(* Title: HOL/Tools/Qelim/cooper.ML Author: Amine Chaieb, TU Muenchen *) signature COOPER = sig val cooper_conv : Proof.context -> conv exception COOPER of string * exn end; structure Cooper: COOPER = struct open Conv; open Normalizer; exception COOPER of string * exn; fun simp_thms_conv ctxt = Simplifier.rewrite (Simplifier.context ctxt HOL_basic_ss addsimps simp_thms); val FWD = Drule.implies_elim_list; val true_tm = @{cterm "True"}; val false_tm = @{cterm "False"}; val zdvd1_eq = @{thm "zdvd1_eq"}; val presburger_ss = @{simpset} addsimps [zdvd1_eq]; val lin_ss = presburger_ss addsimps (@{thm dvd_eq_mod_eq_0} :: zdvd1_eq :: @{thms zadd_ac}); val iT = HOLogic.intT val bT = HOLogic.boolT; val dest_numeral = HOLogic.dest_number #> snd; val [miconj, midisj, mieq, mineq, milt, mile, migt, mige, midvd, mindvd, miP] = map(instantiate' [SOME @{ctyp "int"}] []) @{thms "minf"}; val [infDconj, infDdisj, infDdvd,infDndvd,infDP] = map(instantiate' [SOME @{ctyp "int"}] []) @{thms "inf_period"}; val [piconj, pidisj, pieq,pineq,pilt,pile,pigt,pige,pidvd,pindvd,piP] = map (instantiate' [SOME @{ctyp "int"}] []) @{thms "pinf"}; val [miP, piP] = map (instantiate' [SOME @{ctyp "bool"}] []) [miP, piP]; val infDP = instantiate' (map SOME [@{ctyp "int"}, @{ctyp "bool"}]) [] infDP; val [[asetconj, asetdisj, aseteq, asetneq, asetlt, asetle, asetgt, asetge, asetdvd, asetndvd,asetP], [bsetconj, bsetdisj, bseteq, bsetneq, bsetlt, bsetle, bsetgt, bsetge, bsetdvd, bsetndvd,bsetP]] = [@{thms "aset"}, @{thms "bset"}]; val [miex, cpmi, piex, cppi] = [@{thm "minusinfinity"}, @{thm "cpmi"}, @{thm "plusinfinity"}, @{thm "cppi"}]; val unity_coeff_ex = instantiate' [SOME @{ctyp "int"}] [] @{thm "unity_coeff_ex"}; val [zdvd_mono,simp_from_to,all_not_ex] = [@{thm "zdvd_mono"}, @{thm "simp_from_to"}, @{thm "all_not_ex"}]; val [dvd_uminus, dvd_uminus'] = @{thms "uminus_dvd_conv"}; val eval_ss = presburger_ss addsimps [simp_from_to] delsimps [insert_iff,bex_triv]; val eval_conv = Simplifier.rewrite eval_ss; (* recognising cterm without moving to terms *) datatype fm = And of cterm*cterm| Or of cterm*cterm| Eq of cterm | NEq of cterm | Lt of cterm | Le of cterm | Gt of cterm | Ge of cterm | Dvd of cterm*cterm | NDvd of cterm*cterm | Nox fun whatis x ct = ( case (term_of ct) of Const("op &",_)$_$_ => And (Thm.dest_binop ct) | Const ("op |",_)$_$_ => Or (Thm.dest_binop ct) | Const ("op =",ty)$y$_ => if term_of x aconv y then Eq (Thm.dest_arg ct) else Nox | Const (@{const_name Not},_) $ (Const ("op =",_)$y$_) => if term_of x aconv y then NEq (funpow 2 Thm.dest_arg ct) else Nox | Const (@{const_name HOL.less}, _) $ y$ z => if term_of x aconv y then Lt (Thm.dest_arg ct) else if term_of x aconv z then Gt (Thm.dest_arg1 ct) else Nox | Const (@{const_name HOL.less_eq}, _) $ y $ z => if term_of x aconv y then Le (Thm.dest_arg ct) else if term_of x aconv z then Ge (Thm.dest_arg1 ct) else Nox | Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$y$_) => if term_of x aconv y then Dvd (Thm.dest_binop ct ||> Thm.dest_arg) else Nox | Const (@{const_name Not},_) $ (Const (@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$y$_)) => if term_of x aconv y then NDvd (Thm.dest_binop (Thm.dest_arg ct) ||> Thm.dest_arg) else Nox | _ => Nox) handle CTERM _ => Nox; fun get_pmi_term t = let val (x,eq) = (Thm.dest_abs NONE o Thm.dest_arg o snd o Thm.dest_abs NONE o Thm.dest_arg) (Thm.dest_arg t) in (Thm.cabs x o Thm.dest_arg o Thm.dest_arg) eq end; val get_pmi = get_pmi_term o cprop_of; val p_v' = @{cpat "?P' :: int => bool"}; val q_v' = @{cpat "?Q' :: int => bool"}; val p_v = @{cpat "?P:: int => bool"}; val q_v = @{cpat "?Q:: int => bool"}; fun myfwd (th1, th2, th3) p q [(th_1,th_2,th_3), (th_1',th_2',th_3')] = let val (mp', mq') = (get_pmi th_1, get_pmi th_1') val mi_th = FWD (instantiate ([],[(p_v,p),(q_v,q), (p_v',mp'),(q_v',mq')]) th1) [th_1, th_1'] val infD_th = FWD (instantiate ([],[(p_v,mp'), (q_v, mq')]) th3) [th_3,th_3'] val set_th = FWD (instantiate ([],[(p_v,p), (q_v,q)]) th2) [th_2, th_2'] in (mi_th, set_th, infD_th) end; val inst' = fn cts => instantiate' [] (map SOME cts); val infDTrue = instantiate' [] [SOME true_tm] infDP; val infDFalse = instantiate' [] [SOME false_tm] infDP; val cadd = @{cterm "op + :: int => _"} val cmulC = @{cterm "op * :: int => _"} val cminus = @{cterm "op - :: int => _"} val cone = @{cterm "1 :: int"} val cneg = @{cterm "uminus :: int => _"} val [addC, mulC, subC, negC] = map term_of [cadd, cmulC, cminus, cneg] val [zero, one] = [@{term "0 :: int"}, @{term "1 :: int"}]; val is_numeral = can dest_numeral; fun numeral1 f n = HOLogic.mk_number iT (f (dest_numeral n)); fun numeral2 f m n = HOLogic.mk_number iT (f (dest_numeral m) (dest_numeral n)); val [minus1,plus1] = map (fn c => fn t => Thm.capply (Thm.capply c t) cone) [cminus,cadd]; fun decomp_pinf x dvd inS [aseteq, asetneq, asetlt, asetle, asetgt, asetge,asetdvd,asetndvd,asetP, infDdvd, infDndvd, asetconj, asetdisj, infDconj, infDdisj] cp = case (whatis x cp) of And (p,q) => ([p,q], myfwd (piconj, asetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q)) | Or (p,q) => ([p,q], myfwd (pidisj, asetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q)) | Eq t => ([], K (inst' [t] pieq, FWD (inst' [t] aseteq) [inS (plus1 t)], infDFalse)) | NEq t => ([], K (inst' [t] pineq, FWD (inst' [t] asetneq) [inS t], infDTrue)) | Lt t => ([], K (inst' [t] pilt, FWD (inst' [t] asetlt) [inS t], infDFalse)) | Le t => ([], K (inst' [t] pile, FWD (inst' [t] asetle) [inS (plus1 t)], infDFalse)) | Gt t => ([], K (inst' [t] pigt, (inst' [t] asetgt), infDTrue)) | Ge t => ([], K (inst' [t] pige, (inst' [t] asetge), infDTrue)) | Dvd (d,s) => ([],let val dd = dvd d in K (inst' [d,s] pidvd, FWD (inst' [d,s] asetdvd) [dd],FWD (inst' [d,s] infDdvd) [dd]) end) | NDvd(d,s) => ([],let val dd = dvd d in K (inst' [d,s] pindvd, FWD (inst' [d,s] asetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) | _ => ([], K (inst' [cp] piP, inst' [cp] asetP, inst' [cp] infDP)); fun decomp_minf x dvd inS [bseteq,bsetneq,bsetlt, bsetle, bsetgt, bsetge,bsetdvd,bsetndvd,bsetP, infDdvd, infDndvd, bsetconj, bsetdisj, infDconj, infDdisj] cp = case (whatis x cp) of And (p,q) => ([p,q], myfwd (miconj, bsetconj, infDconj) (Thm.cabs x p) (Thm.cabs x q)) | Or (p,q) => ([p,q], myfwd (midisj, bsetdisj, infDdisj) (Thm.cabs x p) (Thm.cabs x q)) | Eq t => ([], K (inst' [t] mieq, FWD (inst' [t] bseteq) [inS (minus1 t)], infDFalse)) | NEq t => ([], K (inst' [t] mineq, FWD (inst' [t] bsetneq) [inS t], infDTrue)) | Lt t => ([], K (inst' [t] milt, (inst' [t] bsetlt), infDTrue)) | Le t => ([], K (inst' [t] mile, (inst' [t] bsetle), infDTrue)) | Gt t => ([], K (inst' [t] migt, FWD (inst' [t] bsetgt) [inS t], infDFalse)) | Ge t => ([], K (inst' [t] mige,FWD (inst' [t] bsetge) [inS (minus1 t)], infDFalse)) | Dvd (d,s) => ([],let val dd = dvd d in K (inst' [d,s] midvd, FWD (inst' [d,s] bsetdvd) [dd] , FWD (inst' [d,s] infDdvd) [dd]) end) | NDvd (d,s) => ([],let val dd = dvd d in K (inst' [d,s] mindvd, FWD (inst' [d,s] bsetndvd) [dd], FWD (inst' [d,s] infDndvd) [dd]) end) | _ => ([], K (inst' [cp] miP, inst' [cp] bsetP, inst' [cp] infDP)) (* Canonical linear form for terms, formulae etc.. *) fun provelin ctxt t = Goal.prove ctxt [] [] t (fn _ => EVERY [simp_tac lin_ss 1, TRY (Lin_Arith.tac ctxt 1)]); fun linear_cmul 0 tm = zero | linear_cmul n tm = case tm of Const (@{const_name HOL.plus}, _) $ a $ b => addC $ linear_cmul n a $ linear_cmul n b | Const (@{const_name HOL.times}, _) $ c $ x => mulC $ numeral1 (fn m => n * m) c $ x | Const (@{const_name HOL.minus}, _) $ a $ b => subC $ linear_cmul n a $ linear_cmul n b | (m as Const (@{const_name HOL.uminus}, _)) $ a => m $ linear_cmul n a | _ => numeral1 (fn m => n * m) tm; fun earlier [] x y = false | earlier (h::t) x y = if h aconv y then false else if h aconv x then true else earlier t x y; fun linear_add vars tm1 tm2 = case (tm1, tm2) of (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) => if x1 = x2 then let val c = numeral2 Integer.add c1 c2 in if c = zero then linear_add vars r1 r2 else addC$(mulC$c$x1)$(linear_add vars r1 r2) end else if earlier vars x1 x2 then addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2 else addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2 | (Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c1 $ x1) $ r1, _) => addC $ (mulC $ c1 $ x1) $ linear_add vars r1 tm2 | (_, Const (@{const_name HOL.plus}, _) $ (Const (@{const_name HOL.times}, _) $ c2 $ x2) $ r2) => addC $ (mulC $ c2 $ x2) $ linear_add vars tm1 r2 | (_, _) => numeral2 Integer.add tm1 tm2; fun linear_neg tm = linear_cmul ~1 tm; fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); fun lint vars tm = if is_numeral tm then tm else case tm of Const (@{const_name HOL.uminus}, _) $ t => linear_neg (lint vars t) | Const (@{const_name HOL.plus}, _) $ s $ t => linear_add vars (lint vars s) (lint vars t) | Const (@{const_name HOL.minus}, _) $ s $ t => linear_sub vars (lint vars s) (lint vars t) | Const (@{const_name HOL.times}, _) $ s $ t => let val s' = lint vars s val t' = lint vars t in if is_numeral s' then (linear_cmul (dest_numeral s') t') else if is_numeral t' then (linear_cmul (dest_numeral t') s') else raise COOPER ("Cooper Failed", TERM ("lint: not linear",[tm])) end | _ => addC $ (mulC $ one $ tm) $ zero; fun lin (vs as x::_) (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.less}, T) $ s $ t)) = lin vs (Const (@{const_name HOL.less_eq}, T) $ t $ s) | lin (vs as x::_) (Const (@{const_name Not},_) $ (Const(@{const_name HOL.less_eq}, T) $ s $ t)) = lin vs (Const (@{const_name HOL.less}, T) $ t $ s) | lin vs (Const (@{const_name Not},T)$t) = Const (@{const_name Not},T)$ (lin vs t) | lin (vs as x::_) (Const(@{const_name Ring_and_Field.dvd},_)$d$t) = HOLogic.mk_binrel @{const_name Ring_and_Field.dvd} (numeral1 abs d, lint vs t) | lin (vs as x::_) ((b as Const("op =",_))$s$t) = (case lint vs (subC$t$s) of (t as a$(m$c$y)$r) => if x <> y then b$zero$t else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(m$c$y)$(linear_neg r) | t => b$zero$t) | lin (vs as x::_) (b$s$t) = (case lint vs (subC$t$s) of (t as a$(m$c$y)$r) => if x <> y then b$zero$t else if dest_numeral c < 0 then b$(m$(numeral1 ~ c)$y)$r else b$(linear_neg r)$(m$c$y) | t => b$zero$t) | lin vs fm = fm; fun lint_conv ctxt vs ct = let val t = term_of ct in (provelin ctxt ((HOLogic.eq_const iT)$t$(lint vs t) |> HOLogic.mk_Trueprop)) RS eq_reflection end; fun is_intrel_type T = T = @{typ "int => int => bool"}; fun is_intrel (b$_$_) = is_intrel_type (fastype_of b) | is_intrel (@{term "Not"}$(b$_$_)) = is_intrel_type (fastype_of b) | is_intrel _ = false; fun linearize_conv ctxt vs ct = case term_of ct of Const(@{const_name Ring_and_Field.dvd},_)$d$t => let val th = binop_conv (lint_conv ctxt vs) ct val (d',t') = Thm.dest_binop (Thm.rhs_of th) val (dt',tt') = (term_of d', term_of t') in if is_numeral dt' andalso is_numeral tt' then Conv.fconv_rule (arg_conv (Simplifier.rewrite presburger_ss)) th else let val dth = ((if dest_numeral (term_of d') < 0 then Conv.fconv_rule (arg_conv (arg1_conv (lint_conv ctxt vs))) (Thm.transitive th (inst' [d',t'] dvd_uminus)) else th) handle TERM _ => th) val d'' = Thm.rhs_of dth |> Thm.dest_arg1 in case tt' of Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$_)$_ => let val x = dest_numeral c in if x < 0 then Conv.fconv_rule (arg_conv (arg_conv (lint_conv ctxt vs))) (Thm.transitive dth (inst' [d'',t'] dvd_uminus')) else dth end | _ => dth end end | Const (@{const_name Not},_)$(Const(@{const_name Ring_and_Field.dvd},_)$_$_) => arg_conv (linearize_conv ctxt vs) ct | t => if is_intrel t then (provelin ctxt ((HOLogic.eq_const bT)$t$(lin vs t) |> HOLogic.mk_Trueprop)) RS eq_reflection else reflexive ct; val dvdc = @{cterm "op dvd :: int => _"}; fun unify ctxt q = let val (e,(cx,p)) = q |> Thm.dest_comb ||> Thm.dest_abs NONE val x = term_of cx val ins = insert (op = : int * int -> bool) fun h (acc,dacc) t = case (term_of t) of Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => if x aconv y andalso member (op =) ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s then (ins (dest_numeral c) acc,dacc) else (acc,dacc) | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => if x aconv y andalso member (op =) [@{const_name HOL.less}, @{const_name HOL.less_eq}] s then (ins (dest_numeral c) acc, dacc) else (acc,dacc) | Const(@{const_name Ring_and_Field.dvd},_)$_$(Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_) => if x aconv y then (acc,ins (dest_numeral c) dacc) else (acc,dacc) | Const("op &",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t) | Const("op |",_)$_$_ => h (h (acc,dacc) (Thm.dest_arg1 t)) (Thm.dest_arg t) | Const (@{const_name Not},_)$_ => h (acc,dacc) (Thm.dest_arg t) | _ => (acc, dacc) val (cs,ds) = h ([],[]) p val l = Integer.lcms (union (op =) cs ds) fun cv k ct = let val (tm as b$s$t) = term_of ct in ((HOLogic.eq_const bT)$tm$(b$(linear_cmul k s)$(linear_cmul k t)) |> HOLogic.mk_Trueprop |> provelin ctxt) RS eq_reflection end fun nzprop x = let val th = Simplifier.rewrite lin_ss (Thm.capply @{cterm Trueprop} (Thm.capply @{cterm "Not"} (Thm.capply (Thm.capply @{cterm "op = :: int => _"} (Numeral.mk_cnumber @{ctyp "int"} x)) @{cterm "0::int"}))) in equal_elim (Thm.symmetric th) TrueI end; val notz = let val tab = fold Inttab.update (ds ~~ (map (fn x => nzprop (l div x)) ds)) Inttab.empty in fn ct => the (Inttab.lookup tab (ct |> term_of |> dest_numeral)) handle Option => (writeln ("noz: Theorems-Table contains no entry for " ^ Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option) end fun unit_conv t = case (term_of t) of Const("op &",_)$_$_ => binop_conv unit_conv t | Const("op |",_)$_$_ => binop_conv unit_conv t | Const (@{const_name Not},_)$_ => arg_conv unit_conv t | Const(s,_)$(Const(@{const_name HOL.times},_)$c$y)$ _ => if x=y andalso member (op =) ["op =", @{const_name HOL.less}, @{const_name HOL.less_eq}] s then cv (l div dest_numeral c) t else Thm.reflexive t | Const(s,_)$_$(Const(@{const_name HOL.times},_)$c$y) => if x=y andalso member (op =) [@{const_name HOL.less}, @{const_name HOL.less_eq}] s then cv (l div dest_numeral c) t else Thm.reflexive t | Const(@{const_name Ring_and_Field.dvd},_)$d$(r as (Const(@{const_name HOL.plus},_)$(Const(@{const_name HOL.times},_)$c$y)$_)) => if x=y then let val k = l div dest_numeral c val kt = HOLogic.mk_number iT k val th1 = inst' [Thm.dest_arg1 t, Thm.dest_arg t] ((Thm.dest_arg t |> funpow 2 Thm.dest_arg1 |> notz) RS zdvd_mono) val (d',t') = (mulC$kt$d, mulC$kt$r) val thc = (provelin ctxt ((HOLogic.eq_const iT)$d'$(lint [] d') |> HOLogic.mk_Trueprop)) RS eq_reflection val tht = (provelin ctxt ((HOLogic.eq_const iT)$t'$(linear_cmul k r) |> HOLogic.mk_Trueprop)) RS eq_reflection in Thm.transitive th1 (Thm.combination (Drule.arg_cong_rule dvdc thc) tht) end else Thm.reflexive t | _ => Thm.reflexive t val uth = unit_conv p val clt = Numeral.mk_cnumber @{ctyp "int"} l val ltx = Thm.capply (Thm.capply cmulC clt) cx val th = Drule.arg_cong_rule e (Thm.abstract_rule (fst (dest_Free x )) cx uth) val th' = inst' [Thm.cabs ltx (Thm.rhs_of uth), clt] unity_coeff_ex val thf = transitive th (transitive (symmetric (beta_conversion true (cprop_of th' |> Thm.dest_arg1))) th') val (lth,rth) = Thm.dest_comb (cprop_of thf) |>> Thm.dest_arg |>> Thm.beta_conversion true ||> beta_conversion true |>> Thm.symmetric in transitive (transitive lth thf) rth end; val emptyIS = @{cterm "{}::int set"}; val insert_tm = @{cterm "insert :: int => _"}; val mem_tm = Const("op :",[iT , HOLogic.mk_setT iT] ---> bT); fun mkISet cts = fold_rev (Thm.capply insert_tm #> Thm.capply) cts emptyIS; val cTrp = @{cterm "Trueprop"}; val eqelem_imp_imp = (thm"eqelem_imp_iff") RS iffD1; val [A_tm,B_tm] = map (fn th => cprop_of th |> funpow 2 Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_arg1 |> Thm.dest_arg |> Thm.dest_abs NONE |> snd |> Thm.dest_fun |> Thm.dest_arg) [asetP,bsetP]; val D_tm = @{cpat "?D::int"}; fun cooperex_conv ctxt vs q = let val uth = unify ctxt q val (x,p) = Thm.dest_abs NONE (Thm.dest_arg (Thm.rhs_of uth)) val ins = insert (op aconvc) fun h t (bacc,aacc,dacc) = case (whatis x t) of And (p,q) => h q (h p (bacc,aacc,dacc)) | Or (p,q) => h q (h p (bacc,aacc,dacc)) | Eq t => (ins (minus1 t) bacc, ins (plus1 t) aacc,dacc) | NEq t => (ins t bacc, ins t aacc, dacc) | Lt t => (bacc, ins t aacc, dacc) | Le t => (bacc, ins (plus1 t) aacc,dacc) | Gt t => (ins t bacc, aacc,dacc) | Ge t => (ins (minus1 t) bacc, aacc,dacc) | Dvd (d,s) => (bacc,aacc,insert (op =) (term_of d |> dest_numeral) dacc) | NDvd (d,s) => (bacc,aacc,insert (op =) (term_of d|> dest_numeral) dacc) | _ => (bacc, aacc, dacc) val (b0,a0,ds) = h p ([],[],[]) val d = Integer.lcms ds val cd = Numeral.mk_cnumber @{ctyp "int"} d val dt = term_of cd fun divprop x = let val th = Simplifier.rewrite lin_ss (Thm.capply @{cterm Trueprop} (Thm.capply (Thm.capply dvdc (Numeral.mk_cnumber @{ctyp "int"} x)) cd)) in equal_elim (Thm.symmetric th) TrueI end; val dvd = let val tab = fold Inttab.update (ds ~~ (map divprop ds)) Inttab.empty in fn ct => the (Inttab.lookup tab (term_of ct |> dest_numeral)) handle Option => (writeln ("dvd: Theorems-Table contains no entry for" ^ Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option) end val dp = let val th = Simplifier.rewrite lin_ss (Thm.capply @{cterm Trueprop} (Thm.capply (Thm.capply @{cterm "op < :: int => _"} @{cterm "0::int"}) cd)) in equal_elim (Thm.symmetric th) TrueI end; (* A and B set *) local val insI1 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI1"} val insI2 = instantiate' [SOME @{ctyp "int"}] [] @{thm "insertI2"} in fun provein x S = case term_of S of Const(@{const_name Orderings.bot}, _) => error "Unexpected error in Cooper, please email Amine Chaieb" | Const(@{const_name insert}, _) $ y $ _ => let val (cy,S') = Thm.dest_binop S in if term_of x aconv y then instantiate' [] [SOME x, SOME S'] insI1 else implies_elim (instantiate' [] [SOME x, SOME S', SOME cy] insI2) (provein x S') end end val al = map (lint vs o term_of) a0 val bl = map (lint vs o term_of) b0 val (sl,s0,f,abths,cpth) = if length (distinct (op aconv) bl) <= length (distinct (op aconv) al) then (bl,b0,decomp_minf, fn B => (map (fn th => implies_elim (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)]) th) dp) [bseteq,bsetneq,bsetlt, bsetle, bsetgt,bsetge])@ (map (Thm.instantiate ([],[(B_tm,B), (D_tm,cd)])) [bsetdvd,bsetndvd,bsetP,infDdvd, infDndvd,bsetconj, bsetdisj,infDconj, infDdisj]), cpmi) else (al,a0,decomp_pinf,fn A => (map (fn th => implies_elim (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)]) th) dp) [aseteq,asetneq,asetlt, asetle, asetgt,asetge])@ (map (Thm.instantiate ([],[(A_tm,A), (D_tm,cd)])) [asetdvd,asetndvd, asetP, infDdvd, infDndvd,asetconj, asetdisj,infDconj, infDdisj]),cppi) val cpth = let val sths = map (fn (tl,t0) => if tl = term_of t0 then instantiate' [SOME @{ctyp "int"}] [SOME t0] refl else provelin ctxt ((HOLogic.eq_const iT)$tl$(term_of t0) |> HOLogic.mk_Trueprop)) (sl ~~ s0) val csl = distinct (op aconvc) (map (cprop_of #> Thm.dest_arg #> Thm.dest_arg1) sths) val S = mkISet csl val inStab = fold (fn ct => fn tab => Termtab.update (term_of ct, provein ct S) tab) csl Termtab.empty val eqelem_th = instantiate' [SOME @{ctyp "int"}] [NONE,NONE, SOME S] eqelem_imp_imp val inS = let fun transmem th0 th1 = Thm.equal_elim (Drule.arg_cong_rule cTrp (Drule.fun_cong_rule (Drule.arg_cong_rule ((Thm.dest_fun o Thm.dest_fun o Thm.dest_arg o cprop_of) th1) th0) S)) th1 val tab = fold Termtab.update (map (fn eq => let val (s,t) = cprop_of eq |> Thm.dest_arg |> Thm.dest_binop val th = if term_of s = term_of t then the (Termtab.lookup inStab (term_of s)) else FWD (instantiate' [] [SOME s, SOME t] eqelem_th) [eq, the (Termtab.lookup inStab (term_of s))] in (term_of t, th) end) sths) Termtab.empty in fn ct => the (Termtab.lookup tab (term_of ct)) handle Option => (writeln ("inS: No theorem for " ^ Syntax.string_of_term ctxt (Thm.term_of ct)); raise Option) end val (inf, nb, pd) = divide_and_conquer (f x dvd inS (abths S)) p in [dp, inf, nb, pd] MRS cpth end val cpth' = Thm.transitive uth (cpth RS eq_reflection) in Thm.transitive cpth' ((simp_thms_conv ctxt then_conv eval_conv) (Thm.rhs_of cpth')) end; fun literals_conv bops uops env cv = let fun h t = case (term_of t) of b$_$_ => if member (op aconv) bops b then binop_conv h t else cv env t | u$_ => if member (op aconv) uops u then arg_conv h t else cv env t | _ => cv env t in h end; fun integer_nnf_conv ctxt env = nnf_conv then_conv literals_conv [HOLogic.conj, HOLogic.disj] [] env (linearize_conv ctxt); local val pcv = Simplifier.rewrite (HOL_basic_ss addsimps (simp_thms @ (List.take(ex_simps,4)) @ [not_all,all_not_ex, ex_disj_distrib])) val postcv = Simplifier.rewrite presburger_ss fun conv ctxt p = let val _ = () in Qelim.gen_qelim_conv pcv postcv pcv (cons o term_of) (OldTerm.term_frees (term_of p)) (linearize_conv ctxt) (integer_nnf_conv ctxt) (cooperex_conv ctxt) p end handle CTERM s => raise COOPER ("Cooper Failed", CTERM s) | THM s => raise COOPER ("Cooper Failed", THM s) | TYPE s => raise COOPER ("Cooper Failed", TYPE s) in val cooper_conv = conv end; end; structure Coopereif = struct open GeneratedCooper; fun cooper s = raise Cooper.COOPER ("Cooper oracle failed", ERROR s); fun i_of_term vs t = case t of Free (xn, xT) => (case AList.lookup (op aconv) vs t of NONE => cooper "Variable not found in the list!" | SOME n => Bound n) | @{term "0::int"} => C 0 | @{term "1::int"} => C 1 | Term.Bound i => Bound i | Const(@{const_name HOL.uminus},_)$t' => Neg (i_of_term vs t') | Const(@{const_name HOL.plus},_)$t1$t2 => Add (i_of_term vs t1,i_of_term vs t2) | Const(@{const_name HOL.minus},_)$t1$t2 => Sub (i_of_term vs t1,i_of_term vs t2) | Const(@{const_name HOL.times},_)$t1$t2 => (Mul (HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle TERM _ => (Mul (HOLogic.dest_number t2 |> snd, i_of_term vs t1) handle TERM _ => cooper "Reification: Unsupported kind of multiplication")) | _ => (C (HOLogic.dest_number t |> snd) handle TERM _ => cooper "Reification: unknown term"); fun qf_of_term ps vs t = case t of Const("True",_) => T | Const("False",_) => F | Const(@{const_name HOL.less},_)$t1$t2 => Lt (Sub (i_of_term vs t1,i_of_term vs t2)) | Const(@{const_name HOL.less_eq},_)$t1$t2 => Le (Sub(i_of_term vs t1,i_of_term vs t2)) | Const(@{const_name Ring_and_Field.dvd},_)$t1$t2 => (Dvd(HOLogic.dest_number t1 |> snd, i_of_term vs t2) handle _ => cooper "Reification: unsupported dvd") (* FIXME avoid handle _ *) | @{term "op = :: int => _"}$t1$t2 => Eq (Sub (i_of_term vs t1,i_of_term vs t2)) | @{term "op = :: bool => _ "}$t1$t2 => Iff(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const("op &",_)$t1$t2 => And(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const("op |",_)$t1$t2 => Or(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const("op -->",_)$t1$t2 => Imp(qf_of_term ps vs t1,qf_of_term ps vs t2) | Const (@{const_name Not},_)$t' => Not(qf_of_term ps vs t') | Const("Ex",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) in E (qf_of_term ps vs' p') end | Const("All",_)$Abs(xn,xT,p) => let val (xn',p') = variant_abs (xn,xT,p) val vs' = (Free (xn',xT), 0) :: (map (fn(v,n) => (v,1+ n)) vs) in A (qf_of_term ps vs' p') end | _ =>(case AList.lookup (op aconv) ps t of NONE => cooper "Reification: unknown term!" | SOME n => Closed n); local val ops = [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"}, @{term "op = :: int => _"}, @{term "op < :: int => _"}, @{term "op <= :: int => _"}, @{term "Not"}, @{term "All:: (int => _) => _"}, @{term "Ex:: (int => _) => _"}, @{term "True"}, @{term "False"}] fun ty t = Bool.not (fastype_of t = HOLogic.boolT) in fun term_bools acc t = case t of (l as f $ a) $ b => if ty t orelse f mem ops then term_bools (term_bools acc l)b else insert (op aconv) t acc | f $ a => if ty t orelse f mem ops then term_bools (term_bools acc f) a else insert (op aconv) t acc | Abs p => term_bools acc (snd (variant_abs p)) | _ => if ty t orelse t mem ops then acc else insert (op aconv) t acc end; fun myassoc2 l v = case l of [] => NONE | (x,v')::xs => if v = v' then SOME x else myassoc2 xs v; fun term_of_i vs t = case t of C i => HOLogic.mk_number HOLogic.intT i | Bound n => the (myassoc2 vs n) | Neg t' => @{term "uminus :: int => _"} $ term_of_i vs t' | Add (t1, t2) => @{term "op + :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 | Sub (t1, t2) => @{term "op - :: int => _"} $ term_of_i vs t1 $ term_of_i vs t2 | Mul (i, t2) => @{term "op * :: int => _"} $ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t2 | Cn (n, i, t') => term_of_i vs (Add (Mul (i, Bound n), t')); fun term_of_qf ps vs t = case t of T => HOLogic.true_const | F => HOLogic.false_const | Lt t' => @{term "op < :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} | Le t' => @{term "op <= :: int => _ "}$ term_of_i vs t' $ @{term "0::int"} | Gt t' => @{term "op < :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' | Ge t' => @{term "op <= :: int => _ "}$ @{term "0::int"}$ term_of_i vs t' | Eq t' => @{term "op = :: int => _ "}$ term_of_i vs t'$ @{term "0::int"} | NEq t' => term_of_qf ps vs (Not (Eq t')) | Dvd(i,t') => @{term "op dvd :: int => _ "} $ HOLogic.mk_number HOLogic.intT i $ term_of_i vs t' | NDvd(i,t')=> term_of_qf ps vs (Not(Dvd(i,t'))) | Not t' => HOLogic.Not$(term_of_qf ps vs t') | And(t1,t2) => HOLogic.conj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) | Or(t1,t2) => HOLogic.disj$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) | Imp(t1,t2) => HOLogic.imp$(term_of_qf ps vs t1)$(term_of_qf ps vs t2) | Iff(t1,t2) => @{term "op = :: bool => _"} $ term_of_qf ps vs t1 $ term_of_qf ps vs t2 | Closed n => the (myassoc2 ps n) | NClosed n => term_of_qf ps vs (Not (Closed n)) | _ => cooper "If this is raised, Isabelle/HOL or code generator is inconsistent!"; fun cooper_oracle ct = let val thy = Thm.theory_of_cterm ct; val t = Thm.term_of ct; val (vs, ps) = pairself (map_index swap) (OldTerm.term_frees t, term_bools [] t); in Thm.cterm_of thy (Logic.mk_equals (HOLogic.mk_Trueprop t, HOLogic.mk_Trueprop (term_of_qf ps vs (pa (qf_of_term ps vs t))))) end; end;