The Isabelle/Isar Implementation

Makarius Wenzel

With Contributions by Florian Haftmann and Larry Paulson

21 June 2010

Abstract

We describe the key concepts underlying the Isabelle/Isar implementation,
including ML references for the most important functions. The aim is to
give some insight into the overall system architecture, and provide clues on
implementing applications within this framework.

Isabelle was not designed; it evolved. Not everyone likes this idea.
Specification experts rightly abhor trial-and-error programming. They
suggest that no one should write a program without first writing a com-
plete formal specification. But university departments are not software
houses. Programs like Isabelle are not products: when they have served
their purpose, they are discarded.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

As I did 20 years ago, I still fervently believe that the only way to make
software secure, reliable, and fast is to make it small. Fight features.

Andrew S. Tanenbaum

One thing that UNIX does not need is more features. It is successful
in part because it has a small number of good ideas that work well
together. Merely adding features does not make it easier for users to
do things — it just makes the manual thicker. The right solution in
the right place is always more effective than haphazard hacking.

Rob Pike and Brian W. Kernighan

Contents

1 Preliminaries

1.1 Contextso
1.1.1 Theory context
1.1.2 Proof context,
1.1.3 Generic contexts
1.14 Contextdata
1.2 Names e
1.2.1 Strings of symbols oL
1.2.2 Basicnames
1.2.3 Indexed names
1.24 Longnames
1.2.5 Name spaces
2 Primitive logic
2.1 Types e
22 Termso
2.3 Theorems
2.3.1 Primitive connectives and rules
2.3.2 Auxiliary definitionso
2.4 Object-level rules
2.4.1 Hereditary Harrop Formulae
2.4.2 Rule composition
3 Tactical reasoning
3.1 Goals
3.2 Tactics
3.2.1 Resolution and assumption tactics
3.2.2 Explicit instantiation within a subgoal context
3.3 Tacticals
4 Structured proofs
4.1 Variables
4.2 Assumptions
4.3 Structured goals and results

18
18
21
24
24
28
29
29
31

CONTENTS

5 Concrete syntax and type-checking
5.1 Parsing and printing oL
5.2 Checking and unchecking

6 Isar language elements
6.1 Proof commands,
6.2 Proofmethods.,
6.3 Attributes

7 Local theory specifications
7.1 Definitional elements
7.2 Morphisms and declarations

8 System integration
8.1 Isar toplevel
8.1.1 Toplevel transitions
8.1.2 Toplevel controlo
8.2 ML toplevel
8.3 Theory database L.

A Advanced ML programming
A1 Style . . . o
A.2 Thread-safe programming

B Basic library functions
B.1 Linear transformations
B.2 Options and partiality
B.3 Common data structures
B.3.1 Lists (as set-like data structures)

B.3.2 Association lists
B.3.3 Tables
Bibliography

Index

1

48
48
48

49
49
49
49

50
50
52

53
23
o4
26
26
58

61
61
62

66
66
69
69
69
70
71

72

73

List of Figures

1.1

2.1
2.2
2.3
24
2.5

A theory definition depending on ancestors 3
Primitive connectives of Pure 24
Primitive inferences of Pure 25
Conceptual axiomatization of Pure equality 25
Admissible substitution rules 25
Definitions of auxiliary connectives 28

il

LIST OF FIGURES

v

Chapter 1

Preliminaries

1.1 Contexts

A logical context represents the background that is required for formulating
statements and composing proofs. It acts as a medium to produce formal
content, depending on earlier material (declarations, results etc.).

For example, derivations within the Isabelle/Pure logic can be described
as a judgment I' Fg ¢, which means that a proposition ¢ is derivable from
hypotheses I' within the theory ©. There are logical reasons for keeping O
and I separate: theories can be liberal about supporting type constructors
and schematic polymorphism of constants and axioms, while the inner cal-
culus of T' F ¢ is strictly limited to Simple Type Theory (with fixed type
variables in the assumptions).

Contexts and derivations are linked by the following key principles:

e Transfer: monotonicity of derivations admits results to be transferred
into a larger context, i.e. I' g ¢ implies '’ kg ¢ for contexts ©' O O
and IV D T.

e Export: discharge of hypotheses admits results to be exported into a
smaller context, i.e. "' Fg ¢ implies I' Fg A = ¢ where '’ D T" and
A =T"—T. Note that © remains unchanged here, only the I" part is
affected.

By modeling the main characteristics of the primitive © and I" above, and
abstracting over any particular logical content, we arrive at the fundamental
notions of theory context and proof context in Isabelle/Isar. These implement
a certain policy to manage arbitrary context data. There is a strongly-typed
mechanism to declare new kinds of data at compile time.

The internal bootstrap process of Isabelle/Pure eventually reaches a stage
where certain data slots provide the logical content of © and I' sketched
above, but this does not stop there! Various additional data slots support
all kinds of mechanisms that are not necessarily part of the core logic.

CHAPTER 1. PRELIMINARIES 2

For example, there would be data for canonical introduction and elimina-
tion rules for arbitrary operators (depending on the object-logic and appli-
cation), which enables users to perform standard proof steps implicitly (cf.
the rule method [11]).

Thus Isabelle/Isar is able to bring forth more and more concepts suc-
cessively. In particular, an object-logic like Isabelle/HOL continues the
Isabelle/Pure setup by adding specific components for automated reasoning
(classical reasoner, tableau prover, structured induction etc.) and derived
specification mechanisms (inductive predicates, recursive functions etc.). All
of this is ultimately based on the generic data management by theory and
proof contexts introduced here.

1.1.1 Theory context

A theory is a data container with explicit name and unique identifier. Theo-
ries are related by a (nominal) sub-theory relation, which corresponds to the
dependency graph of the original construction; each theory is derived from a
certain sub-graph of ancestor theories. To this end, the system maintains a
set of symbolic “identification stamps” within each theory.

In order to avoid the full-scale overhead of explicit sub-theory identifica-
tion of arbitrary intermediate stages, a theory is switched into draft mode
under certain circumstances. A draft theory acts like a linear type, where
updates invalidate earlier versions. An invalidated draft is called stale.

The checkpoint operation produces a safe stepping stone that will survive
the next update without becoming stale: both the old and the new theory
remain valid and are related by the sub-theory relation. Checkpointing es-
sentially recovers purely functional theory values, at the expense of some
extra internal bookkeeping.

The copy operation produces an auxiliary version that has the same data
content, but is unrelated to the original: updates of the copy do not affect
the original, neither does the sub-theory relation hold.

The merge operation produces the least upper bound of two theories,
which actually degenerates into absorption of one theory into the other (ac-
cording to the nominal sub-theory relation).

The begin operation starts a new theory by importing several parent the-
ories and entering a special mode of nameless incremental updates, until the
final end operation is performed.

The example in figure 1.1 below shows a theory graph derived from Pure,
with theory Length importing Nat and List. The body of Length consists
of a sequence of updates, working mostly on drafts internally, while transac-

CHAPTER 1. PRELIMINARIES 3

tion boundaries of Isar top-level commands (§8.1) are guaranteed to be safe
checkpoints.

Pure

!
FOL

/ N
Nat List

N\ /
Length
imports
begin

end

Figure 1.1: A theory definition depending on ancestors

There is a separate notion of theory reference for maintaining a live link to
an evolving theory context: updates on drafts are propagated automatically.
Dynamic updating stops after an explicit end only.

Derived entities may store a theory reference in order to indicate the con-
text they belong to. This implicitly assumes monotonic reasoning, because
the referenced context may become larger without further notice.

Reference

type theory

Theory.subthy: theory * theory -> bool
Theory.checkpoint: theory -> theory

Theory.copy: theory -> theory

Theory.merge: theory * theory -> theory
Theory.begin_theory: string -> theory list -> theory

type theory_ref
Theory.deref: theory_ref -> theory
Theory.check_thy: theory -> theory_ref

CHAPTER 1. PRELIMINARIES 4

theory represents theory contexts. This is essentially a linear type, with explicit
runtime checking! Most internal theory operations destroy the original ver-
sion, which then becomes “stale”.

Theory.subthy (thyi, thys) compares theories according to the intrinsic graph
structure of the construction. This sub-theory relation is a nominal ap-
proximation of inclusion (C) of the corresponding content (according to the
semantics of the ML modules that implement the data).

Theory.checkpoint thy produces a safe stepping stone in the linear development
of thy. This changes the old theory, but the next update will result in two
related, valid theories.

Theory.copy thy produces a variant of thy with the same data. The copy is not
related to the original, but the original is unchanged.

Theory.merge (thyi, thy2) absorbs one theory into the other, without changing
thy1 or thyo. This version of ad-hoc theory merge fails for unrelated theories!

Theory.begin_theory name parents constructs a new theory based on the given
parents. This ML function is normally not invoked directly.

theory_ref represents a sliding reference to an always valid theory; updates on
the original are propagated automatically.

Theory.deref thy ref turns a theory_ref into an theory value. As the
referenced theory evolves monotonically over time, later invocations of
Theory.deref may refer to a larger context.

Theory.check_thy thy produces a theory_ref from a valid theory value.

1.1.2 Proof context

A proof context is a container for pure data with a back-reference to the
theory it belongs to. The init operation creates a proof context from a
given theory. Modifications to draft theories are propagated to the proof
context as usual, but there is also an explicit transfer operation to force
resynchronization with more substantial updates to the underlying theory.

Entities derived in a proof context need to record logical requirements ex-
plicitly, since there is no separate context identification or symbolic inclusion
as for theories. For example, hypotheses used in primitive derivations (cf.
§2.3) are recorded separately within the sequent I - ¢, just to make double
sure. Results could still leak into an alien proof context due to program-
ming errors, but Isabelle/Isar includes some extra validity checks in critical
positions, notably at the end of a sub-proof.

CHAPTER 1. PRELIMINARIES 5

Proof contexts may be manipulated arbitrarily, although the common
discipline is to follow block structure as a mental model: a given context
is extended consecutively, and results are exported back into the original
context. Note that an Isar proof state models block-structured reasoning
explicitly, using a stack of proof contexts internally. For various technical
reasons, the background theory of an Isar proof state must not be changed
while the proof is still under construction!

Reference

type Proof.context

ProofContext.init_global: theory -> Proof.context
ProofContext.theory_of: Proof.context -> theory
ProofContext.transfer: theory -> Proof.context -> Proof.context

Proof.context represents proof contexts. Elements of this type are essentially
pure values, with a sliding reference to the background theory.

ProofContext.init_global thy produces a proof context derived from thy, ini-
tializing all data.

ProofContext.theory_of ctat selects the background theory from ctxt, derefer-
encing its internal theory_ref.

ProofContext.transfer thy ctxt promotes the background theory of ctxt to the
super theory thy.

1.1.3 Generic contexts

A generic context is the disjoint sum of either a theory or proof context. Oc-
casionally, this enables uniform treatment of generic context data, typically
extra-logical information. Operations on generic contexts include the usual
injections, partial selections, and combinators for lifting operations on either
component of the disjoint sum.

Moreover, there are total operations theory_of and proof_of to convert a
generic context into either kind: a theory can always be selected from the
sum, while a proof context might have to be constructed by an ad-hoc init
operation, which incurs a small runtime overhead.

CHAPTER 1. PRELIMINARIES 6

Reference

type Context.generic
Context.theory_of: Context.generic -> theory
Context.proof_of: Context.generic -> Proof.context

Context.generic is the direct sum of theory and Proof.context, with the
datatype constructors Context.Theory and Context.Proof.

Context.theory_of context always produces a theory from the generic context,
using ProofContext.theory_of as required.

Context.proof_of context always produces a proof context from the generic
contezt, using ProofContext.init_global as required (note that this re-
initializes the context data with each invocation).

1.1.4 Context data

The main purpose of theory and proof contexts is to manage arbitrary (pure)
data. New data types can be declared incrementally at compile time. There
are separate declaration mechanisms for any of the three kinds of contexts:
theory, proof, generic.

Theory data declarations need to implement the following SML signature:

type T representing type
val empty: T empty default value
val extend: T — T re-initialize on import

val merge: T x T — T join on import

The empty value acts as initial default for any theory that does not declare
actual data content; extend is acts like a unitary version of merge.

Implementing merge can be tricky. The general idea is that merge (data;,
datas) inserts those parts of datay into data; that are not yet present, while
keeping the general order of things. The Library.merge function on plain
lists may serve as canonical template.

Particularly note that shared parts of the data must not be duplicated
by naive concatenation, or a theory graph that is like a chain of diamonds
would cause an exponential blowup!

Proof context data declarations need to implement the following SML
signature:

CHAPTER 1. PRELIMINARIES 7

type T representing type
val init: theory — T produce initial value

The wnit operation is supposed to produce a pure value from the given back-
ground theory and should be somehow “immediate”. Whenever a proof con-
text is initialized, which happens frequently, the the system invokes the init
operation of all theory data slots ever declared.

Generic data provides a hybrid interface for both theory and proof data.
The init operation for proof contexts is predefined to select the current data
value from the background theory.

Any of these data declaration over type T result in an ML structure with
the following signature:

get: context — T
put: T — context — context
map: (T — T) — context — context

These other operations provide exclusive access for the particular kind of
context (theory, proof, or generic context). This interface fully observes the
ML discipline for types and scopes: there is no other way to access the
corresponding data slot of a context. By keeping these operations private,
an Isabelle/ML module may maintain abstract values authentically.

Reference

functor Theory_Data
functor Proof_Data
functor Generic_Data

Theory_Data(spec) declares data for type theory according to the specification
provided as argument structure. The resulting structure provides data init
and access operations as described above.

Proof_Data(spec) is analogous to Theory_Data for type Proof.context.

Generic_Data(spec) is analogous to Theory_Data for type Context.generic.

Examples

The following artificial example demonstrates theory data: we maintain a set
of terms that are supposed to be wellformed wrt. the enclosing theory. The
public interface is as follows:

CHAPTER 1. PRELIMINARIES 8

ML {*
signature WELLFORMED_TERMS =
sig
val get: theory -> term list
val add: term —-> theory —-> theory
end;
*}
The implementation uses private theory data internally, and only exposes an
operation that involves explicit argument checking wrt. the given theory.

ML {*
structure Wellformed_Terms: WELLFORMED_TERMS =
struct

structure Terms = Theory_Data

(
type T = term OrdList.T;
val empty = [];
val extend = I;
fun merge (tsl, ts2) =
OrdList.union Term_Ord.fast_term_ord tsl ts2;

val get = Terms.get;

fun add raw_t thy =
let val t = Sign.cert_term thy raw_t
in Terms.map (OrdList.insert Term_Ord.fast_term_ord t) thy end;

end;
*}

We use term OrdList.T for reasonably efficient representation of a set
of terms: all operations are linear in the number of stored elements. Here
we assume that our users do not care about the declaration order, since that
data structure forces its own arrangement of elements.

Observe how the merge operation joins the data slots of the two con-
stituents: OrdList.union prevents duplication of common data from differ-
ent branches, thus avoiding the danger of exponential blowup. (Plain list
append etc. must never be used for theory data merges.)

Our intended invariant is achieved as follows:

1. Wellformed_Terms.add only admits terms that have passed the
Sign.cert_term check of the given theory at that point.

CHAPTER 1. PRELIMINARIES 9

2. Wellformedness in the sense of Sign.cert_term is monotonic wrt. the
sub-theory relation. So our data can move upwards in the hierarchy
(via extension or merges), and maintain wellformedness without further

checks.

Note that all basic operations of the inference kernel (which in-
cludes Sign.cert_term) observe this monotonicity principle, but other
user-space tools don’t. For example, fully-featured type-inference via
Syntax.check_term (cf. §5.2) is not necessarily monotonic wrt. the back-
ground theory, since constraints of term constants can be strengthened by
later declarations, for example.

In most cases, user-space context data does not have to take such invari-
ants too seriously. The situation is different in the implementation of the
inference kernel itself, which uses the very same data mechanisms for types,
constants, axioms etc.

1.2 Names

In principle, a name is just a string, but there are various conventions for
representing additional structure. For example, “Foo.bar.baz” is considered
as a long name consisting of qualifier Foo.bar and base name baz. The indi-
vidual constituents of a name may have further substructure, e.g. the string
“\<alpha>” encodes as a single symbol.

Subsequently, we shall introduce specific categories of names. Roughly
speaking these correspond to logical entities as follows:

e Basic names (§1.2.2): free and bound variables.
e Indexed names (§1.2.3): schematic variables.

e Long names (§1.2.4): constants of any kind (type constructors, term
constants, other concepts defined in user space). Such entities are typ-
ically managed via name spaces (§1.2.5).

1.2.1 Strings of symbols

A symbol constitutes the smallest textual unit in Isabelle — raw ML charac-
ters are normally not encountered at all! Isabelle strings consist of a sequence
of symbols, represented as a packed string or an exploded list of strings. Each
symbol is in itself a small string, which has either one of the following forms:

CHAPTER 1. PRELIMINARIES 10

1. a single ASCII character “c” or raw byte in the range of 128...255, for

[19}]

example “a”,
2. a regular symbol “\<ident>”, for example “\<alpha>”,
3. a control symbol “\<~ident>", for example “\<"bold>",

4. a raw symbol “\<“raw:text>” where text consists of printable charac-
ters excluding “.” and “>”, for example “\<"raw:$\sum_{i = 1} "n$>",

5. a numbered raw control symbol “\<"“rawn> where n consists of digits,
for example “\<“raw42>”.

The ident syntax for symbol names is letter (letter | digit)*, where letter
= A..Za..z and digit = 0..9. There are infinitely many regular symbols
and control symbols, but a fixed collection of standard symbols is treated
specifically. For example, “\<alpha>” is classified as a letter, which means
it may occur within regular Isabelle identifiers.

Since the character set underlying Isabelle symbols is 7-bit ASCII and
8-bit characters are passed through transparently, Isabelle can also process
Unicode/UCS data in UTF-8 encoding.! Unicode provides its own collection
of mathematical symbols, but within the core Isabelle/ML world there is no
link to the standard collection of Isabelle regular symbols.

Output of Isabelle symbols depends on the print mode (§77). For exam-
ple, the standard BTEX setup of the Isabelle document preparation system
would present “\<alpha>” as «, and “\<"bold>\<alpha>” as . On-screen
rendering usually works by mapping a finite subset of Isabelle symbols to
suitable Unicode characters.

Reference

type Symbol.symbol = string

Symbol.explode: string -> Symbol.symbol list
Symbol.is_letter: Symbol.symbol -> bool
Symbol.is_digit: Symbol.symbol -> bool
Symbol.is_quasi: Symbol.symbol -> bool
Symbol.is_blank: Symbol.symbol -> bool

"'When counting precise source positions internally, bytes in the range of 128...191 are
ignored. In UTF-8 encoding, this interval covers the additional trailer bytes, so Isabelle
happens to count Unicode characters here, not bytes in memory. In ISO-Latin encoding,
the ignored range merely includes some extra punctuation characters that even have re-
placements within the standard collection of Isabelle symbols; the accented letters range
is counted properly.

CHAPTER 1. PRELIMINARIES 11

type Symbol.sym
Symbol.decode: Symbol.symbol -> Symbol.sym

Symbol.symbol represents individual Isabelle symbols.

Symbol.explode str produces a symbol list from the packed form. This function
supercedes String.explode for virtually all purposes of manipulating text
in Isabelle!?

Symbol.is_letter, Symbol.is_digit, Symbol.is_quasi, Symbol.is_blank
classify standard symbols according to fixed syntactic conventions of Isabelle,
cf. [11].

Symbol.sym is a concrete datatype that represents the different kinds of sym-
bols explicitly, with constructors Symbol.Char, Symbol.Sym, Symbol.Ctrl,
Symbol.Raw.

Symbol.decode converts the string representation of a symbol into the datatype
version.

Historical note. In the original SML90 standard the primitive ML type char
did not exists, and the basic explode: string -> string list operation would
produce a list of singleton strings as in Isabelle/ML today. When SML97 came
out, Isabelle did not adopt its slightly anachronistic 8-bit characters, but the idea
of exploding a string into a list of small strings was extended to “symbols” as
explained above. Thus Isabelle sources can refer to an infinite store of user-defined
symbols, without having to worry about the multitude of Unicode encodings.

1.2.2 Basic names

A basic name essentially consists of a single Isabelle identifier. There are
conventions to mark separate classes of basic names, by attaching a suffix of
underscores: one underscore means internal name, two underscores means
Skolem name, three underscores means internal Skolem name.

For example, the basic name foo has the internal version foo_, with Skolem
versions foo__ and foo___, respectively.

These special versions provide copies of the basic name space, apart from
anything that normally appears in the user text. For example, system gen-
erated variables in Isar proof contexts are usually marked as internal, which
prevents mysterious names like zaa to appear in human-readable text.

2The runtime overhead for exploded strings is mainly that of the list structure: indi-
vidual symbols that happen to be a singleton string — which is the most common case —
do not require extra memory in Poly/ML.

CHAPTER 1. PRELIMINARIES 12

Manipulating binding scopes often requires on-the-fly renamings. A name
contexrt contains a collection of already used names. The declare operation
adds names to the context.

The invents operation derives a number of fresh names from a given
starting point. For example, the first three names derived from a are a, b, c.

The wvariants operation produces fresh names by incrementing tentative
names as base-26 numbers (with digits a..z) until all clashes are resolved.
For example, name foo results in variants fooa, foob, fooc, ..., fooaa, fooab
etc.; each renaming step picks the next unused variant from this sequence.

Reference

Name.internal: string -> string
Name.skolem: string -> string

type Name.context

Name.context: Name.context

Name.declare: string -> Name.context -> Name.context

Name.invents: Name.context -> string -> int -> string list
Name.variants: string list -> Name.context -> string list * Name.context

Variable.names_of: Proof.context -> Name.context
Name.internal name produces an internal name by adding one underscore.

Name . skolem name produces a Skolem name by adding two underscores.

Name . context represents the context of already used names; the initial value is
Name.context.

Name.declare name enters a used name into the context.
Name.invents contexrt name n produces n fresh names derived from name.

Name.variants names contert produces fresh variants of names; the result is
entered into the context.

Variable.names_of ctzt retrieves the context of declared type and term variable
names. Projecting a proof context down to a primitive name context is occa-
sionally useful when invoking lower-level operations. Regular management
of “fresh variables” is done by suitable operations of structure Variable,
which is also able to provide an official status of “locally fixed variable”
within the logical environment (cf. §4.1).

CHAPTER 1. PRELIMINARIES 13

1.2.3 Indexed names

An indezed name (or indexname) is a pair of a basic name and a natu-
ral number. This representation allows efficient renaming by incrementing
the second component only. The canonical way to rename two collections
of indexnames apart from each other is this: determine the maximum in-
dex maxidx of the first collection, then increment all indexes of the second
collection by mazxidx + 1; the maximum index of an empty collection is —1.

Occasionally, basic names are injected into the same pair type of indexed
names: then (z, —1) is used to encode the basic name z.

Isabelle syntax observes the following rules for representing an indexname
(z, i) as a packed string:

e 7z if does not end with a digit and ¢ = 0,
o 71; if z does not end with a digit,

e ?1.1 otherwise.

Indexnames may acquire large index numbers after several maxidx shifts
have been applied. Results are usually normalized towards 0 at certain check-
points, notably at the end of a proof. This works by producing variants of
the corresponding basic name components. For example, the collection ?z1,
27, 2x42 becomes ?x, ?zra, ?zb.

Reference

type indexname

indexname represents indexed names. This is an abbreviation for string * int.
The second component is usually non-negative, except for situations where
(z, —1) is used to inject basic names into this type. Other negative indexes
should not be used.

1.2.4 Long names

A long name consists of a sequence of non-empty name components. The
packed representation uses a dot as separator, as in “A.b.c¢”. The last com-
ponent is called base name, the remaining prefix is called qualifier (which
may be empty). The qualifier can be understood as the access path to the

CHAPTER 1. PRELIMINARIES 14

named entity while passing through some nested block-structure, although
our free-form long names do not really enforce any strict discipline.

For example, an item named “A.b.c” may be understood as a local entity
¢, within a local structure b, within a global structure A. In practice, long
names usually represent 1-3 levels of qualification. User ML code should not
make any assumptions about the particular structure of long names!

The empty name is commonly used as an indication of unnamed entities,
or entities that are not entered into the corresponding name space, whenever
this makes any sense. The basic operations on long names map empty names
again to empty names.

Reference

Long_Name.base_name: string -> string
Long_Name.qualifier: string -> string
Long_Name.append: string —-> string -> string
Long_Name.implode: string list -> string
Long_Name.explode: string -> string list

Long_Name.base_name name returns the base name of a long name.
Long_Name.qualifier name returns the qualifier of a long name.
Long_Name.append name; names appends two long names.

Long_Name.implode names and Long_Name.explode name convert between the
packed string representation and the explicit list form of long names.

1.2.5 Name spaces

A name space manages a collection of long names, together with a map-
ping between partially qualified external names and fully qualified internal
names (in both directions). Note that the corresponding intern and extern
operations are mostly used for parsing and printing only! The declare opera-
tion augments a name space according to the accesses determined by a given
binding, and a naming policy from the context.

A binding specifies details about the prospective long name of a newly
introduced formal entity. It consists of a base name, prefixes for qualification
(separate ones for system infrastructure and user-space mechanisms), a slot
for the original source position, and some additional flags.

A naming provides some additional details for producing a long name
from a binding. Normally, the naming is implicit in the theory or proof

CHAPTER 1. PRELIMINARIES 15

context. The full operation (and its variants for different context types)
produces a fully qualified internal name to be entered into a name space.
The main equation of this “chemical reaction” when binding new entities in
a context is as follows:

binding 4+ naming — long name + name space accesses

As a general principle, there is a separate name space for each kind of
formal entity, e.g. fact, logical constant, type constructor, type class. It is
usually clear from the occurrence in concrete syntax (or from the scope)
which kind of entity a name refers to. For example, the very same name c
may be used uniformly for a constant, type constructor, and type class.

There are common schemes to name derived entities systematically ac-
cording to the name of the main logical entity involved, e.g. fact c.intro for a
canonical introduction rule related to constant ¢. This technique of mapping
names from one space into another requires some care in order to avoid con-
flicts. In particular, theorem names derived from a type constructor or type
class are better suffixed in addition to the usual qualification, e.g. c_type.intro
and c_class.intro for theorems related to type ¢ and class ¢, respectively.

Reference

type binding

Binding.empty: binding

Binding.name: string -> binding

Binding.qualify: bool -> string -> binding -> binding
Binding.prefix: bool -> string -> binding -> binding
Binding.conceal: binding -> binding

Binding.str_of: binding -> string

type Name_Space.naming

Name_Space.default_naming: Name_Space.naming

Name_Space.add_path: string -> Name_Space.naming -> Name_Space.naming
Name_Space.full_name: Name_Space.naming -> binding -> string

type Name_Space.T

Name_Space.empty: string -> Name_Space.T

Name_Space.merge: Name_Space.T * Name_Space.T -> Name_Space.T

Name_Space.declare: bool -> Name_Space.naming -> binding -> Name_Space.T ->
string * Name_Space.T

Name_Space.intern: Name_Space.T -> string -> string

Name_Space.extern: Name_Space.T -> string -> string

Name_Space.is_concealed: Name_Space.T -> string -> bool

binding represents the abstract concept of name bindings.

Binding.empty is the empty binding.

CHAPTER 1. PRELIMINARIES 16

Binding.name name produces a binding with base name name.

Binding.qualify mandatory name binding prefixes qualifier name to binding.
The mandatory flag tells if this name component always needs to be given
in name space accesses — this is mostly false in practice. Note that this
part of qualification is typically used in derived specification mechanisms.

Binding.prefix is similar to Binding.qualify, but affects the system prefix.
This part of extra qualification is typically used in the infrastructure for
modular specifications, notably “local theory targets” (see also chapter 7).

Binding.conceal binding indicates that the binding shall refer to an entity that
serves foundational purposes only. This flag helps to mark implementation
details of specification mechanism etc. Other tools should not depend on
the particulars of concealed entities (cf. Name_Space.is_concealed).

Binding.str_of binding produces a string representation for human-readable
output, together with some formal markup that might get used in GUI
front-ends, for example.

Name_Space.naming represents the abstract concept of a naming policy.

Name_Space.default_naming is the default naming policy. In a theory context,
this is usually augmented by a path prefix consisting of the theory name.

Name_Space.add_path path naming augments the naming policy by extending
its path component.

Name_Space.full_name naming binding turns a name binding (usually a basic
name) into the fully qualified internal name, according to the given naming
policy.

Name_Space.T represents name spaces.

Name_Space.empty kind and Name_Space.merge (space;, spaces) are the canon-
ical operations for maintaining name spaces according to theory data man-
agement (§1.1.4); kind is a formal comment to characterize the purpose of
a name space.

Name_Space.declare strict naming bindings space enters a name binding as fully
qualified internal name into the name space, with external accesses deter-
mined by the naming policy.

Name_Space.intern space name internalizes a (partially qualified) external
name.

This operation is mostly for parsing! Note that fully qualified names
stemming from declarations are produced via Name_Space.full_name and
Name_Space.declare (or their derivatives for theory and Proof .context).

CHAPTER 1. PRELIMINARIES 17

Name_Space.extern space name externalizes a (fully qualified) internal name.
This operation is mostly for printing! User code should not rely on the

precise result too much.

Name_Space.is_concealed space name indicates whether name refers to a
strictly private entity that other tools are supposed to ignore!

Chapter 2

Primitive logic

The logical foundations of Isabelle/Isar are that of the Pure logic, which has
been introduced as a Natural Deduction framework in [8]. This is essentially
the same logic as “AHOL” in the more abstract setting of Pure Type Systems
(PTS) [1], although there are some key differences in the specific treatment
of simple types in Isabelle/Pure.

Following type-theoretic parlance, the Pure logic consists of three levels of
A-calculus with corresponding arrows, = for syntactic function space (terms
depending on terms), A for universal quantification (proofs depending on
terms), and = for implication (proofs depending on proofs).

Derivations are relative to a logical theory, which declares type construc-
tors, constants, and axioms. Theory declarations support schematic poly-
morphism, which is strictly speaking outside the logic.

2.1 Types

The language of types is an uninterpreted order-sorted first-order algebra;
types are qualified by ordered type classes.

A type class is an abstract syntactic entity declared in the theory context.
The subclass relation ¢y C ¢y is specified by stating an acyclic generating
relation; the transitive closure is maintained internally. The resulting relation
is an ordering: reflexive, transitive, and antisymmetric.

A sort is a list of type classes written as s = {c1, ..., ¢y}, it represents
symbolic intersection. Notationally, the curly braces are omitted for singleton
intersections, i.e. any class ¢ may be read as a sort {c}. The ordering on
type classes is extended to sorts according to the meaning of intersections:
{c1, ... e} CH{dy, ..., d,} iff Vj. Fi. ¢; C d;. The empty intersection {}
refers to the universal sort, which is the largest element wrt. the sort order.

! This is the deeper logical reason, why the theory context © is separate from the proof
context I of the core calculus: type constructors, term constants, and facts (proof con-
stants) may involve arbitrary type schemes, but the type of a locally fixed term parameter
is also fixed!

18

CHAPTER 2. PRIMITIVE LOGIC 19

Thus {} represents the “full sort”, not the empty one! The intersection of
all (finitely many) classes declared in the current theory is the least element
wrt. the sort ordering.

A fized type variable is a pair of a basic name (starting with a ’ character)
and a sort constraint, e.g. (‘a, s) which is usually printed as «s. A schematic
type variable is a pair of an indexname and a sort constraint, e.g. ((‘a, 0), s)
which is usually printed as ?a.

Note that all syntactic components contribute to the identity of type
variables: basic name, index, and sort constraint. The core logic handles
type variables with the same name but different sorts as different, although
the type-inference layer (which is outside the core) rejects anything like that.

A type constructor k is a k-ary operator on types declared in the theory.
Type constructor application is written postfix as (aq, ..., ag)k. For k =0
the argument tuple is omitted, e.g. prop instead of ()prop. For k = 1 the
parentheses are omitted, e.g. « list instead of («)list. Further notation is
provided for specific constructors, notably the right-associative infix a = 3
instead of (a, [3)fun.

The logical category type is defined inductively over type variables and
type constructors as follows: 7 = a; | ?a | (T4, ..., TE)RK.

A type abbreviation is a syntactic definition (@)x = 7 of an arbitrary type
expression 7 over variables a. Type abbreviations appear as type construc-
tors in the syntax, but are expanded before entering the logical core.

A type arity declares the image behavior of a type constructor wrt. the
algebra of sorts: & :: (s1, ..., sg)s means that (71, ..., Tx)k is of sort s if every
argument type 7; is of sort s;. Arity declarations are implicitly completed,
ie. k2 (§)c entails k :: (5)c' for any ¢’ D c.

The sort algebra is always maintained as coregular, which means that type
arities are consistent with the subclass relation: for any type constructor x,
and classes ¢; C ¢y, and arities k :: (51)c; and k 2 (83)co holds §; C 5
component-wise.

The key property of a coregular order-sorted algebra is that sort con-
straints can be solved in a most general fashion: for each type constructor x
and sort s there is a most general vector of argument sorts (si, ..., s) such
that a type scheme (o, , .. ., as,)k is of sort s. Consequently, type unification
has most general solutions (modulo equivalence of sorts), so type-inference
produces primary types as expected [7].

CHAPTER 2. PRIMITIVE LOGIC 20

Reference

type class = string

type sort = class list

type arity = string * sort list * sort

type typ

map_atyps: (typ -> typ) -> typ -> typ
fold_atyps: (typ -> ’a -> ’a) -> typ -> ’a -> ’a

Sign.subsort: theory -> sort * sort -> bool

Sign.of_sort: theory -> typ * sort -> bool

Sign.add_types: (binding * int * mixfix) list -> theory -> theory
Sign.add_type_abbrev: binding * string list * typ -> theory -> theory
Sign.primitive_class: binding * class list -> theory -> theory
Sign.primitive_classrel: class * class -> theory -> theory
Sign.primitive_arity: arity —-> theory -> theory

class represents type classes.

sort represents sorts, i.e. finite intersections of classes. The empty list []1: sort
refers to the empty class intersection, i.e. the “full sort”.

arity represents type arities. A triple (k, §, s) : arity represents k :: (5)s as
described above.

typ represents types; this is a datatype with constructors TFree, TVar, Type.

map_atyps f 7 applies the mapping f to all atomic types (TFree, TVar) occurring
in 7.

fold_atyps f 7 iterates the operation f over all occurrences of atomic types
(TFree, TVar) in 7; the type structure is traversed from left to right.

Sign.subsort thy (s1, s2) tests the subsort relation s1 C sg.
Sign.of_sort thy (7, s) tests whether type 7 is of sort s.

Sign.add_types [(k, k, mz), ...] declares a new type constructors x with k
arguments and optional mixfix syntax.

Sign.add_type_abbrev (k, @, 7) defines a new type abbreviation (&)x = 7.

Sign.primitive_class (¢, [c1, ..., ¢,]) declares a new class ¢, together with
class relations ¢ C ¢;, for i =1, ..., n.

Sign.primitive_classrel (ci, cg) declares the class relation ¢; C co.

Sign.primitive_arity (k, S, s) declares the arity x :: (§)s.

CHAPTER 2. PRIMITIVE LOGIC 21

2.2 Terms

The language of terms is that of simply-typed A-calculus with de-Bruijn
indices for bound variables (cf. [3] or [9]), with the types being determined
by the corresponding binders. In contrast, free variables and constants have
an explicit name and type in each occurrence.

A bound variable is a natural number b, which accounts for the number
of intermediate binders between the variable occurrence in the body and its
binding position. For example, the de-Bruijn term A,y Apoor- 1 A 0 would
correspond to ATl AYpool- T /A ¥ in a named representation. Note that a
bound variable may be represented by different de-Bruijn indices at different
occurrences, depending on the nesting of abstractions.

A loose variable is a bound variable that is outside the scope of local
binders. The types (and names) for loose variables can be managed as a
separate context, that is maintained as a stack of hypothetical binders. The
core logic operates on closed terms, without any loose variables.

A fized variable is a pair of a basic name and a type, e.g. (z, 7) which is
usually printed z, here. A schematic variable is a pair of an indexname and
a type, e.g. ((z, 0), 7) which is likewise printed as ?z..

A constant is a pair of a basic name and a type, e.g. (¢, 7) which is usually
printed as ¢, here. Constants are declared in the context as polymorphic
families ¢ :: o, meaning that all substitution instances ¢, for 7 = of are
valid.

The vector of type arguments of constant ¢, wrt. the declaration ¢ :: o
is defined as the codomain of the matcher § = {?ay — 71, ..., a,, — 7}
presented in canonical order (71, ..., 7,), corresponding to the left-to-right
occurrences of the «; in o. Within a given theory context, there is a one-
to-one correspondence between any constant ¢, and the application ¢(7,

.., Tpn) of its type arguments. For example, with plus :: @« = a = «, the
instance pluspgt = nat = nat corresponds to plus(nat).

Constant declarations ¢ :: 0 may contain sort constraints for type vari-
ables in o. These are observed by type-inference as expected, but ignored by
the core logic. This means the primitive logic is able to reason with instances
of polymorphic constants that the user-level type-checker would reject due
to violation of type class restrictions.

An atomic term is either a variable or constant. The logical category term
is defined inductively over atomic terms, with abstraction and application as
follows: t = b | z, | 2z, | ¢ | Ar. t | t1 to. Parsing and printing takes care of
converting between an external representation with named bound variables.
Subsequently, we shall use the latter notation instead of internal de-Bruijn

CHAPTER 2. PRIMITIVE LOGIC 22

representation.
The inductive relation ¢ :: 7 assigns a (unique) type to a term according
to the structure of atomic terms, abstractions, and applicatins:

tio teT=0 wu:uT
ar = T A, t) nT =0 tu:o

A well-typed term is a term that can be typed according to these rules.

Typing information can be omitted: type-inference is able to reconstruct
the most general type of a raw term, while assigning most general types to all
of its variables and constants. Type-inference depends on a context of type
constraints for fixed variables, and declarations for polymorphic constants.

The identity of atomic terms consists both of the name and the type
component. This means that different variables z,, and z, may become
the same after type instantiation. Type-inference rejects variables of the
same name, but different types. In contrast, mixed instances of polymorphic
constants occur routinely.

The hidden polymorphism of a term t :: o is the set of type variables
occurring in ¢, but not in its type o. This means that the term implicitly
depends on type arguments that are not accounted in the result type, i.e.
there are different type instances tf :: ¢ and ¢’ :: o with the same type.
This slightly pathological situation notoriously demands additional care.

A term abbreviation is a syntactic definition ¢, = ¢ of a closed term t of
type o, without any hidden polymorphism. A term abbreviation looks like
a constant in the syntax, but is expanded before entering the logical core.
Abbreviations are usually reverted when printing terms, using ¢t — ¢, as
rules for higher-order rewriting.

Canonical operations on A-terms include afn-conversion: a-conversion
refers to capture-free renaming of bound variables; (G-conversion contracts an
abstraction applied to an argument term, substituting the argument in the
body: (Az. b)a becomes b[a/z]; n-conversion contracts vacuous application-
abstraction: Az. f x becomes f, provided that the bound variable does not
occur in f.

Terms are normally treated modulo a-conversion, which is implicit in
the de-Bruijn representation. Names for bound variables in abstractions are
maintained separately as (meaningless) comments, mostly for parsing and
printing. Full af8n-conversion is commonplace in various standard operations
(§2.4) that are based on higher-order unification and matching.

CHAPTER 2. PRIMITIVE LOGIC 23

Reference

type term

op aconv: term * term -> bool

map_types: (typ -> typ) -> term -> term

fold_types: (typ -> ’a -> ’a) -> term -> ’a -> ’a
map_aterms: (term -> term) -> term -> term
fold_aterms: (term -> ’a -> ’a) -> term -> ’a -> ’a

fastype_of: term -> typ
lambda: term -> term -> term
betapply: term * term -> term
Sign.declare_const: (binding * typ) * mixfix ->
theory -> term * theory
Sign.add_abbrev: string -> binding * term ->
theory -> (term * term) * theory
Sign.const_typargs: theory -> string * typ -> typ list
Sign.const_instance: theory -> string * typ list -> typ

term represents de-Bruijn terms, with comments in abstractions, and explicitly
named free variables and constants; this is a datatype with constructors
Bound, Free, Var, Const, Abs, op $.

t aconv u checks a-equivalence of two terms. This is the basic equality relation on
type term; raw datatype equality should only be used for operations related
to parsing or printing!

map_types f t applies the mapping f to all types occurring in t.

fold_types f t iterates the operation f over all occurrences of types in t; the
term structure is traversed from left to right.

map_aterms f ¢ applies the mapping f to all atomic terms (Bound, Free, Var,
Const) occurring in t.

fold_aterms f t iterates the operation f over all occurrences of atomic terms
(Bound, Free, Var, Const) in t; the term structure is traversed from left to
right.

fastype_of ¢ determines the type of a well-typed term. This operation is rela-
tively slow, despite the omission of any sanity checks.

lambda a b produces an abstraction Aa. b, where occurrences of the atomic term
a in the body b are replaced by bound variables.

betapply (¢, u) produces an application ¢ u, with topmost (-conversion if ¢ is an
abstraction.

Sign.declare_const ((¢, o), mz) declares a new constant ¢ :: ¢ with optional
mixfix syntax.

CHAPTER 2. PRIMITIVE LOGIC 24

Sign.add_abbrev print_mode (c, t) introduces a new term abbreviation ¢ = t.

Sign.const_typargs thy (¢, 7) and Sign.const_instance thy (c, [T1, ..., Ty))
convert between two representations of polymorphic constants: full type
instance vs. compact type arguments form.

2.3 Theorems

A proposition is a well-typed term of type prop, a theorem is a proven propo-
sition (depending on a context of hypotheses and the background theory).
Primitive inferences include plain Natural Deduction rules for the primary
connectives A\ and = of the framework. There is also a builtin notion of
equality /equivalence =.

2.3.1 Primitive connectives and rules

The theory Pure contains constant declarations for the primitive connectives
N\, =, and = of the logical framework, see figure 2.1. The derivability judg-
ment Ay, ..., A, F B is defined inductively by the primitive inferences given
in figure 2.2, with the global restriction that the hypotheses must not contain
any schematic variables. The builtin equality is conceptually axiomatized as
shown in figure 2.3, although the implementation works directly with derived
inferences.

all :: (o = prop) = prop universal quantification (binder A)
= 1 prop = prop = prop implication (right associative infix)
= a= «a= prop equality relation (infix)

Figure 2.1: Primitive connectives of Pure

The introduction and elimination rules for A and = are analogous to
formation of dependently typed A-terms representing the underlying proof
objects. Proof terms are irrelevant in the Pure logic, though; they can-
not occur within propositions. The system provides a runtime option to
record explicit proof terms for primitive inferences. Thus all three levels of
A-calculus become explicit: = for terms, and A/== for proofs (cf. [2]).

Observe that locally fixed parameters (as in A-intro) need not be recorded
in the hypotheses, because the simple syntactic types of Pure are always

CHAPTER 2. PRIMITIVE LOGIC 25

Aeo

i (aziom) A A (assume)
C'Fblz] z¢T , I'F Az. b[z] ‘
TF Ao bfa] NI gy (Aelim)
L+ B (=>-intro) LiedA—=258 T, 4 (=-elim)

'-AFr A= B nurly,k-nB

Figure 2.2: Primitive inferences of Pure

F (Az. blz]) a = b[a] [-conversion
Fo=ux reflexivity
Fxr=y=— Px=— Py substitution
F(Nz. fer=gz) = f=g extensionality

F(A= B) = (B= A) = A =B logical equivalence

Figure 2.3: Conceptual axiomatization of Pure equality

inhabitable. “Assumptions” z :: 7 for type-membership are only present as
long as some z, occurs in the statement body.?

The axiomatization of a theory is implicitly closed by forming all instances
of type and term variables: - A6 holds for any substitution instance of an
axiom - A. By pushing substitutions through derivations inductively, we also
get admissible generalize and instantiate rules as shown in figure 2.4.

I'Bla] a¢l TFDBz] 2¢T li
'+ B[?a] T+ B[?1] e
I'E B[?a] T & B|%] (instantiate)

TF B[r] TF B[

Figure 2.4: Admissible substitution rules

Note that instantiate does not require an explicit side-condition, because
[' may never contain schematic variables.

2This is the key difference to “AHOL” in the PTS framework [1], where hypotheses z :
A are treated uniformly for propositions and types.

CHAPTER 2. PRIMITIVE LOGIC 26

In principle, variables could be substituted in hypotheses as well, but this
would disrupt the monotonicity of reasoning: deriving I'0 + Bf from I' - B
is correct, but I'0 O T' does not necessarily hold: the result belongs to a
different proof context.

An oracle is a function that produces axioms on the fly. Logically, this
is an instance of the aziom rule (figure 2.2), but there is an operational
difference. The system always records oracle invocations within derivations
of theorems by a unique tag.

Axiomatizations should be limited to the bare minimum, typically as part
of the initial logical basis of an object-logic formalization. Later on, theories
are usually developed in a strictly definitional fashion, by stating only certain
equalities over new constants.

A simple definition consists of a constant declaration ¢ :: o together
with an axiom F ¢ = ¢, where ¢ :: ¢ is a closed term without any hidden
polymorphism. The RHS may depend on further defined constants, but not
c itself. Definitions of functions may be presented as ¢ ¥ = t instead of the
puristic ¢ = A\Z. t.

An overloaded definition consists of a collection of axioms for the same
constant, with zero or one equations ¢((@)x) = t for each type constructor
k (for distinct variables @). The RHS may mention previously defined con-
stants as above, or arbitrary constants d(«;) for some «; projected from a.
Thus overloaded definitions essentially work by primitive recursion over the
syntactic structure of a single type argument.

Reference

type ctyp
type cterm

Thm.ctyp_of: theory -> typ -> ctyp
Thm.cterm_of: theory -> term -> cterm

type thm
proofs: int Unsynchronized.ref
Thm.assume: cterm -> thm
Thm.forall_intr: cterm -> thm -> thm
Thm.forall_elim: cterm -> thm -> thm
Thm.implies_intr: cterm -> thm -> thm
Thm.implies_elim: thm -> thm -> thm
Thm.generalize: string list * string list -> int -> thm -> thm
Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
Thm.add_axiom: binding * term -> theory -> (string * thm) * theory
Thm.add_oracle: binding * (’a -> cterm) -> theory
-> (string * (’a -> thm)) * theory
Thm.add_def: bool -> bool -> binding * term -> theory -> (string * thm) * theory

CHAPTER 2. PRIMITIVE LOGIC 27

Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory

ctyp and cterm represent certified types and terms, respectively. These are
abstract datatypes that guarantee that its values have passed the full well-
formedness (and well-typedness) checks, relative to the declarations of type
constructors, constants etc. in the theory.

Thm.ctyp_of thy 7 and Thm.cterm_of thy ¢ explicitly checks types and terms,
respectively. This also involves some basic normalizations, such expansion
of type and term abbreviations from the theory context.

Re-certification is relatively slow and should be avoided in tight reasoning
loops. There are separate operations to decompose certified entities (includ-
ing actual theorems).

thm represents proven propositions. This is an abstract datatype that guarantees
that its values have been constructed by basic principles of the Thm module.
Every thm value contains a sliding back-reference to the enclosing theory, cf.
81.1.1.

proofs specifies the detail of proof recording within thm values: 0 records only
the names of oracles, 1 records oracle names and propositions, 2 additionally
records full proof terms. Officially named theorems that contribute to a
result are recorded in any case.

Thm.assume, Thm.forall_intr, Thm.forall_elim, Thm.implies_intr, and
Thm.implies_elim correspond to the primitive inferences of figure 2.2.

Thm.generalize (@, &) corresponds to the generalize rules of figure 2.4. Here col-
lections of type and term variables are generalized simultaneously, specified
by the given basic names.

Thm.instantiate (@, Z,) corresponds to the instantiate rules of figure 2.4. Type
variables are substituted before term variables. Note that the types in Z;
refer to the instantiated versions.

Thm.add_axiom (name, A) thy declares an arbitrary proposition as axiom, and
retrieves it as a theorem from the resulting theory, cf. aziom in figure 2.2.
Note that the low-level representation in the axiom table may differ slightly
from the returned theorem.

Thm.add_oracle (binding, oracle) produces a named oracle rule, essentially gen-
erating arbitrary axioms on the fly, cf. aziom in figure 2.2.

Thm.add_def unchecked overloaded (name, ¢ ¥ = t) states a definitional axiom
for an existing constant ¢. Dependencies are recorded via Theory.add_deps,
unless the unchecked option is set. Note that the low-level representation in
the axiom table may differ slightly from the returned theorem.

CHAPTER 2. PRIMITIVE LOGIC 28

Theory.add_deps name c; d, declares dependencies of a named specification for
constant c,, relative to existing specifications for constants d,.

2.3.2 Auxiliary definitions

Theory Pure provides a few auxiliary definitions, see figure 2.5. These spe-
cial constants are normally not exposed to the user, but appear in internal
encodings.

conjunction :: prop = prop = prop (infix &&&)
FA&&& B=(NC. (A= B= (C) = ()

prop :: prop = prop (prefix #, suppressed)
#A=A

term :: o = prop (prefix TERM)
termz = (NA. A = A)

TYPE :: « itself (prefix TYPE)
(unspecified)

Figure 2.5: Definitions of auxiliary connectives

The introduction A = B = A &&& B, and eliminations (projections)
A &&& B = A and A &&& B = B are available as derived rules. Con-
junction allows to treat simultaneous assumptions and conclusions uniformly,
e.g. consider A = B = (C &&& D. In particular, the goal mechanism rep-
resents multiple claims as explicit conjunction internally, but this is refined
(via backwards introduction) into separate sub-goals before the user com-
mences the proof; the final result is projected into a list of theorems using
eliminations (cf. §3.1).

The prop marker (#) makes arbitrarily complex propositions appear as
atomic, without changing the meaning: I' = A and I" = # A are interchange-
able. See §3.1 for specific operations.

The term marker turns any well-typed term into a derivable proposition:
F TERM t holds unconditionally. Although this is logically vacuous, it allows
to treat terms and proofs uniformly, similar to a type-theoretic framework.

The TYPFE constructor is the canonical representative of the unspecified
type «a itself; it essentially injects the language of types into that of terms.
There is specific notation TYPE(7) for TYPE . jser. Although being devoid
of any particular meaning, the term TYPE(7) accounts for the type 7 within
the term language. In particular, TYPFE(«) may be used as formal argument

CHAPTER 2. PRIMITIVE LOGIC 29

in primitive definitions, in order to circumvent hidden polymorphism (cf.
§2.2). For example, ¢ TYPE(«) = Ala] defines ¢ :: « itself = prop in terms
of a proposition A that depends on an additional type argument, which is
essentially a predicate on types.

Reference

Conjunction.intr: thm -> thm -> thm
Conjunction.elim: thm -> thm * thm
Drule.mk_term: cterm -> thm
Drule.dest_term: thm -> cterm
Logic.mk_type: typ —-> term
Logic.dest_type: term -> typ

Conjunction.intr derives A &&& B from A and B.
Conjunction.elim derives A and B from A &&& B.
Drule.mk_term derives TERM t.

Drule.dest_term recovers term ¢ from TERM t.
Logic.mk_type 7 produces the term TYPE(T).

Logic.dest_type TYPE(T) recovers the type 7.

2.4 Object-level rules

The primitive inferences covered so far mostly serve foundational purposes.
User-level reasoning usually works via object-level rules that are represented
as theorems of Pure. Composition of rules involves backchaining, higher-order
unification modulo afBn-conversion of A-terms, and so-called lifting of rules
into a context of A\ and = connectives. Thus the full power of higher-order
Natural Deduction in Isabelle/Pure becomes readily available.

2.4.1 Hereditary Harrop Formulae

The idea of object-level rules is to model Natural Deduction inferences in the
style of Gentzen [4], but we allow arbitrary nesting similar to [10]. The most
basic rule format is that of a Horn Clause:

A .o Ay
A

CHAPTER 2. PRIMITIVE LOGIC 30

where A, Ay, ..., A, are atomic propositions of the framework, usually of
the form Trueprop B, where B is a (compound) object-level statement. This
object-level inference corresponds to an iterated implication in Pure like this:

Al — ... A, — A

As an example consider conjunction introduction: A = B = A A B. Any
parameters occurring in such rule statements are conceptionally treated as
arbitrary:

ANe1 oo T Ay oy, — . AT oy, — ATy,

Nesting of rules means that the positions of A; may again hold compound
rules, not just atomic propositions. Propositions of this format are called
Hereditary Harrop Formulae in the literature [6]. Here we give an inductive
characterization as follows:

X set of variables
A set of atomic propositions
= Ax*. H* = A set of Hereditary Harrop Formulas

Thus we essentially impose nesting levels on propositions formed from A and
—. At each level there is a prefix of parameters and compound premises,
concluding an atomic proposition. Typical examples are —-introduction
(A = B) = A — B or mathematical induction P 0 = (An. P n —
P (Suc n)) = P n. Even deeper nesting occurs in well-founded induction
(Az. (A\y. y < 2 = P y) = P z) = P z, but this already marks the
limit of rule complexity that is usually seen in practice.

Regular user-level inferences in Isabelle/Pure always maintain the follow-
ing canonical form of results:

e Normalization by (4 = (Az. B z)) = (Az. A = B z), which is a
theorem of Pure, means that quantifiers are pushed in front of implica-
tion at each level of nesting. The normal form is a Hereditary Harrop
Formula.

e The outermost prefix of parameters is represented via schematic vari-
ables: instead of AZ. H %= AZwehave H %7 = A ?7. Note that
this representation looses information about the order of parameters,
and vacuous quantifiers vanish automatically.

CHAPTER 2. PRIMITIVE LOGIC 31

Reference

Simplifier.norm_hhf: thm -> thm

Simplifier.norm_hhf thm normalizes the given theorem according to the canon-
ical form specified above. This is occasionally helpful to repair some low-level
tools that do not handle Hereditary Harrop Formulae properly.

2.4.2 Rule composition

The rule calculus of Isabelle/Pure provides two main inferences: resolution
(i.e. back-chaining of rules) and assumption (i.e. closing a branch), both
modulo higher-order unification. There are also combined variants, notably
elim_resolution and dest_resolution.

To understand the all-important resolution principle, we first consider
raw composition (modulo higher-order unification with substitution 6):

A— B B'— C B# = B%
A0 — 00

Here the conclusion of the first rule is unified with the premise of the second;
the resulting rule instance inherits the premises of the first and conclusion
of the second. Note that C can again consist of iterated implications. We
can also permute the premises of the second rule back-and-forth in order
to compose with B’ in any position (subsequently we shall always refer to
position 1 w.l.o.g.).

In composition the internal structure of the common part B and B’ is
not taken into account. For proper resolution we require B to be atomic,
and explicitly observe the structure AZ. H Z = B’ 7 of the premise of
the second rule. The idea is to adapt the first rule by “lifting” it into this
context, by means of iterated application of the following inferences:

(composition)

A— B .)
(B — 4) — (H — B) (imp-Uft)

(all_lift)

By combining raw composition with lifting, we get full resolution as follows:

A ?3d=— B ?3d
(AZ. HT = B'%) = C
(\Z. B (7@ %))0 = B (resolution)
- = resolution
(NZ. HT = A (73 7)) = (8

CHAPTER 2. PRIMITIVE LOGIC 32

Continued resolution of rules allows to back-chain a problem towards more
and sub-problems. Branches are closed either by resolving with a rule of 0
premises, or by producing a “short-circuit” within a solved situation (again
modulo unification):

(NZ. HZ = AT) = C A0 = H,0 (for some i)
co

(assumption)

FIXME elim_resolution, dest_resolution

Reference

op RS: thm * thm -> thm
op OF: thm * thm list -> thm

rule; RS rules resolves rule; with rules according to the resolution principle
explained above. Note that the corresponding rule attribute in the Isar
language is called THEN.

rule OF rules resolves a list of rules with the first rule, addressing its premises
1, ..., length rules (operating from last to first). This means the newly
emerging premises are all concatenated, without interfering. Also note that
compared to RS, the rule argument order is swapped: rule; RS rules =
rulea OF [ruley].

Chapter 3

Tactical reasoning

Tactical reasoning works by refining an initial claim in a backwards fashion,
until a solved form is reached. A goal consists of several subgoals that need
to be solved in order to achieve the main statement; zero subgoals means
that the proof may be finished. A tactic is a refinement operation that maps
a goal to a lazy sequence of potential successors. A tactical is a combinator
for composing tactics.

3.1 Goals

Isabelle/Pure represents a goal as a theorem stating that the subgoals imply
the main goal: Ay = ... = A,, = (. The outermost goal structure is
that of a Horn Clause: i.e. an iterated implication without any quantifiers!.
For n = 0 a goal is called “solved”.

The structure of each subgoal A; is that of a general Hereditary Harrop
Formula Azy ... Azy. Hi = ... = H,, = B. Here x4, ..., x;, are goal
parameters, i.e. arbitrary-but-fixed entities of certain types, and H,, ...,
H,, are goal hypotheses, i.e. facts that may be assumed locally. Together,
this forms the goal context of the conclusion B to be established. The goal
hypotheses may be again arbitrary Hereditary Harrop Formulas, although
the level of nesting rarely exceeds 1-2 in practice.

The main conclusion C' is internally marked as a protected proposition,
which is represented explicitly by the notation # C' here. This ensures that
the decomposition into subgoals and main conclusion is well-defined for ar-
bitrarily structured claims.

Basic goal management is performed via the following Isabelle /Pure rules:

'Recall that outermost Az. p[z] is always represented via schematic variables in the
body: ¢[?z]. These variables may get instantiated during the course of reasoning.

33

CHAPTER 3. TACTICAL REASONING 34

The following low-level variants admit general reasoning with protected
propositions:

Al = ... = A, = #C
Al — ...—= A, = C

(protect) (conclude)

Ned
4C

Reference

Goal.init: cterm -> thm

Goal.finish: Proof.context -> thm -> thm
Goal.protect: thm -> thm

Goal.conclude: thm -> thm

Goal.init C initializes a tactical goal from the well-formed proposition C.

Goal.finish ctxt thm checks whether theorem thm is a solved goal (no subgoals),
and concludes the result by removing the goal protection. The context is
only required for printing error messages.

Goal.protect thm protects the full statement of theorem thm.

Goal.conclude thm removes the goal protection, even if there are pending sub-
goals.

3.2 Tactics

A tactic is a function goal — goal** that maps a given goal state (represented
as a theorem, cf. §3.1) to a lazy sequence of potential successor states. The
underlying sequence implementation is lazy both in head and tail, and is
purely functional in not supporting memoing.?

An empty result sequence means that the tactic has failed: in a compound
tactic expression other tactics might be tried instead, or the whole refinement
step might fail outright, producing a toplevel error message in the end. When
implementing tactics from scratch, one should take care to observe the basic
protocol of mapping regular error conditions to an empty result; only serious
faults should emerge as exceptions.

2The lack of memoing and the strict nature of SML requires some care when working
with low-level sequence operations, to avoid duplicate or premature evaluation of results.
It also means that modified runtime behavior, such as timeout, is very hard to achieve for
general tactics.

CHAPTER 3. TACTICAL REASONING 35

By enumerating multiple results, a tactic can easily express the poten-
tial outcome of an internal search process. There are also combinators for
building proof tools that involve search systematically, see also §3.3.

As explained before, a goal state essentially consists of a list of subgoals
that imply the main goal (conclusion). Tactics may operate on all subgoals or
on a particularly specified subgoal, but must not change the main conclusion
(apart from instantiating schematic goal variables).

Tactics with explicit subgoal addressing are of the form int — tactic and
may be applied to a particular subgoal (counting from 1). If the subgoal
number is out of range, the tactic should fail with an empty result sequence,
but must not raise an exception!

Operating on a particular subgoal means to replace it by an interval
of zero or more subgoals in the same place; other subgoals must not be
affected, apart from instantiating schematic variables ranging over the whole
goal state.

A common pattern of composing tactics with subgoal addressing is to try
the first one, and then the second one only if the subgoal has not been solved
yet. Special care is required here to avoid bumping into unrelated subgoals
that happen to come after the original subgoal. Assuming that there is only
a single initial subgoal is a very common error when implementing tactics!

Tactics with internal subgoal addressing should expose the subgoal index
as int argument in full generality; a hardwired subgoal 1 is not acceptable.

The main well-formedness conditions for proper tactics are summarized
as follows.

e General tactic failure is indicated by an empty result, only serious faults
may produce an exception.

e The main conclusion must not be changed, apart from instantiating
schematic variables.

e A tactic operates either uniformly on all subgoals, or specifically on a
selected subgoal (without bumping into unrelated subgoals).

e Range errors in subgoal addressing produce an empty result.

Some of these conditions are checked by higher-level goal infrastructure
(84.3); others are not checked explicitly, and violating them merely results
in ill-behaved tactics experienced by the user (e.g. tactics that insist in be-
ing applicable only to singleton goals, or prevent composition via standard
tacticals).

CHAPTER 3. TACTICAL REASONING 36

Reference

type tactic = thm -> thm Seq.seq
no_tac: tactic

all_tac: tactic

print_tac: string -> tactic

PRIMITIVE: (thm -> thm) -> tactic

SUBGOAL: (term * int -> tactic) -> int -> tactic
CSUBGOAL: (cterm * int -> tactic) -> int -> tactic

tactic represents tactics. The well-formedness conditions described above need
to be observed. See also ~~/src/Pure/General/seq.ML for the underlying
implementation of lazy sequences.

int -> tactic represents tactics with explicit subgoal addressing, with well-
formedness conditions as described above.

no_tac is a tactic that always fails, returning the empty sequence.

all_tac is a tactic that always succeeds, returning a singleton sequence with
unchanged goal state.

print_tac message is like all_tac, but prints a message together with the goal
state on the tracing channel.

PRIMITIVE rule turns a primitive inference rule into a tactic with unique result.
Exception THM is considered a regular tactic failure and produces an empty
result; other exceptions are passed through.

SUBGOAL (fn (subgoal, i) => tactic) is the most basic form to produce a tactic
with subgoal addressing. The given abstraction over the subgoal term and
subgoal number allows to peek at the relevant information of the full goal
state. The subgoal range is checked as required above.

CSUBGOAL is similar to SUBGOAL, but passes the subgoal as cterm instead of raw
term. This avoids expensive re-certification in situations where the subgoal
is used directly for primitive inferences.

3.2.1 Resolution and assumption tactics

Resolution is the most basic mechanism for refining a subgoal using a theo-
rem as object-level rule. Elim-resolution is particularly suited for elimination
rules: it resolves with a rule, proves its first premise by assumption, and fi-
nally deletes that assumption from any new subgoals. Destruct-resolution
is like elim-resolution, but the given destruction rules are first turned into

CHAPTER 3. TACTICAL REASONING 37

canonical elimination format. Forward-resolution is like destruct-resolution,
but without deleting the selected assumption. The r/e/d/f naming conven-
tion is maintained for several different kinds of resolution rules and tactics.

Assumption tactics close a subgoal by unifying some of its premises
against its conclusion.

All the tactics in this section operate on a subgoal designated by a positive
integer. Other subgoals might be affected indirectly, due to instantiation of
schematic variables.

There are various sources of non-determinism, the tactic result sequence
enumerates all possibilities of the following choices (if applicable):

1. selecting one of the rules given as argument to the tactic;

2. selecting a subgoal premise to eliminate, unifying it against the first
premise of the rule;

3. unifying the conclusion of the subgoal to the conclusion of the rule.

Recall that higher-order unification may produce multiple results that are
enumerated here.

Reference

resolve_tac: thm list -> int -> tactic
eresolve_tac: thm list -> int -> tactic
dresolve_tac: thm list -> int -> tactic
forward_tac: thm list -> int -> tactic

assume_tac: int -> tactic
eq_assume_tac: int -> tactic

match_tac: thm list -> int -> tactic
ematch_tac: thm list -> int -> tactic
dmatch_tac: thm list -> int -> tactic

resolve_tac thms i refines the goal state using the given theorems, which should
normally be introduction rules. The tactic resolves a rule’s conclusion with
subgoal i, replacing it by the corresponding versions of the rule’s premises.

eresolve_tac thms i performs elim-resolution with the given theorems, which
should normally be elimination rules.

dresolve_tac thms ¢ performs destruct-resolution with the given theorems,
which should normally be destruction rules. This replaces an assumption by
the result of applying one of the rules.

CHAPTER 3. TACTICAL REASONING 38

forward_tac is like dresolve_tac except that the selected assumption is not
deleted. It applies a rule to an assumption, adding the result as a new
assumption.

assume_tac i attempts to solve subgoal i by assumption (modulo higher-order
unification).

eq_assume_tac is similar to assume_tac, but checks only for immediate «-
convertibility instead of using unification. It succeeds (with a unique next
state) if one of the assumptions is equal to the subgoal’s conclusion. Since
it does not instantiate variables, it cannot make other subgoals unprovable.

match_tac, ematch_tac, and dmatch_tac are similar to resolve_tac,
eresolve_tac, and dresolve_tac, respectively, but do not instantiate
schematic variables in the goal state.

Flexible subgoals are not updated at will, but are left alone. Strictly speak-
ing, matching means to treat the unknowns in the goal state as constants;
these tactics merely discard unifiers that would update the goal state.

3.2.2 Explicit instantiation within a subgoal context

The main resolution tactics (§3.2.1) use higher-order unification, which works
well in many practical situations despite its daunting theoretical properties.
Nonetheless, there are important problem classes where unguided higher-
order unification is not so useful. This typically involves rules like universal
elimination, existential introduction, or equational substitution. Here the
unification problem involves fully flexible ?P ?x schemes, which are hard to
manage without further hints.

By providing a (small) rigid term for 2z explicitly, the remaining unifica-
tion problem is to assign a (large) term to ?P, according to the shape of the
given subgoal. This is sufficiently well-behaved in most practical situations.

Isabelle provides separate versions of the standard r/e/d/f resolution
tactics that allow to provide explicit instantiations of unknowns of the given
rule, wrt. terms that refer to the implicit context of the selected subgoal.

An instantiation consists of a list of pairs of the form (%z, t), where 7z
is a schematic variable occurring in the given rule, and ¢ is a term from the
current proof context, augmented by the local goal parameters of the selected
subgoal; cf. the focus operation described in §4.1.

Entering the syntactic context of a subgoal is a brittle operation, because
its exact form is somewhat accidental, and the choice of bound variable names
depends on the presence of other local and global names. Explicit renaming

CHAPTER 3. TACTICAL REASONING 39

of subgoal parameters prior to explicit instantiation might help to achieve a
bit more robustness.

Type instantiations may be given as well, via pairs like (?’a, 7). Type
instantiations are distinguished from term instantiations by the syntactic
form of the schematic variable. Types are instantiated before terms are.
Since term instantiation already performs simple type-inference, so explicit
type instantiations are seldom necessary.

Reference

res_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic
eres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic
dres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic
forw_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic

rename_tac: string list -> int -> tactic

res_inst_tac ctzt insts thm ¢ instantiates the rule thm with the instantiations
insts, as described above, and then performs resolution on subgoal 1.

eres_inst_tac is like res_inst_tac, but performs elim-resolution.
dres_inst_tac is like res_inst_tac, but performs destruct-resolution.

forw_inst_tac is like dres_inst_tac except that the selected assumption is not
deleted.

rename_tac names i renames the innermost parameters of subgoal ¢ according
to the provided names (which need to be distinct indentifiers).

For historical reasons, the above instantiation tactics take unparsed string
arguments, which makes them hard to use in general ML code. The slightly
more advanced Subgoal.FOCUS combinator of §4.3 allows to refer to internal goal
structure with explicit context management.

3.3 Tacticals

A tactical is a functional combinator for building up complex tactics from
simpler ones. Typical tactical perform sequential composition, disjunction
(choice), iteration, or goal addressing. Various search strategies may be
expressed via tacticals.

FIXME

Chapter 4

Structured proofs

4.1 Variables

Any variable that is not explicitly bound by A-abstraction is considered as
“free”. Logically, free variables act like outermost universal quantification at
the sequent level: Ay(z), ..., A,(z) = B(z) means that the result holds for
all values of x. Free variables for terms (not types) can be fully internalized
into the logic: = B(z) and F Az. B(z) are interchangeable, provided that
z does not occur elsewhere in the context. Inspecting F Az. B(z) more
closely, we see that inside the quantifier, z is essentially “arbitrary, but fixed”,
while from outside it appears as a place-holder for instantiation (thanks to
A elimination).

The Pure logic represents the idea of variables being either inside or
outside the current scope by providing separate syntactic categories for fized
variables (e.g. x) vs. schematic variables (e.g. ?z). Incidently, a universal
result F Az. B(z) has the HHF normal form B(?z), which represents its
generality without requiring an explicit quantifier. The same principle works
for type variables: = B(?«) represents the idea of “F V. B(a)” without
demanding a truly polymorphic framework.

Additional care is required to treat type variables in a way that facilitates
type-inference. In principle, term variables depend on type variables, which
means that type variables would have to be declared first. For example, a
raw type-theoretic framework would demand the context to be constructed
in stages as follows: I' = a: type, z: «, a: A(z,).

We allow a slightly less formalistic mode of operation: term variables x
are fixed without specifying a type yet (essentially all potential occurrences
of some instance z, are fixed); the first occurrence of z within a specific
term assigns its most general type, which is then maintained consistently
in the context. The above example becomes I' = z: term, a: type, A(z,),
where type « is fixed after term x, and the constraint z :: « is an implicit
consequence of the occurrence of z,, in the subsequent proposition.

This twist of dependencies is also accommodated by the reverse operation
of exporting results from a context: a type variable « is considered fixed as

40

CHAPTER 4. STRUCTURED PROOFS 41

long as it occurs in some fixed term variable of the context. For example,
exporting z: term, a: type - x, = z, produces in the first step z: term z,
= 1z, for fixed o, and only in the second step + 7z, = %z, for schematic
?r and ?a.

The Isabelle/Isar proof context manages the gory details of term vs. type
variables, with high-level principles for moving the frontier between fixed and
schematic variables.

The add_fizes operation explictly declares fixed variables; the declare_
term operation absorbs a term into a context by fixing new type variables
and adding syntactic constraints.

The export operation is able to perform the main work of generalizing
term and type variables as sketched above, assuming that fixing variables
and terms have been declared properly.

There import operation makes a generalized fact a genuine part of the
context, by inventing fixed variables for the schematic ones. The effect can
be reversed by using export later, potentially with an extended context; the
result is equivalent to the original modulo renaming of schematic variables.

The focus operation provides a variant of import for nested propositions
(with explicit quantification): Az ... z,. B(z1, ..., ©,) is decomposed by
inventing fixed variables z1, ..., z, for the body.

Reference

Variable.add_fixes:

string list -> Proof.context -> string list * Proof.context
Variable.variant_fixes:

string list -> Proof.context -> string list * Proof.context
Variable.declare_term: term -> Proof.context -> Proof.context
Variable.declare_constraints: term -> Proof.context -> Proof.context
Variable.export: Proof.context -> Proof.context -> thm list -> thm list
Variable.polymorphic: Proof.context -> term list -> term list
Variable.import: bool -> thm list -> Proof.context ->

(((ctyp * ctyp) list * (cterm * cterm) list) * thm list) * Proof.context
Variable.focus: cterm —-> Proof.context ->

((string * cterm) list * cterm) * Proof.context

Variable.add_fixes zs ctxt fixes term variables zs, returning the resulting in-
ternal names. By default, the internal representation coincides with the
external one, which also means that the given variables must not be fixed
already. There is a different policy within a local proof body: the given
names are just hints for newly invented Skolem variables.

Variable.variant_fixes is similar to Variable.add_fixes, but always pro-
duces fresh variants of the given names.

CHAPTER 4. STRUCTURED PROOFS 42

Variable.declare_term ¢ ctxt declares term ¢ to belong to the context. This
automatically fixes new type variables, but not term variables. Syntactic
constraints for type and term variables are declared uniformly, though.

Variable.declare_constraints ¢ ctzt declares syntactic constraints from term
t, without making it part of the context yet.

Variable.export inner outer thms generalizes fixed type and term variables in
thms according to the difference of the inner and outer context, following
the principles sketched above.

Variable.polymorphic ctrt ts generalizes type variables in ts as far as pos-
sible, even those occurring in fixed term variables. The default policy of
type-inference is to fix newly introduced type variables, which is essentially
reversed with Variable.polymorphic: here the given terms are detached
from the context as far as possible.

Variable.import open thms ctzt invents fixed type and term variables for the
schematic ones occurring in thms. The open flag indicates whether the fixed
names should be accessible to the user, otherwise newly introduced names
are marked as “internal” (§1.2).

Variable.focus B decomposes the outermost /\ prefix of proposition B.

Examples

The following example (in theory Pure) shows how to work with fixed term
and type parameters work with type-inference.

typedecl foo — some basic type for testing purposes
ML {*
(*static compile-time context -- for testing only*)

val ctxt0 = @{context};

(*locally fixed parameters —-- no type assignment yetx)
val ([x, yl, ctxtl) = ctxtO |> Variable.add_fixes ["x", "y"];

(*t1: most general fixed type; t1’: most general arbitrary typex*)
val t1 = Syntax.read_term ctxtl "x";
val t1’ = singleton (Variable.polymorphic ctxtl) ti1;

(*term u enforces specific type assignment*)
val u = Syntax.read_term ctxtl "(x::foo) = y";

CHAPTER 4. STRUCTURED PROOFS 43

(*official declaration of u -- propagates constraints etc.*)

val ctxt2 = ctxtl |> Variable.declare_term u;

val t2 = Syntax.read_term ctxt2 "x"; (*x::foo is enforced*)
*}

In the above example, the starting context had been derived from the
toplevel theory, which means that fixed variables are internalized literally:
x is mapped again to x, and attempting to fix it again in the subsequent
context is an error. Alternatively, fixed parameters can be renamed explicitly
as follows:

ML {*

val ctxt0 = @{context};

val ([x1, x2, x3], ctxtl) =

ctxt0 [> Variable.variant_fixes ["x", "x", "x"];

*}
Subsequent ML code can now work with the invented names of x1, x2, x3,
without depending on the details on the system policy for introducing these
variants. Recall that within a proof body the system always invents fresh
“skolem constants”, e.g. as follows:

lemma PROP XXX
proof —
ML _prf {*
val ctxt0 = @{context};

val ([x1], ctxtl) = ctxtO [> Variable.add_fixes ["x"];
val ([x2], ctxt2) ctxtl |> Variable.add_fixes ["x"];
val ([x3], ctxt3) ctxt2 [|> Variable.add_fixes ["x"];

val ([y1, y2], ctxt4) =
ctxt3 [> Variable.variant_fixes ["y", "y"I;
*}

oops

In this situation Variable.add_fixes and Variable.variant_fixes are
very similar, but identical name proposals given in a row are only accepted
by the second version.

4.2 Assumptions

An assumption is a proposition that it is postulated in the current context.
Local conclusions may use assumptions as additional facts, but this imposes

CHAPTER 4. STRUCTURED PROOFS 44

implicit hypotheses that weaken the overall statement.

Assumptions are restricted to fixed non-schematic statements, i.e. all gen-
erality needs to be expressed by explicit quantifiers. Nevertheless, the result
will be in HHF normal form with outermost quantifiers stripped. For exam-
ple, by assuming Az :: a. Pz we get Az :: a. Pz F P 2z for schematic ?z of
fixed type a. Local derivations accumulate more and more explicit references
to hypotheses: Ay, ..., A, = B where Ay, ..., A, needs to be covered by the
assumptions of the current context.

The add_assms operation augments the context by local assumptions,
which are parameterized by an arbitrary export rule (see below).

The ezport operation moves facts from a (larger) inner context into a
(smaller) outer context, by discharging the difference of the assumptions as
specified by the associated export rules. Note that the discharged portion
is determined by the difference of contexts, not the facts being exported!
There is a separate flag to indicate a goal context, where the result is meant
to refine an enclosing sub-goal of a structured proof state.

The most basic export rule discharges assumptions directly by means of
the = introduction rule:

' B
' -A+F A= B

(==-intro)

The variant for goal refinements marks the newly introduced premises,
which causes the canonical Isar goal refinement scheme to enforce unification
with local premises within the goal:

B
T — AF #4 — B

(#=>-intro)

Alternative versions of assumptions may perform arbitrary transforma-
tions on export, as long as the corresponding portion of hypotheses is removed
from the given facts. For example, a local definition works by fixing z and

assuming x = t, with the following export rule to reverse the effect:

I'FBz
- (z=t)F Bt

(=-expand)

This works, because the assumption z = ¢ was introduced in a context with
x being fresh, so z does not occur in I' here.

CHAPTER 4. STRUCTURED PROOFS 45

Reference

type Assumption.export
Assumption.assume: cterm -> thm
Assumption.add_assms: Assumption.export ->

cterm list -> Proof.context -> thm list * Proof.context
Assumption.add_assumes:

cterm list -> Proof.context -> thm list * Proof.context
Assumption.export: bool -> Proof.context -> Proof.context -> thm -> thm

Assumption.export represents arbitrary export rules, which is any function of
type bool -> cterm list -> thm -> thm, where the bool indicates goal
mode, and the cterm list the collection of assumptions to be discharged
simultaneously.

Assumption.assume A turns proposition A into a primitive assumption A - A’,
where the conclusion A’is in HHF normal form.

Assumption.add_assms r As augments the context by assumptions As with ex-
port rule r. The resulting facts are hypothetical theorems as produced by
the raw Assumption.assume.

Assumption.add_assumes As is a special case of Assumption.add_assms where
the export rule performs =--intro or #==--intro, depending on goal mode.

Assumption.export is_goal inner outer thm exports result thm from the the in-
ner context back into the outer one; is_goal = true means this is a goal con-
text. The result is in HHF normal form. Note that ProofContext.export
combines Variable.export and Assumption.export in the canonical way.

Examples

The following example demonstrates how rules can be derived by building
up a context of assumptions first, and exporting some local fact afterwards.
We refer to Pure equality here for testing purposes.

ML {*
(*static compile-time context -- for testing only*)
val ctxt0 = @{context};

val ([eq], ctxtl) =
ctxt0 [> Assumption.add_assumes [@{cprop "x = y"}I;

val eq’ = Thm.symmetric eq;

(*back to original context -- discharges assumption*)

CHAPTER 4. STRUCTURED PROOFS 46

val r = Assumption.export false ctxtl ctxt0O eq’;
*}
Note that the variables of the resulting rule are not generalized. This
would have required to fix them properly in the context beforehand, and
export wrt. variables afterwards (cf. Variable.export or the combined
ProofContext.export).

4.3 Structured goals and results

Local results are established by monotonic reasoning from facts within a con-
text. This allows common combinations of theorems, e.g. via A/= elimina-
tion, resolution rules, or equational reasoning, see §2.3. Unaccounted context
manipulations should be avoided, notably raw A /= introduction or ad-hoc
references to free variables or assumptions not present in the proof context.

The SUBPROQOF combinator allows to structure a tactical proof recur-
sively by decomposing a selected sub-goal: (Az. A(z) = B(z)) = ... is
turned into B(z) = ... after fixing = and assuming A(z). This means the
tactic needs to solve the conclusion, but may use the premise as a local fact,
for locally fixed variables.

The family of FOCUS combinators is similar to SUBPROOF, but allows
to retain schematic variables and pending subgoals in the resulting goal state.

The prove operation provides an interface for structured backwards rea-
soning under program control, with some explicit sanity checks of the result.
The goal context can be augmented by additional fixed variables (cf. §4.1)
and assumptions (cf. §4.2), which will be available as local facts during the
proof and discharged into implications in the result. Type and term variables
are generalized as usual, according to the context.

The obtain operation produces results by eliminating existing facts by
means of a given tactic. This acts like a dual conclusion: the proof demon-
strates that the context may be augmented by parameters and assumptions,
without affecting any conclusions that do not mention these parameters. See
also [11] for the user-level obtain and guess elements. Final results, which
may not refer to the parameters in the conclusion, need to exported explicitly
into the original context.

CHAPTER 4. STRUCTURED PROOFS 47

Reference

SUBPROOF: (Subgoal.focus -> tactic) -> Proof.context -> int -> tactic

Subgoal .FOCUS: (Subgoal.focus -> tactic) -> Proof.context -> int -> tactic
Subgoal .FOCUS_PREMS: (Subgoal.focus -> tactic) -> Proof.context -> int -> tactic
Subgoal .FOCUS_PARAMS: (Subgoal.focus -> tactic) -> Proof.context -> int -> tactic

Goal.prove: Proof.context -> string list -> term list -> term ->
({prems: thm list, context: Proof.context} -> tactic) -> thm
Goal.prove_multi: Proof.context -> string list -> term list -> term list ->
({prems: thm list, context: Proof.context} -> tactic) -> thm list

Obtain.result: (Proof.context -> tactic) ->
thm list -> Proof.context -> ((string * cterm) list * thm list) * Proof.context

SUBPROOF tac ctat i decomposes the structure of the specified sub-goal, producing
an extended context and a reduced goal, which needs to be solved by the
given tactic. All schematic parameters of the goal are imported into the
context as fixed ones, which may not be instantiated in the sub-proof.

Subgoal .FOCUS, Subgoal . FOCUS_PREMS, and Subgoal.FOCUS_PARAMS are similar
to SUBPROOF, but are slightly more flexible: only the specified parts of the
subgoal are imported into the context, and the body tactic may introduce
new subgoals and schematic variables.

Goal.prove ctxt xs As C tac states goal C in the context augmented by fixed
variables xzs and assumptions As, and applies tactic tac to solve it. The
latter may depend on the local assumptions being presented as facts. The
result is in HHF normal form.

Goal.prove_multi is simular to Goal.prove, but states several conclusions
simultaneously. The goal is encoded by means of Pure conjunction;
Goal.conjunction_tac will turn this into a collection of individual sub-
goals.

Obtain.result tac thms ctat eliminates the given facts using a tactic, which
results in additional fixed variables and assumptions in the context. Final
results need to be exported explicitly.

Chapter 5

Concrete syntax and
type-checking

FIXME

5.1 Parsing and printing
FIXME

5.2 Checking and unchecking

48

Chapter 6

Isar language elements

The primary Isar language consists of three main categories of language ele-
ments:

1. Proof commands
2. Proof methods

3. Attributes

6.1 Proof commands

FIXME

6.2 Proof methods

FIXME

6.3 Attributes

FIXME

49

Chapter 7

Local theory specifications

A local theory combines aspects of both theory and proof context (cf. §1.1),
such that definitional specifications may be given relatively to parameters
and assumptions. A local theory is represented as a regular proof context,
augmented by administrative data about the target context.

The target is usually derived from the background theory by adding local
fix and assume elements, plus suitable modifications of non-logical context
data (e.g. a special type-checking discipline). Once initialized, the target
is ready to absorb definitional primitives: define for terms and note for
theorems. Such definitions may get transformed in a target-specific way, but
the programming interface hides such details.

Isabelle/Pure provides target mechanisms for locales, type-classes, type-
class instantiations, and general overloading. In principle, users can imple-
ment new targets as well, but this rather arcane discipline is beyond the scope
of this manual. In contrast, implementing derived definitional packages to
be used within a local theory context is quite easy: the interfaces are even
simpler and more abstract than the underlying primitives for raw theories.

Many definitional packages for local theories are available in Isabelle.
Although a few old packages only work for global theories, the local theory
interface is already the standard way of implementing definitional packages
in Isabelle.

7.1 Definitional elements

There are separate elements define ¢ = ¢ for terms, and note b = thm for
theorems. Types are treated implicitly, according to Hindley-Milner disci-
pline (cf. §4.1). These definitional primitives essentially act like let-bindings
within a local context that may already contain earlier let-bindings and some
initial A-bindings. Thus we gain dependent definitions that are relative to
an initial axiomatic context. The following diagram illustrates this idea of
axiomatic elements versus definitional elements:

30

CHAPTER 7. LOCAL THEORY SPECIFICATIONS 51

A-binding let-binding
types fixed « arbitrary (3
terms fixz T define c = ¢
theorems | assume a: A | note b = (B)

A user package merely needs to produce suitable define and note ele-
ments according to the application. For example, a package for inductive
definitions might first define a certain predicate as some fixed-point con-
struction, then note a proven result about monotonicity of the functor in-
volved here, and then produce further derived concepts via additional define
and note elements.

The cumulative sequence of define and note produced at package run-
time is managed by the local theory infrastructure by means of an auziliary
context. Thus the system holds up the impression of working within a fully
abstract situation with hypothetical entities: define ¢ = t always results in
a literal fact (¢ =), where ¢ is a fixed variable ¢. The details about global
constants, name spaces etc. are handled internally.

So the general structure of a local theory is a sandwich of three layers:

auxiliary context target context background theory

When a definitional package is finished, the auxiliary context is reset to the
target context. The target now holds definitions for terms and theorems that
stem from the hypothetical define and note elements, transformed by the
particular target policy (see [5, §4-5] for details).

Reference

type local_theory = Proof.context
Theory_Target.init: string option -> theory -> local_theory
Local_Theory.define: (binding * mixfix) * (Attrib.binding * term) ->
local_theory -> (term * (string * thm)) * local_theory
Local_Theory.note: Attrib.binding * thm list —>
local_theory -> (string * thm list) * local_theory

local_theory represents local theories. Although this is merely an alias for
Proof .context, it is semantically a subtype of the same: a local_theory
holds target information as special context data. Subtyping means that any
value lthy: local_theory can be also used with operations on expecting a
regular ctxt: Proof.context.

CHAPTER 7. LOCAL THEORY SPECIFICATIONS 52

Theory_Target.init NONE thy initializes a trivial local theory from the given
background theory. Alternatively, SOME name may be given to initialize
a locale or class context (a fully-qualified internal name is expected here).
This is useful for experimentation — normally the Isar toplevel already takes
care to initialize the local theory context.

Local_Theory.define ((b, mz), (a, rhs)) lthy defines a local entity according
to the specification that is given relatively to the current lthy context. In
particular the term of the RHS may refer to earlier local entities from the
auxiliary context, or hypothetical parameters from the target context. The
result is the newly defined term (which is always a fixed variable with ex-
actly the same name as specified for the LHS), together with an equational
theorem that states the definition as a hypothetical fact.

Unless an explicit name binding is given for the RHS, the resulting fact
will be called b_def. Any given attributes are applied to that same fact
— immediately in the auxiliary context and in any transformed versions
stemming from target-specific policies or any later interpretations of results
from the target context (think of locale and interpretation, for example).
This means that attributes should be usually plain declarations such as simp,
while non-trivial rules like simplified are better avoided.

Local_Theory.note (a, ths) lthy is analogous to Local_Theory.define, but
defines facts instead of terms. There is also a slightly more general variant
Local_Theory.notes that defines several facts (with attribute expressions)
simultaneously.

This is essentially the internal version of the lemmas command, or declare
if an empty name binding is given.

7.2 Morphisms and declarations

FIXME

Chapter 8

System integration

8.1 Isar toplevel

The Isar toplevel may be considered the centeral hub of the Isabelle/Isar
system, where all key components and sub-systems are integrated into a
single read-eval-print loop of Isar commands. We shall even incorporate the
existing ML toplevel of the compiler and run-time system (cf. §8.2).
Isabelle/Isar departs from the original “LCF system architecture” where
ML was really The Meta Language for defining theories and conducting
proofs. Instead, ML now only serves as the implementation language for
the system (and user extensions), while the specific Isar toplevel supports
the concepts of theory and proof development natively. This includes the
graph structure of theories and the block structure of proofs, support for
unlimited undo, facilities for tracing, debugging, timing, profiling etc.

The toplevel maintains an implicit state, which is transformed by a se-
quence of transitions — either interactively or in batch-mode. In interactive
mode, [sar state transitions are encapsulated as safe transactions, such that
both failure and undo are handled conveniently without destroying the under-
lying draft theory (cf. §1.1.1). In batch mode, transitions operate in a linear
(destructive) fashion, such that error conditions abort the present attempt
to construct a theory or proof altogether.

The toplevel state is a disjoint sum of empty toplevel, or theory, or proof.
On entering the main Isar loop we start with an empty toplevel. A theory is
commenced by giving a theory header; within a theory we may issue theory
commands such as definition, or state a theorem to be proven. Now we
are within a proof state, with a rich collection of Isar proof commands for
structured proof composition, or unstructured proof scripts. When the proof
is concluded we get back to the theory, which is then updated by storing
the resulting fact. Further theory declarations or theorem statements with
proofs may follow, until we eventually conclude the theory development by
issuing end. The resulting theory is then stored within the theory database
and we are back to the empty toplevel.

In addition to these proper state transformations, there are also some

33

CHAPTER 8. SYSTEM INTEGRATION o4

diagnostic commands for peeking at the toplevel state without modifying it
(e.g. thm, term, print-cases).

Reference

type Toplevel.state

Toplevel .UNDEF: exn

Toplevel.is_toplevel: Toplevel.state -> bool
Toplevel.theory_of: Toplevel.state -> theory
Toplevel.proof_of: Toplevel.state -> Proof.state
Toplevel.debug: bool Unsynchronized.ref
Toplevel.timing: bool Unsynchronized.ref
Toplevel.profiling: int Unsynchronized.ref

Toplevel.state represents Isar toplevel states, which are normally manipulated
through the concept of toplevel transitions only (§8.1.1). Also note that a
raw toplevel state is subject to the same linearity restrictions as a theory
context (cf. §1.1.1).

Toplevel.UNDEF is raised for undefined toplevel operations. Many operations
work only partially for certain cases, since Toplevel.state is a sum type.

Toplevel.is_toplevel state checks for an empty toplevel state.

Toplevel.theory_of state selects the background theory of state, raises
Toplevel .UNDEF for an empty toplevel state.

Toplevel.proof _of state selects the Isar proof state if available, otherwise raises
Toplevel.UNDEF.

Toplevel.debug := true makes the toplevel print further details about internal
error conditions, exceptions being raised etc.

Toplevel.timing := true makes the toplevel print timing information for each
Isar command being executed.

Toplevel.profiling := n controls low-level profiling of the underlying ML run-
time system. For Poly/ML, n = 1 means time and n = 2 space profiling.

8.1.1 Toplevel transitions

An Isar toplevel transition consists of a partial function on the toplevel state,
with additional information for diagnostics and error reporting: there are
fields for command name, source position, optional source text, as well as

CHAPTER 8. SYSTEM INTEGRATION 95

flags for interactive-only commands (which issue a warning in batch-mode),
printing of result state, etc.

The operational part is represented as the sequential union of a list of
partial functions, which are tried in turn until the first one succeeds. This
acts like an outer case-expression for various alternative state transitions.
For example, qed works differently for a local proofs vs. the global ending of
the main proof.

Toplevel transitions are composed via transition transformers. Internally,
[sar commands are put together from an empty transition extended by name
and source position. It is then left to the individual command parser to turn
the given concrete syntax into a suitable transition transformer that adjoins
actual operations on a theory or proof state etc.

Reference

Toplevel.print: Toplevel.transition -> Toplevel.transition

Toplevel.no_timing: Toplevel.transition -> Toplevel.transition

Toplevel.keep: (Toplevel.state -> unit) ->
Toplevel.transition -> Toplevel.transition

Toplevel.theory: (theory -> theory) ->
Toplevel.transition -> Toplevel.transition

Toplevel.theory_to_proof: (theory -> Proof.state) ->
Toplevel.transition -> Toplevel.transition

Toplevel.proof: (Proof.state -> Proof.state) ->
Toplevel.transition -> Toplevel.transition

Toplevel.proofs: (Proof.state —-> Proof.state Seq.seq) ->
Toplevel.transition -> Toplevel.transition

Toplevel.end_proof: (bool -> Proof.state -> Proof.context) ->
Toplevel.transition -> Toplevel.transition

Toplevel.print tr sets the print flag, which causes the toplevel loop to echo the
result state (in interactive mode).

Toplevel.no_timing ¢r indicates that the transition should never show timing
information, e.g. because it is a diagnostic command.

Toplevel.keep tr adjoins a diagnostic function.
Toplevel.theory tr adjoins a theory transformer.

Toplevel.theory_to_proof ¢r adjoins a global goal function, which turns a
theory into a proof state. The theory may be changed before entering the
proof; the generic Isar goal setup includes an argument that specifies how
to apply the proven result to the theory, when the proof is finished.

CHAPTER 8. SYSTEM INTEGRATION 26

Toplevel.proof {¢r adjoins a deterministic proof command, with a singleton
result.

Toplevel.proofs tr adjoins a general proof command, with zero or more result
states (represented as a lazy list).

Toplevel.end_proof tr adjoins a concluding proof command, that returns the
resulting theory, after storing the resulting facts in the context etc.

8.1.2 Toplevel control

There are a few special control commands that modify the behavior the
toplevel itself, and only make sense in interactive mode. Under normal cir-
cumstances, the user encounters these only implicitly as part of the protocol
between the Isabelle/Isar system and a user-interface such as Proof General.

undo follows the three-level hierarchy of empty toplevel vs. theory vs. proof:
undo within a proof reverts to the previous proof context, undo after a
proof reverts to the theory before the initial goal statement, undo of a
theory command reverts to the previous theory value, undo of a theory
header discontinues the current theory development and removes it
from the theory database (§8.3).

kill aborts the current level of development: kill in a proof context reverts
to the theory before the initial goal statement, kill in a theory context
aborts the current theory development, removing it from the database.

exit drops out of the Isar toplevel into the underlying ML toplevel (§8.2).
The Isar toplevel state is preserved and may be continued later.

quit terminates the Isabelle/Isar process without saving.

8.2 ML toplevel

The ML toplevel provides a read-compile-eval-print loop for ML values, types,
structures, and functors. ML declarations operate on the global system state,
which consists of the compiler environment plus the values of ML reference
variables. There is no clean way to undo ML declarations, except for reverting
to a previously saved state of the whole Isabelle process. ML input is either
read interactively from a TTY, or from a string (usually within a theory
text), or from a source file (usually loaded from a theory).

CHAPTER 8. SYSTEM INTEGRATION o7

Whenever the ML toplevel is active, the current Isabelle theory context
is passed as an internal reference variable. Thus ML code may access the
theory context during compilation, it may even change the value of a theory

being under construction — while observing the usual linearity restrictions
(cf. §1.1.1).

Reference

ML_Context.the_generic_context: unit -> Context.generic
Context.>> : (Context.generic -> Context.generic) -> unit

ML_Context.the_generic_context () refers to the theory context of the ML
toplevel — at compile time! ML code needs to take care to refer to
ML_Context.the_generic_context () correctly. Recall that evaluation of
a function body is delayed until actual runtime. Moreover, persistent ML
toplevel bindings to an unfinished theory should be avoided: code should ei-
ther project out the desired information immediately, or produce an explicit
theory_ref (cf. §1.1.1).

Context.>> f applies context transformation f to the implicit context of the ML
toplevel.

It is very important to note that the above functions are really restricted to the
compile time, even though the ML compiler is invoked at runtime! The majority
of ML code uses explicit functional arguments of a theory or proof context instead.
Thus it may be invoked for an arbitrary context later on, without having to worry
about any operational details.

Isar.main: unit -> unit
Isar.loop: unit -> unit
Isar.state: unit -> Toplevel.state
Isar.exn: unit -> (exn * string) option
Isar.goal: unit ->
{context: Proof.context, facts: thm list, goal: thm}

Isar.main () invokes the Isar toplevel from ML, initializing an empty toplevel
state.

Isar.loop () continues the Isar toplevel with the current state, after having
dropped out of the Isar toplevel loop.

Isar.state () and Isar.exn () get current toplevel state and error condition,
respectively. This only works after having dropped out of the Isar toplevel
loop.

CHAPTER 8. SYSTEM INTEGRATION o8

Isar.goal () produces the full Isar goal state, consisting of proof context, facts
that have been indicated for immediate use, and the tactical goal according
to §3.1.

8.3 Theory database

The theory database maintains a collection of theories, together with some
administrative information about their original sources, which are held in an
external store (i.e. some directory within the regular file system).

The theory database is organized as a directed acyclic graph; entries are
referenced by theory name. Although some additional interfaces allow to
include a directory specification as well, this is only a hint to the underlying
theory loader. The internal theory name space is flat!

Theory A is associated with the main theory file A.thy, which needs to
be accessible through the theory loader path. Any number of additional ML
source files may be associated with each theory, by declaring these depen-
dencies in the theory header as uses, and loading them consecutively within
the theory context. The system keeps track of incoming ML sources and
associates them with the current theory.

The basic internal actions of the theory database are update, outdate, and
remove:

e update A introduces a link of A with a theory value of the same name;
it asserts that the theory sources are now consistent with that value;

e outdate A invalidates the link of a theory database entry to its sources,
but retains the present theory value;

e remove A deletes entry A from the theory database.

These actions are propagated to sub- or super-graphs of a theory entry
as expected, in order to preserve global consistency of the state of all loaded
theories with the sources of the external store. This implies certain causalities
between actions: update or outdate of an entry will outdate all descendants;
remove will remowve all descendants.

There are separate user-level interfaces to operate on the theory database
directly or indirectly. The primitive actions then just happen automatically
while working with the system. In particular, processing a theory header
theory A imports B; ... B, begin ensures that the sub-graph of the
collective imports By ... B, is up-to-date, too. Earlier theories are reloaded

CHAPTER 8. SYSTEM INTEGRATION 29

as required, with update actions proceeding in topological order according to
theory dependencies. There may be also a wave of implied outdate actions
for derived theory nodes until a stable situation is achieved eventually.

Reference

theory: string -> theory

use_thy: string -> unit

use_thys: string list -> unit
Thy_Info.touch_thy: string -> unit
Thy_Info.remove_thy: string -> unit
Thy_Info.begin_theory: ... -> bool -> theory
Thy_Info.end_theory: theory —-> unit
Thy_Info.register_theory: theory -> unit

datatype action = Update | Outdate | Remove
Thy_Info.add_hook: (Thy_Info.action -> string -> unit) -> unit

theory A retrieves the theory value presently associated with name A. Note that
the result might be outdated.

use_thy A ensures that theory A is fully up-to-date wrt. the external file store,
reloading outdated ancestors as required. In batch mode, the simultaneous
use_thys should be used exclusively.

use_thys is similar to use_thy, but handles several theories simultaneously. Thus
it acts like processing the import header of a theory, without performing the
merge of the result. By loading a whole sub-graph of theories like that, the
intrinsic parallelism can be exploited by the system, to speedup loading.

Thy_Info.touch_thy A performs and outdate action on theory A and all descen-
dants.

Thy_Info.remove_thy A deletes theory A and all descendants from the theory
database.

Thy_Info.begin_theory is the basic operation behind a theory header decla-
ration. This ML function is normally not invoked directly.

Thy_Info.end_theory concludes the loading of a theory proper and stores the
result in the theory database.

Thy_Info.register_theory text thy registers an existing theory value with the
theory loader database. There is no management of associated sources.

Thy_Info.add_hook f registers function f as a hook for theory database actions.
The function will be invoked with the action and theory name being involved;

CHAPTER 8. SYSTEM INTEGRATION 60

thus derived actions may be performed in associated system components, e.g.
maintaining the state of an editor for the theory sources.

The kind and order of actions occurring in practice depends both on user
interactions and the internal process of resolving theory imports. Hooks
should not rely on a particular policy here! Any exceptions raised by the
hook are ignored.

Appendix A

Advanced ML programming

A.1 Style

Like any style guide, also this one should not be interpreted dogmatically,
but with care and discernment. It consists of a collection of recommenda-
tions which have been turned out useful over long years of Isabelle system
development and are supposed to support writing of readable and managable
code. Special cases encourage derivations, as far as you know what you are
doing. !

fundamental law of programming Whenever writing code, keep in
mind: A program is written once, modified ten times, and read
hundred times. So simplify its writing, always keep future modifi-
cations in mind, and never jeopardize readability. Every second you
hesitate to spend on making your code more clear you will have to
spend ten times understanding what you have written later on.

white space matters Treat white space in your code as if it determines
the meaning of code.

e The space bar is the easiest key to find on the keyboard, press it
as often as necessary. 2 + 2 is better than 2+2, likewise f (x, y)
is better than f (x,y).

e Restrict your lines to 80 characters. This will allow you to keep
the beginning of a line in view while watching its end.?

e Ban tabulators; they are a context-sensitive formatting feature
and likely to confuse anyone not using your favorite editor.?

!This style guide is loosely based on http://caml.inria.fr/resources/doc/guides/
guidelines.en.html

2To acknowledge the lax practice of text editing these days, we tolerate as much as 100
characters per line, but anything beyond 120 is not considered proper source text.

3Some modern programming language even forbid tabulators altogether according to
the formal syntax definition.

61

http://caml.inria.fr/resources/doc/guides/guidelines.en.html
http://caml.inria.fr/resources/doc/guides/guidelines.en.html

APPENDIX A. ADVANCED ML PROGRAMMING 62

e Get rid of trailing whitespace. Instead, do not suppress a trailing
newline at the end of your files.

e Choose a generally accepted style of indentation, then use it sys-
tematically throughout the whole application. An indentation of
two spaces is appropriate. Avoid dangling indentation.

cut-and-paste succeeds over copy-and-paste Never copy-and-paste
code when programming. If you need the same piece of code twice,
introduce a reasonable auxiliary function (if there is no such function,
very likely you got something wrong). Any copy-and-paste will turn
out to be painful when something has to be changed later on.

comments are a device which requires careful thinking before using it. The
best comment for your code should be the code itself. Prefer efforts to
write clear, understandable code over efforts to explain nasty code.

functional programming is based on functions Model things as ab-
stract as appropriate. Avoid unnecessarrily concrete datatype repre-
sentations. For example, consider a function taking some table data
structure as argument and performing lookups on it. Instead of taking
a table, it could likewise take just a lookup function. Accustom your
way of coding to the level of expressiveness a functional programming
language is giving onto you.

tuples are often in the way. When there is no striking argument to tuple
function arguments, just write your function curried.

telling names Any name should tell its purpose as exactly as possible, while
keeping its length to the absolutely necessary minimum. Always give
the same name to function arguments which have the same meaning.
Separate words by underscores (int_of_string, not int0fString).!

A.2 Thread-safe programming

Recent versions of Poly /ML (5.2.1 or later) support robust multithreaded ex-
ecution, based on native operating system threads of the underlying platform.
Thus threads will actually be executed in parallel on multi-core systems. A

4Some recent tools for Emacs include special precautions to cope with bumpy names
in camelCase, e.g. for improved on-screen readability. It is easier to abstain from using
such names in the first place.

APPENDIX A. ADVANCED ML PROGRAMMING 63

speedup-factor of approximately 1.5-3 can be expected on a regular 4-core
machine.® Threads also help to organize advanced operations of the system,
with explicit communication between sub-components, real-time conditions,
time-outs etc.

Threads lack the memory protection of separate processes, and operate
concurrently on shared heap memory. This has the advantage that results of
independent computations are immediately available to other threads, with-
out requiring untyped character streams, awkward serialization etc.

On the other hand, some programming guidelines need to be observed
in order to make unprotected parallelism work out smoothly. While the
ML system implementation is responsible to maintain basic integrity of the
representation of ML values in memory, the application programmer needs to
ensure that multithreaded execution does not break the intended semantics.

Critical shared resources. Actually only those parts outside the purely
functional world of ML are critical. In particular, this covers

e global references (or arrays), i.e. those that persist over several invoca-
tions of associated operations,®

e direct I/O on shared channels, notably stdin, stdout, stderr.

The majority of tools implemented within the Isabelle/Isar framework
will not require any of these critical elements: nothing special needs to be
observed when staying in the purely functional fragment of ML. Note that
output via the official Isabelle channels does not count as direct 1/0O, so the
operations writeln, warning, tracing etc. are safe.

Moreover, ML bindings within the toplevel environment (type, val,
structure etc.) due to run-time invocation of the compiler are also safe,
because Isabelle/Isar manages this as part of the theory or proof context.

Multithreading in Isabelle/Isar. The theory loader automatically ex-
ploits the overall parallelism of independent nodes in the development graph,
as well as the inherent irrelevance of proofs for goals being fully specified in
advance. This means, checking of individual Isar proofs is parallelized by de-
fault. Beyond that, very sophisticated proof tools may use local parallelism

5There is some inherent limitation of the speedup factor due to garbage collection,
which is still sequential. It helps to provide initial heap space generously, using the -H
option of Poly/ML.

6This is independent of the visibility of such mutable values in the toplevel scope.

APPENDIX A. ADVANCED ML PROGRAMMING 64

internally, via the general programming model of “future values” (see also
~~ /src/Pure/Concurrent/future.ML).

Any ML code that works relatively to the present background theory is
already safe. Contextual data may be easily stored within the theory or proof
context, thanks to the generic data concept of Isabelle/Isar (see §1.1.4). This
greatly diminishes the demand for global state information in the first place.

In rare situations where actual mutable content needs to be manipulated,
Isabelle provides a single critical section that may be entered while preventing
any other thread from doing the same. Entering the critical section without
contention is very fast, and several basic system operations do so frequently.
This also means that each thread should leave the critical section quickly,
otherwise parallel execution performance may degrade significantly.

Despite this potential bottle-neck, centralized locking is convenient, be-
cause it prevents deadlocks without demanding special precautions. Ex-
plicit communication demands other means, though. The high-level abstrac-
tion of synchronized variables ~~/src/Pure/Concurrent/synchronized.ML
enables parallel components to communicate via shared state; see also
~~ /src/Pure/Concurrent /mailbox.ML as canonical example.

Good conduct of impure programs. The following guidelines enable
non-functional programs to participate in multithreading.

e Minimize global state information. Using proper theory and proof con-
text data will actually return to functional update of values, without
any special precautions for multithreading. Apart from the fully gen-
eral functors for theory and proof data (see §1.1.4) there are drop-in
replacements that emulate primitive references for common cases of
configuration options for type bool/int/string (see structure Config
and Attrib.config_bool etc.), and lists of theorems (see functor
Named_Thms).

e Keep components with local state information re-entrant. Instead of
poking initial values into (private) global references, create a new state
record on each invocation, and pass that through any auxiliary func-
tions of the component. The state record may well contain mutable
references, without requiring any special synchronizations, as long as
each invocation sees its own copy. Occasionally, one might even return
to plain functional updates on non-mutable record values here.

e [solate process configuration flags. The main legitimate application of
global references is to configure the whole process in a certain way,

APPENDIX A. ADVANCED ML PROGRAMMING 65

essentially affecting all threads. A typical example is the show_types
flag, which tells the pretty printer to output explicit type information
for terms. Such flags usually do not affect the functionality of the core
system, but only the view being presented to the user.

Occasionally, such global process flags are treated like implicit argu-
ments to certain operations, by using the setmp_CRITICAL combinator
for safe temporary assignment. Its traditional purpose was to ensure
proper recovery of the original value when exceptions are raised in the
body, now the functionality is extended to enter the critical section
(with its usual potential of degrading parallelism).

Note that recovery of plain value passing semantics via
setmp_CRITICAL ref value assumes that this ref is exclusively ma-
nipulated within the critical section. In particular, any persistent
global assignment of ref := wvalue needs to be marked critical as well,
to prevent intruding another threads local view, and a lost-update in
the global scope, too.

Recall that in an open “LCF-style” system like Isabelle/Isar, the user
participates in constructing the overall environment. This means that state-
based facilities offered by one component will require special caution later on.
So minimizing critical elements, by staying within the plain value-oriented
view relative to theory or proof contexts most of the time, will also reduce
the chance of mishaps occurring to end-users.

Reference

NAMED_CRITICAL: string -> (unit -> ’a) -> ’a
CRITICAL: (unit -> ’a) -> ’a
setmp_CRITICAL: ’a Unsynchronized.ref -> ’a -> (b -> ’c) -> ’b -> ’c

NAMED_CRITICAL name f evaluates f () while staying within the critical section of
Isabelle/Isar. No other thread may do so at the same time, but non-critical
parallel execution will continue. The name argument serves for diagnostic
purposes and might help to spot sources of congestion.

CRITICAL is the same as NAMED_CRITICAL with empty name argument.

setmp_CRITICAL ref value f = evaluates f x while staying within the critical
section and having ref := wvalue assigned temporarily. This recovers a value-
passing semantics involving global references, regardless of exceptions or
concurrency.

Appendix B

Basic library functions

Beyond the proposal of the SML/NJ basis library, Isabelle comes with its
own library, from which selected parts are given here. These should encour-
age a study of the Isabelle sources, in particular files Pure/library. ML and
Pure/General/*. ML.

B.1 Linear transformations

Reference
op I> : ’a* (Ca->’b) > b

Many problems in functional programming can be thought of as linear trans-
formations, i.e. a caluclation starts with a particular value x : foo which
is then transformed by application of a function £ : foo -> foo, continued
by an application of a function g : foo -> bar, and so on. As a canon-
cial example, take functions enriching a theory by constant declararion and
primitive definitions:

Sign.declare_const: (binding * typ) * mixfix

-> theory -> term * theory

Thm.add_def: bool -> bool -> binding * term -> theory -> (string * thm) * theory
Written with naive application, an addition of constant bar with type foo =
foo and a corresponding definition bar = Az. z would look like:

(fn (t, thy) => Thm.add_def false false
(Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})) thy)
(Sign.declare_const
((Binding.name "bar", @{typ "foo => foo0"}), NoSyn) thy)
With increasing numbers of applications, this code gets quite unreadable.
Further, it is unintuitive that things are written down in the opposite order
as they actually “happen”.

At this stage, Isabelle offers some combinators which allow for more conve-
nient notation, most notably reverse application:

66

APPENDIX B. BASIC LIBRARY FUNCTIONS 67

thy
> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)
[> (fn (t, thy) => thy
|> Thm.add_def false false
(Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))

Reference

op |I=>: (P’c * ’a) *x (°c -> ’a -> ’b) -> b

op I>> : (Pa x ’c) * (’a > ’b) -> ’b * ’c

op II>: (Pc x ’a) *x (’a => ’b) -> ’c * ’b

op II>> : (Pc x ’a) *x (a -> ’d * ’b) -> (Pc * ’d) * ’Db

Usually, functions involving theory updates also return side results; to use
these conveniently, yet another set of combinators is at hand, most notably
op |-> which allows curried access to side results:

thy

> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)

[-> (fn t => Thm.add_def false false

(Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))
op |>> allows for processing side results on their own:

thy

|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)

[>> (fn t => Logic.mk_equals (t, @{term "¥%x. x"}))

[-> (fn def => Thm.add_def false false (Binding.name "bar_def", def))
Orthogonally, op | |> applies a transformation in the presence of side results
which are left unchanged:

thy

|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)

1> Sign.add_path "foobar"

[-> (fn t => Thm.add_def false false

(Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))

[I> Sign.restore_naming thy
op |>> accumulates side results:

thy

|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)

[1>> Sign.declare_const ((Binding.name "foobar", @{typ "foo => foo0"}), NoSyn)

|-> (fn (t1, t2) => Thm.add_def false false

(Binding.name "bar_def", Logic.mk_equals (t1, t2)))

Reference

fold: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
fold_map: (’a -> ’b -> ’c * ’b) -> ’a list -> ’b -> ’c list * ’b

APPENDIX B. BASIC LIBRARY FUNCTIONS 68

This principles naturally lift to lists using the fold and fold_map combina-
tors. The first lifts a single function

f : ’a->"’b -> ’bto’a list -> ’b -> ’b
such that

y |> fold f [x1, x2, ..., x_n]
~y >fxt [>fx2 (> ... |>f xn

The second accumulates side results in a list by lifting a single function
f:’a->’b->"’c * ’bto’a list -> ’b -> ’c list * ’b
such that

y |> fold_map f [x1, x2, ..., x_n]
~y > £ x1 1> £ x2 [[>> ... |[[>> f xn
|1> (fn ((z1, z2), ..., z_n) => [z1, z2, ..., z_n])

Example:

let
val consts = ["foo", "bar"];
in
thy
|> fold_map (fn const => Sign.declare_const
((Binding.name const, @{typ "foo => foo0"}), NoSyn)) consts
|>> map (fn t => Logic.mk_equals (t, @{term "%x. x"}))
|-> (fn defs => fold_map (fn def =>
Thm.add_def false false (Binding.empty, def)) defs)
end

Reference

op #> : (Ca -> ’Db)
op #> : (Ca => ‘¢

(b => ’¢c) -> ’a > ’c

’b) * (’c => ’b -> ’d) -> ’a > ’d

op #>> : (a => ’c * ’b) * (°c -> ’d) -> ’a -> ’d * ’b

op ##> : (a => ’c * ’b) * (b -> ’d) -> ’a -> ’c * ’d

op ##>> : (Pa => ’c * ’b) * (°b -> e * ’d) -> ’a > (Pc * ’e) * ’d

*
*
*
*

All those linear combinators also exist in higher-order variants which do not
expect a value on the left hand side but a function.

Reference

op ‘¢ (°b =>’a) > ’b -> ’a * b
tap: (°b -> ’a) -> ’b -> ’b

APPENDIX B. BASIC LIBRARY FUNCTIONS 69

These operators allow to “query” a context in a series of context transfor-

mations:

thy
[> tap (fn _ => writeln "now adding constant")
> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)
[1>> ¢(fn thy => Sign.declared_const thy

(Sign.full_name thy (Binding.name "foobar")))
|-> (fn (t, b) => if b then I

else Sign.declare_const
((Binding.name "foobar", @{typ "foo => foo0"}), NoSyn) #> snd)

B.2 Options and partiality

Reference

is_some: ’a option -> bool

is_none: ’a option -> bool

the: ’a option -> ’a

these: ’a list option -> ’a list

the_list: ’a option -> ’a list

the_default: ’a -> ’a option -> ’a

try: (a -> ’b) -> ’a -> ’b option

can: (’a -> ’b) -> ’a -> bool

Standard selector functions on options are provided. The try and can

functions provide a convenient interface for handling exceptions — both take
as arguments a function f together with a parameter x and handle any ex-
ception during the evaluation of the application of £ to x, either return a
lifted result (NONE on failure) or a boolean value (false on failure).

B.3 Common data structures

B.3.1 Lists (as set-like data structures)

member: (’b * ’a -> bool) -> ’a list -> ’b -> bool

insert: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list

remove: (°b * ’a -> bool) -> ’b -> ’a list -> ’a list

merge: (’a * ’a -> bool) -> ’a list * ’a list -> ’a list

Lists are often used as set-like data structures — set-like in the sense that

they support a notion of member-ship, insert-ing and remove-ing, but are
order-sensitive. This is convenient when implementing a history-like mecha-
nism: insert adds an element to the front of a list, if not yet present; remove
removes all occurences of a particular element. Correspondingly merge im-
plements a a merge on two lists suitable for merges of context data (§1.1.1).

APPENDIX B. BASIC LIBRARY FUNCTIONS 70

Functions are parametrized by an explicit equality function to accomplish

overloaded equality; in most cases of monomorphic equality, writing op =
should suffice.

B.3.2 Association lists

exception AList.DUP
AList.lookup: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> ’c option
Alist.defined: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> bool
Alist.update: (’a * ’a -> bool) -> (’a * ’b) -> (’a * ’b) list -> (’a * ’b) list
AList.default: (’a * ’a -> bool) -> (’a * ’b) -> (a * ’b) list -> (’a * ’b) list
AList.delete: (’a * ’b -> bool) -> ’a -> (’b * ’c) list -> (’b * ’c) list
AList.map_entry: (’a * ’b -> bool) -> ’a

-> (’c => ’c) > (b * ’c) list -> (’b * ’c) list
Alist.map_default: (’a * ’a -> bool) -> ’a * ’b -> (°b -> ’b)

-> (a * ’b) list -> (a * ’b) list
AList.join: (’a * ’a -> bool) -> (’a -> ’b * ’b -> ’b) (*exception DUP*)

-> (’a * ’b) list * (’a * ’b) list -> (’a * ’b) list (*exception AList.DUPx*)
AList.merge: (a * ’a -> bool) -> (b * ’b -> bool)

-> (a * ’b) list * (’a * ’b) list -> (a * ’b) list (*exception AList.DUPx)

Association lists can be seens as an extension of set-like lists: on the one
hand, they may be used to implement finite mappings, on the other hand,
they remain order-sensitive and allow for multiple key-value-pair with the
same key: AList.lookup returns the first value corresponding to a partic-
ular key, if present. AList.update updates the first occurence of a partic-
ular key; if no such key exists yet, the key-value-pair is added to the front.
AList.delete only deletes the first occurence of a key. AList.merge pro-
vides an operation suitable for merges of context data (§1.1.1), where an
equality parameter on values determines whether a merge should be con-
sidered a conflict. A slightly generalized operation if implementend by the
AList. join function which allows for explicit conflict resolution.

APPENDIX B. BASIC LIBRARY FUNCTIONS 71

B.3.3 Tables

type ’a Symtab.table
exception Symtab.DUP of string
exception Symtab.SAME
exception Symtab.UNDEF of string
Symtab.empty: ’a Symtab.table
Symtab.lookup: ’a Symtab.table -> string -> ’a option
Symtab.defined: ’a Symtab.table -> string -> bool
Symtab.update: (string * ’a) -> ’a Symtab.table -> ’a Symtab.table
Symtab.default: string * ’a -> ’a Symtab.table -> ’a Symtab.table
Symtab.delete: string
-> ’a Symtab.table -> ’a Symtab.table (*exception Symtab.UNDEF*)
Symtab.map_entry: string -> (’a -> ’a)
-> ’a Symtab.table -> ’a Symtab.table
Symtab.map_default: (string * ’a) -> (a -> ’a)
-> ’a Symtab.table -> ’a Symtab.table
Symtab.join: (string -> ’a * ’a -> ’a) (*exception Symtab.DUP/Symtab.SAME*)
-> ’a Symtab.table * ’a Symtab.table
-> ’a Symtab.table (*exception Symtab.DUP*)
Symtab.merge: (’a * ’a -> bool)
-> ’a Symtab.table * ’a Symtab.table
-> ’a Symtab.table (*exception Symtab.DUP*)

Tables are an efficient representation of finite mappings without any no-
tion of order; due to their efficiency they should be used whenever such pure
finite mappings are neccessary.

The key type of tables must be given explicitly by instantiating the Table
functor which takes the key type together with its order; for convience, we
restrict here to the Symtab instance with string as key type.

Most table functions correspond to those of association lists.

Bibliography

1]

H. Barendregt and H. Geuvers. Proof assistants using dependent type
systems. In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning. Elsevier, 2001.

S. Berghofer and T. Nipkow. Proof terms for simply typed higher order
logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in Higher
Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in Computer
Science, pages 38-52. Springer-Verlag, 2000.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381-392, 1972.

G. Gentzen. Untersuchungen iiber das logische Schlieflen. Math. Zeitschrift,
1935.

F. Haftmann and M. Wenzel. Local theory specifications in Isabelle/Isar. In
S. Berardi, F. Damiani, and U. de Liguoro, editors, Types for Proofs and
Programs, TYPES 2008, volume 5497 of LNCS. Springer, 2009.

D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4),
1991.

T. Nipkow and C. Prehofer. Type reconstruction for type classes. Journal of
Functional Programming, 5(2):201-224, 1995.

L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361-386. Academic Press, 1990.

L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996.

P. Schroeder-Heister, editor. Eztensions of Logic Programming, LNAI 475.
Springer, 1991.

M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

72

http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

’a Symtab.table (ML type), 71

AlList.default (ML), 70
AList.defined (ML), 70
AList.delete (ML), 70
AList.DUP (ML exception), 70
AlList.join (ML), 70

AList.lookup (ML), 70
AList.map_default (ML), 70
AList.map_entry (ML), 70
AList.merge (ML), 70
AlList.update (ML), 70

all lift (inference), 31

all_tac (ML), 36

arity (ML type), 20

assume_tac (ML), 37

assumption (inference), 32
Assumption.add_assms (ML), 45
Assumption.add_assumes (ML), 45
Assumption.assume (ML), 45
Assumption.export (ML type), 45
Assumption.export (ML), 45

betapply (ML), 23
binding (ML type), 15
Binding.conceal (ML), 15
Binding.empty (ML), 15
Binding.name (ML), 15
Binding.prefix (ML), 15
Binding.qualify (ML), 15
Binding.str_of (ML), 15

can (ML), 69

class (ML type), 20
composition (inference), 31
Conjunction.elim (ML), 29

Conjunction.intr (ML), 29
Context.>> (ML), 57
Context.generic (ML type), 6
Context.proof_of (ML), 6
Context.theory_of (ML), 6
CRITICAL (ML), 65
CSUBGOAL (ML), 36
cterm (ML type), 26

ctyp (ML type), 26

dest_resolution (inference), 32
dmatch_tac (ML), 37
dres_inst_tac (ML), 39
dresolve_tac (ML), 37
Drule.dest_term (ML), 29
Drule.mk_term (ML), 29

elim_resolution (inference), 32
ematch_tac (ML), 37
eq.assume_tac (ML), 37
eres_inst_tac (ML), 39
eresolve_tac (ML), 37

fastype_of (ML), 23
fold (ML), 67
fold_aterms (ML), 23
fold_atyps (ML), 20
fold_map (ML), 67
fold_types (ML), 23
forw_inst_tac (ML), 39
forward_tac (ML), 37

Generic_Data (ML functor), 7
Goal.conclude (ML), 34
Goal.finish (ML), 34
Goal.init (ML), 34

73

INDEX

Goal.protect (ML), 34
Goal.prove (ML), 47
Goal.prove_multi (ML), 47

imp_lift (inference), 31
indexname (ML type), 13
insert (ML), 69

is_none (ML), 69

is_some (ML), 69
Isar.exn (ML), 57
Isar.goal (ML), 57
Isar.loop (ML), 57
Isar.main (ML), 57
Isar.state (ML), 57

lambda (ML), 23

local_theory (ML type), 51

Local_Theory.define (ML), 51

Local_Theory.note (ML), 51

Logic.dest_type (ML), 29

Logic.mk type (ML), 29

Long Name.append (ML), 14

Long Name.base_name (ML), 14

Long Name.explode (ML), 14

Long Name.implode (ML), 14

Long Name.qualifier (ML), 14

map_aterms (ML), 23

map_atyps (ML), 20

map_types (ML), 23

match_tac (ML), 37

member (ML), 69

merge (ML), 69

ML_Context.the_generic_context
(ML), 57

Name.context (ML type), 12
Name.context (ML), 12
Name.declare (ML), 12
Name.internal (ML), 12
Name.invents (ML), 12
Name.skolem (ML), 12

74

Name.variants (ML), 12
Name_Space.add_path (ML), 15
Name_Space.declare (ML), 15
Name_Space.default_naming (ML),
15
Name_Space.empty (ML), 15
Name_Space.extern (ML), 15
Name_Space.full_ name (ML), 15
Name_Space.intern (ML), 15
Name_Space.is_concealed (ML), 15
Name_Space.merge (ML), 15
Name_Space.naming (ML type), 15
Name_Space. T (ML type), 15
NAMED _CRITICAL (ML), 65
no_tac (ML), 36

Obtain.result (ML), 47
op |> (ML), 66

op |>> (ML), 67
op ||[> (ML), 67

op ||>> (ML), 67
op |-> (ML), 67

op #> (ML), 68

op #>> (ML), 68
op #-> (ML), 68
op ##> (ML), 68
op ##>> (ML), 68
op * (ML), 68

op aconv (ML), 23
op OF (ML), 32

op RS (ML), 32

PRIMITIVE (ML), 36

print_tac (ML), 36
Proof.context (ML type), 5
Proof Data (ML functor), 7
ProofContext.init_global (ML), 5
ProofContext.theory_of (ML), 5
ProofContext.transfer (ML), 5
proofs (ML), 26

remove (ML), 69

INDEX 75

rename_tac (ML), 39
res_inst_tac (ML), 39
resolution (inference), 31

Symtab.merge (ML), 71
Symtab.SAME (ML exception), 71
Symtab.UNDEF (ML exception), 71

resolve_tac (ML), 37

setmp_CRITICAL (ML), 65
Sign.add_abbrev (ML), 23
Sign.add_type_abbrev (ML), 20
Sign.add_types (ML), 20
Sign.const_instance (ML), 23
Sign.const_typargs (ML), 23
Sign.declare_const (ML), 23
Sign.of_sort (ML), 20
Sign.primitive_arity (ML), 20
Sign.primitive_class (ML), 20
Sign.primitive_classrel (ML), 20
Sign.subsort (ML), 20
Simplifier.norm_hhf (ML), 31
sort (ML type), 20

SUBGOAL (ML), 36

Subgoal. FOCUS (ML), 47

Subgoal. FOCUS_PARAMS (ML), 47
Subgoal. FOCUS_PREMS (ML), 47

SUBPROOF (ML), 47
Symbol.decode (ML), 11
Symbol.explode (ML), 10
Symbol.is_blank (ML), 10
Symbol.is_digit (ML), 10
Symbol.is_letter (ML), 10
Symbol.is_quasi (ML), 10
Symbol.sym (ML type), 11
Symbol.symbol (ML type), 10
Symtab.default (ML), 71
Symtab.defined (ML), 71
Symtab.delete (ML), 71
Symtab.DUP (ML exception), 71
Symtab.empty (ML), 71
Symtab.join (ML), 71
Symtab.lookup (ML), 71
Symtab.map_default (ML), 71
Symtab.map_entry (ML), 71

Symtab.update (ML), 71

tactic (ML type), 36

tap (ML), 68

term (ML type), 23

the (ML), 69

the_default (ML), 69

the_list (ML), 69

theory (ML type), 3

theory (ML), 59
Theory.add_deps (ML), 27
Theory.begin_theory (ML), 3
Theory.check_thy (ML), 3
Theory.checkpoint (ML), 3
Theory.copy (ML), 3
Theory.deref (ML), 3
Theory.merge (ML), 3
Theory.subthy (ML), 3
Theory_Data (ML functor), 7
theory_ref (ML type), 3
Theory_Target.init (ML), 51
these (ML), 69

thm (ML type), 26
Thm.add_axiom (ML), 26
Thm.add_def (ML), 26
Thm.add_oracle (ML), 26
Thm.assume (ML), 26
Thm.cterm_of (ML), 26
Thm.ctyp_of (ML), 26
Thm.forall elim (ML), 26
Thm.forall_intr (ML), 26
Thm.generalize (ML), 26
Thm.implies_elim (ML), 26
Thm.implies_intr (ML), 26
Thm.instantiate (ML), 26
Thy Info.add hook (ML), 59
Thy _Info.begin_theory (ML), 59
Thy _Info.end_theory (ML), 59

INDEX

Thy _Info.register_theory (ML), 59
Thy _Info.remove_thy (ML), 59
Thy _Info.touch_thy (ML), 59
Toplevel.debug (ML), 54
Toplevel.end _proof (ML), 55
Toplevel.is_toplevel (ML), 54
Toplevel.keep (ML), 55
Toplevel.no_timing (ML), 55
Toplevel.print (ML), 55
Toplevel.profiling (ML), 54
Toplevel.proof (ML), 55
Toplevel.proof_of (ML), 54
Toplevel.proofs (ML), 55
Toplevel.state (ML type), 54
Toplevel.theory (ML), 55
Toplevel.theory_of (ML), 54
Toplevel.theory_to_proof (ML), 55
Toplevel.timing (ML), 54
Toplevel. UNDEF (ML), 54
try (ML), 69

typ (ML type), 20

use_thy (ML), 59
use_thys (ML), 59

Variable.add_fixes (ML), 41
Variable.declare_constraints (ML),
41
Variable.declare_term (ML), 41
Variable.export (ML), 41
Variable.focus (ML), 41
Variable.import (ML), 41
Variable.names_of (ML), 12
Variable.polymorphic (ML), 41
Variable.variant_fixes (ML), 41

76

	Preliminaries
	Contexts
	Theory context
	Proof context
	Generic contexts
	Context data

	Names
	Strings of symbols
	Basic names
	Indexed names
	Long names
	Name spaces

	Primitive logic
	Types
	Terms
	Theorems
	Primitive connectives and rules
	Auxiliary definitions

	Object-level rules
	Hereditary Harrop Formulae
	Rule composition

	Tactical reasoning
	Goals
	Tactics
	Resolution and assumption tactics
	Explicit instantiation within a subgoal context

	Tacticals

	Structured proofs
	Variables
	Assumptions
	Structured goals and results

	Concrete syntax and type-checking
	Parsing and printing
	Checking and unchecking

	Isar language elements
	Proof commands
	Proof methods
	Attributes

	Local theory specifications
	Definitional elements
	Morphisms and declarations

	System integration
	Isar toplevel
	Toplevel transitions
	Toplevel control

	ML toplevel
	Theory database

	Advanced ML programming
	Style
	Thread-safe programming

	Basic library functions
	Linear transformations
	Options and partiality
	Common data structures
	Lists (as set-like data structures)
	Association lists
	Tables

	Bibliography
	Index

