
λ →

∀
=Isa

be
lle

β
α

ZF

Isabelle’s Logics: FOL and ZF

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

December 3, 2009

Abstract

This manual describes Isabelle’s formalizations of many-sorted first-order
logic (FOL) and Zermelo-Fraenkel set theory (ZF). See the Reference Manual
for general Isabelle commands, and Introduction to Isabelle for an overall
tutorial.

This manual is part of the earlier Isabelle documentation, which is some-
what superseded by the Isabelle/HOL Tutorial [11]. However, the present
document is the only available documentation for Isabelle’s versions of first-
order logic and set theory. Much of it is concerned with the primitives for
conducting proofs using the ML top level. It has been rewritten to use the
Isar proof language, but evidence of the old ml orientation remains.

i

Acknowledgements

Markus Wenzel made numerous improvements. Philippe de Groote con-
tributed to ZF. Philippe Noël and Martin Coen made many contributions
to ZF. The research has been funded by the EPSRC (grants GR/G53279,
GR/H40570, GR/K57381, GR/K77051, GR/M75440) and by ESPRIT
(projects 3245: Logical Frameworks, and 6453: Types) and by the DFG
Schwerpunktprogramm Deduktion.

Contents

1 Syntax definitions 1

2 First-Order Logic 3
2.1 Syntax and rules of inference 3
2.2 Generic packages . 4
2.3 Intuitionistic proof procedures 4
2.4 Classical proof procedures . 9
2.5 An intuitionistic example . 10
2.6 An example of intuitionistic negation 11
2.7 A classical example . 12
2.8 Derived rules and the classical tactics 14

2.8.1 Deriving the introduction rule 15
2.8.2 Deriving the elimination rule 15
2.8.3 Using the derived rules 16
2.8.4 Derived rules versus definitions 17

3 Zermelo-Fraenkel Set Theory 19
3.1 Which version of axiomatic set theory? 19
3.2 The syntax of set theory . 20
3.3 Binding operators . 22
3.4 The Zermelo-Fraenkel axioms 27
3.5 From basic lemmas to function spaces 29

3.5.1 Fundamental lemmas 29
3.5.2 Unordered pairs and finite sets 29
3.5.3 Subset and lattice properties 32
3.5.4 Ordered pairs . 32
3.5.5 Relations . 34
3.5.6 Functions . 36

3.6 Further developments . 36
3.6.1 Disjoint unions . 39
3.6.2 Non-standard ordered pairs 39
3.6.3 Least and greatest fixedpoints 39
3.6.4 Finite sets and lists 41

ii

CONTENTS iii

3.6.5 Miscellaneous . 41
3.7 Automatic Tools . 44

3.7.1 Simplification and Classical Reasoning 44
3.7.2 Type-Checking Tactics 44

3.8 Natural number and integer arithmetic 45
3.9 Datatype definitions . 48

3.9.1 Basics . 48
3.9.2 Defining datatypes . 51
3.9.3 Examples . 53
3.9.4 Recursive function definitions 55

3.10 Inductive and coinductive definitions 57
3.10.1 The syntax of a (co)inductive definition 57
3.10.2 Example of an inductive definition 58
3.10.3 Further examples . 60
3.10.4 Theorems generated 61

3.11 The outer reaches of set theory 62
3.12 The examples directories . 63
3.13 A proof about powersets . 64
3.14 Monotonicity of the union operator 66
3.15 Low-level reasoning about functions 67

Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧Q ∨ R abbreviates (P ∧Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ)⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x .t to mean All(λx .t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1 ∀xm . t ; this is possible for any

1

CHAPTER 1. SYNTAX DEFINITIONS 2

constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one
variable. ZF’s bounded quantifier ∀x ∈ A . P(x) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z)

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For
example, the formulae of first-order logic have type o. Every Isabelle ex-
pression of type o is therefore a formula. These include atomic formulae
such as P , where P is a variable of type o, and more generally expressions
such as P(t , u), where P , t and u have suitable types. Therefore, ‘expression
of type o’ is listed as a separate possibility in the grammar for formulae.

Chapter 2

First-Order Logic

Isabelle implements Gentzen’s natural deduction systems nj and nk. In-
tuitionistic first-order logic is defined first, as theory IFOL . Classical logic,
theory FOL , is obtained by adding the double negation rule. Basic proof
procedures are provided. The intuitionistic prover works with derived rules
to simplify implications in the assumptions. Classical FOL employs Isabelle’s
classical reasoner, which simulates a sequent calculus.

2.1 Syntax and rules of inference

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term and is a subclass of logic. No types of individuals
are provided, but extensions can define types such as nat::term and type
constructors such as list::(term)term (see the examples directory, FOL/ex).
Below, the type variable α ranges over class term ; the equality symbol and
quantifiers are polymorphic (many-sorted). The type of formulae is o , which
belongs to class logic . Figure 2.1 gives the syntax. Note that a~=b is
translated to ¬(a = b).

Figure 2.2 shows the inference rules with their names. Negation is de-
fined in the usual way for intuitionistic logic; ¬P abbreviates P → ⊥. The
biconditional (↔) is defined through ∧ and→; introduction and elimination
rules are derived for it.

The unique existence quantifier, ∃!x .P(x), is defined in terms of ∃ and ∀.
An Isabelle binder, it admits nested quantifications. For instance, ∃!x y .
P(x , y) abbreviates ∃!x . ∃!y . P(x , y); note that this does not mean that
there exists a unique pair (x , y) satisfying P(x , y).

Some intuitionistic derived rules are shown in Fig. 2.3, again with their
names. These include rules for the defined symbols ¬, ↔ and ∃!. Nat-
ural deduction typically involves a combination of forward and backward
reasoning, particularly with the destruction rules (∧E), (→E), and (∀E).
Isabelle’s backward style handles these rules badly, so sequent-style rules

3

CHAPTER 2. FIRST-ORDER LOGIC 4

are derived to eliminate conjunctions, implications, and universal quanti-
fiers. Used with elim-resolution, allE eliminates a universal quantifier while
all_dupE re-inserts the quantified formula for later use. The rules conj

impE, etc., support the intuitionistic proof procedure (see Sect. 2.3).
See the on-line theory library for complete listings of the rules and de-

rived rules.

2.2 Generic packages

FOL instantiates most of Isabelle’s generic packages.

• It instantiates the simplifier, which is invoked through the method
simp. Both equality (=) and the biconditional (↔) may be used for
rewriting.

• It instantiates the classical reasoner, which is invoked mainly through
the methods blast and auto. See Sect. 2.4 for details.

! Simplifying a = b∧P(a) to a = b∧P(b) is often advantageous. The left part of
a conjunction helps in simplifying the right part. This effect is not available by

default: it can be slow. It can be obtained by including the theorem conj_congas
a congruence rule in simplification, simp cong: conj cong.

2.3 Intuitionistic proof procedures

Implication elimination (the rules mp and impE) pose difficulties for auto-
mated proof. In intuitionistic logic, the assumption P → Q cannot be
treated like ¬P ∨Q . Given P → Q , we may use Q provided we can prove P ;
the proof of P may require repeated use of P → Q . If the proof of P fails
then the whole branch of the proof must be abandoned. Thus intuitionistic
propositional logic requires backtracking.

For an elementary example, consider the intuitionistic proof of Q from
P → Q and (P → Q)→ P . The implication P → Q is needed twice:

P → Q
(P → Q)→ P P → Q

P
(→E)

Q
(→E)

The theorem prover for intuitionistic logic does not use impE. Instead, it
simplifies implications using derived rules (Fig. 2.3). It reduces the an-
tecedents of implications to atoms and then uses Modus Ponens: from
P → Q and P deduce Q . The rules conj_impE and disj_impE are straight-
forward: (P ∧ Q) → S is equivalent to P → (Q → S), and (P ∨ Q) → S
is equivalent to the conjunction of P → S and Q → S . The other . . . impE

CHAPTER 2. FIRST-ORDER LOGIC 5

name meta-type description
Trueprop o ⇒ prop coercion to prop

Not o ⇒ o negation (¬)
True o tautology (>)

False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α⇒ o)⇒ o 10 universal quantifier (∀)
EX Ex (α⇒ o)⇒ o 10 existential quantifier (∃)
EX! Ex1 (α⇒ o)⇒ o 10 unique existence (∃!)

Binders

symbol meta-type priority description
= [α, α]⇒ o Left 50 equality (=)
& [o, o]⇒ o Right 35 conjunction (∧)
| [o, o]⇒ o Right 30 disjunction (∨)

--> [o, o]⇒ o Right 25 implication (→)
<-> [o, o]⇒ o Right 25 biconditional (↔)

Infixes

formula = expression of type o
| term = term | term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Grammar

Figure 2.1: Syntax of FOL

CHAPTER 2. FIRST-ORDER LOGIC 6

refl a=a

subst [| a=b; P(a) |] ==> P(b)

Equality rules

conjI [| P; Q |] ==> P&Q

conjunct1 P&Q ==> P

conjunct2 P&Q ==> Q

disjI1 P ==> P|Q

disjI2 Q ==> P|Q

disjE [| P|Q; P ==> R; Q ==> R |] ==> R

impI (P ==> Q) ==> P-->Q

mp [| P-->Q; P |] ==> Q

FalseE False ==> P

Propositional rules

allI (!!x. P(x)) ==> (ALL x.P(x))

spec (ALL x.P(x)) ==> P(x)

exI P(x) ==> (EX x.P(x))

exE [| EX x.P(x); !!x. P(x) ==> R |] ==> R

Quantifier rules

True_def True == False-->False

not_def ~P == P-->False

iff_def P<->Q == (P-->Q) & (Q-->P)

ex1_def EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)

Definitions

Figure 2.2: Rules of intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 7

sym a=b ==> b=a

trans [| a=b; b=c |] ==> a=c

ssubst [| b=a; P(a) |] ==> P(b)

Derived equality rules

TrueI True

notI (P ==> False) ==> ~P

notE [| ~P; P |] ==> R

iffI [| P ==> Q; Q ==> P |] ==> P<->Q

iffE [| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R

iffD1 [| P <-> Q; P |] ==> Q

iffD2 [| P <-> Q; Q |] ==> P

ex1I [| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)

ex1E [| EX! x.P(x); !!x.[| P(x); ALL y. P(y) --> y=x |] ==> R

|] ==> R

Derived rules for >, ¬, ↔ and ∃!

conjE [| P&Q; [| P; Q |] ==> R |] ==> R

impE [| P-->Q; P; Q ==> R |] ==> R

allE [| ALL x.P(x); P(x) ==> R |] ==> R

all_dupE [| ALL x.P(x); [| P(x); ALL x.P(x) |] ==> R |] ==> R

Sequent-style elimination rules

conj_impE [| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R

disj_impE [| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R

imp_impE [| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R

not_impE [| ~P --> S; P ==> False; S ==> R |] ==> R

iff_impE [| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P;

S ==> R |] ==> R

all_impE [| (ALL x.P(x))-->S; !!x.P(x); S ==> R |] ==> R

ex_impE [| (EX x.P(x))-->S; P(a)-->S ==> R |] ==> R

Intuitionistic simplification of implication

Figure 2.3: Derived rules for intuitionistic logic

CHAPTER 2. FIRST-ORDER LOGIC 8

rules are unsafe; the method requires backtracking. All the rules are derived
in the same simple manner.

Dyckhoff has independently discovered similar rules, and (more impor-
tantly) has demonstrated their completeness for propositional logic [8]. How-
ever, the tactics given below are not complete for first-order logic because
they discard universally quantified assumptions after a single use. These are
ml functions, and are listed below with their ml type:

mp_tac : int -> tactic

eq_mp_tac : int -> tactic

IntPr.safe_step_tac : int -> tactic

IntPr.safe_tac : tactic

IntPr.inst_step_tac : int -> tactic

IntPr.step_tac : int -> tactic

IntPr.fast_tac : int -> tactic

IntPr.best_tac : int -> tactic

Most of these belong to the structure ml structure IntPr and resemble
the tactics of Isabelle’s classical reasoner. There are no corresponding Isar
methods, but you can use the tactic method to call ml tactics in an Isar
script:

apply (tactic * IntPr.fast tac 1*)

Here is a description of each tactic:

mp_tac i attempts to use notE or impE within the assumptions in subgoal
i . For each assumption of the form ¬P or P → Q , it searches for
another assumption unifiable with P . By contradiction with ¬P it
can solve the subgoal completely; by Modus Ponens it can replace the
assumption P → Q by Q . The tactic can produce multiple outcomes,
enumerating all suitable pairs of assumptions.

eq_mp_tac i is like mp_tac i, but may not instantiate unknowns — thus, it
is safe.

IntPr.safe_step_tac i performs a safe step on subgoal i . This may in-
clude proof by assumption or Modus Ponens (taking care not to in-
stantiate unknowns), or hyp_subst_tac.

IntPr.safe_tac repeatedly performs safe steps on all subgoals. It is deter-
ministic, with at most one outcome.

IntPr.inst_step_tac i is like safe_step_tac, but allows unknowns to be
instantiated.

IntPr.step_tac i tries safe_tac or inst_step_tac, or applies an unsafe
rule. This is the basic step of the intuitionistic proof procedure.

CHAPTER 2. FIRST-ORDER LOGIC 9

excluded_middle ~P | P

disjCI (~Q ==> P) ==> P|Q

exCI (ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)

impCE [| P-->Q; ~P ==> R; Q ==> R |] ==> R

iffCE [| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R

notnotD ~~P ==> P

swap ~P ==> (~Q ==> P) ==> Q

Figure 2.4: Derived rules for classical logic

IntPr.fast_tac i applies step_tac, using depth-first search, to solve sub-
goal i .

IntPr.best_tac i applies step_tac, using best-first search (guided by the
size of the proof state) to solve subgoal i .

Here are some of the theorems that IntPr.fast_tac proves automati-
cally. The latter three date from Principia Mathematica (*11.53, *11.55,
*11.61) [23].

~~P & ~~(P --> Q) --> ~~Q

(ALL x y. P(x) --> Q(y)) <-> ((EX x. P(x)) --> (ALL y. Q(y)))

(EX x y. P(x) & Q(x,y)) <-> (EX x. P(x) & (EX y. Q(x,y)))

(EX y. ALL x. P(x) --> Q(x,y)) --> (ALL x. P(x) --> (EX y. Q(x,y)))

2.4 Classical proof procedures

The classical theory, FOL , consists of intuitionistic logic plus the rule

[¬P]....
P
P

(classical)

Natural deduction in classical logic is not really all that natural. FOL derives
classical introduction rules for ∨ and ∃, as well as classical elimination rules
for → and ↔, and the swap rule (see Fig. 2.4).

The classical reasoner is installed. The most useful methods are blast

(pure classical reasoning) and auto (classical reasoning combined with sim-
plification), but the full range of methods is available, including clarify,
fast, best and force. See the the Reference Manual and the Tutorial [11]
for more discussion of classical proof methods.

CHAPTER 2. FIRST-ORDER LOGIC 10

2.5 An intuitionistic example

Here is a session similar to one in the book Logic and Computation [14,
pages 222–3]. It illustrates the treatment of quantifier reasoning, which is
different in Isabelle than it is in lcf-based theorem provers such as hol.

The theory header specifies that we are working in intuitionistic logic by
designating IFOL rather than FOL as the parent theory:

theory IFOL examples imports IFOL

begin

The proof begins by entering the goal, then applying the rule (→I).

lemma "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))"

1. (∃ y. ∀ x. Q(x, y)) −→ (∀ x. ∃ y. Q(x, y))

apply (rule impI)

1. ∃ y. ∀ x. Q(x, y) =⇒ ∀ x. ∃ y. Q(x, y)

Isabelle’s output is shown as it would appear using Proof General. In this
example, we shall never have more than one subgoal. Applying (→I) re-
places −→ by =⇒, so that ∃y .∀x .Q(x , y) becomes an assumption. We have
the choice of (∃E) and (∀I); let us try the latter.

apply (rule allI)

1.
∧
x. ∃ y. ∀ x. Q(x, y) =⇒ ∃ y. Q(x, y) (∗)

Applying (∀I) replaces the ∀ x (in ASCII, ALL x) by
∧
x (or !!x), replac-

ing FOL’s universal quantifier by Isabelle’s meta universal quantifier. The
bound variable is a parameter of the subgoal. We now must choose between
(∃I) and (∃E). What happens if the wrong rule is chosen?

apply (rule exI)

1.
∧
x. ∃ y. ∀ x. Q(x, y) =⇒ Q(x, ?y2(x))

The new subgoal 1 contains the function variable ?y2. Instantiating ?y2 can
replace ?y2(x) by a term containing x, even though x is a bound variable.
Now we analyse the assumption ∃y . ∀x . Q(x , y) using elimination rules:

apply (erule exE)

1.
∧
x y. ∀ x. Q(x, y) =⇒ Q(x, ?y2(x))

Applying (∃E) has produced the parameter y and stripped the existential
quantifier from the assumption. But the subgoal is unprovable: there is no
way to unify ?y2(x) with the bound variable y. Using Proof General, we can
return to the critical point, marked (∗) above. This time we apply (∃E):

apply (erule exE)

1.
∧
x y. ∀ x. Q(x, y) =⇒ ∃ y. Q(x, y)

CHAPTER 2. FIRST-ORDER LOGIC 11

We now have two parameters and no scheme variables. Applying (∃I) and
(∀E) produces two scheme variables, which are applied to those parameters.
Parameters should be produced early, as this example demonstrates.

apply (rule exI)

1.
∧
x y. ∀ x. Q(x, y) =⇒ Q(x, ?y3(x, y))

apply (erule allE)

1.
∧
x y. Q(?x4(x, y), y) =⇒ Q(x, ?y3(x, y))

The subgoal has variables ?y3 and ?x4 applied to both parameters. The
obvious projection functions unify ?x4(x,y) with x and ?y3(x,y) with y.

apply assumption

No subgoals!

done

The theorem was proved in six method invocations, not counting the
abandoned ones. But proof checking is tedious, and the ml tactic
IntPr.fast_tac can prove the theorem in one step.

lemma "(EX y. ALL x. Q(x,y)) --> (ALL x. EX y. Q(x,y))"

1. (∃ y. ∀ x. Q(x, y)) −→ (∀ x. ∃ y. Q(x, y))

by (tactic {*IntPr.fast_tac 1*})

No subgoals!

2.6 An example of intuitionistic negation

The following example demonstrates the specialized forms of implication
elimination. Even propositional formulae can be difficult to prove from the
basic rules; the specialized rules help considerably.

Propositional examples are easy to invent. As Dummett notes [7, page
28], ¬P is classically provable if and only if it is intuitionistically provable;
therefore, P is classically provable if and only if ¬¬P is intuitionistically
provable.1 Proving ¬¬P intuitionistically is much harder than proving P
classically.

Our example is the double negation of the classical tautology (P →
Q) ∨ (Q → P). The first step is apply the unfold method, which expands
negations to implications using the definition ¬P ≡ P → ⊥ and allows use
of the special implication rules.

lemma "~ ~ ((P-->Q) | (Q-->P))"

1. ¬ ¬ ((P −→ Q) ∨ (Q −→ P))

apply (unfold not def)

1. ((P −→ Q) ∨ (Q −→ P) −→ False) −→ False

The next step is a trivial use of (→ I).
1This remark holds only for propositional logic, not if P is allowed to contain quantifiers.

CHAPTER 2. FIRST-ORDER LOGIC 12

apply (rule impI)

1. (P −→ Q) ∨ (Q −→ P) −→ False =⇒ False

By (→ E) it would suffice to prove (P → Q) ∨ (Q → P), but that formula
is not a theorem of intuitionistic logic. Instead, we apply the specialized
implication rule disj_impE . It splits the assumption into two assumptions,
one for each disjunct.

apply (erule disj impE)

1. [[(P −→ Q) −→ False; (Q −→ P) −→ False]] =⇒ False

We cannot hope to prove P → Q or Q → P separately, but their negations
are inconsistent. Applying imp_impE breaks down the assumption ¬(P →
Q), asking to show Q while providing new assumptions P and ¬Q .

apply (erule imp impE)

1. [[(Q −→ P) −→ False; P; Q −→ False]] =⇒ Q

2. [[(Q −→ P) −→ False; False]] =⇒ False

Subgoal 2 holds trivially; let us ignore it and continue working on subgoal 1.
Thanks to the assumption P , we could prove Q → P ; applying imp_impE is
simpler.

apply (erule imp impE)

1. [[P; Q −→ False; Q; P −→ False]] =⇒ P

2. [[P; Q −→ False; False]] =⇒ Q

3. [[(Q −→ P) −→ False; False]] =⇒ False

The three subgoals are all trivial.

apply assumption

1. [[P; Q −→ False; False]] =⇒ Q

2. [[(Q −→ P) −→ False; False]] =⇒ False

apply (erule FalseE)+

No subgoals!

done

This proof is also trivial for the ml tactic IntPr.fast_tac.

2.7 A classical example

To illustrate classical logic, we shall prove the theorem ∃y .∀x .P(y)→ P(x).
Informally, the theorem can be proved as follows. Choose y such that ¬P(y),
if such exists; otherwise ∀x . P(x) is true. Either way the theorem holds.
First, we must work in a theory based on classical logic, the theory FOL :

theory FOL examples imports FOL

begin

CHAPTER 2. FIRST-ORDER LOGIC 13

The formal proof does not conform in any obvious way to the sketch
given above. Its key step is its first rule, exCI , a classical version of (∃I)
that allows multiple instantiation of the quantifier.

lemma "EX y. ALL x. P(y)-->P(x)"

1. ∃ y. ∀ x. P(y) −→ P(x)

apply (rule exCI)

1. ∀ y. ¬ (∀ x. P(y) −→ P(x)) =⇒ ∀ x. P(?a) −→ P(x)

We can either exhibit a term ?a to satisfy the conclusion of subgoal 1, or
produce a contradiction from the assumption. The next steps are routine.

apply (rule allI)

1.
∧
x. ∀ y. ¬ (∀ x. P(y) −→ P(x)) =⇒ P(?a) −→ P(x)

apply (rule impI)

1.
∧
x. [[∀ y. ¬ (∀ x. P(y) −→ P(x)); P(?a)]] =⇒ P(x)

By the duality between ∃ and ∀, applying (∀E) is equivalent to applying (∃I)
again.

apply (erule allE)

1.
∧
x. [[P(?a); ¬ (∀ xa. P(?y3(x)) −→ P(xa))]] =⇒ P(x)

In classical logic, a negated assumption is equivalent to a conclusion. To get
this effect, we create a swapped version of (∀I) and apply it using erule.

apply (erule allI [THEN [2] swap])

1.
∧
x xa. [[P(?a); ¬ P(x)]] =⇒ P(?y3(x)) −→ P(xa)

The operand of erule above denotes the following theorem:

[[¬ (∀ x. ?P1(x));
∧
x. ¬ ?P =⇒ ?P1(x)]] =⇒ ?P

The previous conclusion, P(x), has become a negated assumption.

apply (rule impI)

1.
∧
x xa. [[P(?a); ¬ P(x); P(?y3(x))]] =⇒ P(xa)

The subgoal has three assumptions. We produce a contradiction between
the assumptions ¬P(x) and P(?y3(x)). The proof never instantiates the
unknown ?a.

apply (erule notE)

1.
∧
x xa. [[P(?a); P(?y3(x))]] =⇒ P(x)

apply assumption

No subgoals!

done

The civilised way to prove this theorem is using the blast method, which
automatically uses the classical form of the rule (∃I):

CHAPTER 2. FIRST-ORDER LOGIC 14

lemma "EX y. ALL x. P(y)-->P(x)"

1. ∃ y. ∀ x. P(y) −→ P(x)

by blast

No subgoals!

If this theorem seems counterintuitive, then perhaps you are an intuitionist.
In constructive logic, proving ∃y . ∀x . P(y) → P(x) requires exhibiting a
particular term t such that ∀x . P(t)→ P(x), which we cannot do without
further knowledge about P .

2.8 Derived rules and the classical tactics

Classical first-order logic can be extended with the propositional connective
if (P ,Q ,R), where

if (P ,Q ,R) ≡ P ∧Q ∨ ¬P ∧ R. (if)

Theorems about if can be proved by treating this as an abbreviation, re-
placing if (P ,Q ,R) by P ∧Q ∨ ¬P ∧ R in subgoals. But this duplicates P ,
causing an exponential blowup and an unreadable formula. Introducing
further abbreviations makes the problem worse.

Natural deduction demands rules that introduce and eliminate
if (P ,Q ,R) directly, without reference to its definition. The simple identity

if (P ,Q ,R) ↔ (P → Q) ∧ (¬P → R)

suggests that the if -introduction rule should be

[P]....
Q

[¬P]....
R

if (P ,Q ,R)
(if I)

The if -elimination rule reflects the definition of if (P ,Q ,R) and the elimi-
nation rules for ∨ and ∧.

if (P ,Q ,R)

[P ,Q]....
S

[¬P ,R]....
S

S
(if E)

Having made these plans, we get down to work with Isabelle. The theory
of classical logic, FOL, is extended with the constant if :: [o, o, o]⇒ o. The
axiom if_def asserts the equation (if).

theory If imports FOL

begin
constdefs
if :: "[o,o,o]=>o"

"if(P,Q,R) == P&Q | ~P&R"

CHAPTER 2. FIRST-ORDER LOGIC 15

We create the file If.thy containing these declarations. (This file is on
directory FOL/ex in the Isabelle distribution.) Typing

use_thy "If";

loads that theory and sets it to be the current context.

2.8.1 Deriving the introduction rule

The derivations of the introduction and elimination rules demonstrate the
methods for rewriting with definitions. Classical reasoning is required, so
we use blast.

The introduction rule, given the premises P =⇒ Q and ¬P =⇒ R,
concludes if (P ,Q ,R). We propose this lemma and immediately simplify
using if def to expand the definition of if in the subgoal.

lemma ifI: "[| P ==> Q; ~P ==> R |] ==> if(P,Q,R)"

1. [[P =⇒ Q; ¬ P =⇒ R]] =⇒ if(P, Q, R)

apply (simp add: if def)

1. [[P =⇒ Q; ¬ P =⇒ R]] =⇒ P ∧ Q ∨ ¬ P ∧ R

The rule’s premises, although expressed using meta-level implication (=⇒)
are passed as ordinary implications to blast .

apply blast

No subgoals!

done

2.8.2 Deriving the elimination rule

The elimination rule has three premises, two of which are themselves rules.
The conclusion is simply S .

lemma ifE:

"[| if(P,Q,R); [|P; Q|] ==> S; [|~P; R|] ==> S |] ==> S"

1. [[if(P, Q, R); [[P; Q]] =⇒ S; [[¬ P; R]] =⇒ S]] =⇒ S

apply (simp add: if def)

1. [[P ∧ Q ∨ ¬ P ∧ R; [[P; Q]] =⇒ S; [[¬ P; R]] =⇒ S]] =⇒ S

The proof script is the same as before: simp followed by blast :

apply blast

No subgoals!

done

CHAPTER 2. FIRST-ORDER LOGIC 16

2.8.3 Using the derived rules

Our new derived rules, ifI and ifE , permit natural proofs of theorems such
as the following:

if (P , if (Q ,A,B), if (Q ,C ,D)) ↔ if (Q , if (P ,A,C), if (P ,B ,D))
if (if (P ,Q ,R),A,B) ↔ if (P , if (Q ,A,B), if (R,A,B))

Proofs also require the classical reasoning rules and the↔ introduction rule
(called iffI : do not confuse with ifI).

To display the if -rules in action, let us analyse a proof step by step.

lemma if commute:

"if(P, if(Q,A,B), if(Q,C,D)) <-> if(Q, if(P,A,C), if(P,B,D))"

apply (rule iffI)

1. if(P, if(Q, A, B), if(Q, C, D)) =⇒
if(Q, if(P, A, C), if(P, B, D))

2. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

The if -elimination rule can be applied twice in succession.

apply (erule ifE)

1. [[P; if(Q, A, B)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

2. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

3. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

apply (erule ifE)

1. [[P; Q; A]] =⇒ if(Q, if(P, A, C), if(P, B, D))

2. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

3. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

4. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

In the first two subgoals, all assumptions have been reduced to atoms. Now
if -introduction can be applied. Observe how the if -rules break down occur-
rences of if when they become the outermost connective.

apply (rule ifI)

1. [[P; Q; A; Q]] =⇒ if(P, A, C)

2. [[P; Q; A; ¬ Q]] =⇒ if(P, B, D)

3. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

4. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

5. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

apply (rule ifI)

1. [[P; Q; A; Q; P]] =⇒ A

2. [[P; Q; A; Q; ¬ P]] =⇒ C

3. [[P; Q; A; ¬ Q]] =⇒ if(P, B, D)

4. [[P; ¬ Q; B]] =⇒ if(Q, if(P, A, C), if(P, B, D))

CHAPTER 2. FIRST-ORDER LOGIC 17

5. [[¬ P; if(Q, C, D)]] =⇒ if(Q, if(P, A, C), if(P, B, D))

6. if(Q, if(P, A, C), if(P, B, D)) =⇒
if(P, if(Q, A, B), if(Q, C, D))

Where do we stand? The first subgoal holds by assumption; the second and
third, by contradiction. This is getting tedious. We could use the classical
reasoner, but first let us extend the default claset with the derived rules
for if .

declare ifI [intro!]

declare ifE [elim!]

With these declarations, we could have proved this theorem with a single
call to blast. Here is another example:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, A, B))

by blast

2.8.4 Derived rules versus definitions

Dispensing with the derived rules, we can treat if as an abbreviation, and
let blast_tac prove the expanded formula. Let us redo the previous proof:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,A,B))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, A, B))

This time, we simply unfold using the definition of if :

apply (simp add: if def)

1. (P ∧ Q ∨ ¬ P ∧ R) ∧ A ∨ (¬ P ∨ ¬ Q) ∧ (P ∨ ¬ R) ∧ B ←→
P ∧ (Q ∧ A ∨ ¬ Q ∧ B) ∨ ¬ P ∧ (R ∧ A ∨ ¬ R ∧ B)

We are left with a subgoal in pure first-order logic, and it falls to blast :

apply blast

No subgoals!

Expanding definitions reduces the extended logic to the base logic. This
approach has its merits, but it can be slow. In these examples, proofs using
the derived rules for if run about six times faster than proofs using just the
rules of first-order logic.

Expanding definitions can also make it harder to diagnose errors. Sup-
pose we are having difficulties in proving some goal. If by expanding defi-
nitions we have made it unreadable, then we have little hope of diagnosing
the problem.

Attempts at program verification often yield invalid assertions. Let us
try to prove one:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, B, A))

CHAPTER 2. FIRST-ORDER LOGIC 18

Calling blast yields an uninformative failure message. We can get a closer
look at the situation by applying auto .

apply auto

1. [[A; ¬ P; R]] =⇒ B

2. [[B; ¬ P; ¬ R]] =⇒ A

3. [[B; ¬ P; R]] =⇒ A

4. [[¬ R; A; ¬ B; ¬ P]] =⇒ False

Subgoal 1 is unprovable and yields a countermodel: P and B are false
while R and A are true. This truth assignment reduces the main goal to
true ↔ false, which is of course invalid.

We can repeat this analysis by expanding definitions, using just the rules
of first-order logic:

lemma "if(if(P,Q,R), A, B) <-> if(P, if(Q,A,B), if(R,B,A))"

1. if(if(P, Q, R), A, B) ←→ if(P, if(Q, A, B), if(R, B, A))

apply (simp add: if def)

1. (P ∧ Q ∨ ¬ P ∧ R) ∧ A ∨ (¬ P ∨ ¬ Q) ∧ (P ∨ ¬ R) ∧ B ←→
P ∧ (Q ∧ A ∨ ¬ Q ∧ B) ∨ ¬ P ∧ (R ∧ B ∨ ¬ R ∧ A)

Again blast would fail, so we try auto :

apply (auto)

1. [[A; ¬ P; R]] =⇒ B

2. [[A; ¬ P; R; ¬ B]] =⇒ Q

3. [[B; ¬ R; ¬ P; ¬ A]] =⇒ False

4. [[B; ¬ P; ¬ A; ¬ R; Q]] =⇒ False

5. [[B; ¬ Q; ¬ R; ¬ P; ¬ A]] =⇒ False

6. [[B; ¬ A; ¬ P; R]] =⇒ False

7. [[¬ P; A; ¬ B; ¬ R]] =⇒ False

8. [[¬ P; A; ¬ B; ¬ R]] =⇒ Q

Subgoal 1 yields the same countermodel as before. But each proof step has
taken six times as long, and the final result contains twice as many subgoals.

Expanding your definitions usually makes proofs more difficult. This is
why the classical prover has been designed to accept derived rules.

Chapter 3

Zermelo-Fraenkel Set Theory

The theory ZF implements Zermelo-Fraenkel set theory [9, 22] as an exten-
sion of FOL, classical first-order logic. The theory includes a collection of
derived natural deduction rules, for use with Isabelle’s classical reasoner.
Some of it is based on the work of Noël [12].

A tremendous amount of set theory has been formally developed, includ-
ing the basic properties of relations, functions, ordinals and cardinals. Sig-
nificant results have been proved, such as the Schröder-Bernstein Theorem,
the Wellordering Theorem and a version of Ramsey’s Theorem. ZF provides
both the integers and the natural numbers. General methods have been de-
veloped for solving recursion equations over monotonic functors; these have
been applied to yield constructions of lists, trees, infinite lists, etc.

ZF has a flexible package for handling inductive definitions, such as in-
ference systems, and datatype definitions, such as lists and trees. Moreover
it handles coinductive definitions, such as bisimulation relations, and co-
datatype definitions, such as streams. It provides a streamlined syntax for
defining primitive recursive functions over datatypes.

Published articles [15, 17] describe ZF less formally than this chap-
ter. Isabelle employs a novel treatment of non-well-founded data structures
within the standard zf axioms including the Axiom of Foundation [19].

3.1 Which version of axiomatic set theory?

The two main axiom systems for set theory are Bernays-Gödel (bg) and
Zermelo-Fraenkel (zf). Resolution theorem provers can use bg because it is
finite [3, 21]. zf does not have a finite axiom system because of its Axiom
Scheme of Replacement. This makes it awkward to use with many theorem
provers, since instances of the axiom scheme have to be invoked explicitly.
Since Isabelle has no difficulty with axiom schemes, we may adopt either
axiom system.

These two theories differ in their treatment of classes, which are col-

19

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 20

lections that are ‘too big’ to be sets. The class of all sets, V , cannot be a
set without admitting Russell’s Paradox. In bg, both classes and sets are
individuals; x ∈ V expresses that x is a set. In zf, all variables denote
sets; classes are identified with unary predicates. The two systems define
essentially the same sets and classes, with similar properties. In particular,
a class cannot belong to another class (let alone a set).

Modern set theorists tend to prefer zf because they are mainly concerned
with sets, rather than classes. bg requires tiresome proofs that various
collections are sets; for instance, showing x ∈ {x} requires showing that x
is a set.

3.2 The syntax of set theory

The language of set theory, as studied by logicians, has no constants. The
traditional axioms merely assert the existence of empty sets, unions, pow-
ersets, etc.; this would be intolerable for practical reasoning. The Isa-
belle theory declares constants for primitive sets. It also extends FOL
with additional syntax for finite sets, ordered pairs, comprehension, gen-
eral union/intersection, general sums/products, and bounded quantifiers.
In most other respects, Isabelle implements precisely Zermelo-Fraenkel set
theory.

Figure 3.1 lists the constants and infixes of ZF, while Figure 3.2 presents
the syntax translations. Finally, Figure 3.3 presents the full grammar for
set theory, including the constructs of FOL.

Local abbreviations can be introduced by a let construct whose syntax
appears in Fig. 3.3. Internally it is translated into the constant Let . It can
be expanded by rewriting with its definition, Let_def .

Apart from let, set theory does not use polymorphism. All terms in ZF
have type i , which is the type of individuals and has class term . The type
of first-order formulae, remember, is o .

Infix operators include binary union and intersection (A∪B and A∩B),
set difference (A−B), and the subset and membership relations. Note that
a~:b is translated to ¬(a ∈ b), which is equivalent to a /∈ b. The union
and intersection operators (

⋃
A and

⋂
A) form the union or intersection of

a set of sets;
⋃

A means the same as
⋃

x∈A x . Of these operators, only
⋃

A
is primitive.

The constant Upair constructs unordered pairs; thus Upair(A,B) de-
notes the set {A,B} and Upair(A,A) denotes the singleton {A}. General
union is used to define binary union. The Isabelle version goes on to define
the constant cons :

A ∪ B ≡
⋃

(Upair(A,B))
cons(a,B) ≡ Upair(a, a) ∪ B

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 21

name meta-type description
Let [α, α⇒ β]⇒ β let binder
0 i empty set

cons [i , i]⇒ i finite set constructor
Upair [i , i]⇒ i unordered pairing
Pair [i , i]⇒ i ordered pairing
Inf i infinite set
Pow i ⇒ i powerset

Union Inter i ⇒ i set union/intersection
split [[i , i]⇒ i , i]⇒ i generalized projection

fst snd i ⇒ i projections
converse i ⇒ i converse of a relation

succ i ⇒ i successor
Collect [i , i ⇒ o]⇒ i separation
Replace [i , [i , i]⇒ o]⇒ i replacement

PrimReplace [i , [i , i]⇒ o]⇒ i primitive replacement
RepFun [i , i ⇒ i]⇒ i functional replacement

Pi Sigma [i , i ⇒ i]⇒ i general product/sum
domain i ⇒ i domain of a relation
range i ⇒ i range of a relation
field i ⇒ i field of a relation
Lambda [i , i ⇒ i]⇒ i λ-abstraction

restrict [i , i]⇒ i restriction of a function
The [i ⇒ o]⇒ i definite description
if [o, i , i]⇒ i conditional

Ball Bex [i , i ⇒ o]⇒ o bounded quantifiers

Constants

symbol meta-type priority description
‘‘ [i , i]⇒ i Left 90 image
-‘‘ [i , i]⇒ i Left 90 inverse image
‘ [i , i]⇒ i Left 90 application

Int [i , i]⇒ i Left 70 intersection (∩)
Un [i , i]⇒ i Left 65 union (∪)
- [i , i]⇒ i Left 65 set difference (−)

: [i , i]⇒ o Left 50 membership (∈)
<= [i , i]⇒ o Left 50 subset (⊆)

Infixes

Figure 3.1: Constants of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 22

external internal description
a ~: b ~(a : b) negated membership

{a1, . . ., an} cons(a1,. . .,cons(an,0)) finite set
<a1, . . ., an−1, an> Pair(a1,...,Pair(an−1,an)...) ordered n-tuple

{x:A . P [x]} Collect(A,λx . P [x]) separation
{y . x:A, Q [x , y]} Replace(A,λx y . Q [x , y]) replacement

{b[x] . x:A} RepFun(A,λx . b[x]) functional replacement
INT x:A . B [x] Inter({B [x] . x:A}) general intersection
UN x:A . B [x] Union({B [x] . x:A}) general union

PROD x:A . B [x] Pi(A,λx . B [x]) general product
SUM x:A . B [x] Sigma(A,λx . B [x]) general sum

A -> B Pi(A,λx . B) function space
A * B Sigma(A,λx . B) binary product

THE x . P [x] The(λx . P [x]) definite description
lam x:A . b[x] Lambda(A,λx . b[x]) λ-abstraction

ALL x:A . P [x] Ball(A,λx . P [x]) bounded ∀
EX x:A . P [x] Bex(A,λx . P [x]) bounded ∃

Figure 3.2: Translations for ZF

The {a1, . . .} notation abbreviates finite sets constructed in the obvious man-
ner using cons and ∅ (the empty set) ∈

{a, b, c} ≡ cons(a, cons(b, cons(c, ∅)))

The constant Pair constructs ordered pairs, as in Pair(a,b). Ordered
pairs may also be written within angle brackets, as <a,b>. The n-tuple
<a1,...,an−1,an> abbreviates the nest of pairs

Pair(a1,...,Pair(an−1,an)...).

In ZF, a function is a set of pairs. A ZF function f is simply an individual
as far as Isabelle is concerned: its Isabelle type is i , not say i ⇒ i . The
infix operator ‘ denotes the application of a function set to its argument; we
must write f ‘x , not f (x). The syntax for image is f “A and that for inverse
image is f−“A.

3.3 Binding operators

The constant Collect constructs sets by the principle of separation. The
syntax for separation is {x:A. P [x]}, where P [x] is a formula that may
contain free occurrences of x . It abbreviates the set Collect(A,λx . P [x]),
which consists of all x ∈ A that satisfy P [x]. Note that Collect is an un-
fortunate choice of name: some set theories adopt a set-formation principle,
related to replacement, called collection.

The constant Replace constructs sets by the principle of replacement.
The syntax {y. x:A,Q [x , y]} denotes the set Replace(A,λx y . Q [x , y]),
which consists of all y such that there exists x ∈ A satisfying Q [x , y]. The

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 23

term = expression of type i
| let id = term; . . . ; id = term in term
| if term then term else term
| { term (,term)∗ }
| < term (,term)∗ >
| { id:term . formula }
| { id . id:term, formula }
| { term . id:term }
| term ‘‘ term
| term -‘‘ term
| term ‘ term
| term * term
| term ∩term
| term ∪term
| term - term
| term -> term
| THE id . formula
| lam id:term . term
| INT id:term . term
| UN id:term . term
| PROD id:term . term
| SUM id:term . term

formula = expression of type o
| term : term
| term ~: term
| term <= term
| term = term
| term ~= term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id:term . formula
| EX id:term . formula
| ALL id id∗ . formula
| EX id id∗ . formula
| EX! id id∗ . formula

Figure 3.3: Full grammar for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 24

Replacement Axiom has the condition that Q must be single-valued over A:
for all x ∈ A there exists at most one y satisfying Q [x , y]. A single-valued
binary predicate is also called a class function.

The constant RepFun expresses a special case of replacement, where
Q [x , y] has the form y = b[x]. Such a Q is trivially single-valued, since
it is just the graph of the meta-level function λx . b[x]. The resulting set
consists of all b[x] for x ∈ A. This is analogous to the ml functional map,
since it applies a function to every element of a set. The syntax is {b[x].
x:A}, which expands to RepFun(A,λx . b[x]).

General unions and intersections of indexed families of sets, namely⋃
x∈A B [x] and

⋂
x∈A B [x], are written UN x:A. B [x] and INT x:A. B [x].

Their meaning is expressed using RepFun as⋃
({B [x] . x ∈ A}) and

⋂
({B [x] . x ∈ A}).

General sums
∑

x∈A B [x] and products
∏

x∈A B [x] can be constructed in set
theory, where B [x] is a family of sets over A. They have as special cases
A×B and A→ B , where B is simply a set. This is similar to the situation
in Constructive Type Theory (set theory has ‘dependent sets’) and calls for
similar syntactic conventions. The constants Sigma and Pi construct general
sums and products. Instead of Sigma(A,B) and Pi(A,B) we may write
SUM x:A. B [x] and PROD x:A. B [x]. The special cases as A*B and A->B
abbreviate general sums and products over a constant family.1 Isabelle
accepts these abbreviations in parsing and uses them whenever possible for
printing.

As mentioned above, whenever the axioms assert the existence and
uniqueness of a set, Isabelle’s set theory declares a constant for that set.
These constants can express the definite description operator ιx . P [x],
which stands for the unique a satisfying P [a], if such exists. Since all terms
in ZF denote something, a description is always meaningful, but we do not
know its value unless P [x] defines it uniquely. Using the constant The , we
may write descriptions as The(λx . P [x]) or use the syntax THE x. P [x].

Function sets may be written in λ-notation; λx ∈ A . b[x] stands for
the set of all pairs 〈x , b[x]〉 for x ∈ A. In order for this to be a set, the
function’s domain A must be given. Using the constant Lambda , we may
express function sets as Lambda(A,λx .b[x]) or use the syntax lam x:A. b[x].

Isabelle’s set theory defines two bounded quantifiers:

∀x ∈ A . P [x] abbreviates ∀x . x ∈ A→ P [x]
∃x ∈ A . P [x] abbreviates ∃x . x ∈ A ∧ P [x]

The constants Ball and Bex are defined accordingly. Instead of Ball(A,P)

and Bex(A,P) we may write ALL x:A. P [x] and EX x:A. P [x].
1Unlike normal infix operators, * and -> merely define abbreviations; there are no

constants op * and op ->.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 25

Let_def: Let(s, f) == f(s)

Ball_def: Ball(A,P) == ∀ x. x ∈ A --> P(x)

Bex_def: Bex(A,P) == ∃ x. x ∈ A & P(x)

subset_def: A ⊆ B == ∀ x ∈ A. x ∈ B

extension: A = B <-> A ⊆ B & B ⊆ A

Union_iff: A ∈ Union(C) <-> (∃ B ∈ C. A ∈ B)

Pow_iff: A ∈ Pow(B) <-> A ⊆ B

foundation: A=0 | (∃ x ∈ A. ∀ y ∈ x. y /∈ A)

replacement: (∀ x ∈ A. ∀ y z. P(x,y) & P(x,z) --> y=z) ==>

b ∈ PrimReplace(A,P) <-> (∃ x∈A. P(x,b))

The Zermelo-Fraenkel Axioms

Replace_def: Replace(A,P) ==

PrimReplace(A, %x y. (∃ !z. P(x,z)) & P(x,y))

RepFun_def: RepFun(A,f) == {y . x ∈ A, y=f(x)}

the_def: The(P) == Union({y . x ∈ {0}, P(y)})

if_def: if(P,a,b) == THE z. P & z=a | ~P & z=b

Collect_def: Collect(A,P) == {y . x ∈ A, x=y & P(x)}

Upair_def: Upair(a,b) ==

{y. x∈Pow(Pow(0)), x=0 & y=a | x=Pow(0) & y=b}

Consequences of replacement

Inter_def: Inter(A) == {x ∈ Union(A) . ∀ y ∈ A. x ∈ y}

Un_def: A ∪ B == Union(Upair(A,B))

Int_def: A ∩ B == Inter(Upair(A,B))

Diff_def: A - B == {x ∈ A . x /∈ B}

Union, intersection, difference

Figure 3.4: Rules and axioms of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 26

cons_def: cons(a,A) == Upair(a,a) ∪ A

succ_def: succ(i) == cons(i,i)

infinity: 0 ∈ Inf & (∀ y ∈ Inf. succ(y) ∈ Inf)

Finite and infinite sets

Pair_def: <a,b> == {{a,a}, {a,b}}

split_def: split(c,p) == THE y. ∃ a b. p=<a,b> & y=c(a,b)

fst_def: fst(A) == split(%x y. x, p)

snd_def: snd(A) == split(%x y. y, p)

Sigma_def: Sigma(A,B) ==
⋃
x ∈ A.

⋃
y ∈ B(x). {<x,y>}

Ordered pairs and Cartesian products

converse_def: converse(r) == {z. w∈r, ∃ x y. w=<x,y> & z=<y,x>}

domain_def: domain(r) == {x. w ∈ r, ∃ y. w=<x,y>}

range_def: range(r) == domain(converse(r))

field_def: field(r) == domain(r) ∪ range(r)

image_def: r ‘‘ A == {y∈range(r) . ∃ x ∈ A. <x,y> ∈ r}

vimage_def: r -‘‘ A == converse(r)‘‘A

Operations on relations

lam_def: Lambda(A,b) == {<x,b(x)> . x ∈ A}

apply_def: f‘a == THE y. <a,y> ∈ f

Pi_def: Pi(A,B) == {f∈Pow(Sigma(A,B)). ∀ x∈A. ∃ !y. <x,y>∈f}
restrict_def: restrict(f,A) == lam x ∈ A. f‘x

Functions and general product

Figure 3.5: Further definitions of ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 27

3.4 The Zermelo-Fraenkel axioms

The axioms appear in Fig. 3.4. They resemble those presented by Sup-
pes [22]. Most of the theory consists of definitions. In particular, bounded
quantifiers and the subset relation appear in other axioms. Object-level
quantifiers and implications have been replaced by meta-level ones wherever
possible, to simplify use of the axioms.

The traditional replacement axiom asserts

y ∈ PrimReplace(A,P)↔ (∃x ∈ A . P(x , y))

subject to the condition that P(x , y) is single-valued for all x ∈ A. The
Isabelle theory defines Replace to apply PrimReplace to the single-valued
part of P , namely

(∃!z . P(x , z)) ∧ P(x , y).

Thus y ∈ Replace(A,P) if and only if there is some x such that P(x ,−)
holds uniquely for y . Because the equivalence is unconditional, Replace is
much easier to use than PrimReplace ; it defines the same set, if P(x , y) is
single-valued. The nice syntax for replacement expands to Replace.

Other consequences of replacement include replacement for meta-level
functions (RepFun) and definite descriptions (The). Axioms for separation
(Collect) and unordered pairs (Upair) are traditionally assumed, but they
actually follow from replacement [22, pages 237–8].

The definitions of general intersection, etc., are straightforward. Note
the definition of cons, which underlies the finite set notation. The axiom of
infinity gives us a set that contains 0 and is closed under successor (succ).
Although this set is not uniquely defined, the theory names it (Inf) in order
to simplify the construction of the natural numbers.

Further definitions appear in Fig. 3.5. Ordered pairs are defined in the
standard way, 〈a, b〉 ≡ {{a}, {a, b}}. Recall that Sigma(A,B) generalizes
the Cartesian product of two sets. It is defined to be the union of all singleton
sets {〈x , y〉}, for x ∈ A and y ∈ B(x). This is a typical usage of general
union.

The projections fst and snd are defined in terms of the generalized
projection split . The latter has been borrowed from Martin-Löf’s Type
Theory, and is often easier to use than fst and snd .

Operations on relations include converse, domain, range, and image. The
set Pi(A,B) generalizes the space of functions between two sets. Note the
simple definitions of λ-abstraction (using RepFun) and application (using a
definite description). The function restrict(f ,A) has the same values as f ,
but only over the domain A.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 28

ballI: [| !!x. x∈A ==> P(x) |] ==> ∀ x∈A. P(x)

bspec: [| ∀ x∈A. P(x); x∈A |] ==> P(x)

ballE: [| ∀ x∈A. P(x); P(x) ==> Q; x /∈ A ==> Q |] ==> Q

ball_cong: [| A=A’; !!x. x∈A’ ==> P(x) <-> P’(x) |] ==>

(∀ x∈A. P(x)) <-> (∀ x∈A’. P’(x))

bexI: [| P(x); x∈A |] ==> ∃ x∈A. P(x)

bexCI: [| ∀ x∈A. ~P(x) ==> P(a); a∈A |] ==> ∃ x∈A. P(x)

bexE: [| ∃ x∈A. P(x); !!x. [| x∈A; P(x) |] ==> Q |] ==> Q

bex_cong: [| A=A’; !!x. x∈A’ ==> P(x) <-> P’(x) |] ==>

(∃ x∈A. P(x)) <-> (∃ x∈A’. P’(x))

Bounded quantifiers

subsetI: (!!x. x ∈ A ==> x ∈ B) ==> A ⊆ B

subsetD: [| A ⊆ B; c ∈ A |] ==> c ∈ B

subsetCE: [| A ⊆ B; c /∈ A ==> P; c ∈ B ==> P |] ==> P

subset_refl: A ⊆ A

subset_trans: [| A ⊆ B; B ⊆ C |] ==> A ⊆ C

equalityI: [| A ⊆ B; B ⊆ A |] ==> A = B

equalityD1: A = B ==> A ⊆ B

equalityD2: A = B ==> B ⊆ A

equalityE: [| A = B; [| A ⊆ B; B ⊆ A |] ==> P |] ==> P

Subsets and extensionality

emptyE: a ∈ 0 ==> P

empty_subsetI: 0 ⊆ A

equals0I: [| !!y. y ∈ A ==> False |] ==> A=0

equals0D: [| A=0; a ∈ A |] ==> P

PowI: A ⊆ B ==> A ∈ Pow(B)

PowD: A ∈ Pow(B) ==> A ⊆ B

The empty set; power sets

Figure 3.6: Basic derived rules for ZF

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 29

3.5 From basic lemmas to function spaces

Faced with so many definitions, it is essential to prove lemmas. Even trivial
theorems like A∩B = B ∩A would be difficult to prove from the definitions
alone. Isabelle’s set theory derives many rules using a natural deduction
style. Ideally, a natural deduction rule should introduce or eliminate just
one operator, but this is not always practical. For most operators, we may
forget its definition and use its derived rules instead.

3.5.1 Fundamental lemmas

Figure 3.6 presents the derived rules for the most basic operators. The rules
for the bounded quantifiers resemble those for the ordinary quantifiers, but
note that ballE uses a negated assumption in the style of Isabelle’s classical
reasoner. The congruence rules ball_cong and bex_cong are required by
Isabelle’s simplifier, but have few other uses. Congruence rules must be
specially derived for all binding operators, and henceforth will not be shown.

Figure 3.6 also shows rules for the subset and equality relations (proof by
extensionality), and rules about the empty set and the power set operator.

Figure 3.7 presents rules for replacement and separation. The rules for
Replace and RepFun are much simpler than comparable rules for PrimReplace
would be. The principle of separation is proved explicitly, although most
proofs should use the natural deduction rules for Collect. The elimina-
tion rule CollectE is equivalent to the two destruction rules CollectD1 and
CollectD2 , but each rule is suited to particular circumstances. Although
too many rules can be confusing, there is no reason to aim for a minimal set
of rules.

Figure 3.8 presents rules for general union and intersection. The empty
intersection should be undefined. We cannot have

⋂
(∅) = V because V ,

the universal class, is not a set. All expressions denote something in ZF
set theory; the definition of intersection implies

⋂
(∅) = ∅, but this value is

arbitrary. The rule InterI must have a premise to exclude the empty inter-
section. Some of the laws governing intersections require similar premises.

3.5.2 Unordered pairs and finite sets

Figure 3.9 presents the principle of unordered pairing, along with its derived
rules. Binary union and intersection are defined in terms of ordered pairs
(Fig. 3.10). Set difference is also included. The rule UnCI is useful for clas-
sical reasoning about unions, like disjCI ; it supersedes UnI1 and UnI2 , but
these rules are often easier to work with. For intersection and difference we
have both elimination and destruction rules. Again, there is no reason to
provide a minimal rule set.

Figure 3.11 is concerned with finite sets: it presents rules for cons, the

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 30

ReplaceI: [| x∈A; P(x,b); !!y. P(x,y) ==> y=b |] ==>

b∈{y. x∈A, P(x,y)}

ReplaceE: [| b∈{y. x∈A, P(x,y)};

!!x. [| x∈A; P(x,b); ∀ y. P(x,y)-->y=b |] ==> R

|] ==> R

RepFunI: [| a∈A |] ==> f(a)∈{f(x). x∈A}
RepFunE: [| b∈{f(x). x∈A};

!!x.[| x∈A; b=f(x) |] ==> P |] ==> P

separation: a∈{x∈A. P(x)} <-> a∈A & P(a)

CollectI: [| a∈A; P(a) |] ==> a∈{x∈A. P(x)}

CollectE: [| a∈{x∈A. P(x)}; [| a∈A; P(a) |] ==> R |] ==> R

CollectD1: a∈{x∈A. P(x)} ==> a∈A
CollectD2: a∈{x∈A. P(x)} ==> P(a)

Figure 3.7: Replacement and separation

UnionI: [| B∈C; A∈B |] ==> A∈Union(C)
UnionE: [| A∈Union(C); !!B.[| A∈B; B∈C |] ==> R |] ==> R

InterI: [| !!x. x∈C ==> A∈x; c∈C |] ==> A∈Inter(C)
InterD: [| A∈Inter(C); B∈C |] ==> A∈B
InterE: [| A∈Inter(C); A∈B ==> R; B /∈ C ==> R |] ==> R

UN_I: [| a∈A; b∈B(a) |] ==> b∈(
⋃
x∈A. B(x))

UN_E: [| b∈(
⋃
x∈A. B(x)); !!x.[| x∈A; b∈B(x) |] ==> R

|] ==> R

INT_I: [| !!x. x∈A ==> b∈B(x); a∈A |] ==> b∈(
⋂
x∈A. B(x))

INT_E: [| b∈(
⋂
x∈A. B(x)); a∈A |] ==> b∈B(a)

Figure 3.8: General union and intersection

pairing: a∈Upair(b,c) <-> (a=b | a=c)

UpairI1: a∈Upair(a,b)
UpairI2: b∈Upair(a,b)
UpairE: [| a∈Upair(b,c); a=b ==> P; a=c ==> P |] ==> P

Figure 3.9: Unordered pairs

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 31

UnI1: c∈A ==> c∈A ∪ B

UnI2: c∈B ==> c∈A ∪ B

UnCI: (c /∈ B ==> c∈A) ==> c∈A ∪ B

UnE: [| c∈A ∪ B; c∈A ==> P; c∈B ==> P |] ==> P

IntI: [| c∈A; c∈B |] ==> c∈A ∩ B

IntD1: c∈A ∩ B ==> c∈A
IntD2: c∈A ∩ B ==> c∈B
IntE: [| c∈A ∩ B; [| c∈A; c∈B |] ==> P |] ==> P

DiffI: [| c∈A; c /∈ B |] ==> c∈A - B

DiffD1: c∈A - B ==> c∈A
DiffD2: c∈A - B ==> c /∈ B

DiffE: [| c∈A - B; [| c∈A; c /∈ B |] ==> P |] ==> P

Figure 3.10: Union, intersection, difference

consI1: a∈cons(a,B)
consI2: a∈B ==> a∈cons(b,B)
consCI: (a /∈ B ==> a=b) ==> a∈cons(b,B)
consE: [| a∈cons(b,A); a=b ==> P; a∈A ==> P |] ==> P

singletonI: a∈{a}
singletonE: [| a∈{b}; a=b ==> P |] ==> P

Figure 3.11: Finite and singleton sets

succI1: i∈succ(i)
succI2: i∈j ==> i∈succ(j)
succCI: (i /∈ j ==> i=j) ==> i∈succ(j)
succE: [| i∈succ(j); i=j ==> P; i∈j ==> P |] ==> P

succ_neq_0: [| succ(n)=0 |] ==> P

succ_inject: succ(m) = succ(n) ==> m=n

Figure 3.12: The successor function

the_equality: [| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x))=a

theI: ∃ ! x. P(x) ==> P(THE x. P(x))

if_P: P ==> (if P then a else b) = a

if_not_P: ~P ==> (if P then a else b) = b

mem_asym: [| a∈b; b∈a |] ==> P

mem_irrefl: a∈a ==> P

Figure 3.13: Descriptions; non-circularity

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 32

Union_upper: B∈A ==> B ⊆ Union(A)

Union_least: [| !!x. x∈A ==> x ⊆ C |] ==> Union(A) ⊆ C

Inter_lower: B∈A ==> Inter(A) ⊆ B

Inter_greatest: [| a∈A; !!x. x∈A ==> C ⊆ x |] ==> C⊆Inter(A)

Un_upper1: A ⊆ A ∪ B

Un_upper2: B ⊆ A ∪ B

Un_least: [| A ⊆ C; B ⊆ C |] ==> A ∪ B ⊆ C

Int_lower1: A ∩ B ⊆ A

Int_lower2: A ∩ B ⊆ B

Int_greatest: [| C ⊆ A; C ⊆ B |] ==> C ⊆ A ∩ B

Diff_subset: A-B ⊆ A

Diff_contains: [| C ⊆ A; C ∩ B = 0 |] ==> C ⊆ A-B

Collect_subset: Collect(A,P) ⊆ A

Figure 3.14: Subset and lattice properties

finite set constructor, and rules for singleton sets. Figure 3.12 presents
derived rules for the successor function, which is defined in terms of cons.
The proof that succ is injective appears to require the Axiom of Foundation.

Definite descriptions (THE) are defined in terms of the singleton set {0},
but their derived rules fortunately hide this (Fig. 3.13). The rule theI is dif-
ficult to apply because of the two occurrences of ?P . However, the_equality
does not have this problem and the files contain many examples of its use.

Finally, the impossibility of having both a ∈ b and b ∈ a (mem_asym)
is proved by applying the Axiom of Foundation to the set {a, b}. The
impossibility of a ∈ a is a trivial consequence.

3.5.3 Subset and lattice properties

The subset relation is a complete lattice. Unions form least upper bounds;
non-empty intersections form greatest lower bounds. Figure 3.14 shows the
corresponding rules. A few other laws involving subsets are included. Rea-
soning directly about subsets often yields clearer proofs than reasoning about
the membership relation. Section 3.13 below presents an example of this,
proving the equation Pow(A) ∩ Pow(B) = Pow(A ∩ B).

3.5.4 Ordered pairs

Figure 3.15 presents the rules governing ordered pairs, projections and
general sums — in particular, that {{a}, {a, b}} functions as an ordered

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 33

Pair_inject1: <a,b> = <c,d> ==> a=c

Pair_inject2: <a,b> = <c,d> ==> b=d

Pair_inject: [| <a,b> = <c,d>; [| a=c; b=d |] ==> P |] ==> P

Pair_neq_0: <a,b>=0 ==> P

fst_conv: fst(<a,b>) = a

snd_conv: snd(<a,b>) = b

split: split(%x y. c(x,y), <a,b>) = c(a,b)

SigmaI: [| a∈A; b∈B(a) |] ==> <a,b>∈Sigma(A,B)

SigmaE: [| c∈Sigma(A,B);
!!x y.[| x∈A; y∈B(x); c=<x,y> |] ==> P |] ==> P

SigmaE2: [| <a,b>∈Sigma(A,B);
[| a∈A; b∈B(a) |] ==> P |] ==> P

Figure 3.15: Ordered pairs; projections; general sums

pair. This property is expressed as two destruction rules, Pair_inject1 and
Pair_inject2 , and equivalently as the elimination rule Pair_inject .

The rule Pair_neq_0 asserts 〈a, b〉 6= ∅. This is a property of
{{a}, {a, b}}, and need not hold for other encodings of ordered pairs. The
non-standard ordered pairs mentioned below satisfy 〈∅; ∅〉 = ∅.

The natural deduction rules SigmaI and SigmaE assert that Sigma(A,B)
consists of all pairs of the form 〈x , y〉, for x ∈ A and y ∈ B(x). The rule
SigmaE2 merely states that 〈a, b〉 ∈ Sigma(A,B) implies a ∈ A and b ∈ B(a).

In addition, it is possible to use tuples as patterns in abstractions:

%<x,y>. t stands for split(%x y. t)

Nested patterns are translated recursively: %<x,y,z>. t ; %<x,<y,z>>.
t ; split(%x.%<y,z>. t) ; split(%x. split(%y z. t)). The reverse
translation is performed upon printing.

! The translation between patterns and split is performed automatically by the
parser and printer. Thus the internal and external form of a term may differ,

which affects proofs. For example the term (%<x,y>.<y,x>)<a,b> requires the
theorem split to rewrite to <b,a>.

In addition to explicit λ-abstractions, patterns can be used in any vari-
able binding construct which is internally described by a λ-abstraction. Here
are some important examples:

Let: let pattern = t in u

Choice: THE pattern . P

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 34

domainI: <a,b>∈r ==> a∈domain(r)
domainE: [| a∈domain(r); !!y. <a,y>∈r ==> P |] ==> P

domain_subset: domain(Sigma(A,B)) ⊆ A

rangeI: <a,b>∈r ==> b∈range(r)
rangeE: [| b∈range(r); !!x. <x,b>∈r ==> P |] ==> P

range_subset: range(A*B) ⊆ B

fieldI1: <a,b>∈r ==> a∈field(r)
fieldI2: <a,b>∈r ==> b∈field(r)
fieldCI: (<c,a> /∈ r ==> <a,b>∈r) ==> a∈field(r)

fieldE: [| a∈field(r);
!!x. <a,x>∈r ==> P;

!!x. <x,a>∈r ==> P

|] ==> P

field_subset: field(A*A) ⊆ A

Figure 3.16: Domain, range and field of a relation

imageI: [| <a,b>∈r; a∈A |] ==> b∈r‘‘A
imageE: [| b∈r‘‘A; !!x.[| <x,b>∈r; x∈A |] ==> P |] ==> P

vimageI: [| <a,b>∈r; b∈B |] ==> a∈r-‘‘B
vimageE: [| a∈r-‘‘B; !!x.[| <a,x>∈r; x∈B |] ==> P |] ==> P

Figure 3.17: Image and inverse image

Set operations:
⋃

pattern:A. B

Comprehension: { pattern:A . P }

3.5.5 Relations

Figure 3.16 presents rules involving relations, which are sets of ordered pairs.
The converse of a relation r is the set of all pairs 〈y , x 〉 such that 〈x , y〉 ∈ r ;
if r is a function, then converse(r) is its inverse. The rules for the domain
operation, namely domainI and domainE , assert that domain(r) consists of
all x such that r contains some pair of the form 〈x , y〉. The range operation
is similar, and the field of a relation is merely the union of its domain and
range.

Figure 3.17 presents rules for images and inverse images. Note that these
operations are generalisations of range and domain, respectively.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 35

fun_is_rel: f∈Pi(A,B) ==> f ⊆ Sigma(A,B)

apply_equality: [| <a,b>∈f; f∈Pi(A,B) |] ==> f‘a = b

apply_equality2: [| <a,b>∈f; <a,c>∈f; f∈Pi(A,B) |] ==> b=c

apply_type: [| f∈Pi(A,B); a∈A |] ==> f‘a∈B(a)
apply_Pair: [| f∈Pi(A,B); a∈A |] ==> <a,f‘a>∈f
apply_iff: f∈Pi(A,B) ==> <a,b>∈f <-> a∈A & f‘a = b

fun_extension: [| f∈Pi(A,B); g∈Pi(A,D);
!!x. x∈A ==> f‘x = g‘x |] ==> f=g

domain_type: [| <a,b>∈f; f∈Pi(A,B) |] ==> a∈A
range_type: [| <a,b>∈f; f∈Pi(A,B) |] ==> b∈B(a)

Pi_type: [| f∈A->C; !!x. x∈A ==> f‘x∈B(x) |] ==> f∈Pi(A,B)
domain_of_fun: f∈Pi(A,B) ==> domain(f)=A

range_of_fun: f∈Pi(A,B) ==> f∈A->range(f)

restrict: a∈A ==> restrict(f,A) ‘ a = f‘a

restrict_type: [| !!x. x∈A ==> f‘x∈B(x) |] ==>

restrict(f,A)∈Pi(A,B)

Figure 3.18: Functions

lamI: a∈A ==> <a,b(a)>∈(lam x∈A. b(x))

lamE: [| p∈(lam x∈A. b(x)); !!x.[| x∈A; p=<x,b(x)> |] ==> P

|] ==> P

lam_type: [| !!x. x∈A ==> b(x)∈B(x) |] ==> (lam x∈A. b(x))∈Pi(A,B)

beta: a∈A ==> (lam x∈A. b(x)) ‘ a = b(a)

eta: f∈Pi(A,B) ==> (lam x∈A. f‘x) = f

Figure 3.19: λ-abstraction

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 36

fun_empty: 0∈0->0
fun_single: {<a,b>}∈{a} -> {b}

fun_disjoint_Un: [| f∈A->B; g∈C->D; A ∩ C = 0 |] ==>

(f ∪ g)∈(A ∪ C) -> (B ∪ D)

fun_disjoint_apply1: [| a∈A; f∈A->B; g∈C->D; A∩C = 0 |] ==>

(f ∪ g)‘a = f‘a

fun_disjoint_apply2: [| c∈C; f∈A->B; g∈C->D; A∩C = 0 |] ==>

(f ∪ g)‘c = g‘c

Figure 3.20: Constructing functions from smaller sets

3.5.6 Functions

Functions, represented by graphs, are notoriously difficult to reason about.
The ZF theory provides many derived rules, which overlap more than they
ought. This section presents the more important rules.

Figure 3.18 presents the basic properties of Pi(A,B), the generalized
function space. For example, if f is a function and 〈a, b〉 ∈ f , then f ‘a = b
(apply_equality). Two functions are equal provided they have equal do-
mains and deliver equals results (fun_extension).

By Pi_type , a function typing of the form f ∈ A → C can be refined
to the dependent typing f ∈

∏
x∈A B(x), given a suitable family of sets

{B(x)}x∈A. Conversely, by range_of_fun , any dependent typing can be
flattened to yield a function type of the form A→ C ; here, C = range(f).

Among the laws for λ-abstraction, lamI and lamE describe the graph of
the generated function, while beta and eta are the standard conversions.
We essentially have a dependently-typed λ-calculus (Fig. 3.19).

Figure 3.20 presents some rules that can be used to construct functions
explicitly. We start with functions consisting of at most one pair, and may
form the union of two functions provided their domains are disjoint.

3.6 Further developments

The next group of developments is complex and extensive, and only high-
lights can be covered here. It involves many theories and proofs.

Figure 3.21 presents commutative, associative, distributive, and idem-
potency laws of union and intersection, along with other equations.

Theory Bool defines {0, 1} as a set of booleans, with the usual operators
including a conditional (Fig. 3.22). Although ZF is a first-order theory, you
can obtain the effect of higher-order logic using bool -valued functions, for
example. The constant 1 is translated to succ(0).

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 37

Int_absorb: A ∩ A = A

Int_commute: A ∩ B = B ∩ A

Int_assoc: (A ∩ B) ∩ C = A ∩ (B ∩ C)

Int_Un_distrib: (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Un_absorb: A ∪ A = A

Un_commute: A ∪ B = B ∪ A

Un_assoc: (A ∪ B) ∪ C = A ∪ (B ∪ C)

Un_Int_distrib: (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Diff_cancel: A-A = 0

Diff_disjoint: A ∩ (B-A) = 0

Diff_partition: A ⊆ B ==> A ∪ (B-A) = B

double_complement: [| A ⊆ B; B ⊆ C |] ==> (B - (C-A)) = A

Diff_Un: A - (B ∪ C) = (A-B) ∩ (A-C)

Diff_Int: A - (B ∩ C) = (A-B) ∪ (A-C)

Union_Un_distrib: Union(A ∪ B) = Union(A) ∪ Union(B)

Inter_Un_distrib: [| a ∈ A; b ∈ B |] ==>

Inter(A ∪ B) = Inter(A) ∩ Inter(B)

Int_Union_RepFun: A ∩ Union(B) = (
⋃
C ∈ B. A ∩ C)

Un_Inter_RepFun: b ∈ B ==>

A ∪ Inter(B) = (
⋂
C ∈ B. A ∪ C)

SUM_Un_distrib1: (SUM x ∈ A ∪ B. C(x)) =

(SUM x ∈ A. C(x)) ∪ (SUM x ∈ B. C(x))

SUM_Un_distrib2: (SUM x ∈ C. A(x) ∪ B(x)) =

(SUM x ∈ C. A(x)) ∪ (SUM x ∈ C. B(x))

SUM_Int_distrib1: (SUM x ∈ A ∩ B. C(x)) =

(SUM x ∈ A. C(x)) ∩ (SUM x ∈ B. C(x))

SUM_Int_distrib2: (SUM x ∈ C. A(x) ∩ B(x)) =

(SUM x ∈ C. A(x)) ∩ (SUM x ∈ C. B(x))

Figure 3.21: Equalities

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 38

bool_def: bool == {0,1}

cond_def: cond(b,c,d) == if b=1 then c else d

not_def: not(b) == cond(b,0,1)

and_def: a and b == cond(a,b,0)

or_def: a or b == cond(a,1,b)

xor_def: a xor b == cond(a,not(b),b)

bool_1I: 1 ∈ bool

bool_0I: 0 ∈ bool

boolE: [| c ∈ bool; c=1 ==> P; c=0 ==> P |] ==> P

cond_1: cond(1,c,d) = c

cond_0: cond(0,c,d) = d

Figure 3.22: The booleans

symbol meta-type priority description
+ [i , i]⇒ i Right 65 disjoint union operator

Inl Inr i ⇒ i injections
case [i ⇒ i , i ⇒ i , i]⇒ i conditional for A + B

sum_def: A+B == {0}*A ∪ {1}*B

Inl_def: Inl(a) == <0,a>

Inr_def: Inr(b) == <1,b>

case_def: case(c,d,u) == split(%y z. cond(y, d(z), c(z)), u)

InlI: a ∈ A ==> Inl(a) ∈ A+B

InrI: b ∈ B ==> Inr(b) ∈ A+B

Inl_inject: Inl(a)=Inl(b) ==> a=b

Inr_inject: Inr(a)=Inr(b) ==> a=b

Inl_neq_Inr: Inl(a)=Inr(b) ==> P

sum_iff: u ∈ A+B <-> (∃ x∈A. u=Inl(x)) | (∃ y∈B. u=Inr(y))

case_Inl: case(c,d,Inl(a)) = c(a)

case_Inr: case(c,d,Inr(b)) = d(b)

Figure 3.23: Disjoint unions

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 39

QPair_def: <a;b> == a+b

qsplit_def: qsplit(c,p) == THE y. ∃ a b. p=<a;b> & y=c(a,b)

qfsplit_def: qfsplit(R,z) == ∃ x y. z=<x;y> & R(x,y)

qconverse_def: qconverse(r) == {z. w ∈ r, ∃ x y. w=<x;y> & z=<y;x>}

QSigma_def: QSigma(A,B) ==
⋃
x ∈ A.

⋃
y ∈ B(x). {<x;y>}

qsum_def: A <+> B == ({0} <*> A) ∪ ({1} <*> B)

QInl_def: QInl(a) == <0;a>

QInr_def: QInr(b) == <1;b>

qcase_def: qcase(c,d) == qsplit(%y z. cond(y, d(z), c(z)))

Figure 3.24: Non-standard pairs, products and sums

3.6.1 Disjoint unions

Theory Sum defines the disjoint union of two sets, with injections and a
case analysis operator (Fig. 3.23). Disjoint unions play a role in datatype
definitions, particularly when there is mutual recursion [17].

3.6.2 Non-standard ordered pairs

Theory QPair defines a notion of ordered pair that admits non-well-founded
tupling (Fig. 3.24). Such pairs are written <a;b>. It also defines the elimina-
tor qsplit , the converse operator qconverse , and the summation operator
QSigma . These are completely analogous to the corresponding versions for
standard ordered pairs. The theory goes on to define a non-standard notion
of disjoint sum using non-standard pairs. All of these concepts satisfy the
same properties as their standard counterparts; in addition, <a;b> is con-
tinuous. The theory supports coinductive definitions, for example of infinite
lists [19].

3.6.3 Least and greatest fixedpoints

The Knaster-Tarski Theorem states that every monotone function over a
complete lattice has a fixedpoint. Theory Fixedpt proves the Theorem only
for a particular lattice, namely the lattice of subsets of a set (Fig. 3.25). The
theory defines least and greatest fixedpoint operators with corresponding
induction and coinduction rules. These are essential to many definitions that
follow, including the natural numbers and the transitive closure operator.
The (co)inductive definition package also uses the fixedpoint operators [16].
See Davey and Priestley [5] for more on the Knaster-Tarski Theorem and
my paper [17] for discussion of the Isabelle proofs.

Monotonicity properties are proved for most of the set-forming opera-
tions: union, intersection, Cartesian product, image, domain, range, etc.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 40

bnd_mono_def: bnd_mono(D,h) ==

h(D)⊆D & (∀ W X. W⊆X --> X⊆D --> h(W)⊆h(X))

lfp_def: lfp(D,h) == Inter({X ∈ Pow(D). h(X) ⊆ X})

gfp_def: gfp(D,h) == Union({X ∈ Pow(D). X ⊆ h(X)})

lfp_lowerbound: [| h(A) ⊆ A; A ⊆ D |] ==> lfp(D,h) ⊆ A

lfp_subset: lfp(D,h) ⊆ D

lfp_greatest: [| bnd_mono(D,h);

!!X. [| h(X) ⊆ X; X ⊆ D |] ==> A ⊆ X

|] ==> A ⊆ lfp(D,h)

lfp_Tarski: bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))

induct: [| a ∈ lfp(D,h); bnd_mono(D,h);

!!x. x ∈ h(Collect(lfp(D,h),P)) ==> P(x)

|] ==> P(a)

lfp_mono: [| bnd_mono(D,h); bnd_mono(E,i);

!!X. X ⊆ D ==> h(X) ⊆ i(X)

|] ==> lfp(D,h) ⊆ lfp(E,i)

gfp_upperbound: [| A ⊆ h(A); A ⊆ D |] ==> A ⊆ gfp(D,h)

gfp_subset: gfp(D,h) ⊆ D

gfp_least: [| bnd_mono(D,h);

!!X. [| X ⊆ h(X); X ⊆ D |] ==> X ⊆ A

|] ==> gfp(D,h) ⊆ A

gfp_Tarski: bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))

coinduct: [| bnd_mono(D,h); a ∈ X; X ⊆ h(X ∪ gfp(D,h)); X ⊆ D

|] ==> a ∈ gfp(D,h)

gfp_mono: [| bnd_mono(D,h); D ⊆ E;

!!X. X ⊆ D ==> h(X) ⊆ i(X)

|] ==> gfp(D,h) ⊆ gfp(E,i)

Figure 3.25: Least and greatest fixedpoints

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 41

Fin.emptyI 0 ∈ Fin(A)

Fin.consI [| a ∈ A; b ∈ Fin(A) |] ==> cons(a,b) ∈ Fin(A)

Fin_induct

[| b ∈ Fin(A);

P(0);

!!x y. [| x∈A; y∈Fin(A); x /∈y; P(y) |] ==> P(cons(x,y))

|] ==> P(b)

Fin_mono: A ⊆ B ==> Fin(A) ⊆ Fin(B)

Fin_UnI: [| b ∈ Fin(A); c ∈ Fin(A) |] ==> b ∪ c ∈ Fin(A)

Fin_UnionI: C ∈ Fin(Fin(A)) ==> Union(C) ∈ Fin(A)

Fin_subset: [| c ⊆ b; b ∈ Fin(A) |] ==> c ∈ Fin(A)

Figure 3.26: The finite set operator

These are useful for applying the Knaster-Tarski Fixedpoint Theorem. The
proofs themselves are trivial applications of Isabelle’s classical reasoner.

3.6.4 Finite sets and lists

Theory Finite (Figure 3.26) defines the finite set operator; Fin(A) is the set
of all finite sets over A. The theory employs Isabelle’s inductive definition
package, which proves various rules automatically. The induction rule shown
is stronger than the one proved by the package. The theory also defines the
set of all finite functions between two given sets.

Figure 3.27 presents the set of lists over A, list(A). The definition
employs Isabelle’s datatype package, which defines the introduction and
induction rules automatically, as well as the constructors, case operator
(list case) and recursion operator. The theory then defines the usual list
functions by primitive recursion. See theory List.

3.6.5 Miscellaneous

The theory Perm is concerned with permutations (bijections) and related
concepts. These include composition of relations, the identity relation, and
three specialized function spaces: injective, surjective and bijective. Fig-
ure 3.28 displays many of their properties that have been proved. These
results are fundamental to a treatment of equipollence and cardinality.

Theory Univ defines a ‘universe’ univ(A), which is used by the datatype
package. This set contains A and the natural numbers. Vitally, it is closed
under finite products: univ(A) × univ(A) ⊆ univ(A). This theory also
defines the cumulative hierarchy of axiomatic set theory, which traditionally
is written Vα for an ordinal α. The ‘universe’ is a simple generalization
of Vω.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 42

symbol meta-type priority description
list i ⇒ i lists over some set

list_case [i , [i , i]⇒ i , i]⇒ i conditional for list(A)
map [i ⇒ i , i]⇒ i mapping functional

length i ⇒ i length of a list
rev i ⇒ i reverse of a list

@ [i , i]⇒ i Right 60 append for lists
flat i ⇒ i append of list of lists

NilI: Nil ∈ list(A)

ConsI: [| a ∈ A; l ∈ list(A) |] ==> Cons(a,l) ∈ list(A)

List.induct

[| l ∈ list(A);

P(Nil);

!!x y. [| x ∈ A; y ∈ list(A); P(y) |] ==> P(Cons(x,y))

|] ==> P(l)

Cons_iff: Cons(a,l)=Cons(a’,l’) <-> a=a’ & l=l’

Nil_Cons_iff: Nil 6= Cons(a,l)

list_mono: A ⊆ B ==> list(A) ⊆ list(B)

map_ident: l∈list(A) ==> map(%u. u, l) = l

map_compose: l∈list(A) ==> map(h, map(j,l)) = map(%u. h(j(u)), l)

map_app_distrib: xs∈list(A) ==> map(h, xs@ys) = map(h,xs)@map(h,ys)

map_type

[| l∈list(A); !!x. x∈A ==> h(x)∈B |] ==> map(h,l)∈list(B)
map_flat

ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))

Figure 3.27: Lists

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 43

symbol meta-type priority description
O [i , i]⇒ i Right 60 composition (◦)

id i ⇒ i identity function
inj [i , i]⇒ i injective function space
surj [i , i]⇒ i surjective function space
bij [i , i]⇒ i bijective function space

comp_def: r O s == {xz ∈ domain(s)*range(r) .

∃ x y z. xz=<x,z> & <x,y> ∈ s & <y,z> ∈ r}

id_def: id(A) == (lam x ∈ A. x)

inj_def: inj(A,B) == { f∈A->B. ∀ w∈A. ∀ x∈A. f‘w=f‘x --> w=x }

surj_def: surj(A,B) == { f∈A->B . ∀ y∈B. ∃ x∈A. f‘x=y }

bij_def: bij(A,B) == inj(A,B) ∩ surj(A,B)

left_inverse: [| f∈inj(A,B); a∈A |] ==> converse(f)‘(f‘a) = a

right_inverse: [| f∈inj(A,B); b∈range(f) |] ==>

f‘(converse(f)‘b) = b

inj_converse_inj: f∈inj(A,B) ==> converse(f) ∈ inj(range(f),A)

bij_converse_bij: f∈bij(A,B) ==> converse(f) ∈ bij(B,A)

comp_type: [| s ⊆ A*B; r ⊆ B*C |] ==> (r O s) ⊆ A*C

comp_assoc: (r O s) O t = r O (s O t)

left_comp_id: r ⊆ A*B ==> id(B) O r = r

right_comp_id: r ⊆ A*B ==> r O id(A) = r

comp_func: [| g∈A->B; f∈B->C |] ==> (f O g) ∈ A->C

comp_func_apply: [| g∈A->B; f∈B->C; a∈A |] ==> (f O g)‘a = f‘(g‘a)

comp_inj: [| g∈inj(A,B); f∈inj(B,C) |] ==> (f O g)∈inj(A,C)
comp_surj: [| g∈surj(A,B); f∈surj(B,C) |] ==> (f O g)∈surj(A,C)
comp_bij: [| g∈bij(A,B); f∈bij(B,C) |] ==> (f O g)∈bij(A,C)

left_comp_inverse: f∈inj(A,B) ==> converse(f) O f = id(A)

right_comp_inverse: f∈surj(A,B) ==> f O converse(f) = id(B)

bij_disjoint_Un:

[| f∈bij(A,B); g∈bij(C,D); A ∩ C = 0; B ∩ D = 0 |] ==>

(f ∪ g)∈bij(A ∪ C, B ∪ D)

restrict_bij: [| f∈inj(A,B); C⊆A |] ==> restrict(f,C)∈bij(C, f‘‘C)

Figure 3.28: Permutations

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 44

a ∈ ∅ ↔ ⊥
a ∈ A ∪ B ↔ a ∈ A ∨ a ∈ B
a ∈ A ∩ B ↔ a ∈ A ∧ a ∈ B
a ∈ A− B ↔ a ∈ A ∧ ¬(a ∈ B)

〈a, b〉 ∈ Sigma(A,B) ↔ a ∈ A ∧ b ∈ B(a)
a ∈ Collect(A,P) ↔ a ∈ A ∧ P(a)

(∀x ∈ ∅ . P(x)) ↔ >
(∀x ∈ A .>) ↔ >

Figure 3.29: Some rewrite rules for set theory

Theory QUniv defines a ‘universe’ quniv(A), which is used by the data-
type package to construct codatatypes such as streams. It is analogous to
univ(A) (and is defined in terms of it) but is closed under the non-standard
product and sum.

3.7 Automatic Tools

ZF provides the simplifier and the classical reasoner. Moreover it supplies a
specialized tool to infer ‘types’ of terms.

3.7.1 Simplification and Classical Reasoning

ZF inherits simplification from FOL but adopts it for set theory. The
extraction of rewrite rules takes the ZF primitives into account. It
can strip bounded universal quantifiers from a formula; for example,
∀x ∈ A . f (x) = g(x) yields the conditional rewrite rule x ∈ A =⇒ f (x) =
g(x). Given a ∈ {x ∈ A . P(x)} it extracts rewrite rules from a ∈ A
and P(a). It can also break down a ∈ A ∩ B and a ∈ A− B .

The default simpset used by simp contains congruence rules for all of
ZF’s binding operators. It contains all the conversion rules, such as fst and
snd, as well as the rewrites shown in Fig. 3.29.

Classical reasoner methods such as blast and auto refer to a rich collec-
tion of built-in axioms for all the set-theoretic primitives.

3.7.2 Type-Checking Tactics

Isabelle/ZF provides simple tactics to help automate those proofs that are
essentially type-checking. Such proofs are built by applying rules such as
these:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 45

[| ?P ==> ?a ∈ ?A; ~?P ==> ?b ∈ ?A |]

==> (if ?P then ?a else ?b) ∈ ?A

[| ?m ∈ nat; ?n ∈ nat |] ==> ?m #+ ?n ∈ nat

?a ∈ ?A ==> Inl(?a) ∈ ?A + ?B

In typical applications, the goal has the form t ∈ ?A: in other words, we
have a specific term t and need to infer its ‘type’ by instantiating the set
variable ?A. Neither the simplifier nor the classical reasoner does this job
well. The if-then-else rule, and many similar ones, can make the classical
reasoner loop. The simplifier refuses (on principle) to instantiate variables
during rewriting, so goals such as i#+j ∈ ?A are left unsolved.

The simplifier calls the type-checker to solve rewritten subgoals: this
stage can indeed instantiate variables. If you have defined new constants
and proved type-checking rules for them, then declare the rules using the
attribute TC and the rest should be automatic. In particular, the simplifier
will use type-checking to help satisfy conditional rewrite rules. Call the
method typecheck to break down all subgoals using type-checking rules.
You can add new type-checking rules temporarily like this:

apply (typecheck add: inj_is_fun)

3.8 Natural number and integer arithmetic

Theory Nat defines the natural numbers and mathematical induction, along
with a case analysis operator. The set of natural numbers, here called nat,
is known in set theory as the ordinal ω.

Theory Arith develops arithmetic on the natural numbers (Fig. 3.30).
Addition, multiplication and subtraction are defined by primitive recursion.
Division and remainder are defined by repeated subtraction, which requires
well-founded recursion; the termination argument relies on the divisor’s be-
ing non-zero. Many properties are proved: commutative, associative and
distributive laws, identity and cancellation laws, etc. The most interesting
result is perhaps the theorem a mod b + (a/b)× b = a.

To minimize the need for tedious proofs of t ∈ nat, the arithmetic
operators coerce their arguments to be natural numbers. The function
natify is defined such that natify(n) = n if n is a natural number,
natify(succ(x)) = succ(natify(x)) for all x , and finally natify(x) = 0 in
all other cases. The benefit is that the addition, subtraction, multiplication,
division and remainder operators always return natural numbers, regardless
of their arguments. Algebraic laws (commutative, associative, distributive)
are unconditional. Occurrences of natify as operands of those operators are
simplified away. Any remaining occurrences can either be tolerated or else
eliminated by proving that the argument is a natural number.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 46

symbol meta-type priority description
nat i set of natural numbers

nat_case [i , i ⇒ i , i]⇒ i conditional for nat
#* [i , i]⇒ i Left 70 multiplication
div [i , i]⇒ i Left 70 division
mod [i , i]⇒ i Left 70 modulus
#+ [i , i]⇒ i Left 65 addition
#- [i , i]⇒ i Left 65 subtraction

nat_def: nat == lfp(lam r ∈ Pow(Inf). {0} ∪ {succ(x). x ∈ r}

nat_case_def: nat_case(a,b,k) ==

THE y. k=0 & y=a | (∃ x. k=succ(x) & y=b(x))

nat_0I: 0 ∈ nat

nat_succI: n ∈ nat ==> succ(n) ∈ nat

nat_induct:

[| n ∈ nat; P(0); !!x. [| x ∈ nat; P(x) |] ==> P(succ(x))

|] ==> P(n)

nat_case_0: nat_case(a,b,0) = a

nat_case_succ: nat_case(a,b,succ(m)) = b(m)

add_0_natify: 0 #+ n = natify(n)

add_succ: succ(m) #+ n = succ(m #+ n)

mult_type: m #* n ∈ nat

mult_0: 0 #* n = 0

mult_succ: succ(m) #* n = n #+ (m #* n)

mult_commute: m #* n = n #* m

add_mult_dist: (m #+ n) #* k = (m #* k) #+ (n #* k)

mult_assoc: (m #* n) #* k = m #* (n #* k)

mod_div_equality: m ∈ nat ==> (m div n)#*n #+ m mod n = m

Figure 3.30: The natural numbers

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 47

symbol meta-type priority description
int i set of integers
$* [i , i]⇒ i Left 70 multiplication
$+ [i , i]⇒ i Left 65 addition
$- [i , i]⇒ i Left 65 subtraction
$< [i , i]⇒ o Left 50 < on integers

$<= [i , i]⇒ o Left 50 ≤ on integers

zadd_0_intify: 0 $+ n = intify(n)

zmult_type: m $* n ∈ int

zmult_0: 0 $* n = 0

zmult_commute: m $* n = n $* m

zadd_zmult_dist: (m $+ n) $* k = (m $* k) $+ (n $* k)

zmult_assoc: (m $* n) $* k = m $* (n $* k)

Figure 3.31: The integers

The simplifier automatically cancels common terms on the opposite sides
of subtraction and of relations (=, < and ≤). Here is an example:

1. i #+ j #+ k #- j < k #+ l

apply simp

1. natify(i) < natify(l)

Given the assumptions i ∈nat and l ∈nat, both occurrences of natify

would be simplified away.
Theory Int defines the integers, as equivalence classes of natural num-

bers. Figure 3.31 presents a tidy collection of laws. In fact, a large library of
facts is proved, including monotonicity laws for addition and multiplication,
covering both positive and negative operands.

As with the natural numbers, the need for typing proofs is minimized.
All the operators defined in Fig. 3.31 coerce their operands to integers by
applying the function intify . This function is the identity on integers and
maps other operands to zero.

Decimal notation is provided for the integers. Numbers, written as #nnn
or #-nnn, are represented internally in two’s-complement binary. Expres-
sions involving addition, subtraction and multiplication of numeral constants
are evaluated (with acceptable efficiency) by simplification. The simplifier
also collects similar terms, multiplying them by a numerical coefficient. It
also cancels occurrences of the same terms on the other side of the relational
operators. Example:

1. y $+ z $+ #-3 $* x $+ y $<= x $* #2 $+ z

apply simp

1. #2 $* y $<= #5 $* x

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 48

For more information on the integers, please see the theories on directory
ZF/Integ.

3.9 Datatype definitions

The datatype definition package of ZF constructs inductive datatypes simi-
lar to ml’s. It can also construct coinductive datatypes (codatatypes), which
are non-well-founded structures such as streams. It defines the set using a
fixed-point construction and proves induction rules, as well as theorems for
recursion and case combinators. It supplies mechanisms for reasoning about
freeness. The datatype package can handle both mutual and indirect recur-
sion.

3.9.1 Basics

A datatype definition has the following form:

datatype t1(A1, . . . ,Ah) = constructor1
1 | . . . | constructor1

k1
...

and tn(A1, . . . ,Ah) = constructorn
1 | . . . | constructorn

kn

Here t1, . . . , tn are identifiers and A1, . . . , Ah are variables: the datatype’s
parameters. Each constructor specification has the form

C ("x1:T1", . . . , "xm:Tm")

Here C is the constructor name, and variables x1, . . . , xm are the constructor
arguments, belonging to the sets T1, . . . , Tm , respectively. Typically each
Tj is either a constant set, a datatype parameter (one of A1, . . . , Ah) or
a recursive occurrence of one of the datatypes, say ti(A1, . . . ,Ah). More
complex possibilities exist, but they are much harder to realize. Often,
additional information must be supplied in the form of theorems.

A datatype can occur recursively as the argument of some function F .
This is called a nested (or indirect) occurrence. It is only allowed if the
datatype package is given a theorem asserting that F is monotonic. If the
datatype has indirect occurrences, then Isabelle/ZF does not support recur-
sive function definitions.

A simple example of a datatype is list, which is built-in, and is defined
by

consts list :: "i=>i"

datatype "list(A)" = Nil | Cons ("a ∈ A", "l ∈ list(A)")

Note that the datatype operator must be declared as a constant first. How-
ever, the package declares the constructors. Here, Nil gets type i and Cons

gets type [i , i]⇒ i .

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 49

Trees and forests can be modelled by the mutually recursive datatype
definition

consts

tree :: "i=>i"

forest :: "i=>i"

tree_forest :: "i=>i"

datatype "tree(A)" = Tcons ("a∈A", "f∈forest(A)")
and "forest(A)" = Fnil | Fcons ("t∈tree(A)", "f∈forest(A)")

Here tree(A) is the set of trees over A, forest(A) is the set of forests over
A, and tree_forest(A) is the union of the previous two sets. All three
operators must be declared first.

The datatype term, which is defined by

consts term :: "i=>i"

datatype "term(A)" = Apply ("a ∈ A", "l ∈ list(term(A))")

monos list_mono

type_elims list_univ [THEN subsetD, elim_format]

is an example of nested recursion. (The theorem list_mono is proved in
theory List, and the term example is developed in theory Induct/Term .)

Freeness of the constructors

Constructors satisfy freeness properties. Constructions are distinct, for ex-
ample Nil 6= Cons(a, l), and they are injective, for example Cons(a, l) =
Cons(a ′, l ′) ↔ a = a ′ ∧ l = l ′. Because the number of freeness is quadratic
in the number of constructors, the datatype package does not prove them.
Instead, it ensures that simplification will prove them dynamically: when
the simplifier encounters a formula asserting the equality of two datatype
constructors, it performs freeness reasoning.

Freeness reasoning can also be done using the classical reasoner, but it is
more complicated. You have to add some safe elimination rules rules to the
claset. For the list datatype, they are called list.free_elims. Occasionally
this exposes the underlying representation of some constructor, which can
be rectified using the command unfold list.con_defs [symmetric].

Structural induction

The datatype package also provides structural induction rules. For data-
types without mutual or nested recursion, the rule has the form exempli-
fied by list.induct in Fig. 3.27. For mutually recursive datatypes, the
induction rule is supplied in two forms. Consider datatype TF. The rule
tree_forest.induct performs induction over a single predicate P, which is
presumed to be defined for both trees and forests:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 50

[| x ∈ tree_forest(A);

!!a f. [| a ∈ A; f ∈ forest(A); P(f) |] ==> P(Tcons(a, f));

P(Fnil);

!!f t. [| t ∈ tree(A); P(t); f ∈ forest(A); P(f) |]

==> P(Fcons(t, f))

|] ==> P(x)

The rule tree_forest.mutual_induct performs induction over two distinct
predicates, P_tree and P_forest.

[| !!a f.

[| a∈A; f∈forest(A); P_forest(f) |] ==> P_tree(Tcons(a,f));

P_forest(Fnil);

!!f t. [| t∈tree(A); P_tree(t); f∈forest(A); P_forest(f) |]

==> P_forest(Fcons(t, f))

|] ==> (∀ za. za ∈ tree(A) --> P_tree(za)) &

(∀ za. za ∈ forest(A) --> P_forest(za))

For datatypes with nested recursion, such as the term example from
above, things are a bit more complicated. The rule term.induct refers to
the monotonic operator, list :

[| x ∈ term(A);

!!a l. [| a∈A; l∈list(Collect(term(A), P)) |] ==> P(Apply(a,l))

|] ==> P(x)

The theory Induct/Term.thy derives two higher-level induction rules, one of
which is particularly useful for proving equations:

[| t ∈ term(A);

!!x zs. [| x ∈ A; zs ∈ list(term(A)); map(f, zs) = map(g, zs) |]

==> f(Apply(x, zs)) = g(Apply(x, zs))

|] ==> f(t) = g(t)

How this can be generalized to other nested datatypes is a matter for future
research.

The case operator

The package defines an operator for performing case analysis over the data-
type. For list, it is called list_case and satisfies the equations

list_case(f_Nil, f_Cons, []) = f_Nil

list_case(f_Nil, f_Cons, Cons(a, l)) = f_Cons(a, l)

Here f_Nil is the value to return if the argument is Nil and f_Cons is a
function that computes the value to return if the argument has the form
Cons(a, l). The function can be expressed as an abstraction, over patterns
if desired (Sect. 3.5.4).

For mutually recursive datatypes, there is a single case operator. In
the tree/forest example, the constant tree_forest_case handles all of the
constructors of the two datatypes.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 51

datatype

datatype
²± °̄¯

±codatatype
²± °̄

²
°

datadecls

datadecls

"
²±°̄id arglist "

²±°̄=
²±°̄ constructor²

± |
²±°̄

¯
°

²
± and

²± °̄

¯
°

constructor

name ¯
± consargs

²
°

¯
± (

²±°̄mixfix)
²±°̄

²
°

consargs

(
²±°̄ "

²±°̄var :
²± °̄term "

²±°̄²
± ,

²±°̄
¯
°

)
²±°̄

Figure 3.32: Syntax of datatype declarations

3.9.2 Defining datatypes

The theory syntax for datatype definitions is shown in Fig. 3.32. In order
to be well-formed, a datatype definition has to obey the rules stated in the
previous section. As a result the theory is extended with the new types, the
constructors, and the theorems listed in the previous section. The quotation
marks are necessary because they enclose general Isabelle formulæ.

Codatatypes are declared like datatypes and are identical to them in
every respect except that they have a coinduction rule instead of an induc-
tion rule. Note that while an induction rule has the effect of limiting the
values contained in the set, a coinduction rule gives a way of constructing
new values of the set.

Most of the theorems about datatypes become part of the default
simpset. You never need to see them again because the simplifier applies
them automatically.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 52

Specialized methods for datatypes

Induction and case-analysis can be invoked using these special-purpose
methods:

induct_tac x applies structural induction on variable x to subgoal 1, pro-
vided the type of x is a datatype. The induction variable should not
occur among other assumptions of the subgoal.

In some situations, induction is overkill and a case distinction over all con-
structors of the datatype suffices.

case_tac x performs a case analysis for the variable x .

Both tactics can only be applied to a variable, whose typing must be
given in some assumption, for example the assumption x ∈ list(A). The
tactics also work for the natural numbers (nat) and disjoint sums, although
these sets were not defined using the datatype package. (Disjoint sums are
not recursive, so only case_tac is available.)

Structured Isar methods are also available. Below, t stands for the name
of the datatype.

induct set: t is the Isar induction tactic.

cases set: t is the Isar case-analysis tactic.

The theorems proved by a datatype declaration

Here are some more details for the technically minded. Processing the data-
type declaration of a set t produces a name space t containing the following
theorems:

intros the introduction rules
cases the case analysis rule
induct the standard induction rule
mutual_induct the mutual induction rule, if needed
case_eqns equations for the case operator
recursor_eqns equations for the recursor
simps the union of case_eqns and recursor_eqns

con_defs definitions of the case operator and constructors
free_iffs logical equivalences for proving freeness
free_elims elimination rules for proving freeness
defs datatype definition(s)

Furthermore there is the theorem C for every constructor C ; for example,
the list datatype’s introduction rules are bound to the identifiers Nil and
Cons.

For a codatatype, the component coinduct is the coinduction rule, re-
placing the induct component.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 53

See the theories Induct/Ntree and Induct/Brouwer for examples of in-
finitely branching datatypes. See theory Induct/LList for an example of a
codatatype. Some of these theories illustrate the use of additional, undocu-
mented features of the datatype package. Datatype definitions are reduced
to inductive definitions, and the advanced features should be understood in
that light.

3.9.3 Examples

The datatype of binary trees

Let us define the set bt(A) of binary trees over A. The theory must contain
these lines:

consts bt :: "i=>i"

datatype "bt(A)" = Lf | Br ("a∈A", "t1∈bt(A)", "t2∈bt(A)")

After loading the theory, we can prove some theorem. We begin by declaring
the constructor’s typechecking rules as simplification rules:

declare bt.intros [simp]

Our first example is the theorem that no tree equals its left branch. To
make the inductive hypothesis strong enough, the proof requires a quantified
induction formula, but the rule format attribute will remove the quantifiers
before the theorem is stored.

lemma Br neq left [rule format]: "l∈bt(A) ==> ∀ x r. Br(x,l,r) 6=l"

1. l ∈ bt(A) =⇒ ∀ x r. Br(x, l, r) 6= l

This can be proved by the structural induction tactic:

apply (induct tac l)

1. ∀ x r. Br(x, Lf, r) 6= Lf

2.
∧
a t1 t2.

[[a ∈ A; t1 ∈ bt(A); ∀ x r. Br(x, t1, r) 6= t1; t2 ∈ bt(A);

∀ x r. Br(x, t2, r) 6= t2]]
=⇒ ∀ x r. Br(x, Br(a, t1, t2), r) 6= Br(a, t1, t2)

Both subgoals are proved using auto, which performs the necessary freeness
reasoning.

apply auto

No subgoals!

done

An alternative proof uses Isar’s fancy induct method, which automati-
cally quantifies over all free variables:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 54

lemma Br neq left’: "l ∈ bt(A) ==> (!!x r. Br(x, l, r) 6= l)"

apply (induct set: bt)

1.
∧
x r. Br(x, Lf, r) 6= Lf

2.
∧
a t1 t2 x r.

[[a ∈ A; t1 ∈ bt(A);
∧
x r. Br(x, t1, r) 6= t1; t2 ∈ bt(A);∧

x r. Br(x, t2, r) 6= t2]]
=⇒ Br(x, Br(a, t1, t2), r) 6= Br(a, t1, t2)

Compare the form of the induction hypotheses with the corresponding ones
in the previous proof. As before, to conclude requires only auto.

When there are only a few constructors, we might prefer to prove the
freenness theorems for each constructor. This is simple:

lemma Br iff: "Br(a,l,r) = Br(a’,l’,r’) <-> a=a’ & l=l’ & r=r’"

by (blast elim!: bt.free elims)

Here we see a demonstration of freeness reasoning using bt.free elims, but
simpler still is just to apply auto.

An inductive cases declaration generates instances of the case analysis
rule that have been simplified using freeness reasoning.

inductive cases Br in bt: "Br(a, l, r) ∈ bt(A)"

The theorem just created is

[[Br(a, l, r) ∈ bt(A); [[a ∈ A; l ∈ bt(A); r ∈ bt(A)]] =⇒ Q]] =⇒ Q.

It is an elimination rule that from Br(a, l , r) ∈ bt(A) lets us infer a ∈ A,
l ∈ bt(A) and r ∈ bt(A).

Mixfix syntax in datatypes

Mixfix syntax is sometimes convenient. The theory Induct/PropLog makes
a deep embedding of propositional logic:

consts prop :: i

datatype "prop" = Fls

| Var ("n ∈ nat") ("#_" [100] 100)

| "=>" ("p ∈ prop", "q ∈ prop") (infixr 90)

The second constructor has a special #n syntax, while the third constructor
is an infixed arrow.

A giant enumeration type

This example shows a datatype that consists of 60 constructors:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 55

consts enum :: i

datatype

"enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09

| C10 | C11 | C12 | C13 | C14 | C15 | C16 | C17 | C18 | C19

| C20 | C21 | C22 | C23 | C24 | C25 | C26 | C27 | C28 | C29

| C30 | C31 | C32 | C33 | C34 | C35 | C36 | C37 | C38 | C39

| C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49

| C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59

end

The datatype package scales well. Even though all properties are proved
rather than assumed, full processing of this definition takes around two
seconds (on a 1.8GHz machine). The constructors have a balanced repre-
sentation, related to binary notation, so freeness properties can be proved
fast.

lemma "C00 6= C01"

by simp

You need not derive such inequalities explicitly. The simplifier will dispose
of them automatically.

3.9.4 Recursive function definitions

Datatypes come with a uniform way of defining functions, primitive recur-
sion. Such definitions rely on the recursion operator defined by the datatype
package. Isabelle proves the desired recursion equations as theorems.

In principle, one could introduce primitive recursive functions by assert-
ing their reduction rules as axioms. Here is a dangerous way of defining a
recursive function over binary trees:

consts n nodes :: "i => i"

axioms
n nodes Lf: "n nodes(Lf) = 0"

n nodes Br: "n nodes(Br(a,l,r)) = succ(n nodes(l) #+ n nodes(r))"

Asserting axioms brings the danger of accidentally introducing contradic-
tions. It should be avoided whenever possible.

The primrec declaration is a safe means of defining primitive recursive
functions on datatypes:

consts n nodes :: "i => i"

primrec
"n nodes(Lf) = 0"

"n nodes(Br(a, l, r)) = succ(n nodes(l) #+ n nodes(r))"

Isabelle will now derive the two equations from a low-level definition based
upon well-founded recursion. If they do not define a legitimate recursion,
then Isabelle will reject the declaration.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 56

Syntax of recursive definitions

The general form of a primitive recursive definition is

primrec

reduction rules

where reduction rules specify one or more equations of the form

f x1 . . . xm (C y1 . . . yk) z1 . . . zn = r

such that C is a constructor of the datatype, r contains only the free vari-
ables on the left-hand side, and all recursive calls in r are of the form
f . . . yi . . . for some i . There must be at most one reduction rule for each
constructor. The order is immaterial. For missing constructors, the function
is defined to return zero.

All reduction rules are added to the default simpset. If you would like to
refer to some rule by name, then you must prefix the rule with an identifier.
These identifiers, like those in the rules section of a theory, will be visible
in proof scripts.

The reduction rules become part of the default simpset, which leads to
short proof scripts:

lemma n nodes type [simp]: "t ∈ bt(A) ==> n nodes(t) ∈ nat"

by (induct tac t, auto)

You can even use the primrec form with non-recursive datatypes and
with codatatypes. Recursion is not allowed, but it provides a convenient
syntax for defining functions by cases.

Example: varying arguments

All arguments, other than the recursive one, must be the same in each
equation and in each recursive call. To get around this restriction, use
explict λ-abstraction and function application. For example, let us define
the tail-recursive version of n nodes, using an accumulating argument for
the counter. The second argument, k , varies in recursive calls.

consts n nodes aux :: "i => i"

primrec
"n nodes aux(Lf) = (λk ∈ nat. k)"

"n nodes aux(Br(a,l,r)) =

(λk ∈ nat. n nodes aux(r) ‘ (n nodes aux(l) ‘ succ(k)))"

Now n nodes aux(t) ‘ k is our function in two arguments. We can prove a
theorem relating it to n nodes. Note the quantification over k ∈ nat :

lemma n nodes aux eq [rule format]:

"t ∈ bt(A) ==> ∀ k ∈ nat. n nodes aux(t)‘k = n nodes(t) #+ k"

by (induct tac t, simp all)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 57

Now, we can use n nodes aux to define a tail-recursive version of n nodes :

constdefs
n nodes tail :: "i => i"

"n nodes tail(t) == n nodes aux(t) ‘ 0"

It is easy to prove that n nodes tail is equivalent to n nodes :

lemma "t ∈ bt(A) ==> n nodes tail(t) = n nodes(t)"

by (simp add: n nodes tail def n nodes aux eq)

3.10 Inductive and coinductive definitions

An inductive definition specifies the least set R closed under given rules.
(Applying a rule to elements of R yields a result within R.) For example,
a structural operational semantics is an inductive definition of an evalua-
tion relation. Dually, a coinductive definition specifies the greatest set R
consistent with given rules. (Every element of R can be seen as arising by ap-
plying a rule to elements of R.) An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

A theory file may contain any number of inductive and coinductive defi-
nitions. They may be intermixed with other declarations; in particular, the
(co)inductive sets must be declared separately as constants, and may have
mixfix syntax or be subject to syntax translations.

Each (co)inductive definition adds definitions to the theory and also
proves some theorems. It behaves identially to the analogous inductive defi-
nition except that instead of an induction rule there is a coinduction rule. Its
treatment of coinduction is described in detail in a separate paper,2 which
you might refer to for background information.

3.10.1 The syntax of a (co)inductive definition

An inductive definition has the form

inductive

domains domain declarations
intros introduction rules
monos monotonicity theorems
con_defs constructor definitions
type_intros introduction rules for type-checking
type_elims elimination rules for type-checking

A coinductive definition is identical, but starts with the keyword co-

inductive.
2It appeared in CADE [16]; a longer version is distributed with Isabelle as A Fixedpoint

Approach to (Co)Inductive and (Co)Datatype Definitions.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 58

The monos, con defs, type intros and type elims sections are optional.
If present, each is specified as a list of theorems, which may contain Isar
attributes as usual.

domain declarations are items of the form string ⊆ string, associating each
recursive set with its domain. (The domain is some existing set that
is large enough to hold the new set being defined.)

introduction rules specify one or more introduction rules in the form
ident string, where the identifier gives the name of the rule in the
result structure.

monotonicity theorems are required for each operator applied to a recursive
set in the introduction rules. There must be a theorem of the form
A ⊆ B =⇒ M (A) ⊆ M (B), for each premise t ∈ M (R i) in an
introduction rule!

constructor definitions contain definitions of constants appearing in the in-
troduction rules. The (co)datatype package supplies the construc-
tors’ definitions here. Most (co)inductive definitions omit this section;
one exception is the primitive recursive functions example; see theory
Induct/Primrec.

type intros consists of introduction rules for type-checking the definition:
for demonstrating that the new set is included in its domain. (The
proof uses depth-first search.)

type elims consists of elimination rules for type-checking the definition.
They are presumed to be safe and are applied as often as possible
prior to the type intros search.

The package has a few restrictions:

• The theory must separately declare the recursive sets as constants.

• The names of the recursive sets must be identifiers, not infix operators.

• Side-conditions must not be conjunctions. However, an introduction
rule may contain any number of side-conditions.

• Side-conditions of the form x = t , where the variable x does not occur
in t , will be substituted through the rule mutual induct.

3.10.2 Example of an inductive definition

Below, we shall see how Isabelle/ZF defines the finite powerset operator. The
first step is to declare the constant Fin. Then we must declare it inductively,
with two introduction rules:

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 59

consts Fin :: "i=>i"

inductive
domains "Fin(A)" ⊆ "Pow(A)"

intros
emptyI: "0 ∈ Fin(A)"

consI: "[| a ∈ A; b ∈ Fin(A) |] ==> cons(a,b) ∈ Fin(A)"

type intros empty subsetI cons subsetI PowI

type elims PowD [THEN revcut rl]

The resulting theory contains a name space, called Fin. The Fin A introduc-
tion rules can be referred to collectively as Fin.intros, and also individually
as Fin.emptyI and Fin.consI. The induction rule is Fin.induct.

The chief problem with making (co)inductive definitions involves type-
checking the rules. Sometimes, additional theorems need to be supplied
under type_intros or type_elims. If the package fails when trying to prove
your introduction rules, then set the flag trace_induct to true and try
again. (See the manual A Fixedpoint Approach . . . for more discussion of
type-checking.)

In the example above, Pow(A) is given as the domain of Fin(A), for
obviously every finite subset of A is a subset of A. However, the inductive
definition package can only prove that given a few hints. Here is the output
that results (with the flag set) when the type_intros and type_elims are
omitted from the inductive definition above:

Inductive definition Finite.Fin

Fin(A) ==

lfp(Pow(A),

%X. z∈Pow(A) . z = 0 | (∃ a b. z = cons(a,b) & a∈A & b∈X))
Proving monotonicity...

Proving the introduction rules...

The type-checking subgoal:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

The subgoal after monos, type_elims:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

*** prove_goal: tactic failed

We see the need to supply theorems to let the package prove ∅ ∈ Pow(A).
Restoring the type_intros but not the type_elims, we again get an error
message:

The type-checking subgoal:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

The subgoal after monos, type_elims:

0 ∈ Fin(A)

1. 0 ∈ Pow(A)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 60

The type-checking subgoal:

cons(a, b) ∈ Fin(A)

1. [| a ∈ A; b ∈ Fin(A) |] ==> cons(a, b) ∈ Pow(A)

The subgoal after monos, type_elims:

cons(a, b) ∈ Fin(A)

1. [| a ∈ A; b ∈ Pow(A) |] ==> cons(a, b) ∈ Pow(A)

*** prove_goal: tactic failed

The first rule has been type-checked, but the second one has failed. The
simplest solution to such problems is to prove the failed subgoal separately
and to supply it under type_intros. The solution actually used is to supply,
under type_elims, a rule that changes b ∈ Pow(A) to b ⊆ A; together with
cons_subsetI and PowI, it is enough to complete the type-checking.

3.10.3 Further examples

An inductive definition may involve arbitrary monotonic operators. Here is
a standard example: the accessible part of a relation. Note the use of Pow
in the introduction rule and the corresponding mention of the rule Pow mono

in the monos list. If the desired rule has a universally quantified premise,
usually the effect can be obtained using Pow.

consts acc :: "i => i"

inductive
domains "acc(r)" ⊆ "field(r)"

intros
vimage: "[| r-‘‘{a} ∈ Pow(acc(r)); a ∈ field(r) |]

==> a ∈ acc(r)"

monos Pow mono

Finally, here are some coinductive definitions. We begin by defining lazy
(potentially infinite) lists as a codatatype:

consts llist :: "i=>i"

codatatype
"llist(A)" = LNil | LCons ("a ∈ A", "l ∈ llist(A)")

The notion of equality on such lists is modelled as a bisimulation:

consts lleq :: "i=>i"

coinductive
domains "lleq(A)" <= "llist(A) * llist(A)"

intros
LNil: "<LNil, LNil> ∈ lleq(A)"

LCons: "[| a ∈ A; <l,l’> ∈ lleq(A) |]

==> <LCons(a,l), LCons(a,l’)> ∈ lleq(A)"

type intros llist.intros

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 61

This use of type_intros is typical: the relation concerns the codatatype
llist, so naturally the introduction rules for that codatatype will be re-
quired for type-checking the rules.

The Isabelle distribution contains many other inductive definitions. Sim-
ple examples are collected on subdirectory ZF/Induct. The directory Coind

and the theory ZF/Induct/LList contain coinductive definitions. Larger ex-
amples may be found on other subdirectories of ZF, such as IMP, and Resid.

3.10.4 Theorems generated

Each (co)inductive set defined in a theory file generates a name space con-
taining the following elements:

intros the introduction rules
elim the elimination (case analysis) rule
induct the standard induction rule
mutual_induct the mutual induction rule, if needed
defs definitions of inductive sets
bnd_mono monotonicity property
dom_subset inclusion in ‘bounding set’

Furthermore, each introduction rule is available under its declared name. For
a codatatype, the component coinduct is the coinduction rule, replacing the
induct component.

Recall that the inductive cases declaration generates simplified in-
stances of the case analysis rule. It is as useful for inductive definitions as it
is for datatypes. There are many examples in the theory Induct/Comb, which
is discussed at length elsewhere [18]. The theory first defines the datatype
comb of combinators:

consts comb :: i

datatype "comb" = K

| S

| "#" ("p ∈ comb", "q ∈ comb") (infixl 90)

The theory goes on to define contraction and parallel contraction inductively.
Then the theory Induct/Comb.thy defines special cases of contraction, such
as this one:

inductive cases K contractE [elim!]: "K -1-> r"

The theorem just created is K -1-> r =⇒ Q, which expresses that the com-
binator K cannot reduce to anything. (From the assumption K-1->r, we can
conclude any desired formula Q .) Similar elimination rules for S and appli-
cation are also generated. The attribute elim! shown above supplies the
generated theorem to the classical reasoner. This mode of working allows
effective reasoniung about operational semantics.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 62

3.11 The outer reaches of set theory

The constructions of the natural numbers and lists use a suite of operators for
handling recursive function definitions. I have described the developments
in detail elsewhere [17]. Here is a brief summary:

• Theory Trancl defines the transitive closure of a relation (as a least
fixedpoint).

• Theory WF proves the well-founded recursion theorem, using an elegant
approach of Tobias Nipkow. This theorem permits general recursive
definitions within set theory.

• Theory Ord defines the notions of transitive set and ordinal number.
It derives transfinite induction. A key definition is less than: i < j
if and only if i and j are both ordinals and i ∈ j . As a special case, it
includes less than on the natural numbers.

• Theory Epsilon derives ε-induction and ε-recursion, which are general-
isations of transfinite induction and recursion. It also defines rank(x),
which is the least ordinal α such that x is constructed at stage α of
the cumulative hierarchy (thus x ∈ Vα+1).

Other important theories lead to a theory of cardinal numbers. They
have not yet been written up anywhere. Here is a summary:

• Theory Rel defines the basic properties of relations, such as reflexivity,
symmetry and transitivity.

• Theory EquivClass develops a theory of equivalence classes, not using
the Axiom of Choice.

• Theory Order defines partial orderings, total orderings and wellorder-
ings.

• Theory OrderArith defines orderings on sum and product sets. These
can be used to define ordinal arithmetic and have applications to car-
dinal arithmetic.

• Theory OrderType defines order types. Every wellordering is equivalent
to a unique ordinal, which is its order type.

• Theory Cardinal defines equipollence and cardinal numbers.

• Theory CardinalArith defines cardinal addition and multiplication,
and proves their elementary laws. It proves that there is no greatest
cardinal. It also proves a deep result, namely κ⊗ κ = κ for every infi-
nite cardinal κ; see Kunen [10, page 29]. None of these results assume
the Axiom of Choice, which complicates their proofs considerably.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 63

The following developments involve the Axiom of Choice (AC):

• Theory AC asserts the Axiom of Choice and proves some simple equiv-
alent forms.

• Theory Zorn proves Hausdorff’s Maximal Principle, Zorn’s Lemma and
the Wellordering Theorem, following Abrial and Laffitte [1].

• Theory Cardinal AC uses AC to prove simplified theorems about the
cardinals. It also proves a theorem needed to justify infinitely branch-
ing datatype declarations: if κ is an infinite cardinal and |X (α)| ≤ κ
for all α < κ then |

⋃
α<κ X (α)| ≤ κ.

• Theory InfDatatype proves theorems to justify infinitely branching
datatypes. Arbitrary index sets are allowed, provided their cardinal-
ities have an upper bound. The theory also justifies some unusual
cases of finite branching, involving the finite powerset operator and
the finite function space operator.

3.12 The examples directories

Directory HOL/IMP contains a mechanised version of a semantic equivalence
proof taken from Winskel [24]. It formalises the denotational and operational
semantics of a simple while-language, then proves the two equivalent. It
contains several datatype and inductive definitions, and demonstrates their
use.

The directory ZF/ex contains further developments in ZF set theory.
Here is an overview; see the files themselves for more details. I describe
much of this material in other publications [15, 17, 20].

• File misc.ML contains miscellaneous examples such as Cantor’s Theo-
rem, the Schröder-Bernstein Theorem and the ‘Composition of homo-
morphisms’ challenge [3].

• Theory Ramsey proves the finite exponent 2 version of Ramsey’s The-
orem, following Basin and Kaufmann’s presentation [2].

• Theory Integ develops a theory of the integers as equivalence classes
of pairs of natural numbers.

• Theory Primrec develops some computation theory. It inductively
defines the set of primitive recursive functions and presents a proof
that Ackermann’s function is not primitive recursive.

• Theory Primes defines the Greatest Common Divisor of two natural
numbers and and the “divides” relation.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 64

• Theory Bin defines a datatype for two’s complement binary integers,
then proves rewrite rules to perform binary arithmetic. For instance,
1359×−2468 = −3354012 takes 0.3 seconds.

• Theory BT defines the recursive data structure bt(A), labelled binary
trees.

• Theory Term defines a recursive data structure for terms and term lists.
These are simply finite branching trees.

• Theory TF defines primitives for solving mutually recursive equations
over sets. It constructs sets of trees and forests as an example, includ-
ing induction and recursion rules that handle the mutual recursion.

• Theory Prop proves soundness and completeness of propositional
logic [17]. This illustrates datatype definitions, inductive definitions,
structural induction and rule induction.

• Theory ListN inductively defines the lists of n elements [13].

• Theory Acc inductively defines the accessible part of a relation [13].

• Theory Comb defines the datatype of combinators and inductively de-
fines contraction and parallel contraction. It goes on to prove the
Church-Rosser Theorem. This case study follows Camilleri and Mel-
ham [4].

• Theory LList defines lazy lists and a coinduction principle for proving
equations between them.

3.13 A proof about powersets

To demonstrate high-level reasoning about subsets, let us prove the equa-
tion Pow(A) ∩ Pow(B) = Pow(A ∩ B). Compared with first-order logic, set
theory involves a maze of rules, and theorems have many different proofs.
Attempting other proofs of the theorem might be instructive. This proof
exploits the lattice properties of intersection. It also uses the monotonicity
of the powerset operation, from ZF/mono.ML :

Pow_mono: A ⊆B ==> Pow(A) ⊆Pow(B)

We enter the goal and make the first step, which breaks the equation into
two inclusions by extensionality:

lemma "Pow(A Int B) = Pow(A) Int Pow(B)"

1. Pow(A ∩ B) = Pow(A) ∩ Pow(B)

apply (rule equalityI)

1. Pow(A ∩ B) ⊆ Pow(A) ∩ Pow(B)

2. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 65

Both inclusions could be tackled straightforwardly using subsetI. A shorter
proof results from noting that intersection forms the greatest lower bound:

apply (rule Int greatest)

1. Pow(A ∩ B) ⊆ Pow(A)

2. Pow(A ∩ B) ⊆ Pow(B)

3. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

Subgoal 1 follows by applying the monotonicity of Pow to A ∩ B ⊆ A; sub-
goal 2 follows similarly:

apply (rule Int lower1 [THEN Pow mono])

1. Pow(A ∩ B) ⊆ Pow(B)

2. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

apply (rule Int lower2 [THEN Pow mono])

1. Pow(A) ∩ Pow(B) ⊆ Pow(A ∩ B)

We are left with the opposite inclusion, which we tackle in the straightfor-
ward way:

apply (rule subsetI)

1.
∧
x. x ∈ Pow(A) ∩ Pow(B) =⇒ x ∈ Pow(A ∩ B)

The subgoal is to show x ∈ Pow(A ∩ B) assuming x ∈ Pow(A) ∩ Pow(B);
eliminating this assumption produces two subgoals. The rule IntE treats
the intersection like a conjunction instead of unfolding its definition.

apply (erule IntE)

1.
∧
x. [[x ∈ Pow(A); x ∈ Pow(B)]] =⇒ x ∈ Pow(A ∩ B)

The next step replaces the Pow by the subset relation (⊆).

apply (rule PowI)

1.
∧
x. [[x ∈ Pow(A); x ∈ Pow(B)]] =⇒ x ⊆ A ∩ B

We perform the same replacement in the assumptions. This is a good demon-
stration of the tactic drule:

apply (drule PowD)+

1.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ A ∩ B

The assumptions are that x is a lower bound of both A and B , but A ∩ B
is the greatest lower bound:

apply (rule Int greatest)

1.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ A

2.
∧
x. [[x ⊆ A; x ⊆ B]] =⇒ x ⊆ B

To conclude the proof, we clear up the trivial subgoals:

apply (assumption+)

done

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 66

We could have performed this proof instantly by calling blast:

lemma "Pow(A Int B) = Pow(A) Int Pow(B)"

by

Past researchers regarded this as a difficult proof, as indeed it is if all the
symbols are replaced by their definitions.

3.14 Monotonicity of the union operator

For another example, we prove that general union is monotonic: C ⊆ D
implies

⋃
(C) ⊆

⋃
(D). To begin, we tackle the inclusion using subsetI :

lemma "C⊆D ==> Union(C) ⊆ Union(D)"

apply (rule subsetI)

1.
∧
x. [[C ⊆ D; x ∈

⋃
C]] =⇒ x ∈

⋃
D

Big union is like an existential quantifier — the occurrence in the assump-
tions must be eliminated early, since it creates parameters.

apply (erule UnionE)

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈

⋃
D

Now we may apply UnionI , which creates an unknown involving the param-
eters. To show x ∈

⋃
D it suffices to show that x belongs to some element,

say ?B2(x,B), of D .

apply (rule UnionI)

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ ?B2(x, B) ∈ D

2.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ ?B2(x, B)

Combining the rule subsetD with the assumption C ⊆ D yields ?a ∈ C =⇒
?a ∈ D , which reduces subgoal 1. Note that erule removes the subset
assumption.

apply (erule subsetD)

1.
∧
x B. [[x ∈ B; B ∈ C]] =⇒ ?B2(x, B) ∈ C

2.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ ?B2(x, B)

The rest is routine. Observe how the first call to assumption instantiates
?B2(x,B) to B .

apply assumption

1.
∧
x B. [[C ⊆ D; x ∈ B; B ∈ C]] =⇒ x ∈ B

apply assumption

No subgoals!

done

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 67

Again, blast can prove this theorem in one step.
The theory ZF/equalities.thy has many similar proofs. Reasoning

about general intersection can be difficult because of its anomalous be-
haviour on the empty set. However, blast copes well with these. Here
is a typical example, borrowed from Devlin [6, page 12]:

a ∈ C =⇒
⋂

x∈C

(
A(x) ∩ B(x)

)
=

(⋂
x∈C

A(x)
)
∩

(⋂
x∈C

B(x)
)

3.15 Low-level reasoning about functions

The derived rules lamI, lamE, lam_type, beta and eta support reasoning
about functions in a λ-calculus style. This is generally easier than regarding
functions as sets of ordered pairs. But sometimes we must look at the
underlying representation, as in the following proof of fun_disjoint_apply1 .
This states that if f and g are functions with disjoint domains A and C ,
and if a ∈ A, then (f ∪ g)‘a = f ‘a:

lemma "[| a ∈ A; f ∈ A->B; g ∈ C->D; A ∩ C = 0 |]

==> (f ∪ g)‘a = f‘a"

Using apply_equality , we reduce the equality to reasoning about ordered
pairs. The second subgoal is to verify that f ∪ g is a function, since
Pi(?A,?B) denotes a dependent function space.

apply (rule apply equality)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ 〈a, f ‘ a〉 ∈ f ∪ g

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

We must show that the pair belongs to f or g ; by UnI1 we choose f :

apply (rule UnI1)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ 〈a, f ‘ a〉 ∈ f

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

To show 〈a, f ‘a〉 ∈ f we use apply_Pair , which is essentially the converse of
apply_equality :

apply (rule apply Pair)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ f ∈ Pi(?A2,?B2)

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ a ∈ ?A2

3. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

Using the assumptions f ∈ A → B and a ∈ A, we solve the two subgoals
from apply_Pair . Recall that a Π-set is merely a generalized function space,
and observe that ?A2 gets instantiated to A.

CHAPTER 3. ZERMELO-FRAENKEL SET THEORY 68

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ a ∈ A

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]]
=⇒ f ∪ g ∈ Pi(?A, ?B)

To construct functions of the form f ∪ g , we apply fun_disjoint_Un :

apply (rule fun disjoint Un)

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ f ∈ ?A3 → ?B3

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ g ∈ ?C3 → ?D3

3. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ ?A3 ∩ ?C3 = 0

The remaining subgoals are instances of the assumptions. Again, observe
how unknowns become instantiated:

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ g ∈ ?C3 → ?D3

2. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ A ∩ ?C3 = 0

apply assumption

1. [[a ∈ A; f ∈ A → B; g ∈ C → D; A ∩ C = 0]] =⇒ A ∩ C = 0

apply assumption

No subgoals!

done

See the theories ZF/func.thy and ZF/WF.thy for more examples of reasoning
about functions.

Bibliography

[1] J. R. Abrial and G. Laffitte. Towards the mechanization of the proofs
of some classical theorems of set theory. preprint, February 1993.

[2] David Basin and Matt Kaufmann. The Boyer-Moore prover and Nuprl:
An experimental comparison. In Gérard Huet and Gordon Plotkin,
editors, Logical Frameworks, pages 89–119. Cambridge University Press,
1991.

[3] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark
Stickel, and Lawrence Wos. Set theory in first-order logic: Clauses for
Gödel’s axioms. Journal of Automated Reasoning, 2(3):287–327, 1986.

[4] J. Camilleri and T. F. Melham. Reasoning with inductively defined
relations in the HOL theorem prover. Technical Report 265, Computer
Laboratory, University of Cambridge, August 1992.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[6] Keith J. Devlin. Fundamentals of Contemporary Set Theory. Springer,
1979.

[7] Michael Dummett. Elements of Intuitionism. Oxford University Press,
1977.

[8] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

[9] Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[10] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs.
North-Holland, 1980.

[11] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isa-
belle/HOL: A Proof Assistant for Higher-Order Logic, volume 2283 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

69

BIBLIOGRAPHY 70

[12] Philippe Noël. Experimenting with Isabelle in ZF set theory. Journal
of Automated Reasoning, 10(1):15–58, 1993.

[13] Christine Paulin-Mohring. Inductive definitions in the system Coq:
Rules and properties. In M. Bezem and J.F. Groote, editors, Typed
Lambda Calculi and Applications, LNCS 664, pages 328–345. Springer,
1993.

[14] Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

[15] Lawrence C. Paulson. Set theory for verification: I. From foundations
to functions. Journal of Automated Reasoning, 11(3):353–389, 1993.

[16] Lawrence C. Paulson. A fixedpoint approach to implementing
(co)inductive definitions. In Alan Bundy, editor, Automated Deduc-
tion — CADE-12 International Conference, LNAI 814, pages 148–161.
Springer, 1994.

[17] Lawrence C. Paulson. Set theory for verification: II. Induction and
recursion. Journal of Automated Reasoning, 15(2):167–215, 1995.

[18] Lawrence C. Paulson. Generic automatic proof tools. In Robert Veroff,
editor, Automated Reasoning and its Applications: Essays in Honor of
Larry Wos, chapter 3. MIT Press, 1997.

[19] Lawrence C. Paulson. Final coalgebras as greatest fixed points in ZF
set theory. Mathematical Structures in Computer Science, 9(5):545–567,
1999.

[20] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and
(co)datatype definitions. In Gordon Plotkin, Colin Stirling, and Mads
Tofte, editors, Proof, Language, and Interaction: Essays in Honor of
Robin Milner, pages 187–211. MIT Press, 2000.

[21] Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set
theory. Journal of Automated Reasoning, 8(1):91–147, 1992.

[22] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

[23] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1962. Paperback edition to *56, abridged from the
2nd edition (1927).

[24] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

Index

#* symbol, 46
#+ symbol, 46
#- symbol, 46
$* symbol, 47
$+ symbol, 47
$- symbol, 47
& symbol, 5
* symbol, 22
+ symbol, 38
- symbol, 21
--> symbol, 5
-> symbol, 22
-‘‘ symbol, 21
: symbol, 21
<-> symbol, 5
<= symbol, 21
= symbol, 5
‘ symbol, 21
‘‘ symbol, 21
| symbol, 5

0 (constant), 21

add_0_natify (theorem), 46
add_mult_dist (theorem), 46
add_succ (theorem), 46
ALL (symbol), 5, 22
All (constant), 5
all_dupE (theorem), 4, 7
all_impE (theorem), 7
allE (theorem), 4, 7
allI (theorem), 6
and_def (theorem), 38
apply_def (theorem), 26
apply_equality (theorem), 35, 36, 67
apply_equality2 (theorem), 35

apply_iff (theorem), 35
apply_Pair (theorem), 35, 67
apply_type (theorem), 35
Arith (theory), 45
arithmetic, 45–48
assumptions

contradictory, 13
auto (method), 18

Ball (constant), 21, 24
ball_cong (theorem), 28, 29
Ball_def (theorem), 25
ballE (theorem), 28, 29
ballI (theorem), 28
beta (theorem), 35, 36
Bex (constant), 21, 24
bex_cong (theorem), 28, 29
Bex_def (theorem), 25
bexCI (theorem), 28
bexE (theorem), 28
bexI (theorem), 28
bij (constant), 43
bij_converse_bij (theorem), 43
bij_def (theorem), 43
bij_disjoint_Un (theorem), 43
blast (method), 13, 15
blast, 66
blast_tac, 17
bnd_mono_def (theorem), 40
Bool (theory), 36
bool_0I (theorem), 38
bool_1I (theorem), 38
bool_def (theorem), 38
boolE (theorem), 38
bspec (theorem), 28

case (constant), 38

71

INDEX 72

case_def (theorem), 38
case_Inl (theorem), 38
case_Inr (theorem), 38
case_tac (method), 52
cases (method), 52
coinduct (theorem), 40
coinductive, 57–61
Collect (constant), 21, 22, 27
Collect_def (theorem), 25
Collect_subset (theorem), 32
CollectD1 (theorem), 29, 30
CollectD2 (theorem), 29, 30
CollectE (theorem), 29, 30
CollectI (theorem), 30
comp_assoc (theorem), 43
comp_bij (theorem), 43
comp_def (theorem), 43
comp_func (theorem), 43
comp_func_apply (theorem), 43
comp_inj (theorem), 43
comp_surj (theorem), 43
comp_type (theorem), 43
cond_0 (theorem), 38
cond_1 (theorem), 38
cond_def (theorem), 38
congruence rules, 29
conj_cong (rule), 4
conj_impE (theorem), 4, 7
conjE (theorem), 7
conjI (theorem), 6
conjunct1 (theorem), 6
conjunct2 (theorem), 6
cons (constant), 20, 21
cons_def (theorem), 26
Cons_iff (theorem), 42
consCI (theorem), 31
consE (theorem), 31
ConsI (theorem), 42
consI1 (theorem), 31
consI2 (theorem), 31
converse (constant), 21, 34
converse_def (theorem), 26

datatype, 48

datatype, 48–55
Diff_cancel (theorem), 37
Diff_contains (theorem), 32
Diff_def (theorem), 25
Diff_disjoint (theorem), 37
Diff_Int (theorem), 37
Diff_partition (theorem), 37
Diff_subset (theorem), 32
Diff_Un (theorem), 37
DiffD1 (theorem), 31
DiffD2 (theorem), 31
DiffE (theorem), 31
DiffI (theorem), 31
disj_impE (theorem), 4, 7, 12
disjCI (theorem), 9
disjE (theorem), 6
disjI1 (theorem), 6
disjI2 (theorem), 6
div symbol, 46
domain (constant), 21, 34
domain_def (theorem), 26
domain_of_fun (theorem), 35
domain_subset (theorem), 34
domain_type (theorem), 35
domainE (theorem), 34
domainI (theorem), 34
double_complement (theorem), 37
drule, 65

empty_subsetI (theorem), 28
emptyE (theorem), 28
eq_mp_tac, 8
equalityD1 (theorem), 28
equalityD2 (theorem), 28
equalityE (theorem), 28
equalityI (theorem), 28
equalityI theorem, 64
equals0D (theorem), 28
equals0I (theorem), 28
erule, 13
eta (theorem), 35, 36
EX (symbol), 5, 22
Ex (constant), 5
EX! symbol, 5

INDEX 73

Ex1 (constant), 5
ex1_def (theorem), 6
ex1E (theorem), 7
ex1I (theorem), 7
ex_impE (theorem), 7
exCI (theorem), 9, 13
excluded_middle (theorem), 9
exE (theorem), 6
exI (theorem), 6
extension (theorem), 25

False (constant), 5
FalseE (theorem), 6
field (constant), 21
field_def (theorem), 26
field_subset (theorem), 34
fieldCI (theorem), 34
fieldE (theorem), 34
fieldI1 (theorem), 34
fieldI2 (theorem), 34
Fin.consI (theorem), 41
Fin.emptyI (theorem), 41
Fin_induct (theorem), 41
Fin_mono (theorem), 41
Fin_subset (theorem), 41
Fin_UnI (theorem), 41
Fin_UnionI (theorem), 41
first-order logic, 3–18
Fixedpt (theory), 39
flat (constant), 42
FOL (theory), 3, 9
foundation (theorem), 25
fst (constant), 21, 27
fst_conv (theorem), 33
fst_def (theorem), 26
fun_disjoint_apply1 (theorem), 36,

67
fun_disjoint_apply2 (theorem), 36
fun_disjoint_Un (theorem), 36, 68
fun_empty (theorem), 36
fun_extension (theorem), 35, 36
fun_is_rel (theorem), 35
fun_single (theorem), 36
function applications, 21

gfp_def (theorem), 40
gfp_least (theorem), 40
gfp_mono (theorem), 40
gfp_subset (theorem), 40
gfp_Tarski (theorem), 40
gfp_upperbound (theorem), 40

i (type), 20
id (constant), 43
id_def (theorem), 43
if (constant), 21
if_def (theorem), 14, 25
if_not_P (theorem), 31
if_P (theorem), 31
ifE (theorem), 16
iff_def (theorem), 6
iff_impE (theorem), 7
iffCE (theorem), 9
iffD1 (theorem), 7
iffD2 (theorem), 7
iffE (theorem), 7
iffI (theorem), 7, 16
ifI (theorem), 16
IFOL (theory), 3
image_def (theorem), 26
imageE (theorem), 34
imageI (theorem), 34
imp_impE (theorem), 7, 12
impCE (theorem), 9
impE (theorem), 7, 8
impI (theorem), 6
in symbol, 23
induct (method), 52
induct (theorem), 40
Induct/Term (theory), 49
induct_tac (method), 52
inductive, 57–61
Inf (constant), 21, 27
infinity (theorem), 26
inj (constant), 43
inj_converse_inj (theorem), 43
inj_def (theorem), 43
Inl (constant), 38
Inl_def (theorem), 38

INDEX 74

Inl_inject (theorem), 38
Inl_neq_Inr (theorem), 38
InlI (theorem), 38
Inr (constant), 38
Inr_def (theorem), 38
Inr_inject (theorem), 38
InrI (theorem), 38
INT (symbol), 22
INT symbol, 24
Int (symbol), 21
Int (theory), 47
int (constant), 47
Int_absorb (theorem), 37
Int_assoc (theorem), 37
Int_commute (theorem), 37
Int_def (theorem), 25
INT_E (theorem), 30
Int_greatest (theorem), 32
Int_greatest theorem, 65
INT_I (theorem), 30
Int_lower1 (theorem), 32
Int_lower1 theorem, 65
Int_lower2 (theorem), 32
Int_lower2 theorem, 65
Int_Un_distrib (theorem), 37
Int_Union_RepFun (theorem), 37
IntD1 (theorem), 31
IntD2 (theorem), 31
IntE (theorem), 31, 65
integers, 47
Inter (constant), 21
Inter_def (theorem), 25
Inter_greatest (theorem), 32
Inter_lower (theorem), 32
Inter_Un_distrib (theorem), 37
InterD (theorem), 30
InterE (theorem), 30
InterI (theorem), 29, 30
IntI (theorem), 31
intify (constant), 47
IntPr.best_tac, 9
IntPr.fast_tac, 9, 11
IntPr.inst_step_tac, 8
IntPr.safe_step_tac, 8

IntPr.safe_tac, 8
IntPr.step_tac, 8

lam (symbol), 22
lam symbol, 24
lam_def (theorem), 26
lam_type (theorem), 35
Lambda (constant), 21, 24
λ-abstractions, 22
lamE (theorem), 35, 36
lamI (theorem), 35, 36
left_comp_id (theorem), 43
left_comp_inverse (theorem), 43
left_inverse (theorem), 43
length (constant), 42
Let (constant), 20, 21
let symbol, 23
Let_def (theorem), 20, 25
lfp_def (theorem), 40
lfp_greatest (theorem), 40
lfp_lowerbound (theorem), 40
lfp_mono (theorem), 40
lfp_subset (theorem), 40
lfp_Tarski (theorem), 40
list (constant), 42
List.induct (theorem), 42
list_case (constant), 42
list_mono (theorem), 42
logic (class), 3

map (constant), 42
map_app_distrib (theorem), 42
map_compose (theorem), 42
map_flat (theorem), 42
map_ident (theorem), 42
map_type (theorem), 42
mem_asym (theorem), 31, 32
mem_irrefl (theorem), 31
mod symbol, 46
mod_div_equality (theorem), 46
mp (theorem), 6
mp_tac, 8
mult_0 (theorem), 46
mult_assoc (theorem), 46

INDEX 75

mult_commute (theorem), 46
mult_succ (theorem), 46
mult_type (theorem), 46

Nat (theory), 45
nat (constant), 46
nat_0I (theorem), 46
nat_case (constant), 46
nat_case_0 (theorem), 46
nat_case_def (theorem), 46
nat_case_succ (theorem), 46
nat_def (theorem), 46
nat_induct (theorem), 46
nat_succI (theorem), 46
natify (constant), 45, 47
natural numbers, 45
Nil_Cons_iff (theorem), 42
NilI (theorem), 42
Not (constant), 5
not_def (theorem), 6, 38
not_impE (theorem), 7
notE (theorem), 7, 8
notI (theorem), 7
notnotD (theorem), 9

O (symbol), 43
o (type), 3, 20
or_def (theorem), 38

Pair (constant), 21, 22
Pair_def (theorem), 26
Pair_inject (theorem), 33
Pair_inject1 (theorem), 33
Pair_inject2 (theorem), 33
Pair_neq_0 (theorem), 33
pairing (theorem), 30
Perm (theory), 41
Pi (constant), 21, 24, 36
Pi_def (theorem), 26
Pi_type (theorem), 35, 36
Pow (constant), 21
Pow_iff (theorem), 25
Pow_mono (theorem), 64
PowD (theorem), 28
PowD theorem, 65

PowI (theorem), 28
PowI theorem, 65
primrec, 55
primrec, 55–57
PrimReplace (constant), 21, 27
priorities, 1
PROD (symbol), 22
PROD symbol, 24

qcase_def (theorem), 39
qconverse (constant), 39
qconverse_def (theorem), 39
qfsplit_def (theorem), 39
QInl_def (theorem), 39
QInr_def (theorem), 39
QPair (theory), 39
QPair_def (theorem), 39
QSigma (constant), 39
QSigma_def (theorem), 39
qsplit (constant), 39
qsplit_def (theorem), 39
qsum_def (theorem), 39
QUniv (theory), 44

range (constant), 21
range_def (theorem), 26
range_of_fun (theorem), 35, 36
range_subset (theorem), 34
range_type (theorem), 35
rangeE (theorem), 34
rangeI (theorem), 34
rank (constant), 62
recursion

primitive, 55–57
recursive functions, see recursion
refl (theorem), 6
RepFun (constant), 21, 24, 27, 29
RepFun_def (theorem), 25
RepFunE (theorem), 30
RepFunI (theorem), 30
Replace (constant), 21, 22, 27, 29
Replace_def (theorem), 25
ReplaceE (theorem), 30
ReplaceI (theorem), 30

INDEX 76

replacement (theorem), 25
restrict (constant), 21, 27
restrict (theorem), 35
restrict_bij (theorem), 43
restrict_def (theorem), 26
restrict_type (theorem), 35
rev (constant), 42
right_comp_id (theorem), 43
right_comp_inverse (theorem), 43
right_inverse (theorem), 43

separation (theorem), 30
set theory, 19–68
Sigma (constant), 21, 24, 27, 33
Sigma_def (theorem), 26
SigmaE (theorem), 33
SigmaE2 (theorem), 33
SigmaI (theorem), 33
simplification

of conjunctions, 4
singletonE (theorem), 31
singletonI (theorem), 31
snd (constant), 21, 27
snd_conv (theorem), 33
snd_def (theorem), 26
spec (theorem), 6
split (constant), 21, 27
split (theorem), 33
split_def (theorem), 26
ssubst (theorem), 7
subset_def (theorem), 25
subset_refl (theorem), 28
subset_trans (theorem), 28
subsetCE (theorem), 28
subsetD (theorem), 28, 66
subsetI (theorem), 28, 66
subsetI theorem, 65
subst (theorem), 6
succ (constant), 21, 27
succ_def (theorem), 26
succ_inject (theorem), 31
succ_neq_0 (theorem), 31
succCI (theorem), 31
succE (theorem), 31

succI1 (theorem), 31
succI2 (theorem), 31
SUM (symbol), 22
SUM symbol, 24
Sum (theory), 39
sum_def (theorem), 38
sum_iff (theorem), 38
SUM_Int_distrib1 (theorem), 37
SUM_Int_distrib2 (theorem), 37
SUM_Un_distrib1 (theorem), 37
SUM_Un_distrib2 (theorem), 37
surj (constant), 43
surj_def (theorem), 43
swap (theorem), 9
sym (theorem), 7

term (class), 3, 20
THE (symbol), 22, 32
THE symbol, 24
The (constant), 21, 24, 27
the_def (theorem), 25
the_equality (theorem), 31, 32
theI (theorem), 31, 32
trace_induct, 59
trans (theorem), 7
True (constant), 5
True_def (theorem), 6
TrueI (theorem), 7
Trueprop (constant), 5
type-checking tactics, 44
typecheck, 45

UN (symbol), 22
UN symbol, 24
Un (symbol), 21
Un_absorb (theorem), 37
Un_assoc (theorem), 37
Un_commute (theorem), 37
Un_def (theorem), 25
UN_E (theorem), 30
UN_I (theorem), 30
Un_Int_distrib (theorem), 37
Un_Inter_RepFun (theorem), 37
Un_least (theorem), 32

INDEX 77

Un_upper1 (theorem), 32
Un_upper2 (theorem), 32
UnCI (theorem), 29, 31
UnE (theorem), 31
UnI1 (theorem), 29, 31, 67
UnI2 (theorem), 29, 31
Union (constant), 21
Union_iff (theorem), 25
Union_least (theorem), 32
Union_Un_distrib (theorem), 37
Union_upper (theorem), 32
UnionE (theorem), 30
UnionE theorem, 66
UnionI (theorem), 30, 66
Univ (theory), 41
Upair (constant), 20, 21, 27
Upair_def (theorem), 25
UpairE (theorem), 30
UpairI1 (theorem), 30
UpairI2 (theorem), 30

vimage_def (theorem), 26
vimageE (theorem), 34
vimageI (theorem), 34

xor_def (theorem), 38

zadd_0_intify (theorem), 47
zadd_zmult_dist (theorem), 47
ZF (theory), 19
zmult_0 (theorem), 47
zmult_assoc (theorem), 47
zmult_commute (theorem), 47
zmult_type (theorem), 47

	Syntax definitions
	First-Order Logic
	Syntax and rules of inference
	Generic packages
	Intuitionistic proof procedures
	Classical proof procedures
	An intuitionistic example
	An example of intuitionistic negation
	A classical example
	Derived rules and the classical tactics
	Deriving the introduction rule
	Deriving the elimination rule
	Using the derived rules
	Derived rules versus definitions

	Zermelo-Fraenkel Set Theory
	Which version of axiomatic set theory?
	The syntax of set theory
	Binding operators
	The Zermelo-Fraenkel axioms
	From basic lemmas to function spaces
	Fundamental lemmas
	Unordered pairs and finite sets
	Subset and lattice properties
	Ordered pairs
	Relations
	Functions

	Further developments
	Disjoint unions
	Non-standard ordered pairs
	Least and greatest fixedpoints
	Finite sets and lists
	Miscellaneous

	Automatic Tools
	Simplification and Classical Reasoning
	Type-Checking Tactics

	Natural number and integer arithmetic
	Datatype definitions
	Basics
	Defining datatypes
	Examples
	Recursive function definitions

	Inductive and coinductive definitions
	The syntax of a (co)inductive definition
	Example of an inductive definition
	Further examples
	Theorems generated

	The outer reaches of set theory
	The examples directories
	A proof about powersets
	Monotonicity of the union operator
	Low-level reasoning about functions

