
λ →

∀
=Isa

be
lle

β
α

Isar

Code generation from Isabelle/HOL theories

Florian Haftmann

19 April 2009

Abstract

This tutorial gives an introduction to a generic code generator frame-
work in Isabelle for generating executable code in functional program-
ming languages from logical specifications in Isabelle/HOL.

1 INTRODUCTION AND OVERVIEW 1

1 Introduction and Overview

This tutorial introduces a generic code generator for the Isabelle system.
Generic in the sense that the target language for which code shall ulti-
mately be generated is not fixed but may be an arbitrary state-of-the-art
functional programming language (currently, the implementation supports
SML [4], OCaml [3] and Haskell [6]).

Conceptually the code generator framework is part of Isabelle’s Pure meta
logic framework; the logic HOL which is an extension of Pure already comes
with a reasonable framework setup and thus provides a good working horse
for raising code-generation-driven applications. So, we assume some famil-
iarity and experience with the ingredients of the HOL distribution theories.
(see also [5]).

The code generator aims to be usable with no further ado in most cases
while allowing for detailed customisation. This manifests in the structure of
this tutorial: after a short conceptual introduction with an example (§1.1),
we discuss the generic customisation facilities (§2). A further section (§3) is
dedicated to the matter of adaption to specific target language environments.
After some further issues (§4) we conclude with an overview of some ML
programming interfaces (§5).

! Ultimately, the code generator which this tutorial deals with is supposed to
replace the existing code generator by Stefan Berghofer [1]. So, for the moment,

there are two distinct code generators in Isabelle. In case of ambiguity, we will
refer to the framework described here as generic code generator, to the other as
SML code generator. Also note that while the framework itself is object-logic
independent, only HOL provides a reasonable framework setup.

1.1 Code generation via shallow embedding

The key concept for understanding Isabelle’s code generation is shallow em-
bedding, i.e. logical entities like constants, types and classes are identified
with corresponding concepts in the target language.

Inside HOL, the datatype and definition/primrec/fun declarations
form the core of a functional programming language. The default code gen-
erator setup allows to turn those into functional programs immediately. This
means that “naive” code generation can proceed without further ado. For
example, here a simple “implementation” of amortised queues:

datatype ′a queue = AQueue ′a list ′a list

1 INTRODUCTION AND OVERVIEW 2

definition empty :: ′a queue where
empty = AQueue [] []

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (AQueue xs ys) = AQueue (x # xs) ys

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (AQueue [] []) = (None, AQueue [] [])
| dequeue (AQueue xs (y # ys)) = (Some y , AQueue xs ys)
| dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (Some y , AQueue [] ys))

Then we can generate code e.g. for SML as follows:

export-code empty dequeue enqueue in SML
module-name Example file examples/example.ML

resulting in the following code:

structure Example =
struct

fun foldl f a [] = a
| foldl f a (x :: xs) = foldl f (f a x) xs;

fun rev xs = foldl (fn xsa => fn x => x :: xsa) [] xs;

fun list_case f1 f2 (a :: lista) = f2 a lista
| list_case f1 f2 [] = f1;

datatype ’a queue = AQueue of ’a list * ’a list;

val empty : ’a queue = AQueue ([], [])

fun dequeue (AQueue ([], [])) = (NONE, AQueue ([], []))
| dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (v :: va, [])) =
let
val y :: ys = rev (v :: va);

in
(SOME y, AQueue ([], ys))

end;

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

end; (*struct Example*)

The export-code command takes a space-separated list of constants for
which code shall be generated; anything else needed for those is added im-
plicitly. Then follows a target language identifier (SML, OCaml or Haskell)
and a freely chosen module name. A file name denotes the destination to
store the generated code. Note that the semantics of the destination depends

1 INTRODUCTION AND OVERVIEW 3

on the target language: for SML and OCaml it denotes a file, for Haskell it
denotes a directory where a file named as the module name (with extension
.hs) is written:

export-code empty dequeue enqueue in Haskell
module-name Example file examples/

This is how the corresponding code in Haskell looks like:

module Example where {

foldla :: forall a b. (a -> b -> a) -> a -> [b] -> a;
foldla f a [] = a;
foldla f a (x : xs) = foldla f (f a x) xs;

rev :: forall a. [a] -> [a];
rev xs = foldla (\ xsa x -> x : xsa) [] xs;

list_case :: forall t a. t -> (a -> [a] -> t) -> [a] -> t;
list_case f1 f2 (a : list) = f2 a list;
list_case f1 f2 [] = f1;

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue [] [];

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue [] []) = (Nothing, AQueue [] []);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue (v : va) []) =
let {
(y : ys) = rev (v : va);

} in (Just y, AQueue [] ys);

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;

}

This demonstrates the basic usage of the export-code command; for more
details see §4.

1.2 Code generator architecture

What you have seen so far should be already enough in a lot of cases. If
you are content with this, you can quit reading here. Anyway, in order
to customise and adapt the code generator, it is inevitable to gain some
understanding how it works.

The code generator employs a notion of executability for three foundational
executable ingredients known from functional programming: code equations,

1 INTRODUCTION AND OVERVIEW 4

specification tools user proofs

raw code equations preprocessing code equations

intermediate program serialisation

SML

OCaml

(. . .)

Haskell

translation

Figure 1: Code generator architecture

datatypes, and type classes. A code equation as a first approximation is a
theorem of the form f t1 t2 . . . tn ≡ t (an equation headed by a constant f
with arguments t1 t2 . . . tn and right hand side t). Code generation aims
to turn code equations into a functional program. This is achieved by three
major components which operate sequentially, i.e. the result of one is the
input of the next in the chain, see figure 1:

• Starting point is a collection of raw code equations in a theory; due to
proof irrelevance it is not relevant where they stem from but typically
they are either descendant of specification tools or explicit proofs by
the user.

• Before these raw code equations are continued with, they can be sub-
jected to theorem transformations. This preprocessor is an interface
which allows to apply the full expressiveness of ML-based theorem
transformations to code generation. The result of the preprocessing
step is a structured collection of code equations.

• These code equations are translated to a program in an abstract inter-
mediate language. Think of it as a kind of “Mini-Haskell” with four
statements : data (for datatypes), fun (stemming from code equations),
also class and inst (for type classes).

• Finally, the abstract program is serialised into concrete source code of a
target language. This step only produces concrete syntax but does not
change the program in essence; all conceptual transformations occur in
the translation step.

2 TURNING THEORIES INTO PROGRAMS 5

From these steps, only the two last are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

2 Turning Theories into Programs

2.1 The Isabelle/HOL default setup

We have already seen how by default equations stemming from definition/primrec/fun
statements are used for code generation. This default behaviour can be
changed, e.g. by providing different code equations. All kinds of customisa-
tion shown in this section is safe in the sense that the user does not have
to worry about correctness – all programs generatable that way are partially
correct.

2.2 Selecting code equations

Coming back to our introductory example, we could provide an alternative
code equations for dequeue explicitly:

lemma [code]:
dequeue (AQueue xs []) =

(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) =
(Some y , AQueue xs ys)

by (cases xs, simp-all) (cases rev xs, simp-all)

The annotation [code] is an Isar attribute which states that the given the-
orems should be considered as code equations for a fun statement – the
corresponding constant is determined syntactically. The resulting code:

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =

(if nulla xs then (Nothing, AQueue [] [])
else dequeue (AQueue [] (rev xs)));

You may note that the equality test xs = [] has been replaced by the predicate
null xs. This is due to the default setup in the preprocessor to be discussed
further below (§2.4).

2 TURNING THEORIES INTO PROGRAMS 6

Changing the default constructor set of datatypes is also possible. See §2.5
for an example.

As told in §1.2, code generation is based on a structured collection of code
theorems. For explorative purpose, this collection may be inspected using
the code-thms command:

code-thms dequeue

prints a table with all code equations for dequeue, including all code equa-
tions those equations depend on recursively.

Similarly, the code-deps command shows a graph visualising dependen-
cies between code equations.

2.3 class and instantiation

Concerning type classes and code generation, let us examine an example from
abstract algebra:

class semigroup =
fixes mult :: ′a ⇒ ′a ⇒ ′a (infixl ⊗ 70)
assumes assoc: (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)

class monoid = semigroup +
fixes neutral :: ′a (1)
assumes neutl : 1 ⊗ x = x
and neutr : x ⊗ 1 = x

instantiation nat :: monoid
begin

primrec mult-nat where
0 ⊗ n = (0::nat)
| Suc m ⊗ n = n + m ⊗ n

definition neutral-nat where
1 = Suc 0

lemma add-mult-distrib:
fixes n m q :: nat
shows (n + m) ⊗ q = n ⊗ q + m ⊗ q
by (induct n) simp-all

2 TURNING THEORIES INTO PROGRAMS 7

instance proof
fix m n q :: nat
show m ⊗ n ⊗ q = m ⊗ (n ⊗ q)
by (induct m) (simp-all add : add-mult-distrib)

show 1 ⊗ n = n
by (simp add : neutral-nat-def)

show m ⊗ 1 = m
by (induct m) (simp-all add : neutral-nat-def)

qed

end

We define the natural operation of the natural numbers on monoids:

primrec (in monoid) pow :: nat ⇒ ′a ⇒ ′a where
pow 0 a = 1
| pow (Suc n) a = a ⊗ pow n a

This we use to define the discrete exponentiation function:

definition bexp :: nat ⇒ nat where
bexp n = pow n (Suc (Suc 0))

The corresponding code:

module Example where {

data Nat = Zero_nat | Suc Nat;

class Semigroup a where {
mult :: a -> a -> a;

};

class (Semigroup a) => Monoid a where {
neutral :: a;

};

pow :: forall a. (Monoid a) => Nat -> a -> a;
pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);

plus_nat :: Nat -> Nat -> Nat;
plus_nat (Suc m) n = plus_nat m (Suc n);
plus_nat Zero_nat n = n;

neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;

mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);

2 TURNING THEORIES INTO PROGRAMS 8

instance Semigroup Nat where {
mult = mult_nat;

};

instance Monoid Nat where {
neutral = neutral_nat;

};

bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));

}

This is a convenient place to show how explicit dictionary construction man-
ifests in generated code (here, the same example in SML):

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};
fun mult (A_:’a semigroup) = #mult A_;

type ’a monoid = {Program__semigroup_monoid : ’a semigroup, neutral : ’a};
fun semigroup_monoid (A_:’a monoid) = #Program__semigroup_monoid A_;
fun neutral (A_:’a monoid) = #neutral A_;

fun pow A_ Zero_nat a = neutral A_
| pow A_ (Suc n) a = mult (semigroup_monoid A_) a (pow A_ n a);

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

val neutral_nat : nat = Suc Zero_nat

fun mult_nat Zero_nat n = Zero_nat
| mult_nat (Suc m) n = plus_nat n (mult_nat m n);

val semigroup_nat = {mult = mult_nat} : nat semigroup;

val monoid_nat =
{Program__semigroup_monoid = semigroup_nat, neutral = neutral_nat} :
nat monoid;

fun bexp n = pow monoid_nat n (Suc (Suc Zero_nat));

end; (*struct Example*)

Note the parameters with trailing underscore (A_) which are the dictionary
parameters.

2.4 The preprocessor

Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. In essence,

2 TURNING THEORIES INTO PROGRAMS 9

the preprocessor consists of two components: a simpset and function trans-
formers.

The simpset allows to employ the full generality of the Isabelle simplifier.
Due to the interpretation of theorems as code equations, rewrites are applied
to the right hand side and the arguments of the left hand side of an equation,
but never to the constant heading the left hand side. An important special
case are inline theorems which may be declared and undeclared using the
code inline or code inline del attribute respectively.

Some common applications:

• replacing non-executable constructs by executable ones:

lemma [code inline]:
x ∈ set xs ←→ x mem xs by (induct xs) simp-all

• eliminating superfluous constants:

lemma [code inline]:
1 = Suc 0 by simp

• replacing executable but inconvenient constructs:

lemma [code inline]:
xs = [] ←→ List .null xs by (induct xs) simp-all

Function transformers provide a very general interface, transforming a list of
function theorems to another list of function theorems, provided that neither
the heading constant nor its type change. The 0 / Suc pattern elimination
implemented in theory Efficient-Nat (see §3.3) uses this interface.
The current setup of the preprocessor may be inspected using the print-codesetup
command. code-thms provides a convenient mechanism to inspect the im-
pact of a preprocessor setup on code equations.

! The attribute code unfold associated with the SML code generator also applies
to the generic code generator : code unfold implies code inline.

2.5 Datatypes

Conceptually, any datatype is spanned by a set of constructors of type τ =
. . . ⇒ κ α1 . . . αn where {α1, . . ., αn} is exactly the set of all type variables
in τ . The HOL datatype package by default registers any new datatype in

2 TURNING THEORIES INTO PROGRAMS 10

the table of datatypes, which may be inspected using the print-codesetup
command.

In some cases, it is appropriate to alter or extend this table. As an example,
we will develop an alternative representation of the queue example given in
§1.1. The amortised representation is convenient for generating code but ex-
poses its “implementation” details, which may be cumbersome when proving
theorems about it. Therefore, here a simple, straightforward representation
of queues:

datatype ′a queue = Queue ′a list

definition empty :: ′a queue where
empty = Queue []

primrec enqueue :: ′a ⇒ ′a queue ⇒ ′a queue where
enqueue x (Queue xs) = Queue (xs @ [x])

fun dequeue :: ′a queue ⇒ ′a option × ′a queue where
dequeue (Queue []) = (None, Queue [])
| dequeue (Queue (x # xs)) = (Some x , Queue xs)

This we can use directly for proving; for executing, we provide an alternative
characterisation:

definition AQueue :: ′a list ⇒ ′a list ⇒ ′a queue where
AQueue xs ys = Queue (ys @ rev xs)

code-datatype AQueue

Here we define a “constructor” AQueue which is defined in terms of Queue
and interprets its arguments according to what the content of an amortised
queue is supposed to be. Equipped with this, we are able to prove the
following equations for our primitive queue operations which “implement”
the simple queues in an amortised fashion:

lemma empty-AQueue [code]:
empty = AQueue [] []
unfolding AQueue-def empty-def by simp

lemma enqueue-AQueue [code]:
enqueue x (AQueue xs ys) = AQueue (x # xs) ys
unfolding AQueue-def by simp

2 TURNING THEORIES INTO PROGRAMS 11

lemma dequeue-AQueue [code]:
dequeue (AQueue xs []) =

(if xs = [] then (None, AQueue [] [])
else dequeue (AQueue [] (rev xs)))

dequeue (AQueue xs (y # ys)) = (Some y , AQueue xs ys)
unfolding AQueue-def by simp-all

For completeness, we provide a substitute for the case combinator on queues:

lemma queue-case-AQueue [code]:
queue-case f (AQueue xs ys) = f (ys @ rev xs)
unfolding AQueue-def by simp

The resulting code looks as expected:

structure Example =
struct

fun foldl f a [] = a
| foldl f a (x :: xs) = foldl f (f a x) xs;

fun rev xs = foldl (fn xsa => fn x => x :: xsa) [] xs;

fun null [] = true
| null (x :: xs) = false;

datatype ’a queue = AQueue of ’a list * ’a list;

val empty : ’a queue = AQueue ([], [])

fun dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (xs, [])) =
(if null xs then (NONE, AQueue ([], []))
else dequeue (AQueue ([], rev xs)));

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

end; (*struct Example*)

From this example, it can be glimpsed that using own constructor sets is a
little delicate since it changes the set of valid patterns for values of that type.
Without going into much detail, here some practical hints:

• When changing the constructor set for datatypes, take care to provide
alternative equations for the case combinator.

• Values in the target language need not to be normalised – different
values in the target language may represent the same value in the logic.

2 TURNING THEORIES INTO PROGRAMS 12

• Usually, a good methodology to deal with the subtleties of pattern
matching is to see the type as an abstract type: provide a set of op-
erations which operate on the concrete representation of the type, and
derive further operations by combinations of these primitive ones, with-
out relying on a particular representation.

2.6 Equality and wellsortedness

Surely you have already noticed how equality is treated by the code generator:

primrec collect-duplicates :: ′a list ⇒ ′a list ⇒ ′a list ⇒ ′a list where
collect-duplicates xs ys [] = xs
| collect-duplicates xs ys (z#zs) = (if z ∈ set xs

then if z ∈ set ys
then collect-duplicates xs ys zs
else collect-duplicates xs (z#ys) zs

else collect-duplicates (z#xs) (z#ys) zs)

The membership test during preprocessing is rewritten, resulting in op mem,
which itself performs an explicit equality check.

structure Example =
struct

type ’a eq = {eq : ’a -> ’a -> bool};
fun eq (A_:’a eq) = #eq A_;

fun eqop A_ a b = eq A_ a b;

fun member A_ x [] = false
| member A_ x (y :: ys) = eqop A_ x y orelse member A_ x ys;

fun collect_duplicates A_ xs ys [] = xs
| collect_duplicates A_ xs ys (z :: zs) =
(if member A_ z xs
then (if member A_ z ys then collect_duplicates A_ xs ys zs

else collect_duplicates A_ xs (z :: ys) zs)
else collect_duplicates A_ (z :: xs) (z :: ys) zs);

end; (*struct Example*)

Obviously, polymorphic equality is implemented the Haskell way using a
type class. How is this achieved? HOL introduces an explicit class eq with
a corresponding operation eq-class .eq such that eq-class .eq = op =. The
preprocessing framework does the rest by propagating the eq constraints
through all dependent code equations. For datatypes, instances of eq are
implicitly derived when possible. For other types, you may instantiate eq
manually like any other type class.

2 TURNING THEORIES INTO PROGRAMS 13

Though this eq class is designed to get rarely in the way, a subtlety enters
the stage when definitions of overloaded constants are dependent on opera-
tional equality. For example, let us define a lexicographic ordering on tuples
(also see theory Product-ord):

instantiation ∗ :: (order , order) order
begin

definition [code del]:
x ≤ y ←→ fst x < fst y ∨ fst x = fst y ∧ snd x ≤ snd y

definition [code del]:
x < y ←→ fst x < fst y ∨ fst x = fst y ∧ snd x < snd y

instance proof
qed (auto simp: less-eq-prod-def less-prod-def intro: order-less-trans)

end

lemma order-prod [code]:
(x1 :: ′a::order , y1 :: ′b::order) < (x2, y2) ←→

x1 < x2 ∨ x1 = x2 ∧ y1 < y2
(x1 :: ′a::order , y1 :: ′b::order) ≤ (x2, y2) ←→

x1 < x2 ∨ x1 = x2 ∧ y1 ≤ y2
by (simp-all add : less-prod-def less-eq-prod-def)

Then code generation will fail. Why? The definition of op ≤ depends on
equality on both arguments, which are polymorphic and impose an additional
eq class constraint, which the preprocessor does not propagate (for technical
reasons).

The solution is to add eq explicitly to the first sort arguments in the code
theorems:

lemma order-prod-code [code]:
(x1 :: ′a::{order , eq}, y1 :: ′b::order) < (x2, y2) ←→

x1 < x2 ∨ x1 = x2 ∧ y1 < y2
(x1 :: ′a::{order , eq}, y1 :: ′b::order) ≤ (x2, y2) ←→

x1 < x2 ∨ x1 = x2 ∧ y1 ≤ y2
by (simp-all add : less-prod-def less-eq-prod-def)

Then code generation succeeds:

2 TURNING THEORIES INTO PROGRAMS 14

structure Example =
struct

type ’a eq = {eq : ’a -> ’a -> bool};
fun eq (A_:’a eq) = #eq A_;

type ’a ord = {less_eq : ’a -> ’a -> bool, less : ’a -> ’a -> bool};
fun less_eq (A_:’a ord) = #less_eq A_;
fun less (A_:’a ord) = #less A_;

fun eqop A_ a b = eq A_ a b;

type ’a preorder = {Orderings__ord_preorder : ’a ord};
fun ord_preorder (A_:’a preorder) = #Orderings__ord_preorder A_;

type ’a order = {Orderings__preorder_order : ’a preorder};
fun preorder_order (A_:’a order) = #Orderings__preorder_order A_;

fun less_eqa (A1_, A2_) B_ (x1, y1) (x2, y2) =
less ((ord_preorder o preorder_order) A2_) x1 x2 orelse
eqop A1_ x1 x2 andalso
less_eq ((ord_preorder o preorder_order) B_) y1 y2

| less_eqa (A1_, A2_) B_ (x1, y1) (x2, y2) =
less ((ord_preorder o preorder_order) A2_) x1 x2 orelse
eqop A1_ x1 x2 andalso
less_eq ((ord_preorder o preorder_order) B_) y1 y2;

end; (*struct Example*)

In some cases, the automatically derived code equations for equality on a
particular type may not be appropriate. As example, watch the following
datatype representing monomorphic parametric types (where type construc-
tors are referred to by natural numbers):

datatype monotype = Mono nat monotype list

Then code generation for SML would fail with a message that the generated
code contains illegal mutual dependencies: the theorem eq-class .eq (Mono
tyco1 typargs1) (Mono tyco2 typargs2) ≡ eq-class .eq tyco1 tyco2 ∧ eq-class .eq
typargs1 typargs2 already requires the instance monotype :: eq, which itself re-
quires eq-class .eq (Mono tyco1 typargs1) (Mono tyco2 typargs2) ≡ eq-class .eq
tyco1 tyco2 ∧ eq-class .eq typargs1 typargs2; Haskell has no problem with mut-
ually recursive instance and function definitions, but the SML serialiser does
not support this.

In such cases, you have to provide your own equality equations involving
auxiliary constants. In our case, list-all2 can do the job:

lemma monotype-eq-list-all2 [code]:
eq-class.eq (Mono tyco1 typargs1) (Mono tyco2 typargs2) ←→

eq-class.eq tyco1 tyco2 ∧ list-all2 eq-class.eq typargs1 typargs2
by (simp add : eq list-all2-eq [symmetric])

2 TURNING THEORIES INTO PROGRAMS 15

does not depend on instance monotype :: eq :

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

fun null [] = true
| null (x :: xs) = false;

fun eq_nat (Suc a) Zero_nat = false
| eq_nat Zero_nat (Suc a) = false
| eq_nat (Suc nat) (Suc nat’) = eq_nat nat nat’
| eq_nat Zero_nat Zero_nat = true;

datatype monotype = Mono of nat * monotype list;

fun list_all2 p (x :: xs) (y :: ys) = p x y andalso list_all2 p xs ys
| list_all2 p xs [] = null xs
| list_all2 p [] ys = null ys;

fun eq_monotype (Mono (tyco1, typargs1)) (Mono (tyco2, typargs2)) =
eq_nat tyco1 tyco2 andalso list_all2 eq_monotype typargs1 typargs2;

end; (*struct Example*)

2.7 Explicit partiality

Partiality usually enters the game by partial patterns, as in the following
example, again for amortised queues:

definition strict-dequeue :: ′a queue ⇒ ′a × ′a queue where
strict-dequeue q = (case dequeue q

of (Some x , q ′) ⇒ (x , q ′))

lemma strict-dequeue-AQueue [code]:
strict-dequeue (AQueue xs (y # ys)) = (y , AQueue xs ys)
strict-dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (y , AQueue [] ys))
by (simp-all add : strict-dequeue-def dequeue-AQueue split : list .splits)

In the corresponding code, there is no equation for the pattern AQueue [] []:

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs []) =
let {
(y : ys) = rev xs;

} in (y, AQueue [] ys);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

In some cases it is desirable to have this pseudo-“partiality” more explicitly,
e.g. as follows:

2 TURNING THEORIES INTO PROGRAMS 16

axiomatization empty-queue :: ′a

definition strict-dequeue ′ :: ′a queue ⇒ ′a × ′a queue where
strict-dequeue ′ q = (case dequeue q of (Some x , q ′) ⇒ (x , q ′) | - ⇒

empty-queue)

lemma strict-dequeue ′-AQueue [code]:
strict-dequeue ′ (AQueue xs []) = (if xs = [] then empty-queue

else strict-dequeue ′ (AQueue [] (rev xs)))
strict-dequeue ′ (AQueue xs (y # ys)) =

(y , AQueue xs ys)
by (simp-all add : strict-dequeue ′-def dequeue-AQueue split : list .splits)

Observe that on the right hand side of the definition of strict-dequeue ′ the
constant empty-queue occurs which is unspecified.

Normally, if constants without any code equations occur in a program,
the code generator complains (since in most cases this is not what the user
expects). But such constants can also be thought of as function definitions
with no equations which always fail, since there is never a successful pattern
match on the left hand side. In order to categorise a constant into that
category explicitly, use code-abort:

code-abort empty-queue

Then the code generator will just insert an error or exception at the appro-
priate position:

empty_queue :: forall a. a;
empty_queue = error "empty_queue";

strict_dequeue’ :: forall a. Queue a -> (a, Queue a);
strict_dequeue’ (AQueue xs (y : ys)) = (y, AQueue xs ys);
strict_dequeue’ (AQueue xs []) =

(if nulla xs then empty_queue
else strict_dequeue’ (AQueue [] (rev xs)));

This feature however is rarely needed in practice. Note also that the HOL
default setup already declares undefined as code-abort, which is most likely
to be used in such situations.

3 ADAPTION TO TARGET LANGUAGES 17

3 Adaption to target languages

3.1 Adapting code generation

The aspects of code generation introduced so far have two aspects in common:

• They act uniformly, without reference to a specific target language.

• They are safe in the sense that as long as you trust the code generator
meta theory and implementation, you cannot produce programs that
yield results which are not derivable in the logic.

In this section we will introduce means to adapt the serialiser to a specific
target language, i.e. to print program fragments in a way which accommo-
dates “already existing” ingredients of a target language environment, for
three reasons:

• improving readability and aesthetics of generated code

• gaining efficiency

• interface with language parts which have no direct counterpart in HOL
(say, imperative data structures)

Generally, you should avoid using those features yourself at any cost :

• The safe configuration methods act uniformly on every target language,
whereas for adaption you have to treat each target language separate.

• Application is extremely tedious since there is no abstraction which
would allow for a static check, making it easy to produce garbage.

• More or less subtle errors can be introduced unconsciously.

However, even if you ought refrain from setting up adaption yourself, already
the HOL comes with some reasonable default adaptions (say, using target
language list syntax). There also some common adaption cases which you
can setup by importing particular library theories. In order to understand
these, we provide some clues here; these however are not supposed to replace
a careful study of the sources.

3 ADAPTION TO TARGET LANGUAGES 18

logic intermediate language target language

translation serialisation

adaption

ge
n
er

at
ed

language

library

includes

re
se

rv
ed

Figure 2: The adaption principle

3.2 The adaption principle

Figure 2 illustrates what “adaption” is conceptually supposed to be:
In the tame view, code generation acts as broker between logic, intermediate
language and target language by means of translation and serialisation; for
the latter, the serialiser has to observe the structure of the language itself
plus some reserved keywords which have to be avoided for generated code.
However, if you consider adaption mechanisms, the code generated by the
serializer is just the tip of the iceberg:

• serialisation can be parametrised such that logical entities are mapped
to target-specific ones (e.g. target-specific list syntax, see also §3.4)

• Such parametrisations can involve references to a target-specific stan-
dard library (e.g. using the Haskell Maybe type instead of the HOL
option type); if such are used, the corresponding identifiers (in our ex-
ample, Maybe, Nothing and Just) also have to be considered reserved.

• Even more, the user can enrich the library of the target-language by
providing code snippets (“includes”) which are prepended to any gen-
erated code (see §3.6); this typically also involves further reserved iden-
tifiers.

As figure 2 illustrates, all these adaption mechanisms have to act consistently;
it is at the discretion of the user to take care for this.

3 ADAPTION TO TARGET LANGUAGES 19

3.3 Common adaption patterns

The HOL Main theory already provides a code generator setup which should
be suitable for most applications. Common extensions and modifications
are available by certain theories of the HOL library; beside being useful in
applications, they may serve as a tutorial for customising the code generator
setup (see below §3.4).

Code-Integer represents HOL integers by big integer literals in target lan-
guages.

Code-Char represents HOL characters by character literals in target lan-
guages.

Code-Char-chr like Code-Char, but also offers treatment of character codes;
includes Code-Char .

Efficient-Nat implements natural numbers by integers, which in general will
result in higher efficiency; pattern matching with 0 / Suc is eliminated;
includes Code-Integer and Code-Index .

Code-Index provides an additional datatype index which is mapped to target-
language built-in integers. Useful for code setups which involve e.g.
indexing of target-language arrays.

Code-Message provides an additional datatype message-string which is iso-
morphic to strings; message-strings are mapped to target-language
strings. Useful for code setups which involve e.g. printing (error) mes-
sages.

!When importing any of these theories, they should form the last items in an
import list. Since these theories adapt the code generator setup in a non-

conservative fashion, strange effects may occur otherwise.

3.4 Parametrising serialisation

Consider the following function and its corresponding SML code:

primrec in-interval :: nat × nat ⇒ nat ⇒ bool where
in-interval (k , l) n ←→ k ≤ n ∧ n ≤ l

3 ADAPTION TO TARGET LANGUAGES 20

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

datatype boola = True | False;

fun anda x True = x
| anda x False = False
| anda True x = x
| anda False x = False;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = False

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = True;

fun in_interval (k, l) n = anda (less_eq_nat k n) (less_eq_nat n l);

end; (*struct Example*)

Though this is correct code, it is a little bit unsatisfactory: boolean values and
operators are materialised as distinguished entities with have nothing to do
with the SML-built-in notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML bool would be used. To
map the HOL bool on SML bool, we may use custom serialisations :

code type bool
(SML "bool")

code const True and False and "op ∧"
(SML "true" and "false" and "_ andalso _")

The code-type command takes a type constructor as arguments together
with a list of custom serialisations. Each custom serialisation starts with a
target language identifier followed by an expression, which during code serial-
isation is inserted whenever the type constructor would occur. For constants,
code-const implements the corresponding mechanism. Each “_” in a serial-
isation expression is treated as a placeholder for the type constructor’s (the
constant’s) arguments.

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true;

fun in_interval (k, l) n = (less_eq_nat k n) andalso (less_eq_nat n l);

end; (*struct Example*)

3 ADAPTION TO TARGET LANGUAGES 21

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serialiser by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

code const "op ∧"
(SML infixl 1 "andalso")

structure Example =
struct

datatype nat = Zero_nat | Suc of nat;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true;

fun in_interval (k, l) n = less_eq_nat k n andalso less_eq_nat n l;

end; (*struct Example*)

The attentive reader may ask how we assert that no generated code will ac-
cidentally overwrite. For this reason the serialiser has an internal table of
identifiers which have to be avoided to be used for new declarations. Ini-
tially, this table typically contains the keywords of the target language. It
can be extended manually, thus avoiding accidental overwrites, using the
code-reserved command:

code-reserved SML bool true false andalso

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code type *
(SML infix 2 "*")

code const Pair
(SML "!((_),/ (_))")

The initial bang “!” tells the serialiser never to put parentheses around the
whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serialisations pro-
vide; however their usage requires careful thinking in order not to introduce

3 ADAPTION TO TARGET LANGUAGES 22

inconsistencies – or, in other words: custom serialisations are completely
axiomatic.

A further noteworthy details is that any special character in a custom
serialisation may be quoted using “’”; thus, in “fn ’_ => _” the first “_”
is a proper underscore while the second “_” is a placeholder.

3.5 Haskell serialisation

For convenience, the default HOL setup for Haskell maps the eq class to
its counterpart in Haskell, giving custom serialisations for the class eq (by
command code-class) and its operation eq-class .eq

code class eq
(Haskell "Eq")

code const "op ="
(Haskell infixl 4 "==")

A problem now occurs whenever a type which is an instance of eq in HOL is
mapped on a Haskell -built-in type which is also an instance of Haskell Eq :

typedecl bar

instantiation bar :: eq
begin

definition eq-class.eq (x ::bar) y ←→ x = y

instance by default (simp add : eq-bar-def)

end

code type bar
(Haskell "Integer")

The code generator would produce an additional instance, which of course is
rejected by the Haskell compiler. To suppress this additional instance, use
code-instance:

code instance bar :: eq
(Haskell -)

4 FURTHER ISSUES 23

3.6 Enhancing the target language context

In rare cases it is necessary to enrich the context of a target language; this
is accomplished using the code-include command:

code include Haskell "Errno"
{*errno i = error ("Error number: " ++ show i)*}

code reserved Haskell Errno

Such named includes are then prepended to every generated code. Inspect
such code in order to find out how code-include behaves with respect to a
particular target language.

4 Further issues

4.1 Further reading

Do dive deeper into the issue of code generation, you should visit the Isabelle/Isar
Reference Manual [7] which contains exhaustive syntax diagrams.

4.2 Modules

When invoking the export-code command it is possible to leave out the
module-name part; then code is distributed over different modules, where
the module name space roughly is induced by the Isabelle theory name space.

Then sometimes the awkward situation occurs that dependencies between
definitions introduce cyclic dependencies between modules, which in the
Haskell world leaves you to the mercy of the Haskell implementation you
are using, while for SML/OCaml code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

code-modulename SML
A ABC
B ABC
C ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialisation time.

4 FURTHER ISSUES 24

4.3 Evaluation oracle

Code generation may also be used to evaluate expressions (using SML as
target language of course). For instance, the value allows to reduce an
expression to a normal form with respect to the underlying code equations:

value 42 / (12 :: rat)

will display 7 / 2.
The eval method tries to reduce a goal by code generation to True and

solves it in that case, but fails otherwise:

lemma 42 / (12 :: rat) = 7 / 2
by eval

The soundness of the eval method depends crucially on the correctness of the
code generator; this is one of the reasons why you should not use adaption
(see §3) frivolously.

4.4 Code antiquotation

In scenarios involving techniques like reflection it is quite common that code
generated from a theory forms the basis for implementing a proof procedure
in SML. To facilitate interfacing of generated code with system code, the
code generator provides a code antiquotation:

datatype form = T | F | And form form | Or form form

ML {*
fun eval_form @{code T} = true

| eval_form @{code F} = false
| eval_form (@{code And} (p, q)) =

eval_form p andalso eval_form q
| eval_form (@{code Or} (p, q)) =

eval_form p orelse eval_form q;
*}

code takes as argument the name of a constant; after the whole SML is read,
the necessary code is generated transparently and the corresponding constant
names are inserted. This technique also allows to use pattern matching on
constructors stemming from compiled datatypes.

For a less simplistic example, theory Ferrack is a good reference.

5 ML SYSTEM INTERFACES 25

4.5 Imperative data structures

If you consider imperative data structures as inevitable for a specific applica-
tion, you should consider Imperative Functional Programming with Isabelle/HOL
([2]); the framework described there is available in theory Imperative-HOL.

5 ML system interfaces

Since the code generator framework not only aims to provide a nice Isar
interface but also to form a base for code-generation-based applications, here
a short description of the most important ML interfaces.

5.1 Executable theory content: Code

This Pure module implements the core notions of executable content of a
theory.

Managing executable content

ml Reference

Code.add_eqn: thm -> theory -> theory
Code.del_eqn: thm -> theory -> theory
Code.add_eqnl: string * (thm * bool) list lazy -> theory -> theory
Code.map_pre: (simpset -> simpset) -> theory -> theory
Code.map_post: (simpset -> simpset) -> theory -> theory
Code.add_functrans: string * (theory -> (thm * bool) list -> (thm * bool) list option)

-> theory -> theory
Code.del_functrans: string -> theory -> theory
Code.add_datatype: (string * typ) list -> theory -> theory
Code.get_datatype: theory -> string

-> (string * sort) list * (string * typ list) list
Code.get_datatype_of_constr: theory -> string -> string option

Code.add_eqn thm thy adds function theorem thm to executable content.

Code.del_eqn thm thy removes function theorem thm from executable content,
if present.

Code.add_eqnl (const , lthms) thy adds suspended code equations lthms for con-
stant const to executable content.

Code.map_pre f thy changes the preprocessor simpset.

5 ML SYSTEM INTERFACES 26

Code.add_functrans (name, f) thy adds function transformer f (named name)
to executable content; f is a transformer of the code equations belonging
to a certain function definition, depending on the current theory context.
Returning NONE indicates that no transformation took place; otherwise,
the whole process will be iterated with the new code equations.

Code.del_functrans name thy removes function transformer named name from
executable content.

Code.add_datatype cs thy adds a datatype to executable content, with genera-
tion set cs.

Code.get_datatype_of_constr thy const returns type constructor correspond-
ing to constructor const ; returns NONE if const is no constructor.

5.2 Auxiliary

ml Reference

Code_Unit.read_const: theory -> string -> string
Code_Unit.head_eqn: theory -> thm -> string * ((string * sort) list * typ)
Code_Unit.rewrite_eqn: simpset -> thm -> thm

Code_Unit.read_const thy s reads a constant as a concrete term expression s.

Code_Unit.head_eqn thy thm extracts the constant and its type from a code
equation thm.

Code_Unit.rewrite_eqn ss thm rewrites a code equation thm with a simpset ss;
only arguments and right hand side are rewritten, not the head of the code
equation.

5.3 Implementing code generator applications

Implementing code generator applications on top of the framework set out so
far usually not only involves using those primitive interfaces but also storing
code-dependent data and various other things.

5 ML SYSTEM INTERFACES 27

Data depending on the theory’s executable content

Due to incrementality of code generation, changes in the theory’s executable
content have to be propagated in a certain fashion. Additionally, such
changes may occur not only during theory extension but also during the-
ory merge, which is a little bit nasty from an implementation point of view.
The framework provides a solution to this technical challenge by providing
a functorial data slot CodeDataFun; on instantiation of this functor, the fol-
lowing types and operations are required:

type T
val empty : T
val purge: theory → string list option → T → T

T the type of data to store.

empty initial (empty) data.

purge thy consts propagates changes in executable content; consts indicates
the kind of change: NONE stands for a fundamental change which inval-
idates any existing code, SOME consts hints that executable content
for constants consts has changed.

An instance of CodeDataFun provides the following interface:

get : theory → T
change: theory → (T → T) → T
change-yield : theory → (T → ′a ∗ T) → ′a ∗ T

get retrieval of the current data.

change update of current data (cached!) by giving a continuation.

change-yield update with side result.

Happy proving, happy hacking!

REFERENCES 28

References

[1] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs: TYPES’2000, volume 2277 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[2] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkk, and
John Matthews. Imperative functional programming with Isabelle/HOL. In
Theorem Proving in Higher Order Logics: TPHOLs 2008, Lecture Notes in
Computer Science. Springer-Verlag, 2008.

[3] Xavier Leroy et al. The Objective Caml system – Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

[4] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[5] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

[6] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003.
http://www.haskell.org/definition/.

[7] Makarius Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

http://caml.inria.fr/pub/docs/manual-ocaml/
http://www.haskell.org/definition/
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction and Overview
	Code generation via shallow embedding
	Code generator architecture

	Turning Theories into Programs
	The Isabelle/HOL default setup
	Selecting code equations
	class and instantiation
	The preprocessor
	Datatypes
	Equality and wellsortedness
	Explicit partiality

	Adaption to target languages
	Adapting code generation
	The adaption principle
	Common adaption patterns
	Parametrising serialisation
	Haskell serialisation
	Enhancing the target language context

	Further issues
	Further reading
	Modules
	Evaluation oracle
	Code antiquotation
	Imperative data structures

	ML system interfaces
	Executable theory content: Code
	Auxiliary
	Implementing code generator applications

