

- **proof** (prove) means that a new goal has just been stated that is now to be proven; the next command may refine it by some proof method, and enter a sub-proof to establish the actual result.

- **proof** (state) is like a nested theory mode: the context may be augmented by stating additional assumptions, intermediate results etc.

- **proof** (chain) is intermediate between **proof** (state) and **proof** (prove): existing facts (i.e. the contents of the special “this” register) have been just picked up in order to be used when refining the goal claimed next.

The proof mode indicator may be understood as an instruction to the writer, telling what kind of operation may be performed next. The corresponding typings of proof commands restricts the shape of well-formed proof texts to particular command sequences. So dynamic arrangements of commands eventually turn out as static texts of a certain structure.

Appendix A gives a simplified grammar of the (extensible) language emerging that way from the different types of proof commands. The main ideas of the overall Isar framework are explained in chapter 2.

6.1 Proof structure

6.1.1 Blocks

\[
\begin{align*}
\text{next} & : \text{proof(state)} \rightarrow \text{proof(state)} \\
\{} & : \text{proof(state)} \rightarrow \text{proof(state)} \\
\} & : \text{proof(state)} \rightarrow \text{proof(state)}
\end{align*}
\]
While Isar is inherently block-structured, opening and closing blocks is mostly handled rather casually, with little explicit user-intervention. Any local goal statement automatically opens two internal blocks, which are closed again when concluding the sub-proof (by \texttt{qed} etc.). Sections of different context within a sub-proof may be switched via \texttt{next}, which is just a single block-close followed by block-open again. The effect of \texttt{next} is to reset the local proof context; there is no goal focus involved here!

For slightly more advanced applications, there are explicit block parentheses as well. These typically achieve a stronger forward style of reasoning.

\texttt{next} switches to a fresh block within a sub-proof, resetting the local context to the initial one.

\{ and \} explicitly open and close blocks. Any current facts pass through “\{” unchanged, while “\}” causes any result to be exported into the enclosing context. Thus fixed variables are generalized, assumptions discharged, and local definitions unfolded (cf. §6.2.1). There is no difference of \texttt{assume} and \texttt{presume} in this mode of forward reasoning — in contrast to plain backward reasoning with the result exported at \texttt{show} time.

6.1.2 Omitting proofs

\texttt{oops} : \texttt{proof \rightarrow local_theory | theory}

The \texttt{oops} command discontinues the current proof attempt, while considering the partial proof text as properly processed. This is conceptually quite different from “faking” actual proofs via \texttt{sorry} (see §6.3.2): \texttt{oops} does not observe the proof structure at all, but goes back right to the theory level. Furthermore, \texttt{oops} does not produce any result theorem — there is no intended claim to be able to complete the proof anyhow.

A typical application of \texttt{oops} is to explain Isar proofs \textit{within} the system itself, in conjunction with the document preparation tools of Isabelle described in chapter 4. Thus partial or even wrong proof attempts can be discussed in a logically sound manner. Note that the Isabelle \LaTeX macros can be easily adapted to print something like “…” instead of the keyword “\texttt{oops}”.

The \texttt{oops} command is undo-able, unlike \texttt{kill} (see §8.2). The effect is to get back to the theory just before the opening of the proof.
6.2 Statements

6.2.1 Context elements

\begin{align*}
\text{fix} &: \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \\
\text{assume} &: \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \\
\text{presume} &: \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \\
\text{def} &: \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state})
\end{align*}

The logical proof context consists of fixed variables and assumptions. The former closely correspond to Skolem constants, or meta-level universal quantification as provided by the Isabelle/Pure logical framework. Introducing some arbitrary, but fixed variable via “fix x” results in a local value that may be used in the subsequent proof as any other variable or constant. Furthermore, any result $\vdash \varphi[x]$ exported from the context will be universally closed wrt. x at the outermost level: $\vdash \forall x. \varphi[x]$ (this is expressed in normal form using Isabelle’s meta-variables).

Similarly, introducing some assumption χ has two effects. On the one hand, a local theorem is created that may be used as a fact in subsequent proof steps. On the other hand, any result $\chi \vdash \varphi$ exported from the context becomes conditional wrt. the assumption: $\vdash \chi \Longrightarrow \varphi$. Thus, solving an enclosing goal using such a result would basically introduce a new subgoal stemming from the assumption. How this situation is handled depends on the version of assumption command used: while assume insists on solving the subgoal by unification with some premise of the goal, presume leaves the subgoal unchanged in order to be proved later by the user.

Local definitions, introduced by “def $x \equiv t$”, are achieved by combining “fix x” with another version of assumption that causes any hypothetical equation $x \equiv t$ to be eliminated by the reflexivity rule. Thus, exporting some result $x \equiv t \vdash \varphi[x]$ yields $\vdash \varphi[t]$.

\begin{center}
\begin{tikzpicture}
 \node (fix) {fix};
 \node (vars) [below left of=fix] {vars};
 \node (and) [below of=fix] {and};
 \node (assume) [below left of=vars] {assume};
 \node (props) [below of=assume] {props};
 \node (presume) [below of=assume] {presume};
 \node (def) [below of=props] {def};
 \node (and2) [below of=def] {and};

 \draw[->] (fix) -- (vars);
 \draw[->] (vars) -- (and);
 \draw[->] (fix) -- (assume);
 \draw[->] (assume) -- (props);
 \draw[->] (props) -- (presume);
 \draw[->] (presume) -- (def);
 \draw[->] (def) -- (and2);
\end{tikzpicture}
\end{center}
def

\textbf{fix} \ x \textit{introduces a local variable} \ x \textit{that is} \textit{arbitrary, but fixed.}

\textbf{assume} \ a: \varphi \textit{and} \textbf{presume} \ a: \varphi \textit{introduce a local fact} \varphi \vdash \varphi \textit{by assumption. }

\textit{Subsequent results applied to an enclosing goal (e.g. by \texttt{show}) are handled as follows: \texttt{assume} expects to be able to unify with existing premises in the goal, while \texttt{presume} leaves} \varphi \textit{as new subgoals.}

\textit{Several lists of assumptions may be given (separated by \texttt{and}; the resulting list of current facts consists of all of these concatenated.}

\textbf{def} \ x \equiv t \textit{introduces a local (non-polymorphic) definition. In results exported from the context,} \ x \textit{is replaced by} t. \textit{Basically, } “\textbf{def} \ x \equiv t” \textit{abbreviates “\texttt{fix} \ x \texttt{assume} \ x \equiv t”, with the resulting hypothetical equation solved by reflexivity.}

\textit{The default name for the definitional equation is} x._def. \textit{Several simultaneous definitions may be given at the same time.}

\textit{The special name \texttt{prems} refers to all assumptions of the current context as a list of theorems. This feature should be used with great care! It is better avoided in final proof texts.}

\textbf{6.2.2 Term abbreviations}

\begin{align*}
\textbf{let} & : \quad \texttt{proof}(\texttt{state}) \rightarrow \texttt{proof}(\texttt{state}) \\
\textbf{is} & : \quad \texttt{syntax}
\end{align*}

\textit{Abbreviations may be either bound by explicit \texttt{let} \ p \equiv t \texttt{statements, or by annotating assumptions or goal statements with a list of patterns “(\texttt{is} \ p_1 \ldots p_n)”}. In both cases, higher-order matching is invoked to bind extralogical term variables, which may be either named schematic variables of the form \texttt{?x}, or nameless dummies “_” (underscore). Note that in the \texttt{let} form}
the patterns occur on the left-hand side, while the is patterns are in postfix position.

Polymorphism of term bindings is handled in Hindley-Milner style, similar to ML. Type variables referring to local assumptions or open goal statements are fixed, while those of finished results or bound by let may occur in arbitrary instances later. Even though actual polymorphism should be rarely used in practice, this mechanism is essential to achieve proper incremental type-inference, as the user proceeds to build up the Isar proof text from left to right.

Term abbreviations are quite different from local definitions as introduced via def (see §6.2.1). The latter are visible within the logic as actual equations, while abbreviations disappear during the input process just after type checking. Also note that def does not support polymorphism.

The syntax of is patterns follows termpat or proppat (see §3.2.5).

The syntax of is patterns follows termpat or proppat (see §3.2.5).

\[
\text{let } p_1 = t_1 \text{ and } \ldots \text{ and } p_n = t_n \quad \text{binds any text variables in patterns } p_1, \ldots, p_n \text{ by simultaneous higher-order matching against terms } t_1, \ldots, t_n.
\]

\[\text{(is } p_1 \ldots p_n) \text{ resembles let, but matches } p_1, \ldots, p_n \text{ against the preceding statement. Also note that is is not a separate command, but part of others (such as assume, have etc.).}\]

Some implicit term abbreviations for goals and facts are available as well. For any open goal, thesis refers to its object-level statement, abstracted over any meta-level parameters (if present). Likewise, this is bound for fact statements resulting from assumptions or finished goals. In case this refers to an object-logic statement that is an application \(f t\), then \(t\) is bound to the special text variable “…” (three dots). The canonical application of this convenience are calculational proofs (see §6.5).
6.2.3 Facts and forward chaining

\textbf{note} : \(\text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \)
\textbf{then} : \(\text{proof}(\text{state}) \rightarrow \text{proof}(\text{chain}) \)
\textbf{from} : \(\text{proof}(\text{state}) \rightarrow \text{proof}(\text{chain}) \)
\textbf{with} : \(\text{proof}(\text{state}) \rightarrow \text{proof}(\text{chain}) \)
\textbf{using} : \(\text{proof}(\text{prove}) \rightarrow \text{proof}(\text{prove}) \)
\textbf{unfolding} : \(\text{proof}(\text{prove}) \rightarrow \text{proof}(\text{prove}) \)

New facts are established either by assumption or proof of local statements. Any fact will usually be involved in further proofs, either as explicit arguments of proof methods, or when forward chaining towards the next goal via \textbf{then} (and variants); \textbf{from} and \textbf{with} are composite forms involving \textbf{note}. The \textbf{using} elements augments the collection of used facts after a goal has been stated. Note that the special theorem name \textit{this} refers to the most recently established facts, but only before issuing a follow-up claim.

\textbf{note} \(a = b_1 \ldots b_n \) recalls existing facts \(b_1, \ldots, b_n \), binding the result as \(a \). Note that attributes may be involved as well, both on the left and right hand sides.

\textbf{then} indicates forward chaining by the current facts in order to establish the goal to be claimed next. The initial proof method invoked to refine that will be offered the facts to do “anything appropriate” (see also §6.3.2). For example, method \textit{rule} (see §6.3.3) would typically do an elimination rather than an introduction. Automatic methods usually insert the facts into the goal state before operation. This provides a simple scheme to control relevance of facts in automated proof search.
from b abbreviates “note b then”; thus then is equivalent to “from this”.

with $b_1 \ldots b_n$ abbreviates “from $b_1 \ldots b_n$ and this”; thus the forward chaining is from earlier facts together with the current ones.

using $b_1 \ldots b_n$ augments the facts being currently indicated for use by a subsequent refinement step (such as apply or proof).

unfolding $b_1 \ldots b_n$ is structurally similar to using, but unfolds definitional equations $b_1, \ldots b_n$ throughout the goal state and facts.

Forward chaining with an empty list of theorems is the same as not chaining at all. Thus “from nothing” has no effect apart from entering prove(chain) mode, since nothing is bound to the empty list of theorems.

Basic proof methods (such as rule) expect multiple facts to be given in their proper order, corresponding to a prefix of the premises of the rule involved. Note that positions may be easily skipped using something like from _ and a and b, for example. This involves the trivial rule $PROP \psi \Rightarrow PROP \psi$, which is bound in Isabelle/Pure as “.” (underscore).

Automated methods (such as simp or auto) just insert any given facts before their usual operation. Depending on the kind of procedure involved, the order of facts is less significant here.

6.2.4 Goals

lemma : $local_theory \rightarrow proof(prove)$

theorem : $local_theory \rightarrow proof(prove)$

corollary : $local_theory \rightarrow proof(prove)$

have : $proof(state) | proof(chain) \rightarrow proof(prove)$

show : $proof(state) | proof(chain) \rightarrow proof(prove)$

hence : $proof(state) \rightarrow proof(prove)$

thus : $proof(state) \rightarrow proof(prove)$

print_statement* : $context \rightarrow$

From a theory context, proof mode is entered by an initial goal command such as **lemma**, **theorem**, or **corollary**. Within a proof, new claims may be introduced locally as well; four variants are available here to indicate whether forward chaining of facts should be performed initially (via then), and whether the final result is meant to solve some pending goal.

Goals may consist of multiple statements, resulting in a list of facts eventually. A pending multi-goal is internally represented as a meta-level conjunction ($\&\&\&$), which is usually split into the corresponding number of
sub-goals prior to an initial method application, via `proof` (§6.3.2) or `apply` (§6.3.4). The `induct` method covered in §6.6 acts on multiple claims simultaneously.

Claims at the theory level may be either in short or long form. A short goal merely consists of several simultaneous propositions (often just one). A long goal includes an explicit context specification for the subsequent conclusion, involving local parameters and assumptions. Here the role of each part of the statement is explicitly marked by separate keywords (see also §5.5); the local assumptions being introduced here are available as `assms` in the proof. Moreover, there are two kinds of conclusions: `shows` states several simultaneous propositions (essentially a big conjunction), while `obtains` claims several simultaneous simultaneous contexts of (essentially a big disjunction of eliminated parameters and assumptions, cf. §6.4).
conclusion

\[\text{shows} \quad \text{goal} \]

\[\text{obtains} \quad \text{case} \]

\[\text{parname} \quad \text{1} \]

\[\text{vars} \quad \text{where} \quad \text{props} \]

\[\text{and} \quad \text{and} \]

lemma $a: \varphi$ enters proof mode with φ as main goal, eventually resulting in some fact $\vdash \varphi$ to be put back into the target context. An additional context specification may build up an initial proof context for the subsequent claim; this includes local definitions and syntax as well, see the definition of contextelem in §5.5.

theorem $a: \varphi$ and **corollary** $a: \varphi$ are essentially the same as **lemma** $a: \varphi$, but the facts are internally marked as being of a different kind. This discrimination acts like a formal comment.

have $a: \varphi$ claims a local goal, eventually resulting in a fact within the current logical context. This operation is completely independent of any pending sub-goals of an enclosing goal statements, so **have** may be freely used for experimental exploration of potential results within a proof body.

show $a: \varphi$ is like **have** $a: \varphi$ plus a second stage to refine some pending sub-goal for each one of the finished result, after having been exported into the corresponding context (at the head of the sub-proof of this **show** command).

To accommodate interactive debugging, resulting rules are printed before being applied internally. Even more, interactive execution of **show** predicts potential failure and displays the resulting error as a warning beforehand. Watch out for the following message:

Problem! Local statement will fail to solve any pending goal
hence abbreviates “then have”, i.e. claims a local goal to be proven by forward chaining the current facts. Note that hence is also equivalent to “from this have”.

thus abbreviates “then show”. Note that thus is also equivalent to “from this show”.

print_statement a prints facts from the current theory or proof context in long statement form, according to the syntax for lemma given above.

Any goal statement causes some term abbreviations (such as ?thesis) to be bound automatically, see also §6.2.2.

The optional case names of obtains have a twofold meaning: (1) during the of this claim they refer to the the local context introductions, (2) the resulting rule is annotated accordingly to support symbolic case splits when used with the cases method (cf. §6.6).

Isabelle/Isar suffers theory-level goal statements to contain unbound schematic variables, although this does not conform to the aim of human-readable proof documents! The main problem with schematic goals is that the actual outcome is usually hard to predict, depending on the behavior of the proof methods applied during the course of reasoning. Note that most semi-automated methods heavily depend on several kinds of implicit rule declarations within the current theory context. As this would also result in non-compositional checking of sub-proofs, local goals are not allowed to be schematic at all. Nevertheless, schematic goals do have their use in Prolog-style interactive synthesis of proven results, usually by stepwise refinement via emulation of traditional Isabelle tactic scripts (see also §6.3.4). In any case, users should know what they are doing.

6.3 Refinement steps

6.3.1 Proof method expressions

Proof methods are either basic ones, or expressions composed of methods via “,” (sequential composition), “|” (alternative choices), “?” (try), “+” (repeat at least once), “[n]” (restriction to first n sub-goals, with default n = 1). In practice, proof methods are usually just a comma separated list of nameref args specifications. Note that parentheses may be dropped for single method specifications (with no arguments).
Proper Isar proof methods do not admit arbitrary goal addressing, but refer either to the first sub-goal or all sub-goals uniformly. The goal restriction operator “\([n]\)” evaluates a method expression within a sandbox consisting of the first \(n\) sub-goals (which need to exist). For example, the method “\(\text{simp_all}[3]\)” simplifies the first three sub-goals, while “\((\text{rule foo, simp_all})[]\)” simplifies all new goals that emerge from applying rule \(\text{foo}\) to the originally first one.

Improper methods, notably tactic emulations, offer a separate low-level goal addressing scheme as explicit argument to the individual tactic being involved. Here “\([!]\)” refers to all goals, and “\([n-]\)” to all goals starting from \(n\).
6.3.2 Initial and terminal proof steps

\[
\text{proof} : \quad \text{proof}(\text{prove}) \to \text{proof}(\text{state}) \\
\text{qed} : \quad \text{proof}(\text{state}) \to \text{proof}(\text{state}) | \text{local_theory} | \text{theory} \\
\text{by} : \quad \text{proof}(\text{prove}) \to \text{proof}(\text{state}) | \text{local_theory} | \text{theory} \\
.. : \quad \text{proof}(\text{prove}) \to \text{proof}(\text{state}) | \text{local_theory} | \text{theory} \\
. : \quad \text{proof}(\text{prove}) \to \text{proof}(\text{state}) | \text{local_theory} | \text{theory} \\
\text{sorry} : \quad \text{proof}(\text{prove}) \to \text{proof}(\text{state}) | \text{local_theory} | \text{theory}
\]

Arbitrary goal refinement via tactics is considered harmful. Structured proof composition in Isar admits proof methods to be invoked in two places only.

1. An initial refinement step \text{proof} \ m_1 reduces a newly stated goal to a number of sub-goals that are to be solved later. Facts are passed to \ m_1 for forward chaining, if so indicated by \text{proof}(\text{chain}) mode.

2. A terminal conclusion step \text{qed} \ m_2 is intended to solve remaining goals. No facts are passed to \ m_2.

The only other (proper) way to affect pending goals in a proof body is by \text{show}, which involves an explicit statement of what is to be solved eventually. Thus we avoid the fundamental problem of unstructured tactic scripts that consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods should either solve the goal completely, or constitute some well-understood reduction to new sub-goals. Arbitrary automatic proof tools that are prone leave a large number of badly structured sub-goals are no help in continuing the proof document in an intelligible manner.

Unless given explicitly by the user, the default initial method is “\text{rule}”, which applies a single standard elimination or introduction rule according to the topmost symbol involved. There is no separate default terminal method. Any remaining goals are always solved by assumption in the very last step.
proof m_1 refines the goal by proof method m_1; facts for forward chaining are passed if so indicated by proof(chain) mode.

qed m_2 refines any remaining goals by proof method m_2 and concludes the sub-proof by assumption. If the goal had been show (or thus), some pending sub-goal is solved as well by the rule resulting from the result exported into the enclosing goal context. Thus qed may fail for two reasons: either m_2 fails, or the resulting rule does not fit to any pending goal\footnote{This includes any additional “strong” assumptions as introduced by assume.} of the enclosing context. Debugging such a situation might involve temporarily changing show into have, or weakening the local context by replacing occurrences of assume by presume.

by m_1 m_2 is a terminal proof; it abbreviates proof m_1 qed m_2, but with backtracking across both methods. Debugging an unsuccessful by m_1 m_2 command can be done by expanding its definition; in many cases proof m_1 (or even apply m_1) is already sufficient to see the problem.

"..." is a default proof; it abbreviates by rule.

"." is a trivial proof; it abbreviates by this.

sorry is a fake proof pretending to solve the pending claim without further ado. This only works in interactive development, or if the quick_and_dirty flag is enabled (in ML). Facts emerging from fake proofs are not the real thing. Internally, each theorem container is tainted by an oracle invocation, which is indicated as “[!]” in the printed result.

The most important application of sorry is to support experimentation and top-down proof development.
6.3.3 Fundamental methods and attributes

The following proof methods and attributes refer to basic logical operations of Isar. Further methods and attributes are provided by several generic and object-logic specific tools and packages (see chapter 9 and chapter 10).

\[
\begin{align*}
- & : \text{method} \\
\text{fact} & : \text{method} \\
\text{assumption} & : \text{method} \\
\text{this} & : \text{method} \\
\text{rule} & : \text{method} \\
\text{intro} & : \text{attribute} \\
\text{elim} & : \text{attribute} \\
\text{dest} & : \text{attribute} \\
\text{rule} & : \text{attribute} \\
\text{OF} & : \text{attribute} \\
\text{of} & : \text{attribute} \\
\text{where} & : \text{attribute}
\end{align*}
\]
“−” (minus) does nothing but insert the forward chaining facts as premises into the goal. Note that command \texttt{proof} without any method actually performs a single reduction step using the \texttt{rule} method; thus a plain do-nothing proof step would be \texttt{proof −} rather than \texttt{proof} alone.

\texttt{fact} \(a_1 \ldots a_n \) composes some fact from \(a_1, \ldots, a_n \) (or implicitly from the current proof context) modulo unification of schematic type and term variables. The rule structure is not taken into account, i.e. meta-level implication is considered atomic. This is the same principle underlying literal facts (cf. §3.2.6): \texttt{have }\varphi\texttt{ by fact} is equivalent to \texttt{note }\varphi'\texttt{'} provided that \(\vdash \varphi \) is an instance of some known \(\vdash \varphi \) in the proof context.

\texttt{assumption} solves some goal by a single assumption step. All given facts are guaranteed to participate in the refinement; this means there may be only 0 or 1 in the first place. Recall that \texttt{qed} (§6.3.2) already concludes any remaining sub-goals by assumption, so structured proofs usually need not quote the \texttt{assumption} method at all.

\texttt{this} applies all of the current facts directly as rules. Recall that “.” (dot) abbreviates \texttt{by this}.
CHAPTER 6. PROOFS

rule $a_1 \ldots a_n$ applies some rule given as argument in backward manner; facts are used to reduce the rule before applying it to the goal. Thus rule without facts is plain introduction, while with facts it becomes elimination.

When no arguments are given, the rule method tries to pick appropriate rules automatically, as declared in the current context using the intro, elim, dest attributes (see below). This is the default behavior of proof and “..” (double-dot) steps (see §6.3.2).

intro, elim, and dest declare introduction, elimination, and destruct rules, to be used with method rule, and similar tools. Note that the latter will ignore rules declared with “?”, while “!” are used most aggressively.

The classical reasoner (see §9.4) introduces its own variants of these attributes; use qualified names to access the present versions of Isabelle/Pure, i.e. Pure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF $a_1 \ldots a_n$ applies some theorem to all of the given rules a_1, \ldots, a_n (in parallel). This corresponds to the op MRS operation in ML, but note the reversed order. Positions may be effectively skipped by including “_” (underscore) as argument.

of t_1, \ldots, t_n performs positional instantiation of term variables. The terms t_1, \ldots, t_n are substituted for any schematic variables occurring in a theorem from left to right; “_” (underscore) indicates to skip a position. Arguments following a “concl:” specification refer to positions of the conclusion of a rule.

where $x_1 = t_1$ and $\ldots x_n = t_n$ performs named instantiation of schematic type and term variables occurring in a theorem. Schematic variables have to be specified on the left-hand side (e.g. $?x1.3$). The question mark may be omitted if the variable name is a plain identifier without index. As type instantiations are inferred from term instantiations, explicit type instantiations are seldom necessary.

6.3.4 Emulating tactic scripts

The Isar provides separate commands to accommodate tactic-style proof scripts within the same system. While being outside the orthodox Isar proof
language, these might come in handy for interactive exploration and debugging, or even actual tactical proof within new-style theories (to benefit from document preparation, for example). See also §9.2.3 for actual tactics, that have been encapsulated as proof methods. Proper proof methods may be used in scripts, too.

\[
\begin{align*}
\text{apply} & : \text{proof} (\text{prove}) \rightarrow \text{proof} (\text{prove}) \\
\text{apply}_\text{end} & : \text{proof} (\text{state}) \rightarrow \text{proof} (\text{state}) \\
\text{done} & : \text{proof} (\text{prove}) \rightarrow \text{proof} (\text{state}) \mid \text{local}_\text{theory} \mid \text{theory} \\
\text{defer} & : \text{proof} \rightarrow \text{proof} \\
\text{prefer} & : \text{proof} \rightarrow \text{proof} \\
\text{back} & : \text{proof} \rightarrow \text{proof}
\end{align*}
\]

\[\text{apply} m\] applies proof method \(m\) in initial position, but unlike \text{proof} it retains “\text{proof} (\text{prove})” mode. Thus consecutive method applications may be given just as in tactic scripts.

Facts are passed to \(m\) as indicated by the goal’s forward-chain mode, and are consumed afterwards. Thus any further \text{apply} command would always work in a purely backward manner.

\[\text{apply}_\text{end} m\] applies proof method \(m\) as if in terminal position. Basically, this simulates a multi-step tactic script for \text{qed}, but may be given anywhere within the proof body.

No facts are passed to \(m\) here. Furthermore, the static context is that of the enclosing goal (as for actual \text{qed}). Thus the proof method may not refer to any assumptions introduced in the current body, for example.

\[\text{done}\] completes a proof script, provided that the current goal state is solved completely. Note that actual structured proof commands (e.g. “.” or \text{sorry}) may be used to conclude proof scripts as well.
defer n and prefer n shuffle the list of pending goals: defer puts off subgoal n to the end of the list ($n = 1$ by default), while prefer brings sub-goal n to the front.

back does back-tracking over the result sequence of the latest proof command. Basically, any proof command may return multiple results.

Any proper Isar proof method may be used with tactic script commands such as apply. A few additional emulations of actual tactics are provided as well; these would be never used in actual structured proofs, of course.

6.3.5 Defining proof methods

method_setup : theory → theory

```ml
method_setup name = text description defines a proof method in the current theory. The given text has to be an ML expression of type (Proof.context -> Proof.method) context_parser, cf. basic parsers defined in structure Args and Attrib. There are also combinators like METHOD and SIMPLE_METHOD to turn certain tactic forms into official proof methods; the primed versions refer to tactics with explicit goal addressing.

Here are some example method definitions:

**method_setup my_method1 =\<
  Scan.succeed (K (SIMPLE_METHOD' (fn i: int => no_tac)))
\> my first method (without any arguments)
```

**method_setup my_method2 =\<
 Scan.succeed (fn ctxt: Proof.context =>
 SIMPLE_METHOD' (fn i: int => no_tac))
\> my second method (with context)
```

**method_setup my_method3 =\<
  Attrib.thms >> (fn thms: thm list => fn ctxt: Proof.context =>
    SIMPLE_METHOD' (fn i: int => no_tac))
\> my third method (with theorem arguments and context)
6.4 Generalized elimination

obtain : proof(state) | proof(chain) → proof(prove)
guess*: proof(state) | proof(chain) → proof(prove)

Generalized elimination means that additional elements with certain properties may be introduced in the current context, by virtue of a locally proven “soundness statement”. Technically speaking, the obtain language element is like a declaration of fix and assume (see also see §6.2.1), together with a soundness proof of its additional claim. According to the nature of existential reasoning, assumptions get eliminated from any result exported from the context later, provided that the corresponding parameters do not occur in the conclusion.

Typically, the soundness proof is relatively straight-forward, often just by canonical automated tools such as “by simp” or “by blast”. Accordingly, the “that” reduction above is declared as simplification and introduction rule.

In a sense, obtain represents at the level of Isar proofs what would be meta-logical existential quantifiers and conjunctions. This concept has a
broad range of useful applications, ranging from plain elimination (or introduction) of object-level existential and conjunctions, to elimination over results of symbolic evaluation of recursive definitions, for example. Also note that \texttt{obtain} without parameters acts much like \texttt{have}, where the result is treated as a genuine assumption.

An alternative name to be used instead of “\texttt{that}” above may be given in parentheses.

The improper variant \texttt{guess} is similar to \texttt{obtain}, but derives the obtained statement from the course of reasoning! The proof starts with a fixed goal \textit{thesis}. The subsequent proof may refine this to anything of the form like \( \bigwedge x_1 \ldots x_m. \varphi_1 \Longrightarrow \ldots \varphi_n \Longrightarrow \textit{thesis} \), but must not introduce new subgoals. The final goal state is then used as reduction rule for the obtain scheme described above. Obtained parameters \( x_1, \ldots, x_m \) are marked as internal by default, which prevents the proof context from being polluted by ad-hoc variables. The variable names and type constraints given as arguments for \texttt{guess} specify a prefix of obtained parameters explicitly in the text.

It is important to note that the facts introduced by \texttt{obtain} and \texttt{guess} may not be polymorphic: any type-variables occurring here are fixed in the present context!

### 6.5 Calculational reasoning

- **also**: \( \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \)
- **finally**: \( \text{proof}(\text{state}) \rightarrow \text{proof}(\text{chain}) \)
- **moreover**: \( \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \)
- **ultimately**: \( \text{proof}(\text{state}) \rightarrow \text{proof}(\text{chain}) \)
- **\texttt{print\_trans\_rules}**: \( \text{context} \rightarrow \)
  - **trans**: attribute
  - **sym**: attribute
  - **symmetric**: attribute

Calculational proof is forward reasoning with implicit application of transitivity rules (such those of \( =, \leq, < \)). Isabelle/Isar maintains an auxiliary fact register \textit{calculation} for accumulating results obtained by transitivity composed with the current result. Command \texttt{also} updates \textit{calculation} involving \textit{this}, while \texttt{finally} exhibits the final \textit{calculation} by forward chaining towards the next goal statement. Both commands require valid current facts, i.e. may occur only after commands that produce theorems such as \texttt{assume}, \texttt{note}, or some finished proof of \texttt{have}, \texttt{show} etc. The \texttt{moreover}
and **ultimately** commands are similar to **also** and **finally**, but only collect further results in *calculation* without applying any rules yet.

Also note that the implicit term abbreviation “…” has its canonical application with calculational proofs. It refers to the argument of the preceding statement. (The argument of a curried infix expression happens to be its right-hand side.)

Isabelle/Isar calculations are implicitly subject to block structure in the sense that new threads of calculational reasoning are commenced for any new block (as opened by a local goal, for example). This means that, apart from being able to nest calculations, there is no separate *begin-calculation* command required.

The Isar calculation proof commands may be defined as follows:

\[
\begin{align*}
\text{also}_0 & \equiv \text{note} \quad \text{calculation} = \text{this} \\
\text{also}_{n+1} & \equiv \text{note} \quad \text{calculation} = \text{trans} \ [OF \ \text{calculation} \ \text{this}] \\
\text{finally} & \equiv \text{also} \quad \text{from} \quad \text{calculation} \\
\text{moreover} & \equiv \text{note} \quad \text{calculation} = \text{calculation} \ \text{this} \\
\text{ultimately} & \equiv \text{moreover} \quad \text{from} \quad \text{calculation}
\end{align*}
\]

**also** \((a_1 \ldots a_n)\) maintains the auxiliary *calculation* register as follows. The first occurrence of **also** in some calculational thread initializes *calculation* by *this*. Any subsequent **also** on the same level of block-structure updates *calculation* by some transitivity rule applied to *calculation* and *this* (in that order). Transitivity rules are picked from the current context, unless alternative rules are given as explicit arguments.

**finally** \((a_1 \ldots a_n)\) maintaining *calculation* in the same way as **also**, and concludes the current calculational thread. The final result is exhibited as

---

2We suppress internal bookkeeping such as proper handling of block-structure.
fact for forward chaining towards the next goal. Basically, **finally** just abbreviates **also from calculation**. Typical idioms for concluding calculational proofs are “**finally show ?thesis .”** and “**finally have \( \varphi \).”

**moreover** and **ultimately** are analogous to **also** and **finally**, but collect results only, without applying rules.

**print_trans_rules** prints the list of transitivity rules (for calculational commands **also** and **finally**) and symmetry rules (for the **symmetric** operation and single step elimination patterns) of the current context.

**trans** declares theorems as transitivity rules.

**sym** declares symmetry rules, as well as **Pure.elim?** rules.

**symmetric** resolves a theorem with some rule declared as **sym** in the current context. For example, “**assume [symmetric]: \( x = y \)**” produces a swapped fact derived from that assumption.

In structured proof texts it is often more appropriate to use an explicit single-step elimination proof, such as “**assume \( x = y \) then have \( y = x \) ..”**

### 6.6 Proof by cases and induction

#### 6.6.1 Rule contexts

- **case** : \( \text{proof}(\text{state}) \rightarrow \text{proof}(\text{state}) \)
- **print_cases** : \( \text{context} \rightarrow \)
- **case_names** : \( \text{attribute} \)
- **case_conclusion** : \( \text{attribute} \)
- **params** : \( \text{attribute} \)
- **consumes** : \( \text{attribute} \)

The puristic way to build up Isar proof contexts is by explicit language elements like **fix, assume, let** (see §6.2.1). This is adequate for plain natural deduction, but easily becomes unwieldy in concrete verification tasks, which typically involve big induction rules with several cases.

The **case** command provides a shorthand to refer to a local context symbolically: certain proof methods provide an environment of named “cases” of the form **c**: \( x_1, \ldots, x_m, \varphi_1, \ldots, \varphi_n \); the effect of “**case c**” is then equivalent
to “fix \( x_1 \ldots x_m \) assume \( c : \varphi_1 \ldots \varphi_n \)”. Term bindings may be covered as well, notably \( ?\text{case} \) for the main conclusion.

By default, the “terminology” \( x_1, \ldots, x_m \) of a case value is marked as hidden, i.e. there is no way to refer to such parameters in the subsequent proof text. After all, original rule parameters stem from somewhere outside of the current proof text. By using the explicit form “\( \text{case} \ (c \ y_1 \ldots y_m) \)” instead, the proof author is able to chose local names that fit nicely into the current context.

It is important to note that proper use of \texttt{case} does not provide means to peek at the current goal state, which is not directly observable in Isar! Nonetheless, goal refinement commands do provide named cases \texttt{goal\_i} for each subgoal \( i = 1, \ldots, n \) of the resulting goal state. Using this extra feature requires great care, because some bits of the internal tactical machinery intrude the proof text. In particular, parameter names stemming from the left-over of automated reasoning tools are usually quite unpredictable.

Under normal circumstances, the text of cases emerge from standard elimination or induction rules, which in turn are derived from previous theory specifications in a canonical way (say from \texttt{inductive} definitions).

Proper cases are only available if both the proof method and the rules involved support this. By using appropriate attributes, case names, conclusions, and parameters may be also declared by hand. Thus variant versions of rules that have been derived manually become ready to use in advanced case analysis later.
case \((c \, x_1 \ldots x_m)\) invokes a named local context \(c: x_1, \ldots, x_m, \varphi_1, \ldots, \varphi_m\), as provided by an appropriate proof method (such as cases and induct). The command “case \((c \, x_1 \ldots x_m)\)” abbreviates “fix \(x_1 \ldots x_m\) assume \(c: \varphi_1 \ldots \varphi_n\).

print_cases prints all local contexts of the current state, using Isar proof language notation.

case_names \(c_1 \ldots c_k\) declares names for the local contexts of premises of a theorem; \(c_1, \ldots, c_k\) refers to the suffix of the list of premises.

case_conclusion \(c \, d_1 \ldots d_k\) declares names for the conclusions of a named premise \(c\); here \(d_1, \ldots, d_k\) refers to the prefix of arguments of a logical formula built by nesting a binary connective (e.g. \(\lor\)).

Note that proof methods such as induct and coinduct already provide a default name for the conclusion as a whole. The need to name subformulas only arises with cases that split into several sub-cases, as in common co-induction rules.

params \(p_1 \ldots p_m\) and \(q_1 \ldots q_n\) renames the innermost parameters of premises 1, \ldots, \(n\) of some theorem. An empty list of names may be given to skip positions, leaving the present parameters unchanged.

Note that the default usage of case rules does not directly expose parameters to the proof context.

consumes \(n\) declares the number of “major premises” of a rule, i.e. the number of facts to be consumed when it is applied by an appropriate proof method. The default value of consumes is \(n = 1\), which is appropriate
for the usual kind of cases and induction rules for inductive sets (cf. §10.6). Rules without any \textit{consumes} declaration given are treated as if \textit{consumes} 0 had been specified.

Note that explicit \textit{consumes} declarations are only rarely needed; this is already taken care of automatically by the higher-level \textit{cases}, \textit{induct}, and \textit{coinduct} declarations.

### 6.6.2 Proof methods

\begin{align*}
\textit{cases} : & \quad \textit{method} \\
\textit{induct} : & \quad \textit{method} \\
\textit{coinduct} : & \quad \textit{method}
\end{align*}

The \textit{cases}, \textit{induct}, and \textit{coinduct} methods provide a uniform interface to common proof techniques over datatypes, inductive predicates (or sets), recursive functions etc. The corresponding rules may be specified and instantiated in a casual manner. Furthermore, these methods provide named local contexts that may be invoked via the \texttt{case} proof command within the subsequent proof text. This accommodates compact proof texts even when reasoning about large specifications.

The \textit{induct} method also provides some additional infrastructure in order to be applicable to structure statements (either using explicit meta-level connectives, or including facts and parameters separately). This avoids cumbersome encoding of “strengthened” inductive statements within the object-logic.
cases insts R applies method rule with an appropriate case distinction theorem, instantiated to the subjects insts. Symbolic case names are bound according to the rule’s local contexts.
The rule is determined as follows, according to the facts and arguments passed to the \textit{cases} method:

\begin{tabular}{lll}
\textbf{facts} & \textbf{arguments} & \textbf{rule} \\
\hline
\textit{cases} &  & classical case split \\
\textit{cases} & \textit{t} & datatype exhaustion (type of \textit{t}) \\
\vdash \textit{A \ t \ cases} &  & inductive predicate/set elimination (of \textit{A}) \\
\ldots & \textit{cases} &  \\
& \ldots \textit{rule: R} & explicit rule \textit{R} \\
\end{tabular}

Several instantiations may be given, referring to the \textit{suffix} of premises of the case rule; within each premise, the \textit{prefix} of variables is instantiated. In most situations, only a single term needs to be specified; this refers to the first variable of the last premise (it is usually the same for all cases).

\textit{induct insts \ R} is analogous to the \textit{cases} method, but refers to induction rules, which are determined as follows:

\begin{tabular}{lll}
\textbf{facts} & \textbf{arguments} & \textbf{rule} \\
\hline
\textit{induct} & \textit{P \ x} & datatype induction (type of \textit{x}) \\
\vdash \textit{A \ x \ induct} &  & predicate/set induction (of \textit{A}) \\
\ldots & \textit{induct} &  \\
& \ldots \textit{rule: R} & explicit rule \textit{R} \\
\end{tabular}

Several instantiations may be given, each referring to some part of a mutual inductive definition or datatype — only related partial induction rules may be used together, though. Any of the lists of terms \textit{P, x, \ldots} refers to the \textit{suffix} of variables present in the induction rule. This enables the writer to specify only induction variables, or both predicates and variables, for example.

Instantiations may be definitional: equations \textit{x \equiv t} introduce local definitions, which are inserted into the claim and discharged after applying the induction rule. Equalities reappear in the inductive cases, but have been transformed according to the induction principle being involved here. In order to achieve practically useful induction hypotheses, some variables occurring in \textit{t} need to be fixed (see below).

The optional \textit{“arbitrary: \ x_1 \ldots \ x_m”} specification generalizes variables \textit{x_1, \ldots, x_m} of the original goal before applying induction. Thus induction hypotheses may become sufficiently general to get the proof through. Together with definitional instantiations, one may effectively perform induction over expressions of a certain structure.
The optional “taking: $t_1 \ldots t_n$” specification provides additional instantiations of a prefix of pending variables in the rule. Such schematic induction rules rarely occur in practice, though.

**coinduct** *inst R* is analogous to the **induct** method, but refers to coinduction rules, which are determined as follows:

<table>
<thead>
<tr>
<th>goal</th>
<th>arguments</th>
<th>rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>coinduct $x$</td>
<td>type coinduction (type of $x$)</td>
<td></td>
</tr>
<tr>
<td>$A \ x$ coinduct $\ldots$</td>
<td>predicate/set coinduction (of $A$)</td>
<td></td>
</tr>
<tr>
<td>$\ldots$ coinduct $\ldots$ rule: $R$</td>
<td>explicit rule $R$</td>
<td></td>
</tr>
</tbody>
</table>

Coinduction is the dual of induction. Induction essentially eliminates $A \ x$ towards a generic result $P \ x$, while coinduction introduces $A \ x$ starting with $B \ x$, for a suitable “bisimulation” $B$. The cases of a coinduct rule are typically named after the predicates or sets being covered, while the conclusions consist of several alternatives being named after the individual destructor patterns.

The given instantiation refers to the suffix of variables occurring in the rule’s major premise, or conclusion if unavailable. An additional “taking: $t_1 \ldots t_n$” specification may be required in order to specify the bisimulation to be used in the coinduction step.

Above methods produce named local contexts, as determined by the instantiated rule as given in the text. Beyond that, the **induct** and **coinduct** methods guess further instantiations from the goal specification itself. Any persisting unresolved schematic variables of the resulting rule will render the the corresponding case invalid. The term binding $?case$ for the conclusion will be provided with each case, provided that term is fully specified.

The **print_cases** command prints all named cases present in the current proof state.

Despite the additional infrastructure, both **cases** and **coinduct** merely apply a certain rule, after instantiation, while conforming due to the usual way of monotonic natural deduction: the context of a structured statement $\land x_1 \ldots x_m. \varphi_1 \implies \ldots \varphi_n \implies \ldots$ reappears unchanged after the case split.

The **induct** method is fundamentally different in this respect: the meta-level structure is passed through the “recursive” course involved in the induction. Thus the original statement is basically replaced by separate copies, corresponding to the induction hypotheses and conclusion; the original goal context is no longer available. Thus local assumptions, fixed parameters and definitions effectively participate in the inductive rephrasing of the original statement.
In induction proofs, local assumptions introduced by cases are split into two different kinds: hyps stemming from the rule and prems from the goal statement. This is reflected in the extracted cases accordingly, so invoking "case c" will provide separate facts c.hyps and c.prems, as well as fact c to hold the all-inclusive list.

Facts presented to either method are consumed according to the number of “major premises” of the rule involved, which is usually 0 for plain cases and induction rules of datatypes etc. and 1 for rules of inductive predicates or sets and the like. The remaining facts are inserted into the goal verbatim before the actual cases, induct, or coinduct rule is applied.

### 6.6.3 Declaring rules

```plaintext
print_induct_rules : context →
cases : attribute
induct : attribute
coinduct : attribute
```

`print_induct_rules` prints cases and induct rules for predicates (or sets) and types of the current context.

`cases`, `induct`, and `coinduct` (as attributes) declare rules for reasoning about (co)inductive predicates (or sets) and types, using the corresponding
methods of the same name. Certain definitional packages of objectlogics usually declare emerging cases and induction rules as expected, so users rarely need to intervene.

Rules may be deleted via the `del` specification, which covers all of the `type/pred/set` sub-categories simultaneously. For example, `cases del` removes any `cases` rules declared for some type, predicate, or set.

Manual rule declarations usually refer to the `case_names` and `params` attributes to adjust names of cases and parameters of a rule; the `consumes` declaration is taken care of automatically: `consumes 0` is specified for “type” rules and `consumes 1` for “predicate” / “set” rules.
Chapter 7

Inner syntax — the term language

7.1 Printing logical entities

7.1.1 Diagnostic commands

\[
\begin{align*}
\text{typ}^* : & \quad \text{context} \rightarrow \\
\text{term}^* : & \quad \text{context} \rightarrow \\
\text{prop}^* : & \quad \text{context} \rightarrow \\
\text{thm}^* : & \quad \text{context} \rightarrow \\
\text{prf}^* : & \quad \text{context} \rightarrow \\
\text{full\_prf}^* : & \quad \text{context} \rightarrow \\
\text{pr}^* : & \quad \text{any} \rightarrow 
\end{align*}
\]

These diagnostic commands assist interactive development by printing internal logical entities in a human-readable fashion.
**typ** \( \tau \) reads and prints types of the meta-logic according to the current theory or proof context.

**term** \( t \) and **prop** \( \varphi \) read, type-check and print terms or propositions according to the current theory or proof context; the inferred type of \( t \) is output as well. Note that these commands are also useful in inspecting the current environment of term abbreviations.

**thm** \( a_1 \ldots a_n \) retrieves theorems from the current theory or proof context. Note that any attributes included in the theorem specifications are applied to a temporary context derived from the current theory or proof; the result is discarded, i.e. attributes involved in \( a_1, \ldots, a_n \) do not have any permanent effect.

**prf** displays the (compact) proof term of the current proof state (if present), or of the given theorems. Note that this requires proof terms to be switched on for the current object logic (see the “Proof terms” section of the Isabelle reference manual for information on how to do this).

**full_prf** is like **prf**, but displays the full proof term, i.e. also displays information omitted in the compact proof term, which is denoted by “\( \_ \)” placeholders there.

**pr** **goals**, **prems** prints the current proof state (if present), including the proof context, current facts and goals. The optional limit arguments affect the number of goals and premises to be displayed, which is initially 10 for both. Omitting limit values leaves the current setting unchanged.
All of the diagnostic commands above admit a list of modes to be specified, which is appended to the current print mode (see also [22]). Thus the output behavior may be modified according particular print mode features. For example, \texttt{pr (latex xsymbols)} would print the current proof state with mathematical symbols and special characters represented in \LaTeX source, according to the Isabelle style [38].

Note that antiquotations (cf. §4.2) provide a more systematic way to include formal items into the printed text document.

### 7.1.2 Details of printed content

- \texttt{show_types: bool Unsynchronized.ref default false}
- \texttt{show_sorts: bool Unsynchronized.ref default false}
- \texttt{show_consts: bool Unsynchronized.ref default false}
- \texttt{long_names: bool Unsynchronized.ref default false}
- \texttt{short_names: bool Unsynchronized.ref default false}
- \texttt{unique_names: bool Unsynchronized.ref default true}
- \texttt{show_brackets: bool Unsynchronized.ref default false}
- \texttt{eta_contract: bool Unsynchronized.ref default true}
- \texttt{goals_limit: int Unsynchronized.ref default 10}
- \texttt{Proof.show_main_goal: bool Unsynchronized.ref default false}
- \texttt{show_hyps: bool Unsynchronized.ref default false}
- \texttt{show_tags: bool Unsynchronized.ref default false}
- \texttt{show_question_marks: bool Unsynchronized.ref default true}

These global ML variables control the detail of information that is displayed for types, terms, theorems, goals etc.

In interactive sessions, the user interface usually manages these global parameters of the Isabelle process, even with some concept of persistence. Nonetheless it is occasionally useful to manipulate ML variables directly, e.g. using \texttt{ML_val} or \texttt{ML_command}.

Batch-mode logic sessions may be configured by putting appropriate ML text directly into the \texttt{ROOT.ML} file.

\texttt{show_types} and \texttt{show_sorts} control printing of type constraints for term variables, and sort constraints for type variables. By default, neither of these are shown in output. If \texttt{show_sorts} is set to \texttt{true}, types are always shown as well.

Note that displaying types and sorts may explain why a polymorphic inference rule fails to resolve with some goal, or why a rewrite rule does not apply as expected.
show_consts controls printing of types of constants when displaying a goal state.

Note that the output can be enormous, because polymorphic constants often occur at several different type instances.

long_names, short_names, and unique_names control the way of printing fully qualified internal names in external form. See also §4.2 for the document antiquotation options of the same names.

show_brackets controls bracketing in pretty printed output. If set to true, all sub-expressions of the pretty printing tree will be parenthesized, even if this produces malformed term syntax! This crude way of showing the internal structure of pretty printed entities may occasionally help to diagnose problems with operator priorities, for example.

eta_contract controls $\eta$-contracted printing of terms.

The $\eta$-contraction law asserts $(\lambda x. f x) \equiv f$, provided $x$ is not free in $f$. It asserts extensionality of functions: $f \equiv g$ if $f x \equiv g x$ for all $x$. Higher-order unification frequently puts terms into a fully $\eta$-expanded form. For example, if $F$ has type $(\tau \Rightarrow \tau) \Rightarrow \tau$ then its expanded form is $\lambda h. F (\lambda x. h x)$.

Setting eta_contract makes Isabelle perform $\eta$-contractions before printing, so that $\lambda h. F (\lambda x. h x)$ appears simply as $F$.

Note that the distinction between a term and its $\eta$-expanded form occasionally matters. While higher-order resolution and rewriting operate modulo $\alpha \beta \eta$-conversion, some other tools might look at terms more discretely.

goals_limit controls the maximum number of subgoals to be shown in goal output.

Proof.show_main_goal controls whether the main result to be proven should be displayed. This information might be relevant for schematic goals, to inspect the current claim that has been synthesized so far.

show_hyps controls printing of implicit hypotheses of local facts. Normally, only those hypotheses are displayed that are not covered by the assumptions of the current context: this situation indicates a fault in some tool being used.

By setting show_hyps to true, output of all hypotheses can be enforced, which is occasionally useful for diagnostic purposes.
**CHAPTER 7. INNER SYNTAX — THE TERM LANGUAGE**

show_tags controls printing of extra annotations within theorems, such as internal position information, or the case names being attached by the attribute case_names.

Note that the tagged and untagged attributes provide low-level access to the collection of tags associated with a theorem.

show_question_marks controls printing of question marks for schematic variables, such as ?x. Only the leading question mark is affected, the remaining text is unchanged (including proper markup for schematic variables that might be relevant for user interfaces).

### 7.1.3 Printing limits

Pretty.setdepth: int -> unit
Pretty.setmargin: int -> unit
print_depth: int -> unit

These ML functions set limits for pretty printed text.

Pretty.setdepth d tells the pretty printer to limit the printing depth to d. This affects the display of types, terms, theorems etc. The default value is 0, which permits printing to an arbitrary depth. Other useful values for d are 10 and 20.

Pretty.setmargin m tells the pretty printer to assume a right margin (page width) of m. The initial margin is 76, but user interfaces might adapt the margin automatically when resizing windows.

print_depth n limits the printing depth of the ML toplevel pretty printer; the precise effect depends on the ML compiler and run-time system. Typically n should be less than 10. Bigger values such as 100–1000 are useful for debugging.

### 7.2 Mixfix annotations

Mixfix annotations specify concrete *inner syntax* of Isabelle types and terms. Some commands such as typedecl admit infixes only, while definition etc. support the full range of general mixfixes and binders. Fixed parameters in toplevel theorem statements, locale specifications also admit mixfix annotations.
infix

\[
\begin{align*}
\text{infix} & \quad \text{string} \quad \text{nat} \\
\text{infixl} & \\
\text{infixr} & 
\end{align*}
\]

mixfix

\[
\begin{align*}
\text{infix} & \quad \text{string} \quad \text{prios} \quad \text{nat} \\
\text{binder} & \quad \text{string} \quad \text{prios} \quad \text{nat} \\
\end{align*}
\]

structmixfix

\[
\begin{align*}
\text{mixfix} & \quad \text{structure} \\
\end{align*}
\]

prios

\[
\begin{align*}
[ & \quad \text{nat} \quad ]
\end{align*}
\]

Here the string specifications refer to the actual mixfix template, which may include literal text, spacing, blocks, and arguments (denoted by “.”); the special symbol “\textless index\textgreater” (printed as “ı”) represents an index argument that specifies an implicit structure reference (see also §5.5). Infix and binder declarations provide common abbreviations for particular mixfix declarations. So in practice, mixfix templates mostly degenerate to literal text for concrete syntax, such as “++” for an infix symbol.

In full generality, mixfix declarations work as follows. Suppose a constant \( c :: \tau_1 \Rightarrow \ldots \Rightarrow \tau_n \Rightarrow \tau \) is annotated by \((\text{mixfix} \ [p_1, \ldots, p_n] p)\), where \text{mixfix} is a string \( d_0 \_ d_1 \_ \ldots \_ d_n \) consisting of delimiters that surround argument positions as indicated by underscores.

Altogether this determines a production for a context-free priority grammar, where for each argument \( i \) the syntactic category is determined by \( \tau_i \).
(with priority $p_i$), and the result category is determined from $\tau$ (with priority $p$). Priority specifications are optional, with default 0 for arguments and 1000 for the result.

Since $\tau$ may be again a function type, the constant type scheme may have more argument positions than the mixfix pattern. Printing a nested application $c \ t_1 \ldots \ t_m$ for $m > n$ works by attaching concrete notation only to the innermost part, essentially by printing $(c \ t_1 \ldots \ t_n) \ldots \ t_m$ instead. If a term has fewer arguments than specified in the mixfix template, the concrete syntax is ignored.

A mixfix template may also contain additional directives for pretty printing, notably spaces, blocks, and breaks. The general template format is a sequence over any of the following entities.

$d$ is a delimiter, namely a non-empty sequence of characters other than the following special characters:
- `' single quote
- `_ underscore
- `ı index symbol
- `(` open parenthesis
- `)` close parenthesis
- `/` slash

`'` escapes the special meaning of these meta-characters, producing a literal version of the following character, unless that is a blank.

A single quote followed by a blank separates delimiters, without affecting printing, but input tokens may have additional white space here.

`_` is an argument position, which stands for a certain syntactic category in the underlying grammar.

`ı` is an indexed argument position; this is the place where implicit structure arguments can be attached.

`s` is a non-empty sequence of spaces for printing. This and the following specifications do not affect parsing at all.

`(n opens a pretty printing block. The optional number specifies how much indentation to add when a line break occurs within the block. If the parenthesis is not followed by digits, the indentation defaults to 0. A block specified via `(00 is unbreakable.

`) closes a pretty printing block.
// forces a line break.
/s allows a line break. Here s stands for the string of spaces (zero or more) right after the slash. These spaces are printed if the break is not taken.

For example, the template (_, +/ _) specifies an infix operator. There are two argument positions; the delimiter + is preceded by a space and followed by a space or line break; the entire phrase is a pretty printing block.

The general idea of pretty printing with blocks and breaks is also described in [28].

7.3 Explicit term notation

notation : local_theory → local_theory
no notation : local_theory → local_theory

notation c (mx) associates mixfix syntax with an existing constant or fixed variable. This is a robust interface to the underlying syntax primitive (§7.6). Type declaration and internal syntactic representation of the given entity is retrieved from the context.

no notation is similar to notation, but removes the specified syntax annotation from the present context.

7.4 The Pure syntax

7.4.1 Priority grammars

A context-free grammar consists of a set of terminal symbols, a set of non-terminal symbols and a set of productions. Productions have the form $A =$
\( \gamma \), where \( A \) is a nonterminal and \( \gamma \) is a string of terminals and nonterminals. One designated nonterminal is called the root symbol. The language defined by the grammar consists of all strings of terminals that can be derived from the root symbol by applying productions as rewrite rules.

The standard Isabelle parser for inner syntax uses a priority grammar. Each nonterminal is decorated by an integer priority: \( A^{(p)} \). In a derivation, \( A^{(p)} \) may be rewritten using a production \( A^{(q)} = \gamma \) only if \( p \leq q \). Any priority grammar can be translated into a normal context-free grammar by introducing new nonterminals and productions.

Formally, a set of context free productions \( G \) induces a derivation relation \( \rightarrow_G \) as follows. Let \( \alpha \) and \( \beta \) denote strings of terminal or nonterminal symbols. Then \( \alpha \ A^{(p)} \beta \rightarrow_G \alpha \gamma \beta \) holds if and only if \( G \) contains some production \( A^{(q)} = \gamma \) for \( p \leq q \).

The following grammar for arithmetic expressions demonstrates how binding power and associativity of operators can be enforced by priorities.

\[
\begin{align*}
A^{(1000)} &= ( \ A^{(0)} \ ) \\
A^{(1000)} &= 0 \\
A^{(0)} &= A^{(0)} + A^{(1)} \\
A^{(2)} &= A^{(3)} * A^{(2)} \\
A^{(3)} &= - A^{(3)}
\end{align*}
\]

The choice of priorities determines that \(-\) binds tighter than \(*\), which binds tighter than \(+\). Furthermore \(+\) associates to the left and \(*\) to the right.

For clarity, grammars obey these conventions:

- All priorities must lie between 0 and 1000.
- Priority 0 on the right-hand side and priority 1000 on the left-hand side may be omitted.
- The production \( A^{(p)} = \alpha \) is written as \( A = \alpha \ (p) \), i.e. the priority of the left-hand side actually appears in a column on the far right.
- Alternatives are separated by |.
- Repetition is indicated by dots (\( \ldots \)) in an informal but obvious way.

Using these conventions, the example grammar specification above takes the form:
\[
A = (A) \mid 0 \mid A + A^{(1)} \mid A^{(3)} * A^{(2)} \mid - A^{(3)}
\]

7.4.2 The Pure grammar

The priority grammar of the Pure theory is defined as follows:

\[
\begin{align*}
\text{any} & = \text{prop} \mid \text{logic} \\
\text{prop} & = (\text{prop}) \mid \text{prop}^{(4)} : : \text{type} \mid \text{any}^{(3)} = &= \text{any}^{(2)} \mid \text{any}^{(3)} == \text{any}^{(2)} \mid \text{any}^{(3)} \equiv \text{any}^{(2)} \mid \text{prop}^{(3)} && \text{prop}^{(2)} \mid \text{prop}^{(2)} \implies \text{prop}^{(1)} \mid \text{idts} \cdot \text{prop} \mid \text{idts} \cdot \text{prop} \mid \text{OFCLASS} (\text{type}, \text{logic}) \mid \text{SORT_CONSTRAINT} (\text{type}) \mid \text{TERM} \text{logic} \mid \text{PROP} \text{aprop}
\end{align*}
\]

\[
\begin{align*}
\text{aprop} & = (\text{aprop}) \\
\text{logic} & = (\text{logic}) \\
\end{align*}
\]
Here literal terminals are printed verbatim; see also §7.5 for further token categories of the inner syntax. The meaning of the nonterminals defined by the above grammar is as follows:

*any* denotes any term.

*prop* denotes meta-level propositions, which are terms of type *prop*. The syntax of such formulae of the meta-logic is carefully distinguished from usual conventions for object-logics. In particular, plain λ-term notation is not recognized as *prop*.

*a(prop)* denotes atomic propositions, which are embedded into regular *prop* by means of an explicit *PROP* token.
Terms of type \(\text{prop}\) with non-constant head, e.g. a plain variable, are printed in this form. Constants that yield type \(\text{prop}\) are expected to provide their own concrete syntax; otherwise the printed version will appear like \(\text{logic}\) and cannot be parsed again as \(\text{prop}\).

\(\text{logic}\) denotes arbitrary terms of a logical type, excluding type \(\text{prop}\). This is the main syntactic category of object-logic entities, covering plain \(\lambda\)-term notation (variables, abstraction, application), plus anything defined by the user.

When specifying notation for logical entities, all logical types (excluding \(\text{prop}\)) are collapsed to this single category of \(\text{logic}\).

\(\text{idt}\) denotes identifiers, possibly constrained by types.

\(\text{idts}\) denotes a sequence of \(\text{idt}\). This is the most basic category for variables in iterated binders, such as \(\lambda\) or \(\land\).

\(\text{pttrn}\) and \(\text{pttrns}\) denote patterns for abstraction, cases bindings etc. In Pure, these categories start as a merely copy of \(\text{idt}\) and \(\text{idts}\), respectively. Object-logics may add additional productions for binding forms.

\(\text{type}\) denotes types of the meta-logic.

\(\text{sort}\) denotes meta-level sorts.

Here are some further explanations of certain syntax features.

- In \(\text{idts}\), note that \(x :: \text{nat} y\) is parsed as \((x :: (\text{nat} y))\), treating \(y\) like a type constructor applied to \(\text{nat}\). To avoid this interpretation, write \((x :: \text{nat}) y\) with explicit parentheses.

- Similarly, \(x :: \text{nat} y :: \text{nat}\) is parsed as \(x :: (\text{nat} y :: \text{nat})\). The correct form is \((x :: \text{nat}) (y :: \text{nat})\), or \((x :: \text{nat}) y :: \text{nat}\) if \(y\) is last in the sequence of identifiers.

- Type constraints for terms bind very weakly. For example, \(x < y :: \text{nat}\) is normally parsed as \((x < y) :: \text{nat}\), unless \(<\) has a very low priority, in which case the input is likely to be ambiguous. The correct form is \(x < (y :: \text{nat})\).

- Constraints may be either written with two literal colons “::” or the double-colon symbol \(\langle\text{Colon}\rangle\), which actually looks exactly the same in some \LaTeX\ styles.
• Dummy variables (written as underscore) may occur in different roles.

A type “⊥” or “⊥ : sort” acts like an anonymous inference parameter, which is filled-in according to the most general type produced by the type-checking phase.

A bound “⊥” refers to a vacuous abstraction, where the body does not refer to the binding introduced here. As in the term λx ⊥ x, which is α-equivalent to λx y. x.

A free “⊥” refers to an implicit outer binding. Higher definitional packages usually allow forms like f x ⊥ = x.

A schematic “⊥” (within a term pattern, see §3.2.5) refers to an anonymous variable that is implicitly abstracted over its context of locally bound variables. For example, this allows pattern matching of \{x. f x = g x\} against \{x. ⊥ = ⊥\}, or even \{⊥. ⊥ = ⊥\} by using both bound and schematic dummies.

• The three literal dots “…” may be also written as ellipsis symbol \(<\text{dots}>\). In both cases this refers to a special schematic variable, which is bound in the context. This special term abbreviation works nicely with calculational reasoning (§6.5).

7.5 Lexical matters

The inner lexical syntax vaguely resembles the outer one (§3.1), but some details are different. There are two main categories of inner syntax tokens:

1. delimiters — the literal tokens occurring in productions of the given priority grammar (cf. §7.4.1);

2. named tokens — various categories of identifiers etc.

Delimiters override named tokens and may thus render certain identifiers inaccessible. Sometimes the logical context admits alternative ways to refer to the same entity, potentially via qualified names.

The categories for named tokens are defined once and for all as follows, reusing some categories of the outer token syntax (§3.1).

\[ id \ = \ ident \]
The token categories \texttt{num}, \texttt{float\_token}, \texttt{xnum}, and \texttt{xstr} are not used in Pure. Object-logics may implement numerals and string constants by adding appropriate syntax declarations, together with some translation functions (e.g. see Isabelle/HOL).

The derived categories \texttt{num\_const} and \texttt{float\_const} provide robust access to \texttt{num}, and \texttt{float\_token}, respectively: the syntax tree holds a syntactic constant instead of a free variable.

### 7.6 Syntax and translations

\begin{verbatim}
nonterminals : theory \rightarrow theory
syntax : theory \rightarrow theory
no_syntax : theory \rightarrow theory
translations : theory \rightarrow theory
no_translations : theory \rightarrow theory
\end{verbatim}
CHAPTER 7. INNER SYNTAX — THE TERM LANGUAGE

translations

no_translations

transpat

mode

(name

output

(name

output)

transpat

(str)

nonterminals $c$ declares a type constructor $c$ (without arguments) to act as purely syntactic type: a nonterminal symbol of the inner syntax.

syntax (mode) decls is similar to consts decls, except that the actual logical signature extension is omitted. Thus the context free grammar of Isabelle’s inner syntax may be augmented in arbitrary ways, independently of the logic. The mode argument refers to the print mode that the grammar rules belong; unless the output indicator is given, all productions are added both to the input and output grammar.

no_syntax (mode) decls removes grammar declarations (and translations) resulting from decls, which are interpreted in the same manner as for syntax above.

translations rules specifies syntactic translation rules (i.e. macros): parse / print rules ($\Rightarrow$), parse rules ($\rightarrow$), or print rules ($\leftarrow$). Translation patterns may be prefixed by the syntactic category to be used for parsing; the default is logic.
no_translations rules removes syntactic translation rules, which are interpreted in the same manner as for translations above.

7.7 Syntax translation functions

parse_ast_translation : theory → theory
parse_translation : theory → theory
print_translation : theory → theory
typed_print_translation : theory → theory
print_ast_translation : theory → theory

Syntax translation functions written in ML admit almost arbitrary manipulations of Isabelle’s inner syntax. Any of the above commands have a single text argument that refers to an ML expression of appropriate type, which are as follows by default:

val parse_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation : (string * (bool -> typ -> term list -> term)) list
val print_ast_translation : (string * (ast list -> ast)) list

If the (advanced) option is given, the corresponding translation functions may depend on the current theory or proof context. This allows to implement advanced syntax mechanisms, as translations functions may refer to specific theory declarations or auxiliary proof data.

See also [22] for more information on the general concept of syntax transformations in Isabelle.
7.8 Inspecting the syntax

**print_syntax** \( : \) context →

`print_syntax` prints the inner syntax of the current context. The output can be quite large; the most important sections are explained below.

- **lexicon** lists the delimiters of the inner token language; see §7.5.
- **prods** lists the productions of the underlying priority grammar; see §7.4.1.
  
The nonterminal \( A^P \) is rendered in plain text as \( A[p] \); delimiters are quoted. Many productions have an extra \( \ldots \Rightarrow \) `name`. These names later become the heads of parse trees; they also guide the pretty printer.
  
  Productions without such parse tree names are called *copy productions*. Their right-hand side must have exactly one nonterminal symbol (or named token). The parser does not create a new parse tree node for copy productions, but simply returns the parse tree of the right-hand symbol.
  
  If the right-hand side of a copy production consists of a single nonterminal without any delimiters, then it is called a *chain production*. Chain productions act as abbreviations: conceptually, they are removed from the grammar by adding new productions. Priority information attached to chain productions is ignored; only the dummy value \(-1\) is displayed.

- **print modes** lists the alternative print modes provided by this grammar; see §??.

- **parse_rules** and **print_rules** relate to syntax translations (macros); see §7.6.
*parse_ast_translation* and *print_ast_translation* list sets of constants that invoke translation functions for abstract syntax trees, which are only required in very special situations; see §7.7.

*parse_translation* and *print_translation* list the sets of constants that invoke regular translation functions; see §7.7.
Chapter 8

Other commands

8.1 Inspecting the context

\begin{verbatim}
print_commands* : any →
print_theory* : context →
print_methods* : context →
print_attributes* : context →
print_theorems* : context →
find_theorems* : context →
find_consts* : context →
thm_deps* : context →
print_facts* : context →
print_binds* : context →
\end{verbatim}
These commands print certain parts of the theory and proof context. Note that there are some further ones available, such as for the set of rules declared for simplifications.

**print_commands** prints Isabelle’s outer theory syntax, including keywords and command.

**print_theory** prints the main logical content of the theory context; the “!” option indicates extra verbosity.

**print_methods** prints all proof methods available in the current theory context.

**print_attributes** prints all attributes available in the current theory context.
**print_theorems** prints theorems resulting from the last command; the “!” option indicates extra verbosity.

**find_theorems** criteria retrieves facts from the theory or proof context matching all of given search criteria. The criterion name: $p$ selects all theorems whose fully qualified name matches pattern $p$, which may contain “*” wildcards. The criteria intro, elim, and dest select theorems that match the current goal as introduction, elimination or destruction rules, respectively. The criterion solves returns all rules that would directly solve the current goal. The criterion simp: $t$ selects all rewrite rules whose left-hand side matches the given term. The criterion term $t$ selects all theorems that contain the pattern $t$ – as usual, patterns may contain occurrences of the dummy “$\_\_””, schematic variables, and type constraints.

Criteria can be preceded by “$-$” to select theorems that do not match. Note that giving the empty list of criteria yields all currently known facts. An optional limit for the number of printed facts may be given; the default is 40. By default, duplicates are removed from the search result. Use with_dups to display duplicates.

**find_consts** criteria prints all constants whose type meets all of the given criteria. The criterion strict: $ty$ is met by any type that matches the type pattern $ty$. Patterns may contain both the dummy type “$\_\_”” and sort constraints. The criterion $ty$ is similar, but it also matches against subtypes. The criterion name: $p$ and the prefix “$-$” function as described for **find_theorems**.

**thm_deps** $a_1 \ldots a_n$ visualizes dependencies of facts, using Isabelle’s graph browser tool (see also [38]).

**print_facts** prints all local facts of the current context, both named and unnamed ones.

**print_binds** prints all term abbreviations present in the context.

### 8.2 History commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>undo**</td>
<td>any $\rightarrow$ any</td>
</tr>
<tr>
<td>linear_undo**</td>
<td>any $\rightarrow$ any</td>
</tr>
<tr>
<td>kill**</td>
<td>any $\rightarrow$ any</td>
</tr>
</tbody>
</table>
The Isabelle/Isar top-level maintains a two-stage history, for theory and proof state transformation. Basically, any command can be undone using \texttt{undo}, excluding mere diagnostic elements. Note that a theorem statement with a \textit{finished} proof is treated as a single unit by \texttt{undo}. In contrast, the variant \texttt{linear\_undo} admits to step back into the middle of a proof. The \texttt{kill} command aborts the current history node altogether, discontinuing a proof or even the whole theory. This operation is \textit{not} undo-able.

History commands should never be used with user interfaces such as Proof General \cite{pg,pg2}, which takes care of stepping forth and back itself. Interfering by manual \texttt{undo}, \texttt{linear\_undo}, or even \texttt{kill} commands would quickly result in utter confusion.

### 8.3 System commands

\begin{align*}
\texttt{cd}\:* & : \texttt{any} \to \\
\texttt{pwd}\:* & : \texttt{any} \to \\
\texttt{use\_thy}\:* & : \texttt{any} \to \\
\texttt{cd} & \quad \text{changes the current directory of the Isabelle process.} \\
\texttt{pwd} & \quad \text{prints the current working directory.} \\
\texttt{use\_thy} & \quad A \text{ preload theory } A. \text{ These system commands are scarcely used when working interactively, since loading of theories is done automatically as required.}
\end{align*}
Chapter 9

Generic tools and packages

9.1 Configuration options

Isabelle/Pure maintains a record of named configuration options within the
theory or proof context, with values of type \texttt{bool}, \texttt{int}, or \texttt{string}. Tools may
declare options in ML, and then refer to these values (relative to the context).
Thus global reference variables are easily avoided. The user may change the
value of a configuration option by means of an associated attribute of the
same name. This form of context declaration works particularly well with
commands such as \texttt{declare} or \texttt{using}.

For historical reasons, some tools cannot take the full proof context into
account and merely refer to the background theory. This is accommodated by
configuration options being declared as “global”, which may not be changed
within a local context.

\begin{code}
\begin{verbatim}
print_configs : context →
\end{verbatim}
\end{code}

\begin{code}
\begin{verbatim}
name
= true
  = false
  = int
  = name
\end{verbatim}
\end{code}

\texttt{print_configs} prints the available configuration options, with names, types,
and current values.

\texttt{name = value} as an attribute expression modifies the named option, with
the syntax of the value depending on the option’s type. For \texttt{bool} the
default value is \texttt{true}. Any attempt to change a global option in a local
context is ignored.
9.2 Basic proof tools

9.2.1 Miscellaneous methods and attributes

- **unfold**: method
- **fold**: method
- **insert**: method
- **erule**: method
- **drule**: method
- **frule**: method
- **succeed**: method
- **fail**: method

\[ \text{unfold } a_1 \ldots a_n \text{ and } \text{fold } a_1 \ldots a_n \text{ expand (or fold back) the given definitions throughout all goals; any chained facts provided are inserted into the goal and subject to rewriting as well.} \]

\[ \text{insert } a_1 \ldots a_n \text{ inserts theorems as facts into all goals of the proof state. Note that current facts indicated for forward chaining are ignored.} \]

\[ \text{erule } a_1 \ldots a_n, \text{drule } a_1 \ldots a_n, \text{and frule } a_1 \ldots a_n \text{ are similar to the basic rule method (see §6.3.3), but apply rules by elim-resolution, destruct-resolution, and forward-resolution, respectively [33]. The optional natural number argument (default 0) specifies additional assumption steps to be performed here.} \]

Note that these methods are improper ones, mainly serving for experimentation and tactic script emulation. Different modes of basic rule application are usually expressed in Isar at the proof language level, rather than via implicit proof state manipulations. For example, a proper single-step elimination would be done using the plain rule method, with forward chaining of current facts.
succeed yields a single (unchanged) result; it is the identity of the “,” method combinator (cf. §6.3.1).

fail yields an empty result sequence; it is the identity of the “|” method combinator (cf. §6.3.1).

\[
\begin{align*}
tagged &: \text{attribute} \\
untagged &: \text{attribute} \\
\text{THEN} &: \text{attribute} \\
\text{COMP} &: \text{attribute} \\
\text{unfolded} &: \text{attribute} \\
\text{folded} &: \text{attribute} \\
\text{rotated} &: \text{attribute} \\
\text{elim\_format} &: \text{attribute} \\
\text{standard*} &: \text{attribute} \\
\text{no\_vars*} &: \text{attribute}
\end{align*}
\]

tagged name value and untagged name add and remove tags of some theorem. Tags may be any list of string pairs that serve as formal comment. The first string is considered the tag name, the second its value. Note that untagged removes any tags of the same name.

THEN a and COMP a compose rules by resolution. THEN resolves with the first premise of a (an alternative position may be also specified);
the COMP version skips the automatic lifting process that is normally intended (cf. op RS and op COMP in [33]).

unfolded \( a_1 \ldots a_n \) and folded \( a_1 \ldots a_n \) expand and fold back again the given definitions throughout a rule.

rotated \( n \) rotate the premises of a theorem by \( n \) (default 1).

elem_format turns a destruction rule into elimination rule format, by resolving with the rule \( PROP A \Rightarrow (PROP A \Rightarrow PROP B) \Rightarrow PROP B \).

Note that the Classical Reasoner (§9.4) provides its own version of this operation.

standard puts a theorem into the standard form of object-rules at the outermost theory level. Note that this operation violates the local proof context (including active locales).

no_vars replaces schematic variables by free ones; this is mainly for tuning output of pretty printed theorems.

9.2.2 Low-level equational reasoning

\[ \text{subst} : \text{method} \]
\[ \text{hypsust} : \text{method} \]
\[ \text{split} : \text{method} \]

These methods provide low-level facilities for equational reasoning that are intended for specialized applications only. Normally, single step calculations would be performed in a structured text (see also §6.5), while the Simplifier methods provide the canonical way for automated normalization (see §9.3).
**CHAPTER 9. GENERIC TOOLS AND PACKAGES**

`subst eq` performs a single substitution step using rule `eq`, which may be either a meta or object equality.

`subst (asm) eq` substitutes in an assumption.

`subst (i ... j) eq` performs several substitutions in the conclusion. The numbers `i` to `j` indicate the positions to substitute at. Positions are ordered from the top of the term tree moving down from left to right. For example, in `(a + b) + (c + d)` there are three positions where commutativity of `+` is applicable: 1 refers to `a + b`, 2 to the whole term, and 3 to `c + d`.

If the positions in the list `(i ... j)` are non-overlapping (e.g. `(2 3)` in `(a + b) + (c + d)`) you may assume all substitutions are performed simultaneously. Otherwise the behaviour of `subst` is not specified.

`subst (asm) (i ... j) eq` performs the substitutions in the assumptions. The positions refer to the assumptions in order from left to right. For example, given in a goal of the form `P (a + b) ⇒ P (c + d) ⇒ ...`, position 1 of commutativity of `+` is the subterm `a + b` and position 2 is the subterm `c + d`.

`hypsubst` performs substitution using some assumption; this only works for equations of the form `x = t` where `x` is a free or bound variable.

`split a_1 ... a_n` performs single-step case splitting using the given rules. By default, splitting is performed in the conclusion of a goal; the `(asm)` option indicates to operate on assumptions instead.

Note that the `simp` method already involves repeated application of split rules as declared in the current context.

### 9.2.3 Further tactic emulations

The following improper proof methods emulate traditional tactics. These admit direct access to the goal state, which is normally considered harmful! In particular, this may involve both numbered goal addressing (default 1), and dynamic instantiation within the scope of some subgoal.

- Dynamic instantiations refer to universally quantified parameters of a subgoal (the dynamic context) rather than fixed variables and term abbreviations of a (static) Isar context.
Tactic emulation methods, unlike their ML counterparts, admit simultaneous instantiation from both dynamic and static contexts. If names occur in both contexts goal parameters hide locally fixed variables. Likewise, schematic variables refer to term abbreviations, if present in the static context. Otherwise the schematic variable is interpreted as a schematic variable and left to be solved by unification with certain parts of the subgoal.

Note that the tactic emulation proof methods in Isabelle/Isar are consistently named \textit{foo_tac}. Note also that variable names occurring on left hand sides of instantiations must be preceded by a question mark if they coincide with a keyword or contain dots. This is consistent with the attribute \textit{where} (see §6.3.3).

\begin{verbatim}
    rule_tac*: method
    erule_tac*: method
    drule_tac*: method
    frule_tac*: method
    cut_tac*: method
    thin_tac*: method
    subgoal_tac*: method
    rename_tac*: method
    rotate_tac*: method
    tactic*: method
    raw_tactic*: method
\end{verbatim}
rotate_tac etc. do resolution of rules with explicit instantiation. This works the same way as the ML tactics res_inst_tac etc. (see [33]).

Multiple rules may be only given if there is no instantiation; then rule_tac is the same as resolve_tac in ML (see [33]).

cut_tac inserts facts into the proof state as assumption of a subgoal, see also Tactic.cut_facts_tac in [33]. Note that the scope of schematic variables is spread over the main goal statement. Instantiations may be given as well, see also ML tactic cut_inst_tac in [33].

thin_tac ϕ deletes the specified assumption from a subgoal; note that ϕ may contain schematic variables. See also thin_tac in [33].

subgoal_tac ϕ adds ϕ as an assumption to a subgoal. See also subgoal_tac and subgoals_tac in [33].

rename_tac x₁ ... xₙ renames parameters of a goal according to the list x₁, ..., xₙ, which refers to the suffix of variables.

rotate_tac n rotates the assumptions of a goal by n positions: from right to left if n is positive, and from left to right if n is negative; the default value is 1. See also rotate_tac in [33].

tactic text produces a proof method from any ML text of type tactic. Apart from the usual ML environment and the current proof context, the ML code may refer to the locally bound values facts, which indicates any current facts used for forward-chaining.
raw_tactic is similar to tactic, but presents the goal state in its raw internal form, where simultaneous subgoals appear as conjunction of the logical framework instead of the usual split into several subgoals. While feature this is useful for debugging of complex method definitions, it should not never appear in production theories.

9.3 The Simplifier

9.3.1 Simplification methods

- \textit{simp} : \textit{method}
- \textit{simp_all} : \textit{method}
simpmod

\[ \text{simpmod} \]

\[ \begin{array}{c}
\text{add} \\
\text{del} \\
\text{only} \\
\text{cong} \\
\quad \text{add} \\
\quad \text{del} \\
\text{split} \\
\quad \text{add} \\
\quad \text{del} \\
\end{array} \]

\[ \text{thmrefs} \]

simp invokes the Simplifier, after declaring additional rules according to the arguments given. Note that the only modifier first removes all other rewrite rules, congruences, and looper tactics (including splits), and then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also [22]), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [22]), the default is to add. This works only if the Simplifier method has been properly setup to include the Splitter (all major object logics such HOL, HOLCF, FOL, ZF do this already).

simp_all is similar to simp, but acts on all goals (backwards from the last to the first one).

By default the Simplifier methods take local assumptions fully into account, using equational assumptions in the subsequent normalization process, or simplifying assumptions themselves (cf. asm_full_simp_tac in [22]). In structured proofs this is usually quite well behaved in practice: just the local premises of the actual goal are involved, additional facts may be inserted via explicit forward-chaining (via then, from, using etc.). The full context of premises is only included if the “!” (bang) argument is given, which should be used with some care, though.
Additional Simplifier options may be specified to tune the behavior further (mostly for unstructured scripts with many accidental local facts): “(no_asm)” means assumptions are ignored completely (cf. simp_tac), “(no_asm_simp)” means assumptions are used in the simplification of the conclusion but are not themselves simplified (cf. asm_simp_tac), and “(no_asm_use)” means assumptions are simplified but are not used in the simplification of each other or the conclusion (cf. full_simp_tac). For compatibility reasons, there is also an option “(asm_lr)”, which means that an assumption is only used for simplifying assumptions which are to the right of it (cf. asm_lr_simp_tac).

The configuration option depth_limit limits the number of recursive invocations of the simplifier during conditional rewriting.

The Splitter package is usually configured to work as part of the Simplifier. The effect of repeatedly applying split_tac can be simulated by “(simp only: split: a1 ... an)”. There is also a separate split method available for single-step case splitting.

### 9.3.2 Declaring rules

```plaintext
print simpset*: context →
simp : attribute
cong : attribute
split : attribute
```

`print simpset` prints the collection of rules declared to the Simplifier, which is also known as “simpset” internally [22].

- `simp` declares simplification rules.
- `cong` declares congruence rules.
- `split` declares case split rules.
9.3.3 Simplification procedures

```
simproc_setup : local_theory → local_theory
simproc : attribute
```

```
simproc_setup name \(\{\) term \(\) = \(\) text\(\}\)
```

```
simproc identifier nameref
```

```
simproc add : name
simproc del : name
```

**simproc_setup** defines a named simplification procedure that is invoked by the Simplifier whenever any of the given term patterns match the current redex. The implementation, which is provided as ML source text, needs to be of type \(\text{morphism} \rightarrow \text{simpset} \rightarrow \text{cterm} \rightarrow \text{thm option}\), where the \text{cterm} represents the current redex \(r\) and the result is supposed to be some proven rewrite rule \(r \equiv r'\) (or a generalized version), or \text{NONE} to indicate failure. The \text{simpset} argument holds the full context of the current Simplifier invocation, including the actual Isar proof context. The \text{morphism} informs about the difference of the original compilation context wrt. the one of the actual application later on. The optional \text{identifier} specifies theorems that represent the logical content of the abstract theory of this simproc.

Morphisms and identifiers are only relevant for simprocs that are defined within a local target context, e.g. in a locale.

**simproc add**: name and **simproc del**: name add or delete named simprocs to the current Simplifier context. The default is to add a simproc. Note that **simproc_setup** already adds the new simproc to the subsequent context.
9.3.4 Forward simplification

\texttt{simplified} : attribute

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{simplified_attribute}
\end{figure}

\texttt{simplified} \( a_1 \ldots a_n \) causes a theorem to be simplified, either by exactly the specified rules \( a_1, \ldots, a_n \), or the implicit Simplifier context if no arguments are given. The result is fully simplified by default, including assumptions and conclusion; the options \texttt{no_asm} etc. tune the Simplifier in the same way as the for the \texttt{simp} method.

Note that forward simplification restricts the simplifier to its most basic operation of term rewriting; solver and looper tactics [22] are not involved here. The \texttt{simplified} attribute should be only rarely required under normal circumstances.

9.4 The Classical Reasoner

9.4.1 Basic methods

\begin{verbatim}
rule : method
contradiction : method
intro : method
elim : method
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{classical_reasoner}
\end{figure}
rule as offered by the Classical Reasoner is a refinement over the primitive one (see §6.3.3). Both versions essentially work the same, but the classical version observes the classical rule context in addition to that of Isabelle/Pure.

Common object logics (HOL, ZF, etc.) declare a rich collection of classical rules (even if these would qualify as intuitionistic ones), but only few declarations to the rule context of Isabelle/Pure (§6.3.3).

contradiction solves some goal by contradiction, deriving any result from both \( \neg A \) and \( A \). Chained facts, which are guaranteed to participate, may appear in either order.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after having inserted any chained facts. Exactly the rules given as arguments are taken into account; this allows fine-tuned decomposition of a proof problem, in contrast to common automated tools.

9.4.2 Automated methods

\begin{itemize}
  \item \texttt{blast} : method
  \item \texttt{fast} : method
  \item \texttt{slow} : method
  \item \texttt{best} : method
  \item \texttt{safe} : method
  \item \texttt{clarify} : method
\end{itemize}
\section*{9.4.3 Combined automated methods}

\begin{verbatim}
auto : method
force : method
clarsimp : method
fastsimp : method
slowsimp : method
bestsimp : method
\end{verbatim}

\begin{verbatim}
blast
intro
elim
dest
\end{verbatim}

\textit{blast} refers to the classical tableau prover (see \texttt{blast_tac} in \cite{22}). The optional argument specifies a user-supplied search bound (default 20).

\textit{fast}, \textit{slow}, \textit{best}, \textit{safe}, and \textit{clarify} refer to the generic classical reasoner. See \texttt{fast_tac}, \texttt{slow_tac}, \texttt{best_tac}, \texttt{safe_tac}, and \texttt{clarify_tac} in \cite{22} for more information.

Any of the above methods support additional modifiers of the context of classical rules. Their semantics is analogous to the attributes given before. Facts provided by forward chaining are inserted into the goal before commencing proof search. The “!” argument causes the full context of assumptions to be included as well.
auto, force, clarsimp, fastsimp, newsimp, and bestsimp provide access to Isabelle's combined simplification and classical reasoning tactics. These correspond to auto_tac, force_tac, clarsimp_tac, and Classical Reasoner tactics with the Simplifier added as wrapper, see [22] for more information. The modifier arguments correspond to those given in §9.3 and §9.4. Just note that the ones related to the Simplifier are prefixed by simp here.

Facts provided by forward chaining are inserted into the goal before doing the search. The ‘!’ argument causes the full context of assumptions to be included as well.
9.4.4 Declaring rules

\begin{verbatim}
print_claset* : context \rightarrow
intro : attribute
elim : attribute
dest : attribute
rule : attribute
iff : attribute
\end{verbatim}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example.png}
\caption{Diagram of rule declaration attributes.}
\end{figure}

\textbf{print\_claset} prints the collection of rules declared to the Classical Reasoner, which is also known as “claset” internally [22].

\textit{intro}, \textit{elim}, and \textit{dest} declare introduction, elimination, and destruction rules, respectively. By default, rules are considered as \textit{unsafe} (i.e. not applied blindly without backtracking), while “!” classifies as \textit{safe}. Rule declarations marked by “?” coincide with those of Isabelle/Pure, cf. §6.3.3 (i.e. are only applied in single steps of the \textit{rule} method). The optional natural number specifies an explicit weight argument, which is ignored by automated tools, but determines the search order of single rule steps.

\textit{rule del} deletes introduction, elimination, or destruction rules from the context.

\textit{iff} declares logical equivalences to the Simplifier and the Classical reasoner at the same time. Non-conditional rules result in a “safe” introduction and elimination pair; conditional ones are considered “unsafe”. Rules with negative conclusion are automatically inverted (using \textit{¬}-elimination internally).
The “?” version of iff declares rules to the Isabelle/Pure context only, and omits the Simplifier declaration.

9.4.5 Classical operations

\texttt{swapped} : \texttt{attribute}

\texttt{swapped} turns an introduction rule into an elimination, by resolving with the classical swap principle \((\neg B \implies A) \implies (\neg A \implies B)\).

9.5 Object-logic setup

\texttt{judgment} : \texttt{theory \to theory}

\texttt{atomize} : \texttt{method}

\texttt{atomize} : \texttt{attribute}

\texttt{rule\_format} : \texttt{attribute}

\texttt{rulify} : \texttt{attribute}

The very starting point for any Isabelle object-logic is a “truth judgment” that links object-level statements to the meta-logic (with its minimal language of \texttt{prop} that covers universal quantification \(\forall\) and implication \(\implies\)).

Common object-logics are sufficiently expressive to internalize rule statements over \(\forall\) and \(\implies\) within their own language. This is useful in certain situations where a rule needs to be viewed as an atomic statement from the meta-level perspective, e.g. \(\forall x. \ x \in A \implies P\ x\) versus \(\forall x \in A. \ P\ x\).

From the following language elements, only the \texttt{atomize} method and \texttt{rule\_format} attribute are occasionally required by end-users, the rest is for those who need to setup their own object-logic. In the latter case existing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic examples.

Generic tools may refer to the information provided by object-logic declarations internally.
**judgment** $c : \sigma$  ($mx$) declares constant $c$ as the truth judgment of the current object-logic. Its type $\sigma$ should specify a coercion of the category of object-level propositions to $prop$ of the Pure meta-logic; the mixfix annotation ($mx$) would typically just link the object language (internally of syntactic category logic) with that of $prop$. Only one judgment declaration may be given in any theory development.

**atomize** (as a method) rewrites any non-atomic premises of a sub-goal, using the meta-level equations declared via atomize (as an attribute) beforehand. As a result, heavily nested goals become amenable to fundamental operations such as resolution (cf. the rule method). Giving the “(full)” option here means to turn the whole subgoal into an object-statement (if possible), including the outermost parameters and assumptions as well.

A typical collection of atomize rules for a particular object-logic would provide an internalization for each of the connectives of $\land$, $\Longrightarrow$, and $\equiv$. Meta-level conjunction should be covered as well (this is particularly important for locales, see §5.5).

**rule\_format** rewrites a theorem by the equalities declared as rulify rules in the current object-logic. By default, the result is fully normalized, including assumptions and conclusions at any depth. The (no_asm) option restricts the transformation to the conclusion of a rule.

In common object-logics (HOL, FOL, ZF), the effect of **rule\_format** is to replace (bounded) universal quantification ($\forall$) and implication ($\rightarrow$) by the corresponding rule statements over $\land$ and $\Longrightarrow$. 
Part III

Object-Logics
10.1 Primitive types

\texttt{typedecl} : theory $\rightarrow$ theory
\texttt{typedef} : theory $\rightarrow$ proof(prove)

\texttt{typedecl} is similar to the original \texttt{typedecl} of Isabelle/Pure (see §5.9.2), but also declares type arity $t :: (\textit{type}, \ldots, \textit{type}) \textit{type}$, making $t$ an actual HOL type constructor.
**10.2 Adhoc tuples**

`split_format* : attribute`

```
split_format

(name

and

{complete})

(split_format p₁ . . . pₘ and . . . and q₁ . . . qₙ) puts expressions of low-level tuple types into canonical form as specified by the arguments given;
```
the $i$-th collection of arguments refers to occurrences in premise $i$ of
the rule. The \textit{(complete)} option causes all arguments in function
applications to be represented canonically according to their tuple type
structure.

Note that these operations tend to invent funny names for new local
parameters to be introduced.

10.3 Records

In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding \textquotedblleft object-oriented\textquotedblright
effects like (single) inheritance. See also \cite{16} for more details on object-oriented
verification and record subtyping in HOL.

10.3.1 Basic concepts

Isabelle/HOL supports both \textit{fixed} and \textit{schematic} records at the level of terms
and types. The notation is as follows:

\begin{center}
\begin{tabular}{l|l|l}
\hline
 & record terms & record types \\
\hline
fixed & $\{x = a, y = b\}$ & $\{x :: A, y :: B\}$ \\
\hline
schematic & $\{x = a, y = b, \ldots = m\}$ & $\{x :: A, y :: B, \ldots :: M\}$ \\
\hline
\end{tabular}
\end{center}

The ASCII representation of $\{x = a\}$ is $\{ x = a \}$.

A fixed record $\{x = a, y = b\}$ has field $x$ of value $a$ and field $y$ of value
$b$. The corresponding type is $\{x :: A, y :: B\}$, assuming that $a :: A$ and $b :: B$.

A record scheme like $\{x = a, y = b, \ldots = m\}$ contains fields $x$ and $y$
as before, but also possibly further fields as indicated by the \textquotedblleft$\ldots$\textquotedblright notation
(which is actually part of the syntax). The improper field \textquotedblleft$\ldots$\textquotedblright of a record
scheme is called the \textit{more part}. Logically it is just a free variable, which is
occasionally referred to as \textit{row variable} in the literature. The more part
of a record scheme may be instantiated by zero or more further components.
For example, the previous scheme may get instantiated to $\{x = a, y = b, z$
$= c, \ldots = m\}$, where $m'$ refers to a different more part. Fixed records are
special instances of record schemes, where \textquotedblleft$\ldots$\textquotedblright is properly terminated by
CHAPTER 10. ISABELLE/HOL

the () :: \textit{unit} element. In fact, \((x = a, y = b)\) is just an abbreviation for \((x = a, y = b, \ldots = ())\).

Two key observations make extensible records in a simply typed language like HOL work out:

1. the more part is internalized, as a free term or type variable,
2. field names are externalized, they cannot be accessed within the logic as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their field names and types, and their (optional) parent record. Afterwards, records may be formed using above syntax, while obeying the canonical order of fields as given by their declaration. The record package provides several standard operations like selectors and updates. The common setup for various generic proof tools enable succinct reasoning patterns. See also the Isabelle/HOL tutorial [19] for further instructions on using records in practice.

10.3.2 Record specifications

\texttt{record : theory \rightarrow theory}

\texttt{record \ (\alpha_1, \ldots, \alpha_m) \ t = \tau + c_1 :: \sigma_1 \ldots c_n :: \sigma_n} defines extensible record type \((\alpha_1, \ldots, \alpha_m) \ t\), derived from the optional parent record \(\tau\) by adding new field components \(c_i :: \sigma_i\) etc.

The type variables of \(\tau\) and \(\sigma_i\) need to be covered by the (distinct) parameters \(\alpha_1, \ldots, \alpha_m\). Type constructor \(t\) has to be new, while \(\tau\) needs to specify an instance of an existing record type. At least one new field \(c_i\) has to be specified. Basically, field names need to belong to a unique record. This is not a real restriction in practice, since fields are qualified by the record name internally.

The parent record specification \(\tau\) is optional; if omitted \(t\) becomes a root record. The hierarchy of all records declared within a theory context forms a forest structure, i.e. a set of trees starting with a root record each. There is no way to merge multiple parent records!
For convenience, \((\alpha_1, \ldots, \alpha_m)\) \(t\) is made a type abbreviation for the fixed record type \(\langle c_1 :: \sigma_1, \ldots, c_n :: \sigma_n \rangle\), likewise is \((\alpha_1, \ldots, \alpha_m, \zeta)\) \(t\_scheme\) made an abbreviation for \(\langle c_1 :: \sigma_1, \ldots, c_n :: \sigma_n, \ldots :: \zeta \rangle\).

10.3.3 Record operations

Any record definition of the form presented above produces certain standard operations. Selectors and updates are provided for any field, including the improper one “more”. There are also cumulative record constructor functions. To simplify the presentation below, we assume for now that \((\alpha_1, \ldots, \alpha_m)\) \(t\) is a root record with fields \(c_1 :: \sigma_1, \ldots, c_n :: \sigma_n\).

Selectors and updates are available for any field (including “more”):

\[
\begin{align*}
c_i &:: \langle |c| :: \sigma, \ldots :: \zeta | \rangle \Rightarrow \sigma_i \\
c_i.update &:: \sigma_i \Rightarrow \langle |c| :: \sigma, \ldots :: \zeta | \rangle \Rightarrow \langle |c| :: \sigma, \ldots :: \zeta | \rangle
\end{align*}
\]

There is special syntax for application of updates: \(r\langle |x| := a | \rangle\) abbreviates term \(x.update\ a\ r\). Further notation for repeated updates is also available: \(r\langle |x| := a | \rangle\langle |y| := b | \rangle\langle |z| := c | \rangle\) may be written \(r\langle |x| := a, y := b, z := c | \rangle\). Note that because of postfix notation the order of fields shown here is reverse than in the actual term. Since repeated updates are just function applications, fields may be freely permuted in \(\langle |x| := a, y := b, z := c | \rangle\), as far as logical equality is concerned. Thus commutativity of independent updates can be proven within the logic for any two fields, but not as a general theorem.

The \texttt{make} operation provides a cumulative record constructor function:

\[
t.make :: \sigma_1 \Rightarrow \ldots \sigma_n \Rightarrow \langle |c| :: \sigma | \rangle
\]

We now reconsider the case of non-root records, which are derived of some parent. In general, the latter may depend on another parent as well, resulting in a list of ancestor records. Appending the lists of fields of all ancestors results in a certain field prefix. The record package automatically takes care of this by lifting operations over this context of ancestor fields. Assuming that \((\alpha_1, \ldots, \alpha_m)\) \(t\) has ancestor fields \(b_1 :: \varrho_1, \ldots, b_k :: \varrho_k\), the above record operations will get the following types:

\[
\begin{align*}
c_i &:: \langle |b| :: \varrho, |c| :: \sigma, \ldots :: \zeta | \rangle \Rightarrow \sigma_i \\
c_i.update &:: \sigma_i \Rightarrow \langle |b| :: \varrho, |c| :: \sigma, \ldots :: \zeta | \rangle \Rightarrow \langle |b| :: \varrho, |c| :: \sigma, \ldots :: \zeta | \rangle \\
t.make &:: \varrho_1 \Rightarrow \ldots \varrho_k \Rightarrow \sigma_1 \Rightarrow \ldots \sigma_n \Rightarrow \langle |b| :: \varrho, |c| :: \sigma | \rangle
\end{align*}
\]
Some further operations address the extension aspect of a derived record scheme specifically: \texttt{t.fields} produces a record fragment consisting of exactly the new fields introduced here (the result may serve as a more part elsewhere); \texttt{t.extend} takes a fixed record and adds a given more part; \texttt{t.truncate} restricts a record scheme to a fixed record.

\begin{align*}
\texttt{t.fields} &:: \sigma_1 \Rightarrow \ldots \sigma_n \Rightarrow (\overline{c} :: \overline{\sigma}) \\
\texttt{t.extend} &:: (\overline{\overline{b}} :: \overline{\overline{\rho}}, \overline{c} :: \overline{\sigma}) \Rightarrow \zeta \Rightarrow (\overline{\overline{b}} :: \overline{\overline{\rho}}, \overline{c} :: \overline{\sigma}, \ldots :: \zeta) \\
\texttt{t.truncate} &:: (\overline{\overline{b}} :: \overline{\overline{\rho}}, \overline{c} :: \overline{\sigma}, \ldots :: \zeta) \Rightarrow (\overline{\overline{b}} :: \overline{\overline{\rho}}, \overline{c} :: \overline{\sigma})
\end{align*}

Note that \texttt{t.make} and \texttt{t.fields} coincide for root records.

### 10.3.4 Derived rules and proof tools

The record package proves several results internally, declaring these facts to appropriate proof tools. This enables users to reason about record structures quite conveniently. Assume that \texttt{t} is a record type as specified above.

1. Standard conversions for selectors or updates applied to record constructor terms are made part of the default Simplifier context; thus proofs by reduction of basic operations merely require the \texttt{simp} method without further arguments. These rules are available as \texttt{t.simps}, too.

2. Selectors applied to updated records are automatically reduced by an internal simplification procedure, which is also part of the standard Simplifier setup.

3. Inject equations of a form analogous to \((x, y) = (x', y') \equiv x = x' \land y = y'\) are declared to the Simplifier and Classical Reasoner as \texttt{iff} rules. These rules are available as \texttt{t.iffs}.

4. The introduction rule for record equality analogous to \(x \ r = x' \ r' \implies y \ r = y' \ r' \ldots \implies r = r'\) is declared to the Simplifier, and as the basic rule context as “\texttt{intro?}”. The rule is called \texttt{t.equality}.

5. Representations of arbitrary record expressions as canonical constructor terms are provided both in \texttt{cases} and \texttt{induct} format (cf. the generic proof methods of the same name, §6.6). Several variations are available, for fixed records, record schemes, more parts etc.

The generic proof methods are sufficiently smart to pick the most sensible rule according to the type of the indicated record expression; users just need to apply something like “\texttt{(cases r)}” to a certain proof problem.
6. The derived record operations \textit{t.make}, \textit{t.fields}, \textit{t.extend}, \textit{t.truncate} are not treated automatically, but usually need to be expanded by hand, using the collective fact \textit{t.defs}.

10.4 Datatypes

\textbf{datatype} defines inductive datatypes in HOL.

\textbf{rep_datatype} represents existing types as inductive ones, generating the standard infrastructure of derived concepts (primitive recursion etc.).

The induction and exhaustion theorems generated provide case names according to the constructors involved, while parameters are named after the types (see also §6.6).

See [18] for more details on datatypes, but beware of the old-style theory syntax being used there! Apart from proper proof methods for case-analysis and induction, there are also emulations of ML tactics \textit{case_tac} and \textit{induct_tac} available, see §10.12; these admit to refer directly to the internal structure of subgoals (including internally bound parameters).
10.5 Recursive functions

- **primrec**: `local_theory → local_theory`
- **fun**: `local_theory → local_theory`
- **function**: `local_theory → proof(prove)`
- **termination**: `local_theory → proof(prove)`

---

**equations**

- **prop**
  - `thmdecl`

---

**clauses**

- **prop**
  - `thmdecl`
  - `(otherwise)`

---

**functionopts**

- **sequential**
  - `domintros`
  - `tailrec`
  - `default`
  - `term`
**primrec** defines primitive recursive functions over datatypes, see also [18].

**function** defines functions by general wellfounded recursion. A detailed description with examples can be found in [10]. The function is specified by a set of (possibly conditional) recursive equations with arbitrary pattern matching. The command generates proof obligations for the completeness and the compatibility of patterns.

The defined function is considered partial, and the resulting simplification rules (named \( f \).psimps) and induction rule (named \( f \).pinduct) are guarded by a generated domain predicate \( f \).dom. The **termination** command can then be used to establish that the function is total.

**fun** is a shorthand notation for **"function (sequential)\**, followed by automated proof attempts regarding pattern matching and termination. See [10] for further details.

**termination** \( f \) commences a termination proof for the previously defined function \( f \). If this is omitted, the command refers to the most recent function definition. After the proof is closed, the recursive equations and the induction principle is established.

Recursive definitions introduced by the **function** command accommodate reasoning by induction (cf. §6.6): rule \( c \).induct (where \( c \) is the name of the function definition) refers to a specific induction rule, with parameters named according to the user-specified equations. Cases are numbered (starting from 1).

For **primrec**, the induction principle coincides with structural recursion on the datatype the recursion is carried out.

The equations provided by these packages may be referred later as theorem list \( f \).simps, where \( f \) is the (collective) name of the functions defined. Individual equations may be named explicitly as well.

The **function** command accepts the following options.

- **sequential** enables a preprocessor which disambiguates overlapping patterns by making them mutually disjoint. Earlier equations take precedence over later ones. This allows to give the specification in a format very similar to functional programming. Note that the resulting simplification and induction rules correspond to the transformed specification,
not the one given originally. This usually means that each equation
given by the user may result in several theorems. Also note that this
automatic transformation only works for ML-style datatype patterns.

domintros enables the automated generation of introduction rules for the
domain predicate. While mostly not needed, they can be helpful in
some proofs about partial functions.

tailrec generates the unconstrained recursive equations even without a ter-
mination proof, provided that the function is tail-recursive. This cur-
rently only works

default d allows to specify a default value for a (partial) function, which
will ensure that \( f x = d x \) whenever \( x \not\in f \text{dom} \).

### 10.5.1 Proof methods related to recursive definitions

- **pal_completeness**: method
- **relation**: method
- **lexicographic_order**: method
- **size_change**: method

\[
\begin{align*}
\text{relation} & \quad \text{term} \\
\text{lexicographic_order} & \quad \text{clasimpmod} \\
\text{size_change} & \quad \text{orders} \\
\text{orders} & \quad \text{max} \\
& \quad \text{min} \\
& \quad \text{ms}
\end{align*}
\]
pat_completeness is a specialized method to solve goals regarding the completeness of pattern matching, as required by the function package (cf. [10]).

relation $R$ introduces a termination proof using the relation $R$. The resulting proof state will contain goals expressing that $R$ is wellfounded, and that the arguments of recursive calls decrease with respect to $R$. Usually, this method is used as the initial proof step of manual termination proofs.

lexicographic_order attempts a fully automated termination proof by searching for a lexicographic combination of size measures on the arguments of the function. The method accepts the same arguments as the auto method, which it uses internally to prove local descents. The same context modifiers as for auto are accepted, see §9.4.3. In case of failure, extensive information is printed, which can help to analyse the situation (cf. [10]).

size_change also works on termination goals, using a variation of the size-change principle, together with a graph decomposition technique (see [11] for details). Three kinds of orders are used internally: $max$, $min$, and $ms$ (multiset), which is only available when the theory Multiset is loaded. When no order kinds are given, they are tried in order. The search for a termination proof uses SAT solving internally.

For local descent proofs, the same context modifiers as for auto are accepted, see §9.4.3.

10.5.2 Old-style recursive function definitions (TFL)
The old TFL commands recdef and recdef_tc for defining recursive are mostly obsolete; function or fun should be used instead.

```
recdef : theory -> theory
recdef_tc*: theory -> proof(prove)
```

```


recdef defines general well-founded recursive functions (using the TFL package), see also [18]. The "(permissive)" option tells TFL to recover from failed proof attempts, returning unfinished results. The \texttt{recdef_simp}, \texttt{recdef_cong}, and \texttt{recdef_wf} hints refer to auxiliary rules to be used in the internal automated proof process of TFL. Additional \texttt{clasimpmod} declarations (cf. §9.4.3) may be given to tune the context of the Simplifier (cf. §9.3) and Classical reasoner (cf. §9.4).

recdef_tc \(c\) \((i)\) recommences the proof for leftover termination condition number \(i\) (default 1) as generated by a \texttt{recdef} definition of constant \(c\).

Note that in most cases, \texttt{recdef} is able to finish its internal proofs without manual intervention.

Hints for \texttt{recdef} may be also declared globally, using the following attributes.

- \texttt{recdef_simp} : \texttt{attribute}
- \texttt{recdef_cong} : \texttt{attribute}
- \texttt{recdef_wf} : \texttt{attribute}
10.6 Inductive and coinductive definitions

An **inductive definition** specifies the least predicate (or set) R closed under given rules: applying a rule to elements of R yields a result within R. For example, a structural operational semantics is an inductive definition of an evaluation relation.

Dually, a **coinductive definition** specifies the greatest predicate / set R that is consistent with given rules: every element of R can be seen as arising by applying a rule to elements of R. An important example is using bisimulation relations to formalise equivalence of processes and infinite data structures.

The HOL package is related to the ZF one, which is described in a separate paper,\(^1\) which you should refer to in case of difficulties. The package is simpler than that of ZF thanks to implicit type-checking in HOL. The types of the (co)inductive predicates (or sets) determine the domain of the fixedpoint definition, and the package does not have to use inference rules for type-checking.

\[\textbf{inductive} : \textit{local theory} \rightarrow \textit{local theory} \]
\[\textbf{inductive set} : \textit{local theory} \rightarrow \textit{local theory} \]
\[\textbf{coinductive} : \textit{local theory} \rightarrow \textit{local theory} \]
\[\textbf{coinductive set} : \textit{local theory} \rightarrow \textit{local theory} \]
\[\textbf{mono} : \textit{attribute} \]

\(^1\)It appeared in CADE [27]; a longer version is distributed with Isabelle.
inductive and **coinductive** define (co)inductive predicates from the introduction rules given in the **where** part. The optional **for** part contains a list of parameters of the (co)inductive predicates that remain fixed throughout the definition. The optional **monos** section contains monotonicity theorems, which are required for each operator applied to a recursive set in the introduction rules. There must be a theorem of the form $A \leq B \implies M \, A \leq M \, B$, for each premise $M \, R_i \, t$ in an introduction rule!

inductive_set and **coinductive_set** are wrappers for the previous commands, allowing the definition of (co)inductive sets.

mono declares monotonicity rules. These rules are involved in the automated monotonicity proof of **inductive**.
10.6.1 Derived rules

Each (co)inductive definition R adds definitions to the theory and also proves some theorems:

- R.intros is the list of introduction rules as proven theorems, for the recursive predicates (or sets). The rules are also available individually, using the names given them in the theory file;

- R.cases is the case analysis (or elimination) rule;

- R.induct or R.coinduct is the (co)induction rule.

When several predicates R_1, \ldots, R_n are defined simultaneously, the list of introduction rules is called $R_1 \ldots R_n$.intros, the case analysis rules are called R_1.cases, \ldots, R_n.cases, and the list of mutual induction rules is called $R_1 \ldots R_n$.inducts.

10.6.2 Monotonicity theorems

Each theory contains a default set of theorems that are used in monotonicity proofs. New rules can be added to this set via the mono attribute. The HOL theory Inductive shows how this is done. In general, the following monotonicity theorems may be added:

- Theorems of the form $A \leq B \Longrightarrow M A \leq M B$, for proving monotonicity of inductive definitions whose introduction rules have premises involving terms such as $M R_i t$.

- Monotonicity theorems for logical operators, which are of the general form $(\ldots \rightarrow \ldots) \Longrightarrow \ldots (\ldots \rightarrow \ldots) \Longrightarrow \ldots \rightarrow \ldots$. For example, in the case of the operator \lor, the corresponding theorem is

\[
\frac{P_1 \rightarrow Q_1 \quad P_2 \rightarrow Q_2}{P_1 \lor P_2 \rightarrow Q_1 \lor Q_2}
\]

- De Morgan style equations for reasoning about the “polarity” of expressions, e.g.

\[
\neg \neg P \iff P \quad \neg (P \land Q) \iff \neg P \lor \neg Q
\]

- Equations for reducing complex operators to more primitive ones whose monotonicity can easily be proved, e.g.

\[
(P \rightarrow Q) \iff \neg P \lor Q \quad Ball A P \equiv \forall x. x \in A \rightarrow P x
\]
10.7 Arithmetic proof support

\begin{itemize}
 \item \texttt{arith} : method
 \item \texttt{arith} : attribute
 \item \texttt{arith_split} : attribute
\end{itemize}

The \texttt{arith} method decides linear arithmetic problems (on types \texttt{nat}, \texttt{int}, \texttt{real}). Any current facts are inserted into the goal before running the procedure.

The \texttt{arith} attribute declares facts that are always supplied to the arithmetic provers implicitly.

The \texttt{arith_split} attribute declares case split rules to be expanded before \texttt{arith} is invoked.

Note that a simpler (but faster) arithmetic prover is already invoked by the Simplifier.

10.8 Intuitionistic proof search

\begin{itemize}
 \item \texttt{iprover} : method
\end{itemize}

The \texttt{iprover} method performs intuitionistic proof search, depending on specifically declared rules from the context, or given as explicit arguments. Chained facts are inserted into the goal before commencing proof search; “\texttt{iprover!}” means to include the current \texttt{prems} as well.

Rules need to be classified as \texttt{intro}, \texttt{elim}, or \texttt{dest}; here the “!” indicator refers to “safe” rules, which may be applied aggressively (without considering back-tracking later). Rules declared with “?” are ignored in proof search (the single-step \texttt{rule} method still observes these). An explicit weight annotation may be given as well; otherwise the number of rule premises will be taken into account here.

10.9 Coherent Logic

\begin{itemize}
 \item \texttt{coherent} : method
\end{itemize}
The coherent method solves problems of Coherent Logic [5], which covers applications in confluence theory, lattice theory and projective geometry. See $$~/src/HOL/ex/Coherent.thy$$ for some examples.

10.10 Checking and refuting propositions

Identifying incorrect propositions usually involves evaluation of particular assignments and systematic counter example search. This is supported by the following commands.

```plaintext
value* : context →
quickcheck* : proof →
quickcheck_params : theory → theory
```

value

- `name`
- `modes`

quickcheck

- `args`
- `nat`

quickcheck_params

- `args`

modes

- `name`

args

- `name` → `value`
value t evaluates and prints a term; optionally *modes* can be specified, which are appended to the current print mode (see also [22]). Internally, the evaluation is performed by registered evaluators, which are invoked sequentially until a result is returned. Alternatively a specific evaluator can be selected using square brackets; available evaluators include *nbe* for *normalization by evaluation* and *code* for code generation in SML.

quickcheck tests the current goal for counter examples using a series of arbitrary assignments for its free variables; by default the first subgoal is tested, an other can be selected explicitly using an optional goal index. A number of configuration options are supported for **quickcheck**, notably:

- **size** specifies the maximum size of the search space for assignment values.
- **iterations** sets how many sets of assignments are generated for each particular size.

These option can be given within square brackets.

quickcheck_params changes quickcheck configuration options persistently.

10.11 Invoking automated reasoning tools – The Sledgehammer

Isabelle/HOL includes a generic *ATP manager* that allows external automated reasoning tools to crunch a pending goal. Supported provers include E2, SPASS3, and Vampire. There is also a wrapper to invoke provers remotely via the SystemOnTPTP4 web service.

The problem passed to external provers consists of the goal together with a smart selection of lemmas from the current theory context. The result of a successful proof search is some source text that usually reconstructs the proof within Isabelle, without requiring external provers again. The Metis prover5 that is integrated into Isabelle/HOL is being used here.

2http://www.eprover.org
3http://www.spass-prover.org/
4http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP
5http://www.gilith.com/software/metis/
In this mode of operation, heavy means of automated reasoning are used as a strong relevance filter, while the main proof checking works via explicit inferences going through the Isabelle kernel. Moreover, rechecking Isabelle proof texts with already specified auxiliary facts is much faster than performing fully automated search over and over again.

\[
\begin{align*}
\text{sledgehammer}^* & : proof \rightarrow \\
\text{print_atps}^* & : context \rightarrow \\
\text{atp_info}^* & : any \rightarrow \\
\text{atp_kill}^* & : any \rightarrow \\
\text{atp_messages}^* & : any \rightarrow \\
\text{metis} & : method
\end{align*}
\]

\[
\begin{tikzpicture}
 \node (sledgehammer) {sledgehammer};
 \node[below=of sledgehammer,rounded corners=0.1cm] (nameref) {nameref};
 \draw[->] (sledgehammer) -- (nameref);
\end{tikzpicture}
\]

\[
\begin{tikzpicture}
 \node (atp_messages) {atp_messages};
 \node[below=of atp_messages,rounded corners=0.1cm] (nat) {nat};
 \draw[->] (atp_messages) -- (nat);
\end{tikzpicture}
\]

\[
\begin{tikzpicture}
 \node (metis) {metis};
 \node[below=of metis,rounded corners=0.1cm] (thmrefs) {thmrefs};
 \draw[->] (metis) -- (thmrefs);
\end{tikzpicture}
\]

\text{sledgehammer} \text{prover}_1 \ldots \text{prover}_n \text{ invokes the specified automated theorem provers on the first subgoal. Provers are run in parallel, the first successful result is displayed, and the other attempts are terminated.}

Provers are defined in the theory context, see also \text{print_atps}. If no provers are given as arguments to \text{sledgehammer}, the system refers to the default defined as “ATP provers” preference by the user interface.

There are additional preferences for timeout (default: 60 seconds), and the maximum number of independent prover processes (default: 5); excessive provers are automatically terminated.

\text{print_atps} \text{ prints the list of automated theorem provers available to the} \text{sledgehammer} \text{ command.}

\text{atp_info} \text{ prints information about presently running provers, including elapsed runtime, and the remaining time until timeout.}

\text{atp_kill} \text{ terminates all presently running provers.}
atp_messages displays recent messages issued by automated theorem provers. This allows to examine results that might have got lost due to the asynchronous nature of default **sledgehammer** output. An optional message limit may be specified (default 5).

metis facts invokes the Metis prover with the given facts. Metis is an automated proof tool of medium strength, but is fully integrated into Isabelle/HOL, with explicit inferences going through the kernel. Thus its results are guaranteed to be “correct by construction”.

Note that all facts used with Metis need to be specified as explicit arguments. There are no rule declarations as for other Isabelle provers, like **blast** or **fast**.

10.12 Unstructured case analysis and induction

The following tools of Isabelle/HOL support cases analysis and induction in unstructured tactic scripts; see also §6.6 for proper Isar versions of similar ideas.

- **case_tac**
- **induct_tac**
- **ind_cases**
- **inductive_cases**

```
| case_tac^*  | method |
| induct_tac* | method |
| ind_cases*  | method |
| inductive_cases*  | local_theory → local_theory |
```

```
\[
\text{case_tac} \quad \text{goalspec} \quad \text{term} \quad \text{rule}
\]

\[
\text{induct_tac} \quad \text{goalspec} \quad \text{insts} \quad \text{and} \quad \text{rule}
\]

\[
\text{ind_cases} \quad \text{prop} \quad \text{for} \quad \text{name}
\]
```
inductive_cases and prop

rule

rule : thmref

case_tac and induct_tac admit to reason about inductive types. Rules are selected according to the declarations by the cases and induct attributes, cf. §6.6. The datatype package already takes care of this.

These unstructured tactics feature both goal addressing and dynamic instantiation. Note that named rule cases are not provided as would be by the proper cases and induct proof methods (see §6.6). Unlike the induct method, induct_tac does not handle structured rule statements, only the compact object-logic conclusion of the subgoal being addressed.

ind_cases and inductive_cases provide an interface to the internal mk_cases operation. Rules are simplified in an unrestricted forward manner.

While ind_cases is a proof method to apply the result immediately as elimination rules, inductive_cases provides case split theorems at the theory level for later use. The for argument of the ind_cases method allows to specify a list of variables that should be generalized before applying the resulting rule.

10.13 Executable code

Isabelle/Pure provides two generic frameworks to support code generation from executable specifications. Isabelle/HOL instantiates these mechanisms in a way that is amenable to end-user applications.

One framework generates code from both functional and relational programs to SML. See [18] for further information (this actually covers the
new-style theory format as well).

\begin{itemize}
 \item \textbf{code_module} : \textit{theory} \rightarrow \textit{theory}
 \item \textbf{code_library} : \textit{theory} \rightarrow \textit{theory}
 \item \textbf{consts_code} : \textit{theory} \rightarrow \textit{theory}
 \item \textbf{types_code} : \textit{theory} \rightarrow \textit{theory}
 \item \textbf{code} : \textit{attribute}
\end{itemize}
The other framework generates code from functional programs (including overloading using type classes) to SML [14], OCaml [12] and Haskell [29]. Conceptually, code generation is split up in three steps: selection of code theorems, translation into an abstract executable view and serialization to a
specific target language. See [8] for an introduction on how to use it.

\[\begin{align*}
\text{export_code}^* &: \text{context} \rightarrow \\
\text{code_thms}^* &: \text{context} \rightarrow \\
\text{code_deps}^* &: \text{context} \rightarrow \\
\text{code_datatype} &: \text{theory} \rightarrow \text{theory} \\
\text{code_const} &: \text{theory} \rightarrow \text{theory} \\
\text{code_type} &: \text{theory} \rightarrow \text{theory} \\
\text{code_class} &: \text{theory} \rightarrow \text{theory} \\
\text{code_instance} &: \text{theory} \rightarrow \text{theory} \\
\text{code_monad} &: \text{theory} \rightarrow \text{theory} \\
\text{code_reserved} &: \text{theory} \rightarrow \text{theory} \\
\text{code_include} &: \text{theory} \rightarrow \text{theory} \\
\text{code_modulename} &: \text{theory} \rightarrow \text{theory} \\
\text{code_abort} &: \text{theory} \rightarrow \text{theory} \\
\text{print_codesetup}^* &: \text{context} \rightarrow \\
\text{print_codeproc}^* &: \text{context} \rightarrow \\
\text{code} &: \text{attribute}
\end{align*}\]
export_code is the canonical interface for generating and serializing code: for a given list of constants, code is generated for the specified target languages. Abstract code is cached incrementally. If no constant is given, the currently cached code is serialized. If no serialization instruction is given, only abstract code is cached.

Constants may be specified by giving them literally, referring to all executable constants within a certain theory by giving name.*, or referring to all executable constants currently available by giving *.

By default, for each involved theory one corresponding name space module is generated. Alternativly, a module name may be specified after the module_name keyword; then all code is placed in this module.

For SML and OCaml, the file specification refers to a single file; for Haskell, it refers to a whole directory, where code is generated in multiple files reflecting the module hierarchy. The file specification “−” denotes standard output. For SML, omitting the file specification compiles code internally in the context of the current ML session.

Serializers take an optional list of arguments in parentheses. For Haskell a module name prefix may be given using the “root:” argument; “string_classes” adds a “deriving (Read, Show)” clause to each appropriate datatype declaration.

code_thms prints a list of theorems representing the corresponding program containing all given constants; if no constants are given, the currently cached code theorems are printed.

code_deps visualizes dependencies of theorems representing the corresponding program containing all given constants; if no constants are given, the currently cached code theorems are visualized.
code_datatype specifies a constructor set for a logical type.

code_const associates a list of constants with target-specific serializations; omitting a serialization deletes an existing serialization.

code_type associates a list of type constructors with target-specific serializations; omitting a serialization deletes an existing serialization.

code_class associates a list of classes with target-specific class names; omitting a serialization deletes an existing serialization. This applies only to Haskell.

code_instance declares a list of type constructor / class instance relations as “already present” for a given target. Omitting a “−” deletes an existing “already present” declaration. This applies only to Haskell.

code_monad provides an auxiliary mechanism to generate monadic code for Haskell.

code_reserved declares a list of names as reserved for a given target, preventing it to be shadowed by any generated code.

code_include adds arbitrary named content (“include”) to generated code. A “−” as last argument will remove an already added “include”.

code_modulename declares aliasings from one module name onto another.

code_abort declares constants which are not required to have a definition by means of code equations; if needed these are implemented by program abort instead.

code explicitly selects (or with option “del” deselects) a code equation for code generation. Usually packages introducing code equations provide a reasonable default setup for selection.

code_inline declares (or with option “del” removes) inlining theorems which are applied as rewrite rules to any code equation during preprocessing.

code_post declares (or with option “del” removes) theorems which are applied as rewrite rules to any result of an evaluation.

print_codesetup gives an overview on selected code equations and code generator datatypes.

print_codeproc prints the setup of the code generator preprocessor.
10.14 Definition by specification

<table>
<thead>
<tr>
<th>specification</th>
<th>theory → proof(prove)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ax_specification</td>
<td>theory → proof(prove)</td>
</tr>
</tbody>
</table>

specification decls ϕ sets up a goal stating the existence of terms with the properties specified to hold for the constants given in decls. After finishing the proof, the theory will be augmented with definitions for the given constants, as well as with theorems stating the properties for these constants.

ax_specification decls ϕ sets up a goal stating the existence of terms with the properties specified to hold for the constants given in decls. After finishing the proof, the theory will be augmented with axioms expressing the properties given in the first place.

dercl declares a constant to be defined by the specification given. The definition for the constant c is bound to the name c_def unless a theorem name is given in the declaration. Overloaded constants should be declared as such.

Whether to use specification or ax_specification is to some extent a matter of style. specification introduces no new axioms, and so by construction cannot introduce inconsistencies, whereas ax_specification does introduce axioms, but only after the user has explicitly proven it to be safe.
A practical issue must be considered, though: After introducing two constants with the same properties using \texttt{specification}, one can prove that the two constants are, in fact, equal. If this might be a problem, one should use \texttt{ax_specification}.
Isabelle/HOLCF

11.1 Mixfix syntax for continuous operations

\textbf{consts} : \textit{theory} → \textit{theory}

HOLCF provides a separate type for continuous functions $\alpha \rightarrow \beta$, with an explicit application operator $f \cdot x$. Isabelle mixfix syntax normally refers directly to the pure meta-level function type $\alpha \Rightarrow \beta$, with application $f \ x$.

The HOLCF variant of \textbf{consts} modifies that of Pure Isabelle (cf. §5.9.4) such that declarations involving continuous function types are treated specifically. Any given syntax template is transformed internally, generating translation rules for the abstract and concrete representation of continuous application. Note that mixing of HOLCF and Pure application is \textit{not} supported!

11.2 Recursive domains

\textbf{domain} : \textit{theory} → \textit{theory}

domain : \begin{array}{c}
dmspec \\
\text{parname} \\
\text{and}
\end{array}

dmspec

\begin{array}{c}
typespec = \text{cons} \\
\text{1}
\end{array}

\text{cons}

\begin{array}{c}
\text{name} \\
\text{type} \\
\text{mixfix}
\end{array}

176
Recursive domains in HOLCF are analogous to datatypes in classical HOL (cf. §10.4). Mutual recursion is supported, but no nesting nor arbitrary branching. Domain constructors may be strict (default) or lazy, the latter admits to introduce infinitary objects in the typical LCF manner (e.g. lazy lists). See also [15] for a general discussion of HOLCF domains.
12.1 Type checking

The ZF logic is essentially untyped, so the concept of “type checking” is performed as logical reasoning about set-membership statements. A special method assists users in this task; a version of this is already declared as a “solver” in the standard Simplifier setup.

\[\text{print_tcset}^* : \text{context} \rightarrow \]
\[\text{typecheck} : \text{method} \]
\[\text{TC} : \text{attribute} \]

print_tcset prints the collection of typechecking rules of the current context.

typecheck attempts to solve any pending type-checking problems in subgoals.

TC adds or deletes type-checking rules from the context.

12.2 (Co)Inductive sets and datatypes

12.2.1 Set definitions

In ZF everything is a set. The generic inductive package also provides a specific view for “datatype” specifications. Coinductive definitions are available
in both cases, too.

- **inductive**: $\text{theory} \rightarrow \text{theory}$
- **coinductive**: $\text{theory} \rightarrow \text{theory}$
- **datatype**: $\text{theory} \rightarrow \text{theory}$
- **codatatype**: $\text{theory} \rightarrow \text{theory}$

domains

- **domains**
- **term**
- \subseteq
- **term**
- $+$

intros

- **intros**
- **prop**
- **thmdecl**

hints

- **monos**
- **condefs**
- **typeintros**
- **typeelims**

monos

- **monos**
- **thmrefs**

condefs

- **con_defs**
- **thmrefs**

typeintros

- **type_intros**
- **thmrefs**
In the following syntax specification monos, typeintros, and typeelims are the same as above.

See [23] for further information on inductive definitions in ZF, but note that this covers the old-style theory format.

12.2.2 Primitive recursive functions

primrec : theory → theory
12.2.3 Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/ZF have been ported to Isar. These should not be used in proper proof texts.

\begin{verbatim}
 case_tac*: method
 induct_tac*: method
 ind_cases*: method
 inductive_cases: theory → theory
\end{verbatim}

Part IV
Appendix
Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

- fix \(x \) : augment context by \(\forall x. \Box \)
- assume \(a : \varphi \) : augment context by \(\varphi \implies \Box \)
- then : indicate forward chaining of facts
- have \(a : \varphi \) : prove local result
- show \(a : \varphi \) : prove local result, refining some goal
- using \(a \) : indicate use of additional facts
- unfolding \(a \) : unfold definitional equations
- proof \(m_1 \ldots \text{qed} \ m_2 \) : indicate proof structure and refinements
- \{ \ldots \} : indicate explicit blocks
- next : switch blocks
- note \(a = b \) : reconsider facts
- let \(p = t \) : abbreviate terms by higher-order matching

theory-stmt = theorem name: props proof | definition \(\ldots \) | \(\ldots \)

proof = prfx* proof method? stmt* qed method? | prfx* done

prfx = apply method | using facts | unfolding facts

stmt = \{ stmt* \} | next | note name = facts | let term = term | fix var+ | assume name: props | then? goal

goal = have name: props proof | show name: props proof
A.1.2 Abbreviations and synonyms

by $m_1 \ m_2 \equiv proof \ m_1 \ \text{qed} \ m_2$

.. $\equiv by \ \text{rule}$

. $\equiv by \ \text{this}$

hence $\equiv then \ \text{have}$

thus $\equiv then \ \text{show}$

from $a \equiv note \ a \ \text{then}$

with $a \equiv from \ a \ \text{and} \ \text{this}$

from $this \equiv then$

from $this \ \text{have} \equiv hence$

from $this \ \text{show} \equiv thus$

A.1.3 Derived elements

also$_0 \approx note \ \text{calculation} = this$

also$_{n+1} \approx note \ \text{calculation} = \text{trans} \ [OF \ \text{calculation} \ this]$

finally $\approx also \ from \ \text{calculation}$

moreover $\approx note \ \text{calculation} = \text{calculation} \ this$

ultimately $\approx moreover \ from \ \text{calculation}$

presume $a: \varphi \approx assume \ a: \varphi$

def $a: \ x \equiv t \approx fix \ x \ assume \ a: \ x \equiv t$

obtain $x \ where \ a: \varphi \approx \ldots fix \ x \ assume \ a: \varphi$

case $c \approx fix \ x \ assume \ c: \varphi$

sorry $\approx by \ \text{cheating}$

A.1.4 Diagnostic commands

pr print current state

thm a print fact

term t print term

prop φ print meta-level proposition

typ τ print meta-level type
A.2 Proof methods

Single steps (forward-chaining facts)

- assumption: apply some assumption
- this: apply current facts
- rule a: apply some rule
- rule: apply standard rule (default for proof)
- contradiction: apply \(\neg \) elimination rule (any order)
- cases t: case analysis (provides cases)
- induct x: proof by induction (provides cases)

Repeated steps (inserting facts)

- no rules
- intro a: introduction rules
- intro_classes: class introduction rules
- elim a: elimination rules
- unfold a: definitional rewrite rules

Automated proof tools (inserting facts)

- iprover: intuitionistic proof search
- blast, fast: Classical Reasoner
- simp, simp_all: Simplifier (+ Splitter)
- auto, force: Simplifier + Classical Reasoner
- arith: Arithmetic procedures
A.3 Attributes

Operations

- \textit{OF a} \hspace{1cm} \text{rule resolved with facts (skipping 	extasciitilde"\texttt{"})}
- \textit{of t} \hspace{1cm} \text{rule instantiated with terms (skipping 	extasciitilde"\texttt{"})}
- \textit{where x = t} \hspace{1cm} \text{rule instantiated with terms, by variable name}
- \textit{symmetric} \hspace{1cm} \text{resolution with symmetry rule}
- \textit{THEN b} \hspace{1cm} \text{resolution with another rule}
- \textit{rule_format} \hspace{1cm} \text{result put into standard rule format}
- \textit{elim_format} \hspace{1cm} \text{destruct rule turned into elimination rule format}

Declarations

- \textit{simp} \hspace{1cm} \text{Simplifier rule}
- \textit{intro, elim, dest} \hspace{1cm} \text{Pure or Classical Reasoner rule}
- \textit{iff} \hspace{1cm} \text{Simplifier + Classical Reasoner rule}
- \textit{split} \hspace{1cm} \text{case split rule}
- \textit{trans} \hspace{1cm} \text{transitivity rule}
- \textit{sym} \hspace{1cm} \text{symmetry rule}

A.4 Rule declarations and methods

<table>
<thead>
<tr>
<th></th>
<th>rule</th>
<th>iprover</th>
<th>blast</th>
<th>simp</th>
<th>auto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>fast</td>
<td></td>
<td>simp_all</td>
<td>force</td>
</tr>
<tr>
<td>Pure.elim! Pure.intro!</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure.elim Pure.intro</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elim! intro!</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elim intro</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iff</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>iff?</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>elim? intro?</td>
<td>×</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>simp</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cong</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>split</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.5 Emulating tactic scripts

A.5.1 Commands

- **apply** \(m \)
 apply proof method at initial position
- **apply_end** \(m \)
 apply proof method near terminal position
- **done**
 complete proof
- **defer** \(n \)
 move subgoal to end
- **prefer** \(n \)
 move subgoal to beginning
- **back**
 backtrack last command

A.5.2 Methods

- **rule_tac** \(\text{insts} \)
 resolution (with instantiation)
- **erule_tac** \(\text{insts} \)
 elim-resolution (with instantiation)
- **drule_tac** \(\text{insts} \)
 destruct-resolution (with instantiation)
- **frule_tac** \(\text{insts} \)
 forward-resolution (with instantiation)
- **cut_tac** \(\text{insts} \)
 insert facts (with instantiation)
- **thin_tac** \(\varphi \)
 delete assumptions
- **subgoal_tac** \(\varphi \)
 new claims
- **rename_tac** \(x \)
 rename innermost goal parameters
- **rotate_tac** \(n \)
 rotate assumptions of goal
- **tactic** \(\text{text} \)
 arbitrary ML tactic
- **case_tac** \(t \)
 exhaustion (datatypes)
- **induct_tac** \(x \)
 induction (datatypes)
- **ind_cases** \(t \)
 exhaustion + simplification (inductive predicates)
Predefined Isabelle symbols

Isabelle supports an infinite number of non-ASCII symbols, which are represented in source text as \$<$name$>$ (where $name$ may be any identifier). It is left to front-end tools how to present these symbols to the user. The collection of predefined standard symbols given below is available by default for Isabelle document output, due to appropriate definitions of \isasym$name$ for each \$<$name$>$ in the isabellesym.sty file. Most of these symbols are displayed properly in Proof General if used with the X-Symbol package.

Moreover, any single symbol (or ASCII character) may be prefixed by \$<&sup$>, for superscript and \$<&sub$>, for subscript, such as A\$<&sup$>$\$<star$>, for A^\star the alternative versions \$<&isub$> and \$<&isup$> are considered as quasi letters and may be used within identifiers. Sub- and superscripts that span a region of text are marked up with \$<&bsub$>. . .$\$<esub$>, and \$<&bsup$>. . .$\$<esup$> respectively. Furthermore, all ASCII characters and most other symbols may be printed in bold by prefixing \$<&bold$> such as \$<&bold$>$\$<alpha$> for α. Note that \$<&bold$>, may not be combined with sub- or superscripts for single symbols.

Further details of Isabelle document preparation are covered in chapter 4.

\$<&zero$> 0 \$<&one$> 1 \$<&two$> 2 \$<&three$> 3 \$<&four$> 4 \$<&five$> 5 \$<&six$> 6 \$<&seven$> 7 \$<&eight$> 8 \$<&nine$> 9 \$<&A$> A \$<&B$> B \$<&C$> C \$<&D$> D \$<&E$> \mathcal{E} \$<&F$> \mathcal{F} \$<&G$> G \$<&H$> \mathcal{H} \$<&I$> I \$<&J$> J \$<&K$> K \$<&L$> \mathcal{L} \$<&M$> M \$<&N$> N \$<&O$> \mathcal{O} \$<&P$> \mathcal{P} \$<&Q$> Q \$<&R$> \mathcal{R}
APPENDIX B. PREDEFINED ISABELLE SYMBOLS

\% S \% T
\% U \% V
\% W \% X
\% Y \% Z
\% a \% b
\% c \% d
\% e \% f
\% g \% h
\% i \% j
\% k \% l
\% m \% n
\% o \% p
\% q \% r
\% s \% t
\% u \% v
\% w \% x
\% y \% z
\% A \% B
\% C \% D
\% E \% F
\% G \% H
\% I \% J
\% K \% L
\% M \% N
\% O \% P
\% Q \% R
\% S \% T
\% U \% V
\% W \% X
\% Y \% Z
\% a \% b
\% c \% d
\% e \% f
\% g \% h
\% i \% j
\% k \% l
\% m \% n
\% o \% p
\% q \% r
APPENDIX B. PREDEFINED ISABELLE SYMBOLS

\[\langle \text{ss} \rangle \quad \ss \quad \langle \text{tt} \rangle \quad \tt \]
\[\langle \text{uu} \rangle \quad \u \quad \langle \text{vv} \rangle \quad \vv \]
\[\langle \text{ww} \rangle \quad \w \quad \langle \text{xx} \rangle \quad \xx \]
\[\langle \text{yy} \rangle \quad \y \quad \langle \text{zz} \rangle \quad \zz \]
\[\langle \text{alpha} \rangle \quad \alpha \quad \langle \text{beta} \rangle \quad \beta \]
\[\langle \text{gamma} \rangle \quad \gamma \quad \langle \text{delta} \rangle \quad \delta \]
\[\langle \text{epsilon} \rangle \quad \varepsilon \quad \langle \text{zeta} \rangle \quad \zeta \]
\[\langle \text{eta} \rangle \quad \eta \quad \langle \text{theta} \rangle \quad \vartheta \]
\[\langle \text{iota} \rangle \quad \iota \quad \langle \text{kappa} \rangle \quad \kappa \]
\[\langle \text{lambda} \rangle \quad \lambda \quad \langle \text{mu} \rangle \quad \mu \]
\[\langle \text{nu} \rangle \quad \nu \quad \langle \text{xi} \rangle \quad \xi \]
\[\langle \text{pi} \rangle \quad \pi \quad \langle \text{rho} \rangle \quad \rho \]
\[\langle \text{sigma} \rangle \quad \sigma \quad \langle \text{tau} \rangle \quad \tau \]
\[\langle \text{upsilon} \rangle \quad \upsilon \quad \langle \text{phi} \rangle \quad \varphi \]
\[\langle \text{chi} \rangle \quad \chi \quad \langle \text{psi} \rangle \quad \psi \]
\[\langle \text{omega} \rangle \quad \omega \quad \langle \text{Gamma} \rangle \quad \Gamma \]
\[\langle \text{Delta} \rangle \quad \Delta \quad \langle \text{Theta} \rangle \quad \Theta \]
\[\langle \text{Lambda} \rangle \quad \Lambda \quad \langle \text{Xi} \rangle \quad \Xi \]
\[\langle \text{Pi} \rangle \quad \Pi \quad \langle \text{Sigma} \rangle \quad \Sigma \]
\[\langle \text{Upsilon} \rangle \quad \Upsilon \quad \langle \text{Phi} \rangle \quad \Phi \]
\[\langle \text{Psi} \rangle \quad \Psi \quad \langle \text{Omega} \rangle \quad \Omega \]
\[\langle \text{bool} \rangle \quad \mathbb{B} \quad \langle \text{complex} \rangle \quad \mathbb{C} \]
\[\langle \text{nat} \rangle \quad \mathbb{N} \quad \langle \text{rat} \rangle \quad \mathbb{Q} \]
\[\langle \text{real} \rangle \quad \mathbb{R} \quad \langle \text{int} \rangle \quad \mathbb{Z} \]
\[\langle \text{leftarrow} \rangle \quad \leftarrow \quad \langle \text{longleftarrow} \rangle \quad \longleftarrow \]
\[\langle \text{rightarrow} \rangle \quad \rightarrow \quad \langle \text{longrightarrow} \rangle \quad \longrightarrow \]
\[\langle \text{Leftarrow} \rangle \quad \Leftarrow \quad \langle \text{Longleftarrow} \rangle \quad \Longleftarrow \]
\[\langle \text{Rightarrow} \rangle \quad \Rightarrow \quad \langle \text{Longrightarrow} \rangle \quad \Longrightarrow \]
\[\langle \text{Lefttrightarrow} \rangle \quad \leftrightarrow \quad \langle \text{Longlefttrightarrow} \rangle \quad \Longleftrightarrow \]
\[\langle \text{mapsto} \rangle \quad \mapsto \quad \langle \text{longmapsto} \rangle \quad \Longmapsto \]
\[\langle \text{midarrow} \rangle \quad \mid \quad \langle \text{Midarrow} \rangle \quad \mid \]
\[\langle \text{hookleftarrow} \rangle \quad \hookleftarrow \quad \langle \text{hookrightarrow} \rangle \quad \hookrightarrow \]
\[\langle \text{leftharpoondown} \rangle \quad \leftharpoondown \quad \langle \text{rightharpoondown} \rangle \quad \rightharpoondown \]
\[\langle \text{leftharpoonup} \rangle \quad \leftharpoonup \quad \langle \text{rightharpoonup} \rangle \quad \rightharpoonup \]
\[\langle \text{rightleftharpoons} \rangle \quad \rightleftharpoons \quad \langle \text{leadsto} \rangle \quad \leadsto \]
\[\langle \text{downharpoonleft} \rangle \quad \downharpoonleft \quad \langle \text{downharpoonright} \rangle \quad \downharpoonright \]
\[\langle \text{uhrpoonleft} \rangle \quad \upharpoonleft \quad \langle \text{uhrpoonright} \rangle \quad \upharpoonright \]
\[\langle \text{restriction} \rangle \quad \mid \quad \langle \text{Colon} \rangle \quad :: \]
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\up</td>
<td>Upward</td>
<td>\Up</td>
<td>Upward</td>
</tr>
<tr>
<td>\down</td>
<td>Downward</td>
<td>\Down</td>
<td>Downward</td>
</tr>
<tr>
<td>\updown</td>
<td>Up-down</td>
<td>\Updown</td>
<td>Up-down</td>
</tr>
<tr>
<td>\langle</td>
<td>Left angle</td>
<td>\rangle</td>
<td>Right angle</td>
</tr>
<tr>
<td>\langle</td>
<td>Left brace</td>
<td>\rangle</td>
<td>Right brace</td>
</tr>
<tr>
<td>\lceil</td>
<td>Left ceiling</td>
<td>\rceil</td>
<td>Right ceiling</td>
</tr>
<tr>
<td>\lfloor</td>
<td>Left floor</td>
<td>\rfloor</td>
<td>Right floor</td>
</tr>
<tr>
<td>\lbrack</td>
<td>Left bracket</td>
<td>\rbrack</td>
<td>Right bracket</td>
</tr>
<tr>
<td>\lbrace</td>
<td>Left brace</td>
<td>\rbrace</td>
<td>Right brace</td>
</tr>
<tr>
<td>\guillemotleft</td>
<td>Left guillemot</td>
<td>\guillemotright</td>
<td>Right guillemot</td>
</tr>
<tr>
<td>\bottom</td>
<td>Bottom</td>
<td>\top</td>
<td>Top</td>
</tr>
<tr>
<td>\and</td>
<td>And</td>
<td>\And</td>
<td>And</td>
</tr>
<tr>
<td>\or</td>
<td>Or</td>
<td>\Or</td>
<td>Or</td>
</tr>
<tr>
<td>\forall</td>
<td>For all</td>
<td>\exists</td>
<td>Exists</td>
</tr>
<tr>
<td>\not</td>
<td>Not</td>
<td>\not</td>
<td>Not</td>
</tr>
<tr>
<td>\box</td>
<td>Box</td>
<td>\diamond</td>
<td>Diamond</td>
</tr>
<tr>
<td>\turnstile</td>
<td>Turnstile</td>
<td>\Turnstile</td>
<td>Turnstile</td>
</tr>
<tr>
<td>\ltrans</td>
<td>Left trans</td>
<td>\rtrans</td>
<td>Right trans</td>
</tr>
<tr>
<td>\le</td>
<td>Less than or equal</td>
<td>\ge</td>
<td>Greater than or equal</td>
</tr>
<tr>
<td>\lessapprox</td>
<td>Less than or approximately equal</td>
<td>\greaterapprox</td>
<td>Greater than or approximately equal</td>
</tr>
<tr>
<td>\in</td>
<td>In</td>
<td>\notin</td>
<td>Not in</td>
</tr>
<tr>
<td>\subset</td>
<td>Subset</td>
<td>\supset</td>
<td>Superset</td>
</tr>
<tr>
<td>\subseteq</td>
<td>Subset equal</td>
<td>\supseteq</td>
<td>Superset equal</td>
</tr>
<tr>
<td>\setminus</td>
<td>Set minus</td>
<td>\cup</td>
<td>Union</td>
</tr>
<tr>
<td>\inter</td>
<td>Intersection</td>
<td>\Union</td>
<td>Union</td>
</tr>
<tr>
<td>\sqinter</td>
<td>Square inter</td>
<td>\SquareUnion</td>
<td>Square Union</td>
</tr>
<tr>
<td>\leq</td>
<td>Less than or equal</td>
<td>\geq</td>
<td>Greater than or equal</td>
</tr>
<tr>
<td>\doteq</td>
<td>Dot equal</td>
<td>\simeq</td>
<td>Strongly equal</td>
</tr>
<tr>
<td>\cong</td>
<td>Congruent</td>
<td>\neq</td>
<td>Not equal</td>
</tr>
<tr>
<td>\approx</td>
<td>Approximately equal</td>
<td>\asymp</td>
<td>Asymptotic</td>
</tr>
<tr>
<td>\equiv</td>
<td>Equivalent</td>
<td>\propto</td>
<td>Proportional</td>
</tr>
<tr>
<td>\uplus</td>
<td>Up-plus</td>
<td>\Uplus</td>
<td>Up-plus</td>
</tr>
<tr>
<td>\noteq</td>
<td>Not equal</td>
<td>\eqsim</td>
<td>Strongly equal</td>
</tr>
<tr>
<td>\noteq</td>
<td>Not equal</td>
<td>\neq</td>
<td>Not equal</td>
</tr>
<tr>
<td>\noteq</td>
<td>Not equal</td>
<td>\simeq</td>
<td>Strongly equal</td>
</tr>
<tr>
<td>\doteq</td>
<td>Dot equal</td>
<td>\simeq</td>
<td>Strongly equal</td>
</tr>
<tr>
<td>\approx</td>
<td>Approximately equal</td>
<td>\asymp</td>
<td>Asymptotic</td>
</tr>
<tr>
<td>\cong</td>
<td>Congruent</td>
<td>\neq</td>
<td>Not equal</td>
</tr>
<tr>
<td>\equiv</td>
<td>Equivalent</td>
<td>\propto</td>
<td>Proportional</td>
</tr>
</tbody>
</table>
APPENDIX B. PREDEFINED ISABELLE SYMBOLS

\Join \bowtie ⊿ ◁ \prec ≺ \succ ≻ \preceq ⪯ \succeq ⪰ \parallel \| \bar \times \times \div \cdot \star \bullet \circ \dagger † \ddagger ‡ \lhd \rhd \unlhd \unrhd \triangleleft ◁ \triangleright ⊿ \triangle \△ \triangleq \≜ \oplus ⊕ \Oplus ⨁ \otimes ⊗ \Otimes ⨂ \odot ⊙ \Odot ⨀ \ominus ⊖ \oslash ◊ \dots \cdots \sum ∑ \prod \Coprod \∐ \infty \infty \integral \int \oint \clubsuit ♣ \diamondsuit ♦ \heartsuit ♥ \spadesuit ♠ \aleph ℵ \emptyset ∅ \nabla \nabla \Re ℜ \Im ℑ \flat ♭ \natural § \sharp ♯ \angle \angle \copyright © \registered ® \hyphen - \inverse -1 \onesuperior 1 \onequarter \frac{1}{4} \threesuperior 3 \threequarters \frac{3}{4} \ordfeminine a \ordmasculine \section § \paragraph ¶ \exclamdown ¡ \questiondown ¿ \euro € \yen ¥ \cent ¢ \currency □ \degree °
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Character</th>
<th>Symbol</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbackslash{amalg}</td>
<td>II</td>
<td>\textbackslash{mho}</td>
<td>\O</td>
</tr>
<tr>
<td>\textbackslash{lozenge}</td>
<td>\diamond</td>
<td>\textbackslash{wp}</td>
<td>\wp</td>
</tr>
<tr>
<td>\textbackslash{wrong}</td>
<td>{</td>
<td>\textbackslash{struct}</td>
<td>\diamond</td>
</tr>
<tr>
<td>\textbackslash{acute}</td>
<td>'</td>
<td>\textbackslash{index}</td>
<td>1</td>
</tr>
<tr>
<td>\textbackslash{dieresis}</td>
<td>"</td>
<td>\textbackslash{cedilla}</td>
<td>,</td>
</tr>
<tr>
<td>\textbackslash{hungarumlaut}</td>
<td>~</td>
<td>\textbackslash{spacespace}</td>
<td>\hspace{1cm}</td>
</tr>
<tr>
<td>\textbackslash{module}</td>
<td>\texttt{(module)}</td>
<td>\textbackslash{some}</td>
<td>\varepsilon</td>
</tr>
</tbody>
</table>
ML tactic expressions

Isar Proof methods closely resemble traditional tactics, when used in unstructured sequences of apply commands. Isabelle/Isar provides emulations for all major ML tactics of classic Isabelle — mostly for the sake of easy porting of existing developments, as actual Isar proof texts would demand much less diversity of proof methods.

Unlike tactic expressions in ML, Isar proof methods provide proper concrete syntax for additional arguments, options, modifiers etc. Thus a typical method text is usually more concise than the corresponding ML tactic. Furthermore, the Isar versions of classic Isabelle tactics often cover several variant forms by a single method with separate options to tune the behavior. For example, method simp replaces all of simp_tac / asm_simp_tac / full_simp_tac / asm_full_simp_tac, there is also concrete syntax for augmenting the Simplifier context (the current “simpset”) in a convenient way.

C.1 Resolution tactics

Classic Isabelle provides several variant forms of tactics for single-step rule applications (based on higher-order resolution). The space of resolution tactics has the following main dimensions.

1. The “mode” of resolution: intro, elim, destruct, or forward (e.g. resolve_tac, eresolve_tac, dresolve_tac, forward_tac).
2. Optional explicit instantiation (e.g. resolve_tac vs. res_inst_tac).
3. Abbreviations for singleton arguments (e.g. resolve_tac vs. rtac).

Basically, the set of Isar tactic emulations rule_tac, erule_tac, drule_tac, frule_tac (see §9.2.3) would be sufficient to cover the four modes, either with or without instantiation, and either with single or multiple arguments. Although it is more convenient in most cases to use the plain rule method (see §6.3.3), or any of its “improper” variants erule, drule, frule (see §9.2.1). Note that explicit goal addressing is only supported by the actual rule_tac version.
With this in mind, plain resolution tactics correspond to Isar methods as follows.

\begin{itemize}
\item \texttt{rtac} \(a \ 1\) \hspace{1cm} \texttt{rule} \(a\)
\item \texttt{resolve_tac} \([a_1, \ldots] \ 1\) \hspace{1cm} \texttt{rule} \(a_1 \ldots\)
\item \texttt{res_inst_tac} \(ctxt \ [(x_1, t_1), \ldots] \ a \ 1\) \hspace{1cm} \texttt{rule_tac} \(x_1 = t_1\ \textbf{and} \ \ldots\ \textbf{in} \ a\)
\item \texttt{rtac} \(a \ i\) \hspace{1cm} \texttt{rule} \(a\)
\item \texttt{resolve_tac} \([a_1, \ldots] \ i\) \hspace{1cm} \texttt{rule} \(a_1 \ldots\)
\item \texttt{res_inst_tac} \(ctxt \ [(x_1, t_1), \ldots] \ a \ i\) \hspace{1cm} \texttt{rule} \(x_1 = t_1\ \textbf{and} \ \ldots\ \textbf{in} \ a\)
\end{itemize}

Note that explicit goal addressing may be usually avoided by changing the order of subgoals with \texttt{defer} or \texttt{prefer} (see §6.3.4).

C.2 Simplifier tactics

The main Simplifier tactics \texttt{simp_tac} and variants (cf. [22]) are all covered by the \texttt{simp} and \texttt{simp_all} methods (see §9.3). Note that there is no individual goal addressing available, simplification acts either on the first goal (\texttt{simp}) or all goals (\texttt{simp_all}).

\begin{itemize}
\item \texttt{asm_full_simp_tac \@\{simpset\} 1} \hspace{1cm} \texttt{simp}
\item \texttt{ALLGOALS (asm_full_simp_tac \@\{simpset\})} \hspace{1cm} \texttt{simp_all}
\item \texttt{simp_tac \@\{simpset\} 1} \hspace{1cm} \texttt{simp (no_asm)}
\item \texttt{asm_simp_tac \@\{simpset\} 1} \hspace{1cm} \texttt{simp (no_asm_simp)}
\item \texttt{full_simp_tac \@\{simpset\} 1} \hspace{1cm} \texttt{simp (no_asm_use)}
\item \texttt{asm_lr_simp_tac \@\{simpset\} 1} \hspace{1cm} \texttt{simp (asm_lr)}
\end{itemize}

C.3 Classical Reasoner tactics

The Classical Reasoner provides a rather large number of variations of automated tactics, such as \texttt{blast_tac}, \texttt{fast_tac}, \texttt{clarify_tac} etc. (see [22]). The corresponding Isar methods usually share the same base name, such as \texttt{blast}, \texttt{fast}, \texttt{clarify} etc. (see §9.4).

C.4 Miscellaneous tactics

There are a few additional tactics defined in various theories of Isabelle/HOL, some of these also in Isabelle/FOL or Isabelle/ZF. The most common ones of these may be ported to Isar as follows.
APPENDIX C. ML TACTIC EXPRESSIONS

\begin{verbatim}
 stac a 1 subst a
 hyp_subst_tac 1 hypsubst
 strip_tac 1 \equiv intro strip
 split_all_tac 1 \approx simp (no_asm_simp) only: split_tupled_all
 \approx simp only: split_tupled_all
 \approx clarify
\end{verbatim}

C.5 Tacticals

Classic Isabelle provides a huge amount of tacticals for combination and modification of existing tactics. This has been greatly reduced in Isar, providing the bare minimum of combinators only: “,” (sequential composition), “|” (alternative choices), “?” (try), “+” (repeat at least once). These are usually sufficient in practice; if all fails, arbitrary ML tactic code may be invoked via the tactic method (see §9.2.3).

Common ML tacticals may be expressed directly in Isar as follows:

\begin{verbatim}
 tac1 THEN tac2 \hspace{1em} meth1, meth2
 tac1 ORELSE tac2 \hspace{1em} meth1 | meth2
 TRY tac \hspace{1em} meth?
 REPEAT1 tac \hspace{1em} meth+
 REPEAT tac \hspace{1em} (meth+)?
 EVERY [tac1, \ldots] \hspace{1em} meth1, \ldots
 FIRST [tac1, \ldots] \hspace{1em} meth1 | \ldots
\end{verbatim}

\texttt{CHANGED} (see [22]) is usually not required in Isar, since most basic proof methods already fail unless there is an actual change in the goal state. Nevertheless, “?” (try) may be used to accept unchanged results as well.

\texttt{ALLGOALS}, \texttt{SOMEGOAL} etc. (see [22]) are not available in Isar, since there is no direct goal addressing. Nevertheless, some basic methods address all goals internally, notably \texttt{simp_all} (see §9.3). Also note that \texttt{ALLGOALS} can be often replaced by “+” (repeat at least once), although this usually has a different operational behavior, such as solving goals in a different order.

Iterated resolution, such as \texttt{REPEAT (FIRSTGOAL (resolve_tac \textbackslash{}<dots>))}, is usually better expressed using the intro and elim methods of Isar (see §9.4).
Bibliography

Index

- (method), 87
. (command), 85
.. (command), 85
?thesis (variable), 83
._ (fact), 80
{ (command), 74
} (command), 74
abbrev (antiquotation), 40
abbreviation (command), 49
also (command), 93
altstring (syntax), 29, 29, 35
and (keyword), 34, 77
any (inner syntax), 113, 114
apply (command), 80, 81, 90
apply_end (command), 90
aprop (inner syntax), 113, 114
args (syntax), 34
arith (HOL attribute), 160
arith (HOL method), 160
arith_split (HOL attribute), 160
arities (command), 67
arity (syntax), 31
assms (fact), 81
assume (command), 76
assumes (element), 54
assumption (inference), 9
assumption (method), 87
atom (syntax), 34
atomize (attribute), 142
atomize (method), 142
atp_info (HOL command), 163
atp_kill (HOL command), 163
atp_messages (HOL command), 163
attribute_setup (command), 64
attributes (syntax), 34
auto (method), 139
ax_specification (HOL command), 174
axclass (command), 62
axiomatization (command), 49
axioms (command), 71
axmdecl (syntax), 35
back (command), 90
best (method), 138
bestsimp (method), 139
bind_thm (ML), 64
bind_thms (ML), 64
blast (method), 138
break (antiquotation option), 44
by (command), 85
calculation (fact), 93
case (command), 95
case_conclusion (attribute), 95
case_names (attribute), 95
case_tac (HOL method), 164
case_tac (ZF method), 181
cases (attribute), 102
cases (method), 83, 97, 98
cd (command), 125
chapter (command), 38
claimod (syntax), 138
clarify (method), 138
clarsimp (method), 139
classimpmod (syntax), 139
class (command), 59
class_deps (command), 59, 66
classdecl (syntax), 31
INDEX

classes (command), 66
classrel (command), 66
codatatype (ZF command), 179
code (HOL attribute), 166, 168
code_abort (HOL command), 168
code_class (HOL command), 168
code_const (HOL command), 168
code_datatype (HOL command), 168
code_deps (HOL command), 168
code_include (HOL command), 168
code_instance (HOL command), 168
code_library (HOL command), 166
code_module (HOL command), 166
code_modulename (HOL command), 168
code_monad (HOL command), 168
code_reserved (HOL command), 168
code_thms (HOL command), 168
code_type (HOL command), 168
coherent (HOL method), 160
coinduct (attribute), 102
coinduct (method), 98
coinductive (HOL command), 157
coinductive (ZF command), 179
coinductive_set (HOL command), 157
comment (syntax), 31
COMP (attribute), 128
cong (attribute), 135
cong (antiquotation), 40
constdefs (command), 69
constrains (element), 54
consts (command), 69
consts (HOLCF command), 176
consts_code (HOL command), 166
consumes (attribute), 95
context (command), 48
contextelem (syntax), 54
contradiction (method), 137
corollary (command), 80
cut_tac (method), 131
datatype (HOL command), 151
datatype (ZF command), 179
declaration (command), 51
declare (command), 51
def (command), 76
defaultsort (command), 66
defer (command), 90
defines (element), 54
definition (command), 49
defn (attribute), 49
defs (command), 69
dest (attribute), 141
dest (Pure attribute), 87
discharge (inference), 12
display (antiquotation option), 44
display_drafts (command), 46
domain (HOLCF command), 176
done (command), 90
drule (method), 127
drule_tac (method), 131
elim (attribute), 141
elim (method), 137
elim (Pure attribute), 87
elim_format (Pure attribute), 128
elim_resolution (inference), 9
end (global command), 47
end (local command), 48, 61
erule (method), 127
erule_tac (method), 131
eta_contract (antiquotation option), 44
eta_contract (ML), 106
expansion (inference), 12
export_code (HOL command), 168
fact (method), 35, 87
fail (method), 127
fast (method), 138
fastsimp (method), 139
finally (command), 93
INDEX

find_consts (command), 122
find_theorems (command), 122
finish (inference), 8
fix (command), 76
fixes (element), 54
float_const (inner syntax), 117
float_token (inner syntax), 117
fold (method), 127
folded (attribute), 128
force (method), 139
from (command), 79
frule (method), 127
frule_tac (method), 131
full_prf (antiquotation), 40
full_prf (command), 104
fun (HOL command), 152
function (HOL command), 152
global (command), 72
goals (antiquotation), 40
goals_limit (antiquotation option), 44
goals_limit (ML), 106
goalspec (syntax), 84
guess (command), 92
have (command), 80
header (command), 38
hence (command), 80
hide (command), 72
hypsobst (method), 129
id (inner syntax), 116
ident (syntax), 28, 116
idt (inner syntax), 114, 115
idts (inner syntax), 114, 115
iff (attribute), 141
in (keyword), 49
ind_cases (HOL method), 164
ind_cases (ZF method), 181
induct (attribute), 102
induct (method), 81, 97, 98
induct_tac (HOL method), 164
induct_tac (ZF method), 181
inductive (HOL command), 157
inductive (ZF command), 179
inductive_cases (HOL command), 164
inductive_cases (ZF command), 181
inductive_set (HOL command), 157
infix (syntax), 108
init (inference), 8
insert (method), 127
inst (syntax), 32
instance (command), 59, 66, 67
instantiation (command), 59
insts (syntax), 32
int (syntax), 30
interp (syntax), 57
interpret (command), 57
interpretation (command), 57
intro (attribute), 141
intro (method), 137
intro (Pure attribute), 87
intro_classes (method), 59
intro_locales (method), 54
iprover (HOL method), 160
is (keyword), 77
judgment (command), 142
kill (command), 75, 124
lemma (antiquotation), 40
lemma (command), 80
lemmas (command), 71
let (command), 77
lexicographic_order (HOL method), 154
linear Undo (command), 124
local (command), 72
local_setup (command), 64
locale (command), 54
localeexpr (syntax), 52
logic (inner syntax), 113, 115
long_names (antiquotation option), 44
long_names (ML), 106
longid (inner syntax), 117
longident (syntax), 28, 117
margin (antiquotation option), 44
method (syntax), 83
method_setup (command), 91
metis (HOL method), 163
mixfix (syntax), 108
ML (antiquotation), 40
ML (command), 64
ML_command (command), 64
ML_prf (command), 64
ML_struct (antiquotation), 40
ML_type (antiquotation), 40
ML_val (command), 64
mode (antiquotation option), 44
mono (HOL attribute), 157
moreover (command), 93
name (syntax), 30
nameref (syntax), 30
nat (syntax), 28, 117
next (command), 74
no_notation (command), 111
no_syntax (command), 117
no_translations (command), 117
nonterminals (command), 117
notation (command), 111
note (command), 79
notes (element), 54
nothing (fact), 80
num (inner syntax), 117
num_const (inner syntax), 117
obtain (command), 92
obtains (element), 81, 83
OF (attribute), 87
of (attribute), 87
oops (command), 75
oracle (command), 72
output (keyword), 118
overloading (command), 63
params (attribute), 95
parname (syntax), 30
parse_ast_translation (command), 119
parse_translation (command), 119
pat_completeness (HOL method), 154
pr (command), 104
prefer (command), 90
prems (fact), 77
presume (command), 76
Pretty.setdepth (ML), 108
Pretty.setmargin (ML), 108
prf (antiquotation), 40
prf (command), 104
primrec (HOL command), 152
primrec (ZF command), 180
print_abbrevs (command), 49
print_ast_translation (command), 119
print_atps (HOL command), 163
print_attributes (command), 122
print_binds (command), 122
print_cases (command), 95
print_claset (command), 141
print_classes (command), 59
print_codeproc (HOL command), 168
print_codesetup (HOL command), 168
print_commands (command), 122
print_configs (command), 126
print_depth (ML), 108
print_drafts (command), 46
print_facts (command), 122
INDEX

print_induct_rules (command), 102
print_interps (command), 57
print_locale (command), 54
print_locales (command), 54
print_methods (command), 122
print_simpset (command), 135
print_statement (command), 80
print_syntax (command), 120
print_tcset (ZF command), 178
print_theorems (command), 122
print_theory (command), 122
print_trans_rules (command), 93
print_translation (command), 119
proof
 default, 86
 fake, 86
 terminal, 86
 trivial, 86
proof (command), 80, 81, 85, 85, 88
Proof.show_main_goal (ML), 106
prop (antiquotation), 40
prop (command), 104
prop (inner syntax), 113, 114
prop (syntax), 32
propat (syntax), 33
props (syntax), 33
pttrn (inner syntax), 114, 115
pttrns (inner syntax), 114, 115
pwd (command), 125
qed (command), 85, 85
quickcheck (HOL command), 161
quickcheck_params (HOL command), 161
quotes (antiquotation option), 44
raw_tactic (method), 131
redef (HOL command), 155
redef_cong (HOL attribute), 156
redef_simp (HOL attribute), 156
redef_tc (HOL command), 155
redef_wf (HOL attribute), 156
record (HOL command), 148
relation (HOL method), 154
rename_tac (method), 131
rep_datatype (HOL command), 151
resolution (inference), 9
rotate_tac (method), 131
rotated (attribute), 128
rule (attribute), 87, 141
rule (method), 79, 80, 85, 87, 88, 137
rule_format (attribute), 142
rule_tac (method), 131
rulify (attribute), 142
safe (method), 138
sect (command), 38
section (command), 38
selection (syntax), 35
setup (command), 64
short_names (antiquotation option), 44
short_names (ML), 106
show (command), 77, 80, 85
show_brackets (ML), 106
show_consts (ML), 106
show_hyps (ML), 106
show_question_marks (ML), 106
show_sorts (antiquotation option), 44
show_sorts (ML), 106
show_structs (antiquotation option), 44
show_tags (ML), 106
show_types (antiquotation option), 44
show_types (ML), 106
shows (element), 81
simp (attribute), 135
simp (method), 133
simp_all (method), 133
simplified (attribute), 137
simpmod (syntax), 133
INDEX