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Abstract

This tutorial introduces the look-and-feel of Isar type classes to the
end-user; Isar type classes are a convenient mechanism for organiz-
ing specifications, overcoming some drawbacks of raw axiomatic type
classes. Essentially, they combine an operational aspect (in the man-
ner of Haskell) with a logical aspect, both managed uniformly.
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1 Introduction

Type classes were introduces by Wadler and Blott [9] into the Haskell lan-
guage, to allow for a reasonable implementation of overloading1. As a canon-
ical example, a polymorphic equality function eq :: α ⇒ α ⇒ bool which is
overloaded on different types for α, which is achieved by splitting introduc-
tion of the eq function from its overloaded definitions by means of class and
instance declarations: 2

class eq where
eq :: α ⇒ α ⇒ bool

instance nat :: eq where
eq 0 0 = True
eq 0 - = False
eq - 0 = False
eq (Suc n) (Suc m) = eq n m

instance (α::eq , β::eq) pair :: eq where
eq (x1, y1) (x2, y2) = eq x1 x2 ∧ eq y1 y2

class ord extends eq where
less-eq :: α ⇒ α ⇒ bool
less :: α ⇒ α ⇒ bool

Type variables are annotated with (finitely many) classes; these annotations
are assertions that a particular polymorphic type provides definitions for
overloaded functions.

Indeed, type classes not only allow for simple overloading but form a
generic calculus, an instance of order-sorted algebra [7, 6, 10].

From a software engeneering point of view, type classes roughly correspond
to interfaces in object-oriented languages like Java; so, it is naturally desirable
that type classes do not only provide functions (class parameters) but also
state specifications implementations must obey. For example, the class eq
above could be given the following specification, demanding that class eq is
an equivalence relation obeying reflexivity, symmetry and transitivity:

class eq where
eq :: α ⇒ α ⇒ bool

satisfying

1throughout this tutorial, we are referring to classical Haskell 1.0 type classes, not
considering later additions in expressiveness

2syntax here is a kind of isabellized Haskell
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refl : eq x x
sym: eq x y ←→ eq x y
trans : eq x y ∧ eq y z −→ eq x z

From a theoretic point of view, type classes are lightweight modules; Haskell
type classes may be emulated by SML functors [1]. Isabelle/Isar offers a
discipline of type classes which brings all those aspects together:

1. specifying abstract parameters together with corresponding specifica-
tions,

2. instantiating those abstract parameters by a particular type

3. in connection with a “less ad-hoc” approach to overloading,

4. with a direct link to the Isabelle module system (aka locales [4]).

Isar type classes also directly support code generation in a Haskell like fash-
ion.

This tutorial demonstrates common elements of structured specifications
and abstract reasoning with type classes by the algebraic hierarchy of semi-
groups, monoids and groups. Our background theory is that of Isabelle/HOL
[8], for which some familiarity is assumed.

Here we merely present the look-and-feel for end users. Internally, those
are mapped to more primitive Isabelle concepts. See [3] for more detail.

2 A simple algebra example

2.1 Class definition

Depending on an arbitrary type α, class semigroup introduces a binary op-
erator (⊗) that is assumed to be associative:

class semigroup =
fixes mult :: α ⇒ α ⇒ α (infixl ⊗ 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z )

This class specification consists of two parts: the operational part names
the class parameter (fixes), the logical part specifies properties on them
(assumes). The local fixes and assumes are lifted to the theory toplevel,
yielding the global parameter mult :: α::semigroup ⇒ α ⇒ α and the global
theorem semigroup.assoc:

∧
x y z :: α::semigroup. (x ⊗ y) ⊗ z = x ⊗ (y ⊗

z ).
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2.2 Class instantiation

The concrete type int is made a semigroup instance by providing a suitable
definition for the class parameter (⊗) and a proof for the specification of
assoc. This is accomplished by the instantiation target:

instantiation int :: semigroup
begin

definition
mult-int-def : i ⊗ j = i + (j ::int)

instance proof
fix i j k :: int have (i + j ) + k = i + (j + k) by simp
then show (i ⊗ j ) ⊗ k = i ⊗ (j ⊗ k)
unfolding mult-int-def .

qed

end

instantiation allows to define class parameters at a particular instance us-
ing common specification tools (here, definition). The concluding instance
opens a proof that the given parameters actually conform to the class spec-
ification. Note that the first proof step is the default method, which for
such instance proofs maps to the intro-classes method. This boils down an
instance judgement to the relevant primitive proof goals and should conve-
niently always be the first method applied in an instantiation proof.

From now on, the type-checker will consider int as a semigroup automati-
cally, i.e. any general results are immediately available on concrete instances.

Another instance of semigroup are the natural numbers:

instantiation nat :: semigroup
begin

primrec mult-nat where
(0::nat) ⊗ n = n
| Suc m ⊗ n = Suc (m ⊗ n)

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)
by (induct m) auto
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qed

end

Note the occurence of the name mult-nat in the primrec declaration; by de-
fault, the local name of a class operation f to instantiate on type constructor
κ are mangled as f-κ. In case of uncertainty, these names may be inspected
using the print-context command or the corresponding ProofGeneral but-
ton.

2.3 Lifting and parametric types

Overloaded definitions giving on class instantiation may include recursion
over the syntactic structure of types. As a canonical example, we model
product semigroups using our simple algebra:

instantiation ∗ :: (semigroup, semigroup) semigroup
begin

definition
mult-prod-def : p1 ⊗ p2 = (fst p1 ⊗ fst p2, snd p1 ⊗ snd p2)

instance proof
fix p1 p2 p3 :: α::semigroup × β::semigroup
show p1 ⊗ p2 ⊗ p3 = p1 ⊗ (p2 ⊗ p3)
unfolding mult-prod-def by (simp add : assoc)

qed

end

Associativity from product semigroups is established using the definition of
(⊗) on products and the hypothetical associativity of the type components;
these hypotheses are facts due to the semigroup constraints imposed on the
type components by the instance proposition. Indeed, this pattern often
occurs with parametric types and type classes.

2.4 Subclassing

We define a subclass monoidl (a semigroup with a left-hand neutral) by
extending semigroup with one additional parameter neutral together with
its property:
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class monoidl = semigroup +
fixes neutral :: α (1)
assumes neutl : 1 ⊗ x = x

Again, we prove some instances, by providing suitable parameter definitions
and proofs for the additional specifications. Observe that instantiations for
types with the same arity may be simultaneous:

instantiation nat and int :: monoidl
begin

definition
neutral-nat-def : 1 = (0::nat)

definition
neutral-int-def : 1 = (0::int)

instance proof
fix n :: nat
show 1 ⊗ n = n
unfolding neutral-nat-def by simp

next
fix k :: int
show 1 ⊗ k = k
unfolding neutral-int-def mult-int-def by simp

qed

end

instantiation ∗ :: (monoidl , monoidl) monoidl
begin

definition
neutral-prod-def : 1 = (1, 1)

instance proof
fix p :: α::monoidl × β::monoidl
show 1 ⊗ p = p
unfolding neutral-prod-def mult-prod-def by (simp add : neutl)

qed

end



2 A SIMPLE ALGEBRA EXAMPLE 6

Fully-fledged monoids are modelled by another subclass which does not add
new parameters but tightens the specification:

class monoid = monoidl +
assumes neutr : x ⊗ 1 = x

instantiation nat and int :: monoid
begin

instance proof
fix n :: nat
show n ⊗ 1 = n
unfolding neutral-nat-def by (induct n) simp-all

next
fix k :: int
show k ⊗ 1 = k
unfolding neutral-int-def mult-int-def by simp

qed

end

instantiation ∗ :: (monoid , monoid) monoid
begin

instance proof
fix p :: α::monoid × β::monoid
show p ⊗ 1 = p
unfolding neutral-prod-def mult-prod-def by (simp add : neutr)

qed

end

To finish our small algebra example, we add a group class with a correspond-
ing instance:

class group = monoidl +
fixes inverse :: α ⇒ α ((-÷) [1000] 999)
assumes invl : x÷ ⊗ x = 1

instantiation int :: group
begin

definition
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inverse-int-def : i÷ = − (i ::int)

instance proof
fix i :: int
have −i + i = 0 by simp
then show i÷ ⊗ i = 1
unfolding mult-int-def neutral-int-def inverse-int-def .

qed

end

3 Type classes as locales

3.1 A look behind the scene

The example above gives an impression how Isar type classes work in practice.
As stated in the introduction, classes also provide a link to Isar’s locale
system. Indeed, the logical core of a class is nothing else than a locale:

class idem =
fixes f :: α ⇒ α
assumes idem: f (f x ) = f x

essentially introduces the locale

locale idem =
fixes f :: α ⇒ α
assumes idem: f (f x ) = f x

together with corresponding constant(s):

consts f :: α ⇒ α

The connection to the type system is done by means of a primitive axclass

axclass idem < type
idem: f (f x ) = f x

together with a corresponding interpretation:

interpretation idem-class:
idem f :: (α::idem) ⇒ α

proof qed (rule idem)

This gives you at hand the full power of the Isabelle module system; conclu-
sions in locale idem are implicitly propagated to class idem.
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3.2 Abstract reasoning

Isabelle locales enable reasoning at a general level, while results are implicitly
transferred to all instances. For example, we can now establish the left-cancel
lemma for groups, which states that the function (x ⊗) is injective:

lemma (in group) left-cancel : x ⊗ y = x ⊗ z ←→ y = z
proof
assume x ⊗ y = x ⊗ z
then have x÷ ⊗ (x ⊗ y) = x÷ ⊗ (x ⊗ z ) by simp
then have (x÷ ⊗ x ) ⊗ y = (x÷ ⊗ x ) ⊗ z using assoc by simp
then show y = z using neutl and invl by simp

next
assume y = z
then show x ⊗ y = x ⊗ z by simp

qed

Here the “in group” target specification indicates that the result is recorded
within that context for later use. This local theorem is also lifted to the
global one group.left-cancel :

∧
x y z :: α::group. x ⊗ y = x ⊗ z ←→ y = z.

Since type int has been made an instance of group before, we may refer to
that fact as well:

∧
x y z :: int . x ⊗ y = x ⊗ z ←→ y = z.

3.3 Derived definitions

Isabelle locales support a concept of local definitions in locales:

primrec (in monoid) pow-nat :: nat ⇒ α ⇒ α where
pow-nat 0 x = 1
| pow-nat (Suc n) x = x ⊗ pow-nat n x

If the locale group is also a class, this local definition is propagated onto a
global definition of pow-nat :: nat ⇒ α::monoid ⇒ α::monoid with corre-
sponding theorems

pow-nat 0 x = 1
pow-nat (Suc n) x = x ⊗ pow-nat n x.

As you can see from this example, for local definitions you may use any
specification tool which works together with locales (e.g. [5]).
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3.4 A functor analogy

We introduced Isar classes by analogy to type classes functional program-
ming; if we reconsider this in the context of what has been said about type
classes and locales, we can drive this analogy further by stating that type
classes essentially correspond to functors which have a canonical interpre-
tation as type classes. Anyway, there is also the possibility of other inter-
pretations. For example, also lists form a monoid with append and [] as
operations, but it seems inappropriate to apply to lists the same operations
as for genuinely algebraic types. In such a case, we simply can do a particular
interpretation of monoids for lists:

interpretation list-monoid : monoid append []
proof qed auto

This enables us to apply facts on monoids to lists, e.g. [] @ x = x.
When using this interpretation pattern, it may also be appropriate to map

derived definitions accordingly:

primrec replicate :: nat ⇒ α list ⇒ α list where
replicate 0 - = []
| replicate (Suc n) xs = xs @ replicate n xs

interpretation list-monoid : monoid append [] where
monoid .pow-nat append [] = replicate

proof −
interpret monoid append [] ..
show monoid .pow-nat append [] = replicate
proof
fix n
show monoid .pow-nat append [] n = replicate n
by (induct n) auto

qed
qed intro-locales

3.5 Additional subclass relations

Any group is also a monoid ; this can be made explicit by claiming an addi-
tional subclass relation, together with a proof of the logical difference:

subclass (in group) monoid
proof
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fix x
from invl have x÷ ⊗ x = 1 by simp
with assoc [symmetric] neutl invl have x÷ ⊗ (x ⊗ 1) = x÷ ⊗ x by simp
with left-cancel show x ⊗ 1 = x by simp

qed

The logical proof is carried out on the locale level. Afterwards it is prop-
agated to the type system, making group an instance of monoid by adding
an additional edge to the graph of subclass relations (cf. figure 1).

semigroup

monoidl

monoid

group

?

¡
¡ª

B
B
B
B
BBN

semigroup

monoidl

monoid

group

?

¡
¡ª

PPPPPPq

Figure 1: Subclass relationship of monoids and groups: before and after
establishing the relationship group ⊆ monoid ; transitive edges are left out.

For illustration, a derived definition in group which uses pow-nat :

definition (in group) pow-int :: int ⇒ α ⇒ α where
pow-int k x = (if k >= 0

then pow-nat (nat k) x
else (pow-nat (nat (− k)) x )÷)

yields the global definition of pow-int :: int ⇒ α::group ⇒ α::group with the
corresponding theorem pow-int k x = (if 0 ≤ k then pow-nat (nat k) x else
(pow-nat (nat (− k)) x )÷).

3.6 A note on syntax

As a commodity, class context syntax allows to refer to local class operations
and their global counterparts uniformly; type inference resolves ambiguities.
For example:

context semigroup
begin
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term x ⊗ y — example 1
term (x ::nat) ⊗ y — example 2

end

term x ⊗ y — example 3

Here in example 1, the term refers to the local class operation mult [α],
whereas in example 2 the type constraint enforces the global class opera-
tion mult [nat ]. In the global context in example 3, the reference is to the
polymorphic global class operation mult [?α :: semigroup].

4 Further issues

4.1 Type classes and code generation

Turning back to the first motivation for type classes, namely overloading, it is
obvious that overloading stemming from class statements and instantiation
targets naturally maps to Haskell type classes. The code generator framework
[2] takes this into account. Concerning target languages lacking type classes
(e.g. SML), type classes are implemented by explicit dictionary construction.
As example, let’s go back to the power function:

definition example :: int where
example = pow-int 10 (−2)

This maps to Haskell as:

module Example where {

data Nat = Zero_nat | Suc Nat;

nat_aux :: Integer -> Nat -> Nat;
nat_aux i n = (if i <= 0 then n else nat_aux (i - 1) (Suc n));

nat :: Integer -> Nat;
nat i = nat_aux i Zero_nat;

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoidl a where {
neutral :: a;

};

class (Monoidl a) => Monoid a where {
};
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class (Monoid a) => Group a where {
inverse :: a -> a;

};

inverse_int :: Integer -> Integer;
inverse_int i = negate i;

neutral_int :: Integer;
neutral_int = 0;

mult_int :: Integer -> Integer -> Integer;
mult_int i j = i + j;

instance Semigroup Integer where {
mult = mult_int;

};

instance Monoidl Integer where {
neutral = neutral_int;

};

instance Monoid Integer where {
};

instance Group Integer where {
inverse = inverse_int;

};

pow_nat :: forall a. (Monoid a) => Nat -> a -> a;
pow_nat Zero_nat x = neutral;
pow_nat (Suc n) x = mult x (pow_nat n x);

pow_int :: forall a. (Group a) => Integer -> a -> a;
pow_int k x =

(if 0 <= k then pow_nat (nat k) x
else inverse (pow_nat (nat (negate k)) x));

example :: Integer;
example = pow_int 10 (-2);

}

The whole code in SML with explicit dictionary passing:

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

fun nat_aux i n =
(if IntInf.<= (i, (0 : IntInf.int)) then n
else nat_aux (IntInf.- (i, (1 : IntInf.int))) (Suc n));

fun nat i = nat_aux i Zero_nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};
fun mult (A_:’a semigroup) = #mult A_;

type ’a monoidl =
{Classes__semigroup_monoidl : ’a semigroup, neutral : ’a};

fun semigroup_monoidl (A_:’a monoidl) = #Classes__semigroup_monoidl A_;
fun neutral (A_:’a monoidl) = #neutral A_;
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type ’a monoid = {Classes__monoidl_monoid : ’a monoidl};
fun monoidl_monoid (A_:’a monoid) = #Classes__monoidl_monoid A_;

type ’a group = {Classes__monoid_group : ’a monoid, inverse : ’a -> ’a};
fun monoid_group (A_:’a group) = #Classes__monoid_group A_;
fun inverse (A_:’a group) = #inverse A_;

fun inverse_int i = IntInf.~ i;

val neutral_int : IntInf.int = (0 : IntInf.int)

fun mult_int i j = IntInf.+ (i, j);

val semigroup_int = {mult = mult_int} : IntInf.int semigroup;

val monoidl_int =
{Classes__semigroup_monoidl = semigroup_int, neutral = neutral_int} :
IntInf.int monoidl;

val monoid_int = {Classes__monoidl_monoid = monoidl_int} :
IntInf.int monoid;

val group_int =
{Classes__monoid_group = monoid_int, inverse = inverse_int} :
IntInf.int group;

fun pow_nat A_ Zero_nat x = neutral (monoidl_monoid A_)
| pow_nat A_ (Suc n) x =
mult ((semigroup_monoidl o monoidl_monoid) A_) x (pow_nat A_ n x);

fun pow_int A_ k x =
(if IntInf.<= ((0 : IntInf.int), k)
then pow_nat (monoid_group A_) (nat k) x
else inverse A_ (pow_nat (monoid_group A_) (nat (IntInf.~ k)) x));

val example : IntInf.int =
pow_int group_int (10 : IntInf.int) (~2 : IntInf.int)

end; (*struct Example*)

4.2 Inspecting the type class universe

To facilitate orientation in complex subclass structures, two diagnostics com-
mands are provided:

print-classes print a list of all classes together with associated operations
etc.

class-deps visualizes the subclass relation between all classes as a Hasse
diagram.
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