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Abstract

We describe the key concepts underlying the Isabelle/Isar implementation,
including ML references for the most important functions. The aim is to
give some insight into the overall system architecture, and provide clues on
implementing applications within this framework.



Isabelle was not designed; it evolved. Not everyone likes this idea.

Specification experts rightly abhor trial-and-error programming. They

suggest that no one should write a program without first writing a com-

plete formal specification. But university departments are not software

houses. Programs like Isabelle are not products: when they have served

their purpose, they are discarded.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

As I did 20 years ago, I still fervently believe that the only way to make

software secure, reliable, and fast is to make it small. Fight features.

Andrew S. Tanenbaum

One thing that UNIX does not need is more features. It is successful

in part because it has a small number of good ideas that work well

together. Merely adding features does not make it easier for users to

do things — it just makes the manual thicker. The right solution in

the right place is always more effective than haphazard hacking.

Rob Pike and Brian W. Kernighan
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Chapter 0

Isabelle/ML

Isabelle/ML is best understood as a certain culture based on Standard ML.
Thus it is not a new programming language, but a certain way to use SML at
an advanced level within the Isabelle environment. This covers a variety of
aspects that are geared towards an efficient and robust platform for applica-
tions of formal logic with fully foundational proof construction — according
to the well-known LCF principle. There is specific infrastructure with li-
brary modules to address the needs of this difficult task. For example, the
raw parallel programming model of Poly/ML is presented as considerably
more abstract concept of future values, which is then used to augment the
inference kernel, proof interpreter, and theory loader accordingly.

The main aspects of Isabelle/ML are introduced below. These first-hand
explanations should help to understand how proper Isabelle/ML is to be read
and written, and to get access to the wealth of experience that is expressed
in the source text and its history of changes.1

0.1 Style and orthography

The sources of Isabelle/Isar are optimized for readability and maintainability.
The main purpose is to tell an informed reader what is really going on and
how things really work. This is a non-trivial aim, but it is supported by
a certain style of writing Isabelle/ML that has emerged from long years of
system development.2

The main principle behind any coding style is consistency. For a single
author of a small program this merely means “choose your style and stick
to it”. A complex project like Isabelle, with long years of development and
different contributors, requires more standardization. A coding style that

1See http://isabelle.in.tum.de/repos/isabelle for the full Mercurial history. There are
symbolic tags to refer to official Isabelle releases, as opposed to arbitrary tip versions that
merely reflect snapshots that are never really up-to-date.

2See also the interesting style guide for OCaml http://caml.inria.fr/resources/doc/
guides/guidelines.en.html which shares many of our means and ends.

1

http://isabelle.in.tum.de/repos/isabelle
http://caml.inria.fr/resources/doc/guides/guidelines.en.html
http://caml.inria.fr/resources/doc/guides/guidelines.en.html
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is changed every few years or with every new contributor is no style at all,
because consistency is quickly lost. Global consistency is hard to achieve,
though. Nonetheless, one should always strive at least for local consistency
of modules and sub-systems, without deviating from some general principles
how to write Isabelle/ML.

In a sense, good coding style is like an orthography for the sources: it helps to
read quickly over the text and see through the main points, without getting
distracted by accidental presentation of free-style code.

0.1.1 Header and sectioning

Isabelle source files have a certain standardized header format (with precise
spacing) that follows ancient traditions reaching back to the earliest versions
of the system by Larry Paulson. See ~~/src/Pure/thm.ML, for example.

The header includes at least Title and Author entries, followed by a prose
description of the purpose of the module. The latter can range from a single
line to several paragraphs of explanations.

The rest of the file is divided into sections, subsections, subsubsections, para-
graphs etc. using a simple layout via ML comments as follows.

(*** section ***)

(** subsection **)

(* subsubsection *)

(*short paragraph*)

(*

long paragraph,

with more text

*)

As in regular typography, there is some extra space before section headings
that are adjacent to plain text (not other headings as in the example above).

The precise wording of the prose text given in these headings is chosen care-
fully to introduce the main theme of the subsequent formal ML text.
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0.1.2 Naming conventions

Since ML is the primary medium to express the meaning of the source text,
naming of ML entities requires special care.

Notation. A name consists of 1–3 words (rarely 4, but not more) that are
separated by underscore. There are three variants concerning upper or lower
case letters, which are used for certain ML categories as follows:

variant example ML categories
lower-case foo_bar values, types, record fields
capitalized Foo_Bar datatype constructors, structures, functors
upper-case FOO_BAR special values, exception constructors, signatures

For historical reasons, many capitalized names omit underscores, e.g. old-
style FooBar instead of Foo_Bar. Genuine mixed-case names are not used,
bacause clear division of words is essential for readability.3

A single (capital) character does not count as “word” in this respect: some
Isabelle/ML names are suffixed by extra markers like this: foo_barT.

Name variants are produced by adding 1–3 primes, e.g. foo’, foo’’, or
foo’’’, but not foo’’’’ or more. Decimal digits scale better to larger
numbers, e.g. foo0, foo1, foo42.

Scopes. Apart from very basic library modules, ML structures are not
“opened”, but names are referenced with explicit qualification, as in
Syntax.string_of_term for example. When devising names for structures
and their components it is important aim at eye-catching compositions of
both parts, because this is how they are seen in the sources and documenta-
tion. For the same reasons, aliases of well-known library functions should be
avoided.

Local names of function abstraction or case/let bindings are typically shorter,
sometimes using only rudiments of “words”, while still avoiding cryptic short-
hands. An auxiliary function called helper, aux, or f is considered bad style.

Example:

(* RIGHT *)

3Camel-case was invented to workaround the lack of underscore in some early non-
ASCII character sets. Later it became habitual in some language communities that are
now strong in numbers.
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fun print_foo ctxt foo =

let

fun print t = ... Syntax.string_of_term ctxt t ...

in ... end;

(* RIGHT *)

fun print_foo ctxt foo =

let

val string_of_term = Syntax.string_of_term ctxt;

fun print t = ... string_of_term t ...

in ... end;

(* WRONG *)

val string_of_term = Syntax.string_of_term;

fun print_foo ctxt foo =

let

fun aux t = ... string_of_term ctxt t ...

in ... end;

Specific conventions. Here are some specific name forms that occur fre-
quently in the sources.

• A function that maps foo to bar is called foo_to_bar or bar_of_foo
(never foo2bar, bar_from_foo, bar_for_foo, or bar4foo).

• The name component legacy means that the operation is about to be
discontinued soon.

• The name component old means that this is historic material that
might disappear at some later stage.

• The name component global means that this works with the back-
ground theory instead of the regular local context (§1.1), sometimes
for historical reasons, sometimes due a genuine lack of locality of the
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concept involved, sometimes as a fall-back for the lack of a proper con-
text in the application code. Whenever there is a non-global variant
available, the application should be migrated to use it with a proper
local context.

• Variables of the main context types of the Isabelle/Isar framework (§1.1
and chapter 7) have firm naming conventions as follows:

– theories are called thy, rarely theory (never thry)

– proof contexts are called ctxt, rarely context (never ctx)

– generic contexts are called context, rarely ctxt

– local theories are called lthy, except for local theories that are
treated as proof context (which is a semantic super-type)

Variations with primed or decimal numbers are always possible, as well
as sematic prefixes like foo_thy or bar_ctxt, but the base conventions
above need to be preserved. This allows to visualize the their data flow
via plain regular expressions in the editor.

• The main logical entities (§2) have established naming convention as
follows:

– sorts are called S

– types are called T, U, or ty (never t)

– terms are called t, u, or tm (never trm)

– certified types are called cT, rarely T, with variants as for types

– certified terms are called ct, rarely t, with variants as for terms

– theorems are called th, or thm

Proper semantic names override these conventions completely. For ex-
ample, the left-hand side of an equation (as a term) can be called lhs

(not lhs_tm). Or a term that is known to be a variable can be called
v or x.

• Tactics (§4.2) are sufficiently important to have specific naming con-
ventions. The name of a basic tactic definition always has a _tac suffix,
the subgoal index (if applicable) is always called i, and the goal state
(if made explicit) is usually called st instead of the somewhat mislead-
ing thm. Any other arguments are given before the latter two, and the
general context is given first. Example:
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fun my_tac ctxt arg1 arg2 i st = ...

Note that the goal state st above is rarely made explicit, if tactic
combinators (tacticals) are used as usual.

0.1.3 General source layout

The general Isabelle/ML source layout imitates regular type-setting to some
extent, augmented by the requirements for deeply nested expressions that
are commonplace in functional programming.

Line length is 80 characters according to ancient standards, but we allow
as much as 100 characters (not more).4 The extra 20 characters acknowledge
the space requirements due to qualified library references in Isabelle/ML.

White-space is used to emphasize the structure of expressions, following
mostly standard conventions for mathematical typesetting, as can be seen
in plain TEX or LATEX. This defines positioning of spaces for parentheses,
punctuation, and infixes as illustrated here:

val x = y + z * (a + b);

val pair = (a, b);

val record = {foo = 1, bar = 2};

Lines are normally broken after an infix operator or punctuation character.
For example:

val x =

a +

b +

c;

val tuple =

4Readability requires to keep the beginning of a line in view while watching its end.
Modern wide-screen displays do not change the way how the human brain works. Sources
also need to be printable on plain paper with reasonable font-size.
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(a,

b,

c);

Some special infixes (e.g. |>) work better at the start of the line, but punc-
tuation is always at the end.

Function application follows the tradition of λ-calculus, not informal mathe-
matics. For example: f a b for a curried function, or g (a, b) for a tupled
function. Note that the space between g and the pair (a, b) follows the
important principle of compositionality : the layout of g p does not change
when p is refined to the concrete pair (a, b).

Indentation uses plain spaces, never hard tabulators.5

Each level of nesting is indented by 2 spaces, sometimes 1, very rarely 4,
never 8 or any other odd number.

Indentation follows a simple logical format that only depends on the nesting
depth, not the accidental length of the text that initiates a level of nesting.
Example:

(* RIGHT *)

if b then

expr1_part1

expr1_part2

else

expr2_part1

expr2_part2

(* WRONG *)

if b then expr1_part1

expr1_part2

else expr2_part1

expr2_part2

5Tabulators were invented to move the carriage of a type-writer to certain predefined
positions. In software they could be used as a primitive run-length compression of consecu-
tive spaces, but the precise result would depend on non-standardized editor configuration.
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The second form has many problems: it assumes a fixed-width font when
viewing the sources, it uses more space on the line and thus makes it hard to
observe its strict length limit (working against readability), it requires extra
editing to adapt the layout to changes of the initial text (working against
maintainability) etc.

For similar reasons, any kind of two-dimensional or tabular layouts, ASCII-
art with lines or boxes of asterisks etc. should be avoided.

Complex expressions that consist of multi-clausal function definitions,
handle, case, let (and combinations) require special attention. The syntax
of Standard ML is quite ambitious and admits a lot of variance that can
distort the meaning of the text.

Clauses of fun, fn, handle, case get extra indentation to indicate the nesting
clearly. Example:

(* RIGHT *)

fun foo p1 =

expr1

| foo p2 =

expr2

(* WRONG *)

fun foo p1 =

expr1

| foo p2 =

expr2

Body expressions consisting of case or let require care to maintain composi-
tionality, to prevent loss of logical indentation where it is especially important
to see the structure of the text. Example:

(* RIGHT *)

fun foo p1 =

(case e of

q1 => ...
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| q2 => ...)

| foo p2 =

let

...

in

...

end

(* WRONG *)

fun foo p1 = case e of

q1 => ...

| q2 => ...

| foo p2 =

let

...

in

...

end

Extra parentheses around case expressions are optional, but help to analyse
the nesting based on character matching in the editor.

There are two main exceptions to the overall principle of compositionality in
the layout of complex expressions.

1. if expressions are iterated as if there would be a multi-branch condi-
tional in SML, e.g.

(* RIGHT *)

if b1 then e1

else if b2 then e2

else e3

2. fn abstractions are often layed-out as if they would lack any structure
by themselves. This traditional form is motivated by the possibility to
shift function arguments back and forth wrt. additional combinators.
Example:
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(* RIGHT *)

fun foo x y = fold (fn z =>

expr)

Here the visual appearance is that of three arguments x, y, z.

Such weakly structured layout should be use with great care. Here are some
counter-examples involving let expressions:

(* WRONG *)

fun foo x = let

val y = ...

in ... end

(* WRONG *)

fun foo x = let

val y = ...

in ... end

(* WRONG *)

fun foo x =

let

val y = ...

in ... end

In general the source layout is meant to emphasize the structure of complex
language expressions, not to pretend that SML had a completely different
syntax (say that of Haskell or Java).

0.2 SML embedded into Isabelle/Isar

ML and Isar are intertwined via an open-ended bootstrap process that pro-
vides more and more programming facilities and logical content in an alter-
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nating manner. Bootstrapping starts from the raw environment of existing
implementations of Standard ML (mainly Poly/ML, but also SML/NJ).

Isabelle/Pure marks the point where the original ML toplevel is superseded
by the Isar toplevel that maintains a uniform context for arbitrary ML values
(see also §1.1). This formal environment holds ML compiler bindings, logical
entities, and many other things. Raw SML is never encountered again after
the initial bootstrap of Isabelle/Pure.

Object-logics like Isabelle/HOL are built within the Isabelle/ML/Isar envi-
ronment by introducing suitable theories with associated ML modules, either
inlined or as separate files. Thus Isabelle/HOL is defined as a regular user-
space application within the Isabelle framework. Further add-on tools can be
implemented in ML within the Isar context in the same manner: ML is part
of the standard repertoire of Isabelle, and there is no distinction between
“user” and “developer” in this respect.

0.2.1 Isar ML commands

The primary Isar source language provides facilities to “open a window” to
the underlying ML compiler. Especially see the Isar commands use and
ML: both work the same way, only the source text is provided via a file
vs. inlined, respectively. Apart from embedding ML into the main theory
definition like that, there are many more commands that refer to ML source,
such as setup or declaration. Even more fine-grained embedding of ML
into Isar is encountered in the proof method tactic, which refines the pending
goal state via a given expression of type tactic.

ML Examples

The following artificial example demonstrates some ML toplevel declarations
within the implicit Isar theory context. This is regular functional program-
ming without referring to logical entities yet.

ML {*

fun factorial 0 = 1

| factorial n = n * factorial (n - 1)

*}

Here the ML environment is already managed by Isabelle, i.e. the factorial
function is not yet accessible in the preceding paragraph, nor in a different
theory that is independent from the current one in the import hierarchy.

Removing the above ML declaration from the source text will remove any
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trace of this definition as expected. The Isabelle/ML toplevel environment is
managed in a stateless way: unlike the raw ML toplevel there are no global
side-effects involved here.6

The next example shows how to embed ML into Isar proofs, using ML prf
instead of Instead of ML. As illustrated below, the effect on the ML envi-
ronment is local to the whole proof body, ignoring the block structure.

notepad
begin

ML prf {* val a = 1 *}

{
ML prf {* val b = a + 1 *}

} — Isar block structure ignored by ML environment
ML prf {* val c = b + 1 *}

end

By side-stepping the normal scoping rules for Isar proof blocks, embedded
ML code can refer to the different contexts and manipulate corresponding
entities, e.g. export a fact from a block context.

Two further ML commands are useful in certain situations: ML val and
ML command are diagnostic in the sense that there is no effect on the
underlying environment, and can thus used anywhere (even outside a the-
ory). The examples below produce long strings of digits by invoking
factorial: ML val already takes care of printing the ML toplevel result,
but ML command is silent so we produce an explicit output message.

ML val {* factorial 100 *}

ML command {* writeln (string_of_int (factorial 100)) *}

notepad
begin

ML val {* factorial 100 *}

ML command {* writeln (string_of_int (factorial 100)) *}

end

0.2.2 Compile-time context

Whenever the ML compiler is invoked within Isabelle/Isar, the formal context
is passed as a thread-local reference variable. Thus ML code may access the
theory context during compilation, by reading or writing the (local) theory

6Such a stateless compilation environment is also a prerequisite for robust parallel
compilation within independent nodes of the implicit theory development graph.
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under construction. Note that such direct access to the compile-time context
is rare. In practice it is typically done via some derived ML functions instead.

ML Reference

ML_Context.the_generic_context: unit -> Context.generic

Context.>> : (Context.generic -> Context.generic) -> unit

bind_thms: string * thm list -> unit

bind_thm: string * thm -> unit

ML_Context.the_generic_context () refers to the theory context of the
ML toplevel — at compile time. ML code needs to take care to refer
to ML_Context.the_generic_context () correctly. Recall that eval-
uation of a function body is delayed until actual run-time.

Context.>> f applies context transformation f to the implicit context of
the ML toplevel.

bind_thms (name, thms) stores a list of theorems produced in ML both in
the (global) theory context and the ML toplevel, associating it with
the provided name. Theorems are put into a global “standard” format
before being stored.

bind_thm is similar to bind_thms but refers to a singleton fact.

It is important to note that the above functions are really restricted to the
compile time, even though the ML compiler is invoked at run-time. The
majority of ML code either uses static antiquotations (§0.2.3) or refers to the
theory or proof context at run-time, by explicit functional abstraction.

0.2.3 Antiquotations

A very important consequence of embedding SML into Isar is the concept
of ML antiquotation. The standard token language of ML is augmented by
special syntactic entities of the following form:

antiquote

@{
����nameref args }

�����
� {|

����� |}
����

�
�
�
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Here nameref and args are regular outer syntax categories [15]. Attributes
and proof methods use similar syntax.

A regular antiquotation @{name args} processes its arguments by the usual
means of the Isar source language, and produces corresponding ML source
text, either as literal inline text (e.g. @{term t}) or abstract value (e.g.
@{thm th}). This pre-compilation scheme allows to refer to formal entities
in a robust manner, with proper static scoping and with some degree of
logical checking of small portions of the code.

Special antiquotations like @{let . . .} or @{note . . .} augment the compila-
tion context without generating code. The non-ASCII braces {| and |} allow
to delimit the effect by introducing local blocks within the pre-compilation
environment.

See also [17] for a broader perspective on Isabelle/ML antiquotations.

ML Antiquotations

let : ML antiquotation
note : ML antiquotation

let
�� �� term�

� and
�� ��

�
�

=
����term�

� and
�� ��

�

�
note

�� �� �
�thmdef

�
�

thmrefs�

� and
�� ��

�

�
@{let p = t} binds schematic variables in the pattern p by higher-order

matching against the term t. This is analogous to the regular let com-
mand in the Isar proof language. The pre-compilation environment is
augmented by auxiliary term bindings, without emitting ML source.

@{note a = b1 . . . bn} recalls existing facts b1, . . ., bn , binding the result
as a. This is analogous to the regular note command in the Isar proof
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language. The pre-compilation environment is augmented by auxiliary
fact bindings, without emitting ML source.

ML Examples

The following artificial example gives some impression about the antiquo-
tation elements introduced so far, together with the important @{thm} an-
tiquotation defined later.

ML {*

{|
@{let ?t = my_term}

@{note my_refl = reflexive [of ?t]}

fun foo th = Thm.transitive th @{thm my_refl}

|}
*}

The extra block delimiters do not affect the compiled code itself, i.e. function
foo is available in the present context of this paragraph.

0.3 Canonical argument order

Standard ML is a language in the tradition of λ-calculus and higher-order
functional programming, similar to OCaml, Haskell, or Isabelle/Pure and
HOL as logical languages. Getting acquainted with the native style of rep-
resenting functions in that setting can save a lot of extra boiler-plate of
redundant shuffling of arguments, auxiliary abstractions etc.

Functions are usually curried : the idea of turning arguments of type τ i (for
i ∈ {1, . . . n}) into a result of type τ is represented by the iterated function
space τ 1 → . . . → τn → τ . This is isomorphic to the well-known encoding
via tuples τ 1 × . . . × τn → τ , but the curried version fits more smoothly
into the basic calculus.7

Currying gives some flexiblity due to partial application. A function f : τ 1

→ τ2 → τ can be applied to x : τ 1 and the remaining (f x ): τ 2 → τ passed
to another function etc. How well this works in practice depends on the
order of arguments. In the worst case, arguments are arranged erratically,
and using a function in a certain situation always requires some glue code.

7The difference is even more significant in higher-order logic, because the redundant
tuple structure needs to be accommodated by formal reasoning.
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Thus we would get exponentially many oppurtunities to decorate the code
with meaningless permutations of arguments.

This can be avoided by canonical argument order, which observes certain
standard patterns and minimizes adhoc permutations in their application.
In Isabelle/ML, large portions of text can be written without ever using
swap: α × β → β × α, or the combinator C : (α → β → γ) → (β → α →
γ) that is not even defined in our library.

The basic idea is that arguments that vary less are moved further to the
left than those that vary more. Two particularly important categories of
functions are selectors and updates.

The subsequent scheme is based on a hypothetical set-like container of type β
that manages elements of type α. Both the names and types of the associated
operations are canonical for Isabelle/ML.

kind canonical name and type
selector member : β → α → bool
update insert : α → β → β

Given a container B : β, the partially applied member B is a predicate over
elements α → bool, and thus represents the intended denotation directly. It
is customary to pass the abstract predicate to further operations, not the
concrete container. The argument order makes it easy to use other combi-
nators: forall (member B) list will check a list of elements for membership
in B etc. Often the explicit list is pointless and can be contracted to forall
(member B) to get directly a predicate again.

In contrast, an update operation varies the container, so it moves to the right:
insert a is a function β → β to insert a value a. These can be composed
naturally as insert c ◦ insert b ◦ insert a. The slightly awkward inversion of
the composition order is due to conventional mathematical notation, which
can be easily amended as explained below.

0.3.1 Forward application and composition

Regular function application and infix notation works best for relatively
deeply structured expressions, e.g. h (f x y + g z ). The important spe-
cial case of linear transformation applies a cascade of functions f n (. . . (f 1

x )). This becomes hard to read and maintain if the functions are themselves
given as complex expressions. The notation can be significantly improved by
introducing forward versions of application and composition as follows:
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x |> f ≡ f x
(f #> g) x ≡ x |> f |> g

This enables to write conveniently x |> f 1 |> . . . |> f n or f 1 #> . . . #> f n

for its functional abstraction over x.

There is an additional set of combinators to accommodate multiple results
(via pairs) that are passed on as multiple arguments (via currying).

(x , y) |−> f ≡ f x y
(f #−> g) x ≡ x |> f |−> g

ML Reference

op |> : ’a * (’a -> ’b) -> ’b

op |-> : (’c * ’a) * (’c -> ’a -> ’b) -> ’b

op #> : (’a -> ’b) * (’b -> ’c) -> ’a -> ’c

op #-> : (’a -> ’c * ’b) * (’c -> ’b -> ’d) -> ’a -> ’d

0.3.2 Canonical iteration

As explained above, a function f : α → β → β can be understood as update
on a configuration of type β, parametrized by arguments of type α. Given a:
α the partial application (f a): β → β operates homogeneously on β. This
can be iterated naturally over a list of parameters [a1, . . ., an ] as f a1 #>
. . . #> f an . The latter expression is again a function β → β. It can be
applied to an initial configuration b: β to start the iteration over the given
list of arguments: each a in a1, . . ., an is applied consecutively by updating
a cumulative configuration.

The fold combinator in Isabelle/ML lifts a function f as above to its iterated
version over a list of arguments. Lifting can be repeated, e.g. (fold ◦ fold) f
iterates over a list of lists as expected.

The variant fold rev works inside-out over the list of arguments, such that
fold rev f ≡ fold f ◦ rev holds.

The fold map combinator essentially performs fold and map simultaneously:
each application of f produces an updated configuration together with a
side-result; the iteration collects all such side-results as a separate list.
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ML Reference

fold: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold_rev: (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold_map: (’a -> ’b -> ’c * ’b) -> ’a list -> ’b -> ’c list * ’b

fold f lifts the parametrized update function f to a list of parameters.

fold_rev f is similar to fold f, but works inside-out.

fold_map f lifts the parametrized update function f (with side-result) to a
list of parameters and cumulative side-results.

! The literature on functional programming provides a multitude of combinators
called foldl, foldr etc. SML97 provides its own variations as List.foldl and

List.foldr, while the classic Isabelle library also has the historic Library.foldl

and Library.foldr. To avoid further confusion, all of this should be ignored, and
fold (or fold_rev) used exclusively.

ML Examples

The following example shows how to fill a text buffer incrementally by adding
strings, either individually or from a given list.

ML {*

val s =

Buffer.empty

|> Buffer.add "digits: "

|> fold (Buffer.add o string_of_int) (0 upto 9)

|> Buffer.content;

@{assert} (s = "digits: 0123456789");

*}

Note how fold (Buffer.add o string_of_int) above saves an extra map

over the given list. This kind of peephole optimization reduces both the code
size and the tree structures in memory (“deforestation”), but requires some
practice to read and write it fluently.

The next example elaborates the idea of canonical iteration, demonstrating
fast accumulation of tree content using a text buffer.

ML {*

datatype tree = Text of string | Elem of string * tree list;
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fun slow_content (Text txt) = txt

| slow_content (Elem (name, ts)) =

"<" ^ name ^ ">" ^

implode (map slow_content ts) ^

"</" ^ name ^ ">"

fun add_content (Text txt) = Buffer.add txt

| add_content (Elem (name, ts)) =

Buffer.add ("<" ^ name ^ ">") #>

fold add_content ts #>

Buffer.add ("</" ^ name ^ ">");

fun fast_content tree =

Buffer.empty |> add_content tree |> Buffer.content;

*}

The slow part of slow_content is the implode of the recursive results, be-
cause it copies previously produced strings again.

The incremental add_content avoids this by operating on a buffer that is
passed through in a linear fashion. Using #> and contraction over the ac-
tual buffer argument saves some additional boiler-plate. Of course, the two
Buffer.add invocations with concatenated strings could have been split into
smaller parts, but this would have obfuscated the source without making a
big difference in allocations. Here we have done some peephole-optimization
for the sake of readability.

Another benefit of add_content is its “open” form as a function on buffers
that can be continued in further linear transformations, folding etc. Thus it
is more compositional than the naive slow_content. As realistic example,
compare the old-style Term.maxidx_of_term: term -> int with the newer
Term.maxidx_term: term -> int -> int in Isabelle/Pure.

Note that fast_content above is only defined as example. In many practical
situations, it is customary to provide the incremental add_content only and
leave the initialization and termination to the concrete application by the
user.

0.4 Message output channels

Isabelle provides output channels for different kinds of messages: regular
output, high-volume tracing information, warnings, and errors.

Depending on the user interface involved, these messages may appear in
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different text styles or colours. The standard output for terminal sessions
prefixes each line of warnings by ### and errors by ***, but leaves anything
else unchanged.

Messages are associated with the transaction context of the running Isar
command. This enables the front-end to manage commands and resulting
messages together. For example, after deleting a command from a given
theory document version, the corresponding message output can be retracted
from the display.

ML Reference

writeln: string -> unit

tracing: string -> unit

warning: string -> unit

error: string -> ’a

writeln text outputs text as regular message. This is the primary message
output operation of Isabelle and should be used by default.

tracing text outputs text as special tracing message, indicating potential
high-volume output to the front-end (hundreds or thousands of mes-
sages issued by a single command). The idea is to allow the user-
interface to downgrade the quality of message display to achieve higher
throughput.

Note that the user might have to take special actions to see tracing
output, e.g. switch to a different output window. So this channel should
not be used for regular output.

warning text outputs text as warning, which typically means some extra
emphasis on the front-end side (color highlighting, icons, etc.).

error text raises exception ERROR text and thus lets the Isar toplevel print
text on the error channel, which typically means some extra emphasis
on the front-end side (color highlighting, icons, etc.).

This assumes that the exception is not handled before the command
terminates. Handling exception ERROR text is a perfectly legal alterna-
tive: it means that the error is absorbed without any message output.

! The actual error channel is accessed via Output.error_msg, but the interac-
tion protocol of Proof General crashes if that function is used in regular ML
code: error output and toplevel command failure always need to coincide.
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! Regular Isabelle/ML code should output messages exclusively by the official
channels. Using raw I/O on stdout or stderr instead (e.g. via TextIO.output)

is apt to cause problems in the presence of parallel and asynchronous processing
of Isabelle theories. Such raw output might be displayed by the front-end in some
system console log, with a low chance that the user will ever see it. Moreover, as
a genuine side-effect on global process channels, there is no proper way to retract
output when Isar command transactions are reset by the system.

! The message channels should be used in a message-oriented manner. This
means that multi-line output that logically belongs together is issued by a

single invocation of writeln etc. with the functional concatenation of all message
constituents.

ML Examples

The following example demonstrates a multi-line warning. Note that in some
situations the user sees only the first line, so the most important point should
be made first.

ML command {*

warning (cat_lines

["Beware the Jabberwock, my son!",

"The jaws that bite, the claws that catch!",

"Beware the Jubjub Bird, and shun",

"The frumious Bandersnatch!"]);

*}

0.5 Exceptions

The Standard ML semantics of strict functional evaluation together with
exceptions is rather well defined, but some delicate points need to be observed
to avoid that ML programs go wrong despite static type-checking. Exceptions
in Isabelle/ML are subsequently categorized as follows.

Regular user errors. These are meant to provide informative feedback
about malformed input etc.

The error function raises the corresponding ERROR exception, with a plain
text message as argument. ERROR exceptions can be handled internally, in
order to be ignored, turned into other exceptions, or cascaded by appending
messages. If the corresponding Isabelle/Isar command terminates with an
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ERROR exception state, the toplevel will print the result on the error channel
(see §0.4).

It is considered bad style to refer to internal function names or values in ML
source notation in user error messages.

Grammatical correctness of error messages can be improved by omitting final
punctuation: messages are often concatenated or put into a larger context
(e.g. augmented with source position). By not insisting in the final word at
the origin of the error, the system can perform its administrative tasks more
easily and robustly.

Program failures. There is a handful of standard exceptions that indicate
general failure situations, or failures of core operations on logical entities
(types, terms, theorems, theories, see chapter 2).

These exceptions indicate a genuine breakdown of the program, so the main
purpose is to determine quickly what has happened where. Traditionally,
the (short) exception message would include the name of an ML function,
although this is no longer necessary, because the ML runtime system prints
a detailed source position of the corresponding raise keyword.

User modules can always introduce their own custom exceptions locally, e.g.
to organize internal failures robustly without overlapping with existing ex-
ceptions. Exceptions that are exposed in module signatures require extra
care, though, and should not be introduced by default. Surprise by users of
a module can be often minimized by using plain user errors instead.

Interrupts. These indicate arbitrary system events: both the ML runtime
system and the Isabelle/ML infrastructure signal various exceptional situa-
tions by raising the special Interrupt exception in user code.

This is the one and only way that physical events can intrude an Isabelle/ML
program. Such an interrupt can mean out-of-memory, stack overflow, time-
out, internal signaling of threads, or the user producing a console interrupt
manually etc. An Isabelle/ML program that intercepts interrupts becomes
dependent on physical effects of the environment. Even worse, exception
handling patterns that are too general by accident, e.g. by mispelled excep-
tion constructors, will cover interrupts unintentionally and thus render the
program semantics ill-defined.

Note that the Interrupt exception dates back to the original SML90 language
definition. It was excluded from the SML97 version to avoid its malign
impact on ML program semantics, but without providing a viable alternative.
Isabelle/ML recovers physical interruptibility (which is an indispensable tool
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to implement managed evaluation of command transactions), but requires
user code to be strictly transparent wrt. interrupts.

! Isabelle/ML user code needs to terminate promptly on interruption, without
guessing at its meaning to the system infrastructure. Temporary handling of

interrupts for cleanup of global resources etc. needs to be followed immediately by
re-raising of the original exception.

ML Reference

try: (’a -> ’b) -> ’a -> ’b option

can: (’a -> ’b) -> ’a -> bool

ERROR: string -> exn

Fail: string -> exn

Exn.is_interrupt: exn -> bool

reraise: exn -> ’a

exception_trace: (unit -> ’a) -> ’a

try f x makes the partiality of evaluating f x explicit via the option data-
type. Interrupts are not handled here, i.e. this form serves as safe
replacement for the unsafe version (SOME f x handle _ => NONE) that
is occasionally seen in books about SML.

can is similar to try with more abstract result.

ERROR msg represents user errors; this exception is normally raised indirectly
via the error function (see §0.4).

Fail msg represents general program failures.

Exn.is_interrupt identifies interrupts robustly, without mentioning con-
crete exception constructors in user code. Handled interrupts need to
be re-raised promptly!

reraise exn raises exception exn while preserving its implicit position in-
formation (if possible, depending on the ML platform).

exception_trace (fn () => e) evaluates expression e while printing a full
trace of its stack of nested exceptions (if possible, depending on the ML
platform).8

Inserting exception_trace into ML code temporarily is useful for de-
bugging, but not suitable for production code.

8In versions of Poly/ML the trace will appear on raw stdout of the Isabelle process.
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ML Antiquotations

assert : ML antiquotation

@{assert} inlines a function bool -> unit that raises Fail if the argument
is false. Due to inlining the source position of failed assertions is
included in the error output.

0.6 Basic data types

The basis library proposal of SML97 needs to be treated with caution.
Many of its operations simply do not fit with important Isabelle/ML con-
ventions (like “canonical argument order”, see §0.3), others cause problems
with the parallel evaluation model of Isabelle/ML (such as TextIO.print or
OS.Process.system).

Subsequently we give a brief overview of important operations on basic ML
data types.

0.6.1 Characters

ML Reference

type char

Type char is not used. The smallest textual unit in Isabelle is represented
as a “symbol” (see §1.2.1).

0.6.2 Integers

ML Reference

type int

Type int represents regular mathematical integers, which are unbounded.
Overflow never happens in practice.9 This works uniformly for all sup-
ported ML platforms (Poly/ML and SML/NJ).

9The size limit for integer bit patterns in memory is 64 MB for 32-bit Poly/ML, and
much higher for 64-bit systems.
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Literal integers in ML text are forced to be of this one true integer type
— overloading of SML97 is disabled.

Structure IntInf of SML97 is obsolete and superseded by Int. Struc-
ture Integer in ~~/src/Pure/General/integer.ML provides some ad-
ditional operations.

0.6.3 Time

ML Reference

type Time.time

seconds: real -> Time.time

Type Time.time represents time abstractly according to the SML97 basis
library definition. This is adequate for internal ML operations, but
awkward in concrete time specifications.

seconds s turns the concrete scalar s (measured in seconds) into an ab-
stract time value. Floating point numbers are easy to use as context
parameters (e.g. via configuration options, see §1.1.5) or preferences
that are maintained by external tools as well.

0.6.4 Options

ML Reference

Option.map: (’a -> ’b) -> ’a option -> ’b option

is_some: ’a option -> bool

is_none: ’a option -> bool

the: ’a option -> ’a

these: ’a list option -> ’a list

the_list: ’a option -> ’a list

the_default: ’a -> ’a option -> ’a

Apart from Option.map most operations defined in structure Option

are alien to Isabelle/ML. The operations shown above are defined in
~~/src/Pure/General/basics.ML, among others.



CHAPTER 0. ISABELLE/ML 26

0.6.5 Lists

Lists are ubiquitous in ML as simple and light-weight “collections” for many
everyday programming tasks. Isabelle/ML provides important additions and
improvements over operations that are predefined in the SML97 library.

ML Reference

cons: ’a -> ’a list -> ’a list

member: (’b * ’a -> bool) -> ’a list -> ’b -> bool

insert: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list

remove: (’b * ’a -> bool) -> ’b -> ’a list -> ’a list

update: (’a * ’a -> bool) -> ’a -> ’a list -> ’a list

cons x xs evaluates to x :: xs.

Tupled infix operators are a historical accident in Standard ML. The
curried cons amends this, but it should be only used when partial
application is required.

member, insert, remove, update treat lists as a set-like container that main-
tains the order of elements. See ~~/src/Pure/library.ML for the full
specifications (written in ML). There are some further derived opera-
tions like union or inter.

Note that insert is conservative about elements that are already a
member of the list, while update ensures that the latest entry is always
put in front. The latter discipline is often more appropriate in declara-
tions of context data (§1.1.4) that are issued by the user in Isar source:
more recent declarations normally take precedence over earlier ones.

ML Examples

Using canonical fold together with cons, or similar standard operations,
alternates the orientation of data. The is quite natural and should not
be altered forcible by inserting extra applications of rev. The alternative
fold_rev can be used in the few situations, where alternation should be
prevented.

ML {*

val items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

val list1 = fold cons items [];
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@{assert} (list1 = rev items);

val list2 = fold_rev cons items [];

@{assert} (list2 = items);

*}

The subsequent example demonstrates how to merge two lists in a natural
way.

ML {*

fun merge_lists eq (xs, ys) = fold_rev (insert eq) ys xs;

*}

Here the first list is treated conservatively: only the new elements from the
second list are inserted. The inside-out order of insertion via fold_rev at-
tempts to preserve the order of elements in the result.

This way of merging lists is typical for context data (§1.1.4). See also merge

as defined in ~~/src/Pure/library.ML.

0.6.6 Association lists

The operations for association lists interpret a concrete list of pairs as a
finite function from keys to values. Redundant representations with multiple
occurrences of the same key are implicitly normalized: lookup and update
only take the first occurrence into account.

AList.lookup: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> ’c option

AList.defined: (’a * ’b -> bool) -> (’b * ’c) list -> ’a -> bool

AList.update: (’a * ’a -> bool) -> ’a * ’b -> (’a * ’b) list -> (’a * ’b) list

AList.lookup, AList.defined, AList.update implement the main
“framework operations” for mappings in Isabelle/ML, following stan-
dard conventions for their names and types.

Note that a function called lookup is obliged to express its partiality
via an explicit option element. There is no choice to raise an exception,
without changing the name to something like the element or get.

The defined operation is essentially a contraction of is_some and
lookup, but this is sufficiently frequent to justify its independent exis-
tence. This also gives the implementation some opportunity for peep-
hole optimization.

Association lists are adequate as simple and light-weight implementation
of finite mappings in many practical situations. A more heavy-duty table
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structure is defined in ~~/src/Pure/General/table.ML; that version scales
easily to thousands or millions of elements.

0.6.7 Unsynchronized references

ML Reference

type ’a Unsynchronized.ref

Unsynchronized.ref: ’a -> ’a Unsynchronized.ref

! : ’a Unsynchronized.ref -> ’a

op := : ’a Unsynchronized.ref * ’a -> unit

Due to ubiquitous parallelism in Isabelle/ML (see also §0.7), the mutable
reference cells of Standard ML are notorious for causing problems. In a highly
parallel system, both correctness and performance are easily degraded when
using mutable data.

The unwieldy name of Unsynchronized.ref for the constructor for refer-
ences in Isabelle/ML emphasizes the inconveniences caused by mutability.
Existing operations ! and op := are unchanged, but should be used with
special precautions, say in a strictly local situation that is guaranteed to be
restricted to sequential evaluation — now and in the future.

! Never open Unsynchronized, not even in a local scope! Pretending that mu-
table state is no problem is a very bad idea.

0.7 Thread-safe programming

Multi-threaded execution has become an everyday reality in Isabelle since
Poly/ML 5.2.1 and Isabelle2008. Isabelle/ML provides implicit and explicit
parallelism by default, and there is no way for user-space tools to “opt out”.
ML programs that are purely functional, output messages only via the official
channels (§0.4), and do not intercept interrupts (§0.5) can participate in the
multi-threaded environment immediately without further ado.

More ambitious tools with more fine-grained interaction with the environ-
ment need to observe the principles explained below.

0.7.1 Multi-threading with shared memory

Multiple threads help to organize advanced operations of the system, such
as real-time conditions on command transactions, sub-components with ex-
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plicit communication, general asynchronous interaction etc. Moreover, par-
allel evaluation is a prerequisite to make adequate use of the CPU resources
that are available on multi-core systems.10

Isabelle/Isar exploits the inherent structure of theories and proofs to support
implicit parallelism to a large extent. LCF-style theorem provides almost
ideal conditions for that, see also [16]. This means, significant parts of theory
and proof checking is parallelized by default. A maximum speedup-factor of
3.0 on 4 cores and 5.0 on 8 cores can be expected.11

ML threads lack the memory protection of separate processes, and operate
concurrently on shared heap memory. This has the advantage that results of
independent computations are directly available to other threads: abstract
values can be passed without copying or awkward serialization that is typi-
cally required for separate processes.

To make shared-memory multi-threading work robustly and efficiently, some
programming guidelines need to be observed. While the ML system is re-
sponsible to maintain basic integrity of the representation of ML values in
memory, the application programmer needs to ensure that multi-threaded
execution does not break the intended semantics.

! To participate in implicit parallelism, tools need to be thread-safe. A single
ill-behaved tool can affect the stability and performance of the whole system.

Apart from observing the principles of thread-safeness passively, advanced
tools may also exploit parallelism actively, e.g. by using “future values” (§??)
or the more basic library functions for parallel list operations (§??).

! Parallel computing resources are managed centrally by the Isabelle/ML in-
frastructure. User programs must not fork their own ML threads to perform

computations.

10Multi-core computing does not mean that there are “spare cycles” to be wasted. It
means that the continued exponential speedup of CPU performance due to “Moore’s Law”
follows different rules: clock frequency has reached its peak around 2005, and applications
need to be parallelized in order to avoid a perceived loss of performance. See also [14].

11Further scalability is limited due to garbage collection, which is still sequential in
Poly/ML 5.2/5.3/5.4. It helps to provide initial heap space generously, using the -H

option. Initial heap size needs to be scaled-up together with the number of CPU cores:
approximately 1–2 GB per core..
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0.7.2 Critical shared resources

Thread-safeness is mainly concerned about concurrent read/write access to
shared resources, which are outside the purely functional world of ML. This
covers the following in particular.

• Global references (or arrays), i.e. mutable memory cells that persist
over several invocations of associated operations.12

• Global state of the running Isabelle/ML process, i.e. raw I/O channels,
environment variables, current working directory.

• Writable resources in the file-system that are shared among different
threads or external processes.

Isabelle/ML provides various mechanisms to avoid critical shared resources
in most situations. As last resort there are some mechanisms for explicit syn-
chronization. The following guidelines help to make Isabelle/ML programs
work smoothly in a concurrent environment.

• Avoid global references altogether. Isabelle/Isar maintains a uniform
context that incorporates arbitrary data declared by user programs
(§1.1.4). This context is passed as plain value and user tools can
get/map their own data in a purely functional manner. Configuration
options within the context (§1.1.5) provide simple drop-in replacements
for historic reference variables.

• Keep components with local state information re-entrant. Instead of
poking initial values into (private) global references, a new state record
can be created on each invocation, and passed through any auxiliary
functions of the component. The state record may well contain mutable
references, without requiring any special synchronizations, as long as
each invocation gets its own copy.

• Avoid raw output on stdout or stderr. The Poly/ML library is thread-
safe for each individual output operation, but the ordering of parallel
invocations is arbitrary. This means raw output will appear on some
system console with unpredictable interleaving of atomic chunks.

Note that this does not affect regular message output channels (§0.4).
An official message is associated with the command transaction from

12This is independent of the visibility of such mutable values in the toplevel scope.
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where it originates, independently of other transactions. This means
each running Isar command has effectively its own set of message chan-
nels, and interleaving can only happen when commands use parallelism
internally (and only at message boundaries).

• Treat environment variables and the current working directory of the
running process as strictly read-only.

• Restrict writing to the file-system to unique temporary files. Isabelle
already provides a temporary directory that is unique for the running
process, and there is a centralized source of unique serial numbers in
Isabelle/ML. Thus temporary files that are passed to to some external
process will be always disjoint, and thus thread-safe.

ML Reference

File.tmp_path: Path.T -> Path.T

serial_string: unit -> string

File.tmp_path path relocates the base component of path into the unique
temporary directory of the running Isabelle/ML process.

serial_string () creates a new serial number that is unique over the run-
time of the Isabelle/ML process.

ML Examples

The following example shows how to create unique temporary file names.

ML {*

val tmp1 = File.tmp_path (Path.basic ("foo" ^ serial_string ()));

val tmp2 = File.tmp_path (Path.basic ("foo" ^ serial_string ()));

@{assert} (tmp1 <> tmp2);

*}

0.7.3 Explicit synchronization

Isabelle/ML also provides some explicit synchronization mechanisms, for the
rare situations where mutable shared resources are really required. These
are based on the synchronizations primitives of Poly/ML, which have been
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adapted to the specific assumptions of the concurrent Isabelle/ML environ-
ment. User code must not use the Poly/ML primitives directly!

The most basic synchronization concept is a single critical section (also called
“monitor” in the literature). A thread that enters the critical section prevents
all other threads from doing the same. A thread that is already within the
critical section may re-enter it in an idempotent manner.

Such centralized locking is convenient, because it prevents deadlocks by con-
struction.

More fine-grained locking works via synchronized variables. An explicit state
component is associated with mechanisms for locking and signaling. There
are operations to await a condition, change the state, and signal the change
to all other waiting threads.

Here the synchronized access to the state variable is not re-entrant: direct or
indirect nesting within the same thread will cause a deadlock!

ML Reference

NAMED_CRITICAL: string -> (unit -> ’a) -> ’a

CRITICAL: (unit -> ’a) -> ’a

type ’a Synchronized.var

Synchronized.var: string -> ’a -> ’a Synchronized.var

Synchronized.guarded_access: ’a Synchronized.var ->

(’a -> (’b * ’a) option) -> ’b

NAMED_CRITICAL name e evaluates e () within the central critical section
of Isabelle/ML. No other thread may do so at the same time, but non-
critical parallel execution will continue. The name argument is used
for tracing and might help to spot sources of congestion.

Entering the critical section without contention is very fast, and several
basic system operations do so frequently. Each thread should stay
within the critical section quickly only very briefly, otherwise parallel
performance may degrade.

CRITICAL is the same as NAMED_CRITICAL with empty name argument.

Type ’a Synchronized.var represents synchronized variables with state
of type ’a.

Synchronized.var name x creates a synchronized variable that is initial-
ized with value x. The name is used for tracing.
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Synchronized.guarded_access var f lets the function f operate within a
critical section on the state x as follows: if f x produces NONE, it con-
tinues to wait on the internal condition variable, expecting that some
other thread will eventually change the content in a suitable manner;
if f x produces SOME (y , x ′) it is satisfied and assigns the new state
value x ′, broadcasts a signal to all waiting threads on the associated
condition variable, and returns the result y.

There are some further variants of the Synchronized.guarded_access com-
binator, see ~~/src/Pure/Concurrent/synchronized.ML for details.

ML Examples

The following example implements a counter that produces positive integers
that are unique over the runtime of the Isabelle process:

ML {*

local

val counter = Synchronized.var "counter" 0;

in

fun next () =

Synchronized.guarded_access counter

(fn i =>

let val j = i + 1

in SOME (j, j) end);

end;

*}

ML {*

val a = next ();

val b = next ();

@{assert} (a <> b);

*}

See ~~/src/Pure/Concurrent/mailbox.ML how to implement a mailbox as
synchronized variable over a purely functional queue.
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Preliminaries

1.1 Contexts

A logical context represents the background that is required for formulating
statements and composing proofs. It acts as a medium to produce formal
content, depending on earlier material (declarations, results etc.).

For example, derivations within the Isabelle/Pure logic can be described as
a judgment Γ `Θ ϕ, which means that a proposition ϕ is derivable from hy-
potheses Γ within the theory Θ. There are logical reasons for keeping Θ and
Γ separate: theories can be liberal about supporting type constructors and
schematic polymorphism of constants and axioms, while the inner calculus
of Γ ` ϕ is strictly limited to Simple Type Theory (with fixed type variables
in the assumptions).

Contexts and derivations are linked by the following key principles:

• Transfer: monotonicity of derivations admits results to be transferred
into a larger context, i.e. Γ `Θ ϕ implies Γ ′ `Θ ′ ϕ for contexts Θ ′ ⊇ Θ
and Γ ′ ⊇ Γ.

• Export: discharge of hypotheses admits results to be exported into a
smaller context, i.e. Γ ′ `Θ ϕ implies Γ `Θ ∆ =⇒ ϕ where Γ ′ ⊇ Γ and
∆ = Γ ′ − Γ. Note that Θ remains unchanged here, only the Γ part is
affected.

By modeling the main characteristics of the primitive Θ and Γ above, and
abstracting over any particular logical content, we arrive at the fundamental
notions of theory context and proof context in Isabelle/Isar. These implement
a certain policy to manage arbitrary context data. There is a strongly-typed
mechanism to declare new kinds of data at compile time.

The internal bootstrap process of Isabelle/Pure eventually reaches a stage
where certain data slots provide the logical content of Θ and Γ sketched
above, but this does not stop there! Various additional data slots support all
kinds of mechanisms that are not necessarily part of the core logic.

34
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For example, there would be data for canonical introduction and elimination
rules for arbitrary operators (depending on the object-logic and application),
which enables users to perform standard proof steps implicitly (cf. the rule
method [15]).

Thus Isabelle/Isar is able to bring forth more and more concepts successively.
In particular, an object-logic like Isabelle/HOL continues the Isabelle/Pure
setup by adding specific components for automated reasoning (classical rea-
soner, tableau prover, structured induction etc.) and derived specification
mechanisms (inductive predicates, recursive functions etc.). All of this is ul-
timately based on the generic data management by theory and proof contexts
introduced here.

1.1.1 Theory context

A theory is a data container with explicit name and unique identifier. Theo-
ries are related by a (nominal) sub-theory relation, which corresponds to the
dependency graph of the original construction; each theory is derived from a
certain sub-graph of ancestor theories. To this end, the system maintains a
set of symbolic “identification stamps” within each theory.

In order to avoid the full-scale overhead of explicit sub-theory identification
of arbitrary intermediate stages, a theory is switched into draft mode under
certain circumstances. A draft theory acts like a linear type, where updates
invalidate earlier versions. An invalidated draft is called stale.

The checkpoint operation produces a safe stepping stone that will survive the
next update without becoming stale: both the old and the new theory remain
valid and are related by the sub-theory relation. Checkpointing essentially
recovers purely functional theory values, at the expense of some extra internal
bookkeeping.

The copy operation produces an auxiliary version that has the same data
content, but is unrelated to the original: updates of the copy do not affect
the original, neither does the sub-theory relation hold.

The merge operation produces the least upper bound of two theories, which
actually degenerates into absorption of one theory into the other (according
to the nominal sub-theory relation).

The begin operation starts a new theory by importing several parent theories
and entering a special mode of nameless incremental updates, until the final
end operation is performed.

The example in figure 1.1 below shows a theory graph derived from Pure,
with theory Length importing Nat and List. The body of Length consists
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of a sequence of updates, working mostly on drafts internally, while transac-
tion boundaries of Isar top-level commands (§8.1) are guaranteed to be safe
checkpoints.

Pure
↓

FOL
↙ ↘

Nat List
↘ ↙

Length
imports
begin
...
·
...
·
...

end

Figure 1.1: A theory definition depending on ancestors

There is a separate notion of theory reference for maintaining a live link to
an evolving theory context: updates on drafts are propagated automatically.
Dynamic updating stops when the next checkpoint is reached.

Derived entities may store a theory reference in order to indicate the formal
context from which they are derived. This implicitly assumes monotonic
reasoning, because the referenced context may become larger without further
notice.

ML Reference

type theory

Theory.eq_thy: theory * theory -> bool

Theory.subthy: theory * theory -> bool

Theory.checkpoint: theory -> theory

Theory.copy: theory -> theory

Theory.merge: theory * theory -> theory

Theory.begin_theory: string -> theory list -> theory

Theory.parents_of: theory -> theory list

Theory.ancestors_of: theory -> theory list
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type theory_ref

Theory.deref: theory_ref -> theory

Theory.check_thy: theory -> theory_ref

Type theory represents theory contexts. This is essentially a linear type,
with explicit runtime checking. Primitive theory operations destroy the
original version, which then becomes “stale”. This can be prevented by
explicit checkpointing, which the system does at least at the boundary
of toplevel command transactions §8.1.

Theory.eq_thy (thy1, thy2) check strict identity of two theories.

Theory.subthy (thy1, thy2) compares theories according to the intrinsic
graph structure of the construction. This sub-theory relation is a nom-
inal approximation of inclusion (⊆) of the corresponding content (ac-
cording to the semantics of the ML modules that implement the data).

Theory.checkpoint thy produces a safe stepping stone in the linear devel-
opment of thy. This changes the old theory, but the next update will
result in two related, valid theories.

Theory.copy thy produces a variant of thy with the same data. The copy
is not related to the original, but the original is unchanged.

Theory.merge (thy1, thy2) absorbs one theory into the other, without
changing thy1 or thy2. This version of ad-hoc theory merge fails for
unrelated theories!

Theory.begin_theory name parents constructs a new theory based on the
given parents. This ML function is normally not invoked directly.

Theory.parents_of thy returns the direct ancestors of thy.

Theory.ancestors_of thy returns all ancestors of thy (not including thy
itself).

Type theory_ref represents a sliding reference to an always valid theory;
updates on the original are propagated automatically.

Theory.deref thy ref turns a theory_ref into an theory value. As the
referenced theory evolves monotonically over time, later invocations of
Theory.deref may refer to a larger context.

Theory.check_thy thy produces a theory_ref from a valid theory value.
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ML Antiquotations

theory : ML antiquotation

theory
�� ���

�nameref

�
�

@{theory} refers to the background theory of the current context — as
abstract value.

@{theory A} refers to an explicitly named ancestor theory A of the back-
ground theory of the current context — as abstract value.

1.1.2 Proof context

A proof context is a container for pure data with a back-reference to the
theory from which it is derived. The init operation creates a proof context
from a given theory. Modifications to draft theories are propagated to the
proof context as usual, but there is also an explicit transfer operation to force
resynchronization with more substantial updates to the underlying theory.

Entities derived in a proof context need to record logical requirements ex-
plicitly, since there is no separate context identification or symbolic inclusion
as for theories. For example, hypotheses used in primitive derivations (cf.
§2.3) are recorded separately within the sequent Γ ` ϕ, just to make double
sure. Results could still leak into an alien proof context due to program-
ming errors, but Isabelle/Isar includes some extra validity checks in critical
positions, notably at the end of a sub-proof.

Proof contexts may be manipulated arbitrarily, although the common disci-
pline is to follow block structure as a mental model: a given context is ex-
tended consecutively, and results are exported back into the original context.
Note that an Isar proof state models block-structured reasoning explicitly,
using a stack of proof contexts internally. For various technical reasons, the
background theory of an Isar proof state must not be changed while the proof
is still under construction!
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ML Reference

type Proof.context

Proof_Context.init_global: theory -> Proof.context

Proof_Context.theory_of: Proof.context -> theory

Proof_Context.transfer: theory -> Proof.context -> Proof.context

Type Proof.context represents proof contexts. Elements of this type are
essentially pure values, with a sliding reference to the background the-
ory.

Proof_Context.init_global thy produces a proof context derived from
thy, initializing all data.

Proof_Context.theory_of ctxt selects the background theory from ctxt,
dereferencing its internal theory_ref.

Proof_Context.transfer thy ctxt promotes the background theory of ctxt
to the super theory thy.

ML Antiquotations

context : ML antiquotation

@{context} refers to the context at compile-time — as abstract value. In-
dependently of (local) theory or proof mode, this always produces a
meaningful result.

This is probably the most common antiquotation in interactive exper-
imentation with ML inside Isar.

1.1.3 Generic contexts

A generic context is the disjoint sum of either a theory or proof context. Oc-
casionally, this enables uniform treatment of generic context data, typically
extra-logical information. Operations on generic contexts include the usual
injections, partial selections, and combinators for lifting operations on either
component of the disjoint sum.

Moreover, there are total operations theory of and proof of to convert a
generic context into either kind: a theory can always be selected from the
sum, while a proof context might have to be constructed by an ad-hoc init
operation, which incurs a small runtime overhead.
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ML Reference

type Context.generic

Context.theory_of: Context.generic -> theory

Context.proof_of: Context.generic -> Proof.context

Type Context.generic is the direct sum of theory and Proof.context,
with the datatype constructors Context.Theory and Context.Proof.

Context.theory_of context always produces a theory from the generic con-
text, using Proof_Context.theory_of as required.

Context.proof_of context always produces a proof context from the
generic context, using Proof_Context.init_global as required (note
that this re-initializes the context data with each invocation).

1.1.4 Context data

The main purpose of theory and proof contexts is to manage arbitrary (pure)
data. New data types can be declared incrementally at compile time. There
are separate declaration mechanisms for any of the three kinds of contexts:
theory, proof, generic.

Theory data declarations need to implement the following SML signature:

type T representing type
val empty : T empty default value
val extend : T → T re-initialize on import
val merge: T × T → T join on import

The empty value acts as initial default for any theory that does not declare
actual data content; extend is acts like a unitary version of merge.

Implementing merge can be tricky. The general idea is that merge (data1,
data2) inserts those parts of data2 into data1 that are not yet present, while
keeping the general order of things. The Library.merge function on plain
lists may serve as canonical template.

Particularly note that shared parts of the data must not be duplicated by
naive concatenation, or a theory graph that is like a chain of diamonds would
cause an exponential blowup!
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Proof context data declarations need to implement the following SML
signature:

type T representing type
val init : theory → T produce initial value

The init operation is supposed to produce a pure value from the given back-
ground theory and should be somehow “immediate”. Whenever a proof con-
text is initialized, which happens frequently, the the system invokes the init
operation of all theory data slots ever declared. This also means that one
needs to be economic about the total number of proof data declarations in
the system, i.e. each ML module should declare at most one, sometimes two
data slots for its internal use. Repeated data declarations to simulate a
record type should be avoided!

Generic data provides a hybrid interface for both theory and proof data.
The init operation for proof contexts is predefined to select the current data
value from the background theory.

Any of the above data declarations over type T result in an ML structure
with the following signature:

get : context → T
put : T → context → context
map: (T → T ) → context → context

These other operations provide exclusive access for the particular kind of
context (theory, proof, or generic context). This interface observes the ML
discipline for types and scopes: there is no other way to access the corre-
sponding data slot of a context. By keeping these operations private, an
Isabelle/ML module may maintain abstract values authentically.

ML Reference

functor Theory_Data

functor Proof_Data

functor Generic_Data

Theory_Data(spec) declares data for type theory according to the specifica-
tion provided as argument structure. The resulting structure provides
data init and access operations as described above.

Proof_Data(spec) is analogous to Theory_Data for type Proof.context.
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Generic_Data(spec) is analogous to Theory_Data for type Context.generic.

ML Examples

The following artificial example demonstrates theory data: we maintain a set
of terms that are supposed to be wellformed wrt. the enclosing theory. The
public interface is as follows:

ML {*

signature WELLFORMED_TERMS =

sig

val get: theory -> term list

val add: term -> theory -> theory

end;

*}

The implementation uses private theory data internally, and only exposes an
operation that involves explicit argument checking wrt. the given theory.

ML {*

structure Wellformed_Terms: WELLFORMED_TERMS =

struct

structure Terms = Theory_Data

(

type T = term Ord_List.T;

val empty = [];

val extend = I;

fun merge (ts1, ts2) =

Ord_List.union Term_Ord.fast_term_ord ts1 ts2;

);

val get = Terms.get;

fun add raw_t thy =

let

val t = Sign.cert_term thy raw_t;

in

Terms.map (Ord_List.insert Term_Ord.fast_term_ord t) thy

end;

end;

*}
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Type term Ord_List.T is used for reasonably efficient representation of a
set of terms: all operations are linear in the number of stored elements. Here
we assume that users of this module do not care about the declaration order,
since that data structure forces its own arrangement of elements.

Observe how the merge operation joins the data slots of the two con-
stituents: Ord_List.union prevents duplication of common data from dif-
ferent branches, thus avoiding the danger of exponential blowup. Plain list
append etc. must never be used for theory data merges!

Our intended invariant is achieved as follows:

1. Wellformed_Terms.add only admits terms that have passed the
Sign.cert_term check of the given theory at that point.

2. Wellformedness in the sense of Sign.cert_term is monotonic wrt. the
sub-theory relation. So our data can move upwards in the hierarchy
(via extension or merges), and maintain wellformedness without further
checks.

Note that all basic operations of the inference kernel (which in-
cludes Sign.cert_term) observe this monotonicity principle, but other
user-space tools don’t. For example, fully-featured type-inference via
Syntax.check_term (cf. §3.3) is not necessarily monotonic wrt. the back-
ground theory, since constraints of term constants can be modified by later
declarations, for example.

In most cases, user-space context data does not have to take such invariants
too seriously. The situation is different in the implementation of the inference
kernel itself, which uses the very same data mechanisms for types, constants,
axioms etc.

1.1.5 Configuration options

A configuration option is a named optional value of some basic type (Boolean,
integer, string) that is stored in the context. It is a simple application of
general context data (§1.1.4) that is sufficiently common to justify customized
setup, which includes some concrete declarations for end-users using existing
notation for attributes (cf. §6.3).

For example, the predefined configuration option show types controls output
of explicit type constraints for variables in printed terms (cf. §3.1). Its value
can be modified within Isar text like this:

declare [[show types = false]]
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— declaration within (local) theory context

notepad
begin

note [[show types = true]]
— declaration within proof (forward mode)

term x

have x = x
using [[show types = false]]

— declaration within proof (backward mode)
..

end

Configuration options that are not set explicitly hold a default value that
can depend on the application context. This allows to retrieve the value
from another slot within the context, or fall back on a global preference
mechanism, for example.

The operations to declare configuration options and get/map their values are
modeled as direct replacements for historic global references, only that the
context is made explicit. This allows easy configuration of tools, without
relying on the execution order as required for old-style mutable references.

ML Reference

Config.get: Proof.context -> ’a Config.T -> ’a

Config.map: ’a Config.T -> (’a -> ’a) -> Proof.context -> Proof.context

Attrib.setup_config_bool: binding -> (Context.generic -> bool) ->

bool Config.T

Attrib.setup_config_int: binding -> (Context.generic -> int) ->

int Config.T

Attrib.setup_config_real: binding -> (Context.generic -> real) ->

real Config.T

Attrib.setup_config_string: binding -> (Context.generic -> string) ->

string Config.T

Config.get ctxt config gets the value of config in the given context.

Config.map config f ctxt updates the context by updating the value of
config.

config = Attrib.setup_config_bool name default creates a named con-
figuration option of type bool, with the given default depending on the
application context. The resulting config can be used to get/map its
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value in a given context. There is an implicit update of the background
theory that registers the option as attribute with some concrete syntax.

Attrib.config_int, Attrib.config_real, and Attrib.config_string

work like Attrib.config_bool, but for types int and string, respec-
tively.

ML Examples

The following example shows how to declare and use a Boolean configuration
option called my flag with constant default value false.

ML {*

val my_flag =

Attrib.setup_config_bool @{binding my_flag} (K false)

*}

Now the user can refer to my flag in declarations, while ML tools can retrieve
the current value from the context via Config.get.

ML val {* @{assert} (Config.get @{context} my_flag = false) *}

declare [[my flag = true]]

ML val {* @{assert} (Config.get @{context} my_flag = true) *}

notepad
begin
{

note [[my flag = false]]
ML val {* @{assert} (Config.get @{context} my_flag = false) *}

}
ML val {* @{assert} (Config.get @{context} my_flag = true) *}

end

Here is another example involving ML type real (floating-point numbers).

ML {*

val airspeed_velocity =

Attrib.setup_config_real @{binding airspeed_velocity} (K 0.0)

*}

declare [[airspeed velocity = 10]]
declare [[airspeed velocity = 9.9]]



CHAPTER 1. PRELIMINARIES 46

1.2 Names

In principle, a name is just a string, but there are various conventions for
representing additional structure. For example, “Foo.bar .baz” is considered
as a long name consisting of qualifier Foo.bar and base name baz. The indi-
vidual constituents of a name may have further substructure, e.g. the string
“\<alpha>” encodes as a single symbol.

Subsequently, we shall introduce specific categories of names. Roughly speak-
ing these correspond to logical entities as follows:

• Basic names (§1.2.2): free and bound variables.

• Indexed names (§1.2.3): schematic variables.

• Long names (§1.2.4): constants of any kind (type constructors, term
constants, other concepts defined in user space). Such entities are typ-
ically managed via name spaces (§1.2.5).

1.2.1 Strings of symbols

A symbol constitutes the smallest textual unit in Isabelle — raw ML charac-
ters are normally not encountered at all! Isabelle strings consist of a sequence
of symbols, represented as a packed string or an exploded list of strings. Each
symbol is in itself a small string, which has either one of the following forms:

1. a single ASCII character “c”, for example “a”,

2. a codepoint according to UTF8 (non-ASCII byte sequence),

3. a regular symbol “\<ident>”, for example “\<alpha>”,

4. a control symbol “\<^ident>”, for example “\<^bold>”,

5. a raw symbol “\<^raw:text>” where text consists of printable charac-
ters excluding “.” and “>”, for example “\<^raw:$\sum_{i = 1}^n$>”,

6. a numbered raw control symbol “\<^rawn> where n consists of digits,
for example “\<^raw42>”.

The ident syntax for symbol names is letter (letter | digit)∗, where letter
= A..Za..z and digit = 0..9. There are infinitely many regular symbols
and control symbols, but a fixed collection of standard symbols is treated
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specifically. For example, “\<alpha>” is classified as a letter, which means
it may occur within regular Isabelle identifiers.

The character set underlying Isabelle symbols is 7-bit ASCII, but 8-bit char-
acter sequences are passed-through unchanged. Unicode/UCS data in UTF-8
encoding is processed in a non-strict fashion, such that well-formed code se-
quences are recognized accordingly.1 Unicode provides its own collection of
mathematical symbols, but within the core Isabelle/ML world there is no
link to the standard collection of Isabelle regular symbols.

Output of Isabelle symbols depends on the print mode (§??). For example,
the standard LATEX setup of the Isabelle document preparation system would
present “\<alpha>” as α, and “\<^bold>\<alpha>” as α. On-screen render-
ing usually works by mapping a finite subset of Isabelle symbols to suitable
Unicode characters.

ML Reference

type Symbol.symbol = string

Symbol.explode: string -> Symbol.symbol list

Symbol.is_letter: Symbol.symbol -> bool

Symbol.is_digit: Symbol.symbol -> bool

Symbol.is_quasi: Symbol.symbol -> bool

Symbol.is_blank: Symbol.symbol -> bool

type Symbol.sym

Symbol.decode: Symbol.symbol -> Symbol.sym

Type Symbol.symbol represents individual Isabelle symbols.

Symbol.explode str produces a symbol list from the packed form. This
function supersedes String.explode for virtually all purposes of ma-
nipulating text in Isabelle!2

Symbol.is_letter, Symbol.is_digit, Symbol.is_quasi, Symbol.is_blank
classify standard symbols according to fixed syntactic conventions of
Isabelle, cf. [15].

1Note that ISO-Latin-1 differs from UTF-8 only in some special punctuation characters
that even have replacements within the standard collection of Isabelle symbols. Text
consisting of ASCII plus accented letters can be processed in either encoding.

2The runtime overhead for exploded strings is mainly that of the list structure: in-
dividual symbols that happen to be a singleton string do not require extra memory in
Poly/ML.
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Type Symbol.sym is a concrete datatype that represents the different kinds
of symbols explicitly, with constructors Symbol.Char, Symbol.Sym,
Symbol.UTF8, Symbol.Ctrl, Symbol.Raw.

Symbol.decode converts the string representation of a symbol into the data-
type version.

Historical note. In the original SML90 standard the primitive ML type
char did not exists, and the explode: string -> string list operation
would produce a list of singleton strings as does raw_explode: string -> string list

in Isabelle/ML today. When SML97 came out, Isabelle did not adopt its
slightly anachronistic 8-bit characters, but the idea of exploding a string
into a list of small strings was extended to “symbols” as explained above.
Thus Isabelle sources can refer to an infinite store of user-defined symbols,
without having to worry about the multitude of Unicode encodings.

1.2.2 Basic names

A basic name essentially consists of a single Isabelle identifier. There are
conventions to mark separate classes of basic names, by attaching a suffix
of underscores: one underscore means internal name, two underscores means
Skolem name, three underscores means internal Skolem name.

For example, the basic name foo has the internal version foo , with Skolem
versions foo and foo , respectively.

These special versions provide copies of the basic name space, apart from
anything that normally appears in the user text. For example, system gen-
erated variables in Isar proof contexts are usually marked as internal, which
prevents mysterious names like xaa to appear in human-readable text.

Manipulating binding scopes often requires on-the-fly renamings. A name
context contains a collection of already used names. The declare operation
adds names to the context.

The invents operation derives a number of fresh names from a given starting
point. For example, the first three names derived from a are a, b, c.

The variants operation produces fresh names by incrementing tentative
names as base-26 numbers (with digits a..z ) until all clashes are resolved.
For example, name foo results in variants fooa, foob, fooc, . . . , fooaa, fooab
etc.; each renaming step picks the next unused variant from this sequence.
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ML Reference

Name.internal: string -> string

Name.skolem: string -> string

type Name.context

Name.context: Name.context

Name.declare: string -> Name.context -> Name.context

Name.invent: Name.context -> string -> int -> string list

Name.variant: string -> Name.context -> string * Name.context

Variable.names_of: Proof.context -> Name.context

Name.internal name produces an internal name by adding one underscore.

Name.skolem name produces a Skolem name by adding two underscores.

Type Name.context represents the context of already used names; the initial
value is Name.context.

Name.declare name enters a used name into the context.

Name.invent context name n produces n fresh names derived from name.

Name.variant name context produces a fresh variant of name; the result is
declared to the context.

Variable.names_of ctxt retrieves the context of declared type and term
variable names. Projecting a proof context down to a primitive name
context is occasionally useful when invoking lower-level operations.
Regular management of “fresh variables” is done by suitable opera-
tions of structure Variable, which is also able to provide an official
status of “locally fixed variable” within the logical environment (cf.
§5.1).

ML Examples

The following simple examples demonstrate how to produce fresh names from
the initial Name.context.

ML {*

val list1 = Name.invent Name.context "a" 5;

@{assert} (list1 = ["a", "b", "c", "d", "e"]);

val list2 =
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#1 (fold_map Name.variant ["x", "x", "a", "a", "’a", "’a"]

Name.context);

@{assert} (list2 = ["x", "xa", "a", "aa", "’a", "’aa"]);

*}

The same works relatively to the formal context as follows.

locale ex = fixes a b c :: ′a
begin

ML {*

val names = Variable.names_of @{context};

val list1 = Name.invent names "a" 5;

@{assert} (list1 = ["d", "e", "f", "g", "h"]);

val list2 =

#1 (fold_map Name.variant ["x", "x", "a", "a", "’a", "’a"]

names);

@{assert} (list2 = ["x", "xa", "aa", "ab", "’aa", "’ab"]);

*}

end

1.2.3 Indexed names

An indexed name (or indexname) is a pair of a basic name and a natu-
ral number. This representation allows efficient renaming by incrementing
the second component only. The canonical way to rename two collections
of indexnames apart from each other is this: determine the maximum in-
dex maxidx of the first collection, then increment all indexes of the second
collection by maxidx + 1; the maximum index of an empty collection is −1.

Occasionally, basic names are injected into the same pair type of indexed
names: then (x , −1) is used to encode the basic name x.

Isabelle syntax observes the following rules for representing an indexname
(x , i) as a packed string:

• ?x if x does not end with a digit and i = 0,

• ?xi if x does not end with a digit,

• ?x .i otherwise.
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Indexnames may acquire large index numbers after several maxidx shifts have
been applied. Results are usually normalized towards 0 at certain check-
points, notably at the end of a proof. This works by producing variants of
the corresponding basic name components. For example, the collection ?x1,
?x7, ?x42 becomes ?x , ?xa, ?xb.

ML Reference

type indexname = string * int

Type indexname represents indexed names. This is an abbreviation for
string * int. The second component is usually non-negative, except
for situations where (x , −1) is used to inject basic names into this type.
Other negative indexes should not be used.

1.2.4 Long names

A long name consists of a sequence of non-empty name components. The
packed representation uses a dot as separator, as in “A.b.c”. The last com-
ponent is called base name, the remaining prefix is called qualifier (which
may be empty). The qualifier can be understood as the access path to the
named entity while passing through some nested block-structure, although
our free-form long names do not really enforce any strict discipline.

For example, an item named “A.b.c” may be understood as a local entity
c, within a local structure b, within a global structure A. In practice, long
names usually represent 1–3 levels of qualification. User ML code should not
make any assumptions about the particular structure of long names!

The empty name is commonly used as an indication of unnamed entities, or
entities that are not entered into the corresponding name space, whenever
this makes any sense. The basic operations on long names map empty names
again to empty names.

ML Reference

Long_Name.base_name: string -> string

Long_Name.qualifier: string -> string

Long_Name.append: string -> string -> string

Long_Name.implode: string list -> string

Long_Name.explode: string -> string list
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Long_Name.base_name name returns the base name of a long name.

Long_Name.qualifier name returns the qualifier of a long name.

Long_Name.append name1 name2 appends two long names.

Long_Name.implode names and Long_Name.explode name convert be-
tween the packed string representation and the explicit list form of
long names.

1.2.5 Name spaces

A name space manages a collection of long names, together with a map-
ping between partially qualified external names and fully qualified internal
names (in both directions). Note that the corresponding intern and extern
operations are mostly used for parsing and printing only! The declare opera-
tion augments a name space according to the accesses determined by a given
binding, and a naming policy from the context.

A binding specifies details about the prospective long name of a newly in-
troduced formal entity. It consists of a base name, prefixes for qualification
(separate ones for system infrastructure and user-space mechanisms), a slot
for the original source position, and some additional flags.

A naming provides some additional details for producing a long name from
a binding. Normally, the naming is implicit in the theory or proof context.
The full operation (and its variants for different context types) produces a
fully qualified internal name to be entered into a name space. The main
equation of this “chemical reaction” when binding new entities in a context
is as follows:

binding + naming −→ long name + name space accesses

As a general principle, there is a separate name space for each kind of formal
entity, e.g. fact, logical constant, type constructor, type class. It is usually
clear from the occurrence in concrete syntax (or from the scope) which kind
of entity a name refers to. For example, the very same name c may be used
uniformly for a constant, type constructor, and type class.

There are common schemes to name derived entities systematically according
to the name of the main logical entity involved, e.g. fact c.intro for a canonical
introduction rule related to constant c. This technique of mapping names
from one space into another requires some care in order to avoid conflicts.
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In particular, theorem names derived from a type constructor or type class
should get an additional suffix in addition to the usual qualification. This
leads to the following conventions for derived names:

logical entity fact name
constant c c.intro
type c c type.intro
class c c class .intro

ML Reference

type binding

Binding.empty: binding

Binding.name: string -> binding

Binding.qualify: bool -> string -> binding -> binding

Binding.prefix: bool -> string -> binding -> binding

Binding.conceal: binding -> binding

Binding.print: binding -> string

type Name_Space.naming

Name_Space.default_naming: Name_Space.naming

Name_Space.add_path: string -> Name_Space.naming -> Name_Space.naming

Name_Space.full_name: Name_Space.naming -> binding -> string

type Name_Space.T

Name_Space.empty: string -> Name_Space.T

Name_Space.merge: Name_Space.T * Name_Space.T -> Name_Space.T

Name_Space.declare: Proof.context -> bool ->

Name_Space.naming -> binding -> Name_Space.T -> string * Name_Space.T

Name_Space.intern: Name_Space.T -> string -> string

Name_Space.extern: Proof.context -> Name_Space.T -> string -> string

Name_Space.is_concealed: Name_Space.T -> string -> bool

Type binding represents the abstract concept of name bindings.

Binding.empty is the empty binding.

Binding.name name produces a binding with base name name. Note that
this lacks proper source position information; see also the ML antiquo-
tation binding .

Binding.qualify mandatory name binding prefixes qualifier name to bind-
ing. The mandatory flag tells if this name component always needs to
be given in name space accesses — this is mostly false in practice. Note
that this part of qualification is typically used in derived specification
mechanisms.
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Binding.prefix is similar to Binding.qualify, but affects the system pre-
fix. This part of extra qualification is typically used in the infrastruc-
ture for modular specifications, notably “local theory targets” (see also
chapter 7).

Binding.conceal binding indicates that the binding shall refer to an
entity that serves foundational purposes only. This flag helps to
mark implementation details of specification mechanism etc. Other
tools should not depend on the particulars of concealed entities (cf.
Name_Space.is_concealed).

Binding.print binding produces a string representation for human-
readable output, together with some formal markup that might get
used in GUI front-ends, for example.

Type Name_Space.naming represents the abstract concept of a naming pol-
icy.

Name_Space.default_naming is the default naming policy. In a theory
context, this is usually augmented by a path prefix consisting of the
theory name.

Name_Space.add_path path naming augments the naming policy by extend-
ing its path component.

Name_Space.full_name naming binding turns a name binding (usually a
basic name) into the fully qualified internal name, according to the
given naming policy.

Type Name_Space.T represents name spaces.

Name_Space.empty kind and Name_Space.merge (space1, space2) are the
canonical operations for maintaining name spaces according to theory
data management (§1.1.4); kind is a formal comment to characterize
the purpose of a name space.

Name_Space.declare ctxt strict naming bindings space enters a name bind-
ing as fully qualified internal name into the name space, with external
accesses determined by the naming policy.

Name_Space.intern space name internalizes a (partially qualified) external
name.

This operation is mostly for parsing! Note that fully qualified names
stemming from declarations are produced via Name_Space.full_name
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and Name_Space.declare (or their derivatives for theory and
Proof.context).

Name_Space.extern ctxt space name externalizes a (fully qualified) internal
name.

This operation is mostly for printing! User code should not rely on the
precise result too much.

Name_Space.is_concealed space name indicates whether name refers to a
strictly private entity that other tools are supposed to ignore!

ML Antiquotations

binding : ML antiquotation

binding
�� ��name

@{binding name} produces a binding with base name name and the source
position taken from the concrete syntax of this antiquotation. In many
situations this is more appropriate than the more basic Binding.name

function.

ML Examples

The following example yields the source position of some concrete binding
inlined into the text:

ML {* Binding.pos_of @{binding here} *}

That position can be also printed in a message as follows:

ML command {*

writeln

("Look here" ^ Position.str_of (Binding.pos_of @{binding here}))

*}

This illustrates a key virtue of formalized bindings as opposed to raw spec-
ifications of base names: the system can use this additional information for
feedback given to the user (error messages etc.).



Chapter 2

Primitive logic

The logical foundations of Isabelle/Isar are that of the Pure logic, which has
been introduced as a Natural Deduction framework in [11]. This is essentially
the same logic as “λHOL” in the more abstract setting of Pure Type Systems
(PTS) [1], although there are some key differences in the specific treatment
of simple types in Isabelle/Pure.

Following type-theoretic parlance, the Pure logic consists of three levels of
λ-calculus with corresponding arrows, ⇒ for syntactic function space (terms
depending on terms),

∧
for universal quantification (proofs depending on

terms), and =⇒ for implication (proofs depending on proofs).

Derivations are relative to a logical theory, which declares type construc-
tors, constants, and axioms. Theory declarations support schematic poly-
morphism, which is strictly speaking outside the logic.1

2.1 Types

The language of types is an uninterpreted order-sorted first-order algebra;
types are qualified by ordered type classes.

A type class is an abstract syntactic entity declared in the theory context.
The subclass relation c1 ⊆ c2 is specified by stating an acyclic generating
relation; the transitive closure is maintained internally. The resulting relation
is an ordering: reflexive, transitive, and antisymmetric.

A sort is a list of type classes written as s = {c1, . . ., cm}, it represents
symbolic intersection. Notationally, the curly braces are omitted for singleton
intersections, i.e. any class c may be read as a sort {c}. The ordering on
type classes is extended to sorts according to the meaning of intersections:
{c1, . . . cm} ⊆ {d1, . . ., dn} iff ∀ j . ∃ i . ci ⊆ d j . The empty intersection {}

1This is the deeper logical reason, why the theory context Θ is separate from the proof
context Γ of the core calculus: type constructors, term constants, and facts (proof con-
stants) may involve arbitrary type schemes, but the type of a locally fixed term parameter
is also fixed!

56
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refers to the universal sort, which is the largest element wrt. the sort order.
Thus {} represents the “full sort”, not the empty one! The intersection of
all (finitely many) classes declared in the current theory is the least element
wrt. the sort ordering.

A fixed type variable is a pair of a basic name (starting with a ′ character)
and a sort constraint, e.g. ( ′a, s) which is usually printed as αs . A schematic
type variable is a pair of an indexname and a sort constraint, e.g. (( ′a, 0), s)
which is usually printed as ?αs .

Note that all syntactic components contribute to the identity of type vari-
ables: basic name, index, and sort constraint. The core logic handles type
variables with the same name but different sorts as different, although the
type-inference layer (which is outside the core) rejects anything like that.

A type constructor κ is a k -ary operator on types declared in the theory.
Type constructor application is written postfix as (α1, . . ., αk)κ. For k =
0 the argument tuple is omitted, e.g. prop instead of ()prop. For k = 1 the
parentheses are omitted, e.g. α list instead of (α)list. Further notation is
provided for specific constructors, notably the right-associative infix α ⇒ β
instead of (α, β)fun.

The logical category type is defined inductively over type variables and type
constructors as follows: τ = αs | ?αs | (τ 1, . . ., τ k)κ.

A type abbreviation is a syntactic definition (~α)κ = τ of an arbitrary type ex-
pression τ over variables ~α. Type abbreviations appear as type constructors
in the syntax, but are expanded before entering the logical core.

A type arity declares the image behavior of a type constructor wrt. the alge-
bra of sorts: κ :: (s1, . . ., sk)s means that (τ 1, . . ., τ k)κ is of sort s if every
argument type τ i is of sort s i . Arity declarations are implicitly completed,
i.e. κ :: (~s)c entails κ :: (~s)c ′ for any c ′ ⊇ c.

The sort algebra is always maintained as coregular, which means that type
arities are consistent with the subclass relation: for any type constructor κ,
and classes c1 ⊆ c2, and arities κ :: (~s1)c1 and κ :: (~s2)c2 holds ~s1 ⊆ ~s2

component-wise.

The key property of a coregular order-sorted algebra is that sort constraints
can be solved in a most general fashion: for each type constructor κ and sort
s there is a most general vector of argument sorts (s1, . . ., sk) such that
a type scheme (αs1 , . . ., αsk )κ is of sort s. Consequently, type unification
has most general solutions (modulo equivalence of sorts), so type-inference
produces primary types as expected [9].
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ML Reference

type class = string

type sort = class list

type arity = string * sort list * sort

type typ

Term.map_atyps: (typ -> typ) -> typ -> typ

Term.fold_atyps: (typ -> ’a -> ’a) -> typ -> ’a -> ’a

Sign.subsort: theory -> sort * sort -> bool

Sign.of_sort: theory -> typ * sort -> bool

Sign.add_types: Proof.context ->

(binding * int * mixfix) list -> theory -> theory

Sign.add_type_abbrev: Proof.context ->

binding * string list * typ -> theory -> theory

Sign.primitive_class: binding * class list -> theory -> theory

Sign.primitive_classrel: class * class -> theory -> theory

Sign.primitive_arity: arity -> theory -> theory

Type class represents type classes.

Type sort represents sorts, i.e. finite intersections of classes. The empty
list []: sort refers to the empty class intersection, i.e. the “full sort”.

Type arity represents type arities. A triple (κ, ~s , s) : arity represents κ ::
(~s)s as described above.

Type typ represents types; this is a datatype with constructors TFree, TVar,
Type.

Term.map_atyps f τ applies the mapping f to all atomic types (TFree,
TVar) occurring in τ .

Term.fold_atyps f τ iterates the operation f over all occurrences of atomic
types (TFree, TVar) in τ ; the type structure is traversed from left to
right.

Sign.subsort thy (s1, s2) tests the subsort relation s1 ⊆ s2.

Sign.of_sort thy (τ , s) tests whether type τ is of sort s.

Sign.add_types ctxt [(κ, k , mx ), . . .] declares a new type constructors κ
with k arguments and optional mixfix syntax.

Sign.add_type_abbrev ctxt (κ, ~α, τ) defines a new type abbreviation (~α)κ
= τ .
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Sign.primitive_class (c, [c1, . . ., cn ]) declares a new class c, together
with class relations c ⊆ ci , for i = 1, . . ., n.

Sign.primitive_classrel (c1, c2) declares the class relation c1 ⊆ c2.

Sign.primitive_arity (κ, ~s , s) declares the arity κ :: (~s)s.

ML Antiquotations

class : ML antiquotation
sort : ML antiquotation

type name : ML antiquotation
type abbrev : ML antiquotation

nonterminal : ML antiquotation
typ : ML antiquotation

class
�� ��nameref

sort
�� ��sort

type_name
�� ���

�type_abbrev
�� ���nonterminal
�� ��

�
�
�

nameref

typ
�� ��type

@{class c} inlines the internalized class c — as string literal.

@{sort s} inlines the internalized sort s — as string list literal.

@{type name c} inlines the internalized type constructor c — as string

literal.

@{type abbrev c} inlines the internalized type abbreviation c — as string

literal.
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@{nonterminal c} inlines the internalized syntactic type / grammar non-
terminal c — as string literal.

@{typ τ} inlines the internalized type τ — as constructor term for datatype
typ.

2.2 Terms

The language of terms is that of simply-typed λ-calculus with de-Bruijn
indices for bound variables (cf. [4] or [12]), with the types being determined
by the corresponding binders. In contrast, free variables and constants have
an explicit name and type in each occurrence.

A bound variable is a natural number b, which accounts for the number of
intermediate binders between the variable occurrence in the body and its
binding position. For example, the de-Bruijn term λbool. λbool. 1 ∧ 0 would
correspond to λx bool. λybool. x ∧ y in a named representation. Note that a
bound variable may be represented by different de-Bruijn indices at different
occurrences, depending on the nesting of abstractions.

A loose variable is a bound variable that is outside the scope of local binders.
The types (and names) for loose variables can be managed as a separate
context, that is maintained as a stack of hypothetical binders. The core logic
operates on closed terms, without any loose variables.

A fixed variable is a pair of a basic name and a type, e.g. (x , τ) which is
usually printed x τ here. A schematic variable is a pair of an indexname and
a type, e.g. ((x , 0), τ) which is likewise printed as ?x τ .

A constant is a pair of a basic name and a type, e.g. (c, τ) which is usually
printed as cτ here. Constants are declared in the context as polymorphic
families c :: σ, meaning that all substitution instances cτ for τ = σθ are
valid.

The vector of type arguments of constant cτ wrt. the declaration c :: σ is
defined as the codomain of the matcher θ = {?α1 7→ τ 1, . . ., ?αn 7→ τn}
presented in canonical order (τ 1, . . ., τn), corresponding to the left-to-right
occurrences of the αi in σ. Within a given theory context, there is a one-
to-one correspondence between any constant cτ and the application c(τ 1,
. . ., τn) of its type arguments. For example, with plus :: α ⇒ α ⇒ α, the
instance plusnat ⇒ nat ⇒ nat corresponds to plus(nat).

Constant declarations c :: σ may contain sort constraints for type variables
in σ. These are observed by type-inference as expected, but ignored by the
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core logic. This means the primitive logic is able to reason with instances of
polymorphic constants that the user-level type-checker would reject due to
violation of type class restrictions.

An atomic term is either a variable or constant. The logical category term
is defined inductively over atomic terms, with abstraction and application as
follows: t = b | x τ | ?x τ | cτ | λτ . t | t1 t2. Parsing and printing takes care of
converting between an external representation with named bound variables.
Subsequently, we shall use the latter notation instead of internal de-Bruijn
representation.

The inductive relation t :: τ assigns a (unique) type to a term according to
the structure of atomic terms, abstractions, and applicatins:

aτ :: τ
t :: σ

(λx τ . t) :: τ ⇒ σ
t :: τ ⇒ σ u :: τ

t u :: σ

A well-typed term is a term that can be typed according to these rules.

Typing information can be omitted: type-inference is able to reconstruct the
most general type of a raw term, while assigning most general types to all
of its variables and constants. Type-inference depends on a context of type
constraints for fixed variables, and declarations for polymorphic constants.

The identity of atomic terms consists both of the name and the type compo-
nent. This means that different variables x τ1 and x τ2 may become the same
after type instantiation. Type-inference rejects variables of the same name,
but different types. In contrast, mixed instances of polymorphic constants
occur routinely.

The hidden polymorphism of a term t :: σ is the set of type variables occurring
in t, but not in its type σ. This means that the term implicitly depends
on type arguments that are not accounted in the result type, i.e. there are
different type instances tθ :: σ and tθ ′ :: σ with the same type. This slightly
pathological situation notoriously demands additional care.

A term abbreviation is a syntactic definition cσ ≡ t of a closed term t of
type σ, without any hidden polymorphism. A term abbreviation looks like
a constant in the syntax, but is expanded before entering the logical core.
Abbreviations are usually reverted when printing terms, using t → cσ as
rules for higher-order rewriting.

Canonical operations on λ-terms include αβη-conversion: α-conversion refers
to capture-free renaming of bound variables; β-conversion contracts an ab-
straction applied to an argument term, substituting the argument in the
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body: (λx . b)a becomes b[a/x ]; η-conversion contracts vacuous application-
abstraction: λx . f x becomes f, provided that the bound variable does not
occur in f.

Terms are normally treated modulo α-conversion, which is implicit in the
de-Bruijn representation. Names for bound variables in abstractions are
maintained separately as (meaningless) comments, mostly for parsing and
printing. Full αβη-conversion is commonplace in various standard opera-
tions (§2.4) that are based on higher-order unification and matching.

ML Reference

type term

op aconv: term * term -> bool

Term.map_types: (typ -> typ) -> term -> term

Term.fold_types: (typ -> ’a -> ’a) -> term -> ’a -> ’a

Term.map_aterms: (term -> term) -> term -> term

Term.fold_aterms: (term -> ’a -> ’a) -> term -> ’a -> ’a

fastype_of: term -> typ

lambda: term -> term -> term

betapply: term * term -> term

incr_boundvars: int -> term -> term

Sign.declare_const: Proof.context ->

(binding * typ) * mixfix -> theory -> term * theory

Sign.add_abbrev: string -> binding * term ->

theory -> (term * term) * theory

Sign.const_typargs: theory -> string * typ -> typ list

Sign.const_instance: theory -> string * typ list -> typ

Type term represents de-Bruijn terms, with comments in abstractions, and
explicitly named free variables and constants; this is a datatype with
constructors Bound, Free, Var, Const, Abs, op $.

t aconv u checks α-equivalence of two terms. This is the basic equality
relation on type term; raw datatype equality should only be used for
operations related to parsing or printing!

Term.map_types f t applies the mapping f to all types occurring in t.

Term.fold_types f t iterates the operation f over all occurrences of types
in t ; the term structure is traversed from left to right.

Term.map_aterms f t applies the mapping f to all atomic terms (Bound,
Free, Var, Const) occurring in t.
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Term.fold_aterms f t iterates the operation f over all occurrences of atomic
terms (Bound, Free, Var, Const) in t ; the term structure is traversed
from left to right.

fastype_of t determines the type of a well-typed term. This operation is
relatively slow, despite the omission of any sanity checks.

lambda a b produces an abstraction λa. b, where occurrences of the atomic
term a in the body b are replaced by bound variables.

betapply (t , u) produces an application t u, with topmost β-conversion if
t is an abstraction.

incr_boundvars j increments a term’s dangling bound variables by the
offset j. This is required when moving a subterm into a context where
it is enclosed by a different number of abstractions. Bound variables
with a matching abstraction are unaffected.

Sign.declare_const ctxt ((c, σ), mx ) declares a new constant c :: σ with
optional mixfix syntax.

Sign.add_abbrev print mode (c, t) introduces a new term abbreviation c
≡ t.

Sign.const_typargs thy (c, τ) and Sign.const_instance thy (c, [τ 1, . . .,
τn ]) convert between two representations of polymorphic constants: full
type instance vs. compact type arguments form.

ML Antiquotations

const name : ML antiquotation
const abbrev : ML antiquotation

const : ML antiquotation
term : ML antiquotation
prop : ML antiquotation

const_name
�� ���

�const_abbrev
�� ��

�
�

nameref
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const
�� ���

� (
���� type�

� ,
����

�
�

)
����

�
�

term
�� ��term

prop
�� ��prop

@{const name c} inlines the internalized logical constant name c — as
string literal.

@{const abbrev c} inlines the internalized abbreviated constant name c —
as string literal.

@{const c(~τ)} inlines the internalized constant c with precise type instan-
tiation in the sense of Sign.const_instance — as Const constructor
term for datatype term.

@{term t} inlines the internalized term t — as constructor term for datatype
term.

@{prop ϕ} inlines the internalized proposition ϕ — as constructor term for
datatype term.

2.3 Theorems

A proposition is a well-typed term of type prop, a theorem is a proven propo-
sition (depending on a context of hypotheses and the background theory).
Primitive inferences include plain Natural Deduction rules for the primary
connectives

∧
and =⇒ of the framework. There is also a builtin notion of

equality/equivalence ≡.
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2.3.1 Primitive connectives and rules

The theory Pure contains constant declarations for the primitive connectives∧
, =⇒, and ≡ of the logical framework, see figure 2.1. The derivability judg-

ment A1, . . ., An ` B is defined inductively by the primitive inferences given
in figure 2.2, with the global restriction that the hypotheses must not contain
any schematic variables. The builtin equality is conceptually axiomatized as
shown in figure 2.3, although the implementation works directly with derived
inferences.

all :: (α ⇒ prop) ⇒ prop universal quantification (binder
∧

)
=⇒ :: prop ⇒ prop ⇒ prop implication (right associative infix)
≡ :: α ⇒ α ⇒ prop equality relation (infix)

Figure 2.1: Primitive connectives of Pure

A ∈ Θ
` A

(axiom)
A ` A

(assume)

Γ ` b[x ] x /∈ Γ

Γ ` ∧
x . b[x ]

(
∧

-intro)
Γ ` ∧

x . b[x ]

Γ ` b[a]
(
∧

-elim)

Γ ` B
Γ − A ` A =⇒ B

(=⇒-intro)
Γ1 ` A =⇒ B Γ2 ` A

Γ1 ∪ Γ2 ` B
(=⇒-elim)

Figure 2.2: Primitive inferences of Pure

` (λx . b[x ]) a ≡ b[a] β-conversion
` x ≡ x reflexivity
` x ≡ y =⇒ P x =⇒ P y substitution
` (

∧
x . f x ≡ g x ) =⇒ f ≡ g extensionality

` (A =⇒ B) =⇒ (B =⇒ A) =⇒ A ≡ B logical equivalence

Figure 2.3: Conceptual axiomatization of Pure equality

The introduction and elimination rules for
∧

and =⇒ are analogous to forma-
tion of dependently typed λ-terms representing the underlying proof objects.
Proof terms are irrelevant in the Pure logic, though; they cannot occur within
propositions. The system provides a runtime option to record explicit proof
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terms for primitive inferences. Thus all three levels of λ-calculus become
explicit: ⇒ for terms, and

∧
/=⇒ for proofs (cf. [2]).

Observe that locally fixed parameters (as in
∧

-intro) need not be recorded
in the hypotheses, because the simple syntactic types of Pure are always
inhabitable. “Assumptions” x :: τ for type-membership are only present as
long as some x τ occurs in the statement body.2

The axiomatization of a theory is implicitly closed by forming all instances
of type and term variables: ` Aθ holds for any substitution instance of an
axiom ` A. By pushing substitutions through derivations inductively, we also
get admissible generalize and instantiate rules as shown in figure 2.4.

Γ ` B [α] α /∈ Γ

Γ ` B [?α]

Γ ` B [x ] x /∈ Γ

Γ ` B [?x ]
(generalize)

Γ ` B [?α]

Γ ` B [τ ]

Γ ` B [?x ]

Γ ` B [t ]
(instantiate)

Figure 2.4: Admissible substitution rules

Note that instantiate does not require an explicit side-condition, because Γ
may never contain schematic variables.

In principle, variables could be substituted in hypotheses as well, but this
would disrupt the monotonicity of reasoning: deriving Γθ ` Bθ from Γ `
B is correct, but Γθ ⊇ Γ does not necessarily hold: the result belongs to a
different proof context.

An oracle is a function that produces axioms on the fly. Logically, this is an
instance of the axiom rule (figure 2.2), but there is an operational difference.
The system always records oracle invocations within derivations of theorems
by a unique tag.

Axiomatizations should be limited to the bare minimum, typically as part
of the initial logical basis of an object-logic formalization. Later on, theories
are usually developed in a strictly definitional fashion, by stating only certain
equalities over new constants.

A simple definition consists of a constant declaration c :: σ together with an
axiom ` c ≡ t, where t :: σ is a closed term without any hidden polymor-
phism. The RHS may depend on further defined constants, but not c itself.

2This is the key difference to “λHOL” in the PTS framework [1], where hypotheses x :
A are treated uniformly for propositions and types.
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Definitions of functions may be presented as c ~x ≡ t instead of the puristic
c ≡ λ~x . t.

An overloaded definition consists of a collection of axioms for the same con-
stant, with zero or one equations c((~α)κ) ≡ t for each type constructor κ
(for distinct variables ~α). The RHS may mention previously defined con-
stants as above, or arbitrary constants d(αi) for some αi projected from ~α.
Thus overloaded definitions essentially work by primitive recursion over the
syntactic structure of a single type argument. See also [6, §4.3].

ML Reference

type ctyp

type cterm

Thm.ctyp_of: theory -> typ -> ctyp

Thm.cterm_of: theory -> term -> cterm

type thm

proofs: int Unsynchronized.ref

Thm.transfer: theory -> thm -> thm

Thm.assume: cterm -> thm

Thm.forall_intr: cterm -> thm -> thm

Thm.forall_elim: cterm -> thm -> thm

Thm.implies_intr: cterm -> thm -> thm

Thm.implies_elim: thm -> thm -> thm

Thm.generalize: string list * string list -> int -> thm -> thm

Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm

Thm.add_axiom: Proof.context ->

binding * term -> theory -> (string * thm) * theory

Thm.add_oracle: binding * (’a -> cterm) -> theory ->

(string * (’a -> thm)) * theory

Thm.add_def: Proof.context -> bool -> bool ->

binding * term -> theory -> (string * thm) * theory

Theory.add_deps: Proof.context -> string ->

string * typ -> (string * typ) list -> theory -> theory

Types ctyp and cterm represent certified types and terms, respectively.
These are abstract datatypes that guarantee that its values have passed
the full well-formedness (and well-typedness) checks, relative to the
declarations of type constructors, constants etc. in the theory.

Thm.ctyp_of thy τ and Thm.cterm_of thy t explicitly checks types and
terms, respectively. This also involves some basic normalizations, such
expansion of type and term abbreviations from the theory context.
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Re-certification is relatively slow and should be avoided in tight reason-
ing loops. There are separate operations to decompose certified entities
(including actual theorems).

Type thm represents proven propositions. This is an abstract datatype that
guarantees that its values have been constructed by basic principles of
the Thm module. Every thm value contains a sliding back-reference to
the enclosing theory, cf. §1.1.1.

proofs specifies the detail of proof recording within thm values: 0 records
only the names of oracles, 1 records oracle names and propositions, 2
additionally records full proof terms. Officially named theorems that
contribute to a result are recorded in any case.

Thm.transfer thy thm transfers the given theorem to a larger theory, see
also §1.1. This formal adjustment of the background context has no
logical significance, but is occasionally required for formal reasons, e.g.
when theorems that are imported from more basic theories are used in
the current situation.

Thm.assume, Thm.forall_intr, Thm.forall_elim, Thm.implies_intr,
and Thm.implies_elim correspond to the primitive inferences of fig-
ure 2.2.

Thm.generalize (~α, ~x ) corresponds to the generalize rules of figure 2.4.
Here collections of type and term variables are generalized simultane-
ously, specified by the given basic names.

Thm.instantiate (~αs , ~x τ ) corresponds to the instantiate rules of figure 2.4.
Type variables are substituted before term variables. Note that the
types in ~x τ refer to the instantiated versions.

Thm.add_axiom ctxt (name, A) declares an arbitrary proposition as axiom,
and retrieves it as a theorem from the resulting theory, cf. axiom in
figure 2.2. Note that the low-level representation in the axiom table
may differ slightly from the returned theorem.

Thm.add_oracle (binding , oracle) produces a named oracle rule, essentially
generating arbitrary axioms on the fly, cf. axiom in figure 2.2.

Thm.add_def ctxt unchecked overloaded (name, c ~x ≡ t) states a defini-
tional axiom for an existing constant c. Dependencies are recorded via
Theory.add_deps, unless the unchecked option is set. Note that the
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low-level representation in the axiom table may differ slightly from the
returned theorem.

Theory.add_deps ctxt name cτ
~dσ declares dependencies of a named speci-

fication for constant cτ , relative to existing specifications for constants
~dσ.

ML Antiquotations

ctyp : ML antiquotation
cterm : ML antiquotation
cprop : ML antiquotation

thm : ML antiquotation
thms : ML antiquotation

lemma : ML antiquotation

ctyp
�� ��typ

cterm
�� ��term

cprop
�� ��prop

thm
�� ��thmref

thms
�� ��thmrefs

lemma
�� ���

� (
����open

�� ��)
����

�
�

prop�
�

�
�

�

� and
�� ��

�

�

�

��
�by

�� ��method �
�method

�
�
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@{ctyp τ} produces a certified type wrt. the current background theory —
as abstract value of type ctyp.

@{cterm t} and @{cprop ϕ} produce a certified term wrt. the current back-
ground theory — as abstract value of type cterm.

@{thm a} produces a singleton fact — as abstract value of type thm.

@{thms a} produces a general fact — as abstract value of type thm list.

@{lemma ϕ by meth} produces a fact that is proven on the spot according
to the minimal proof, which imitates a terminal Isar proof. The result
is an abstract value of type thm or thm list, depending on the number
of propositions given here.

The internal derivation object lacks a proper theorem name, but it is
formally closed, unless the (open) option is specified (this may impact
performance of applications with proof terms).

Since ML antiquotations are always evaluated at compile-time, there
is no run-time overhead even for non-trivial proofs. Nonetheless, the
justification is syntactically limited to a single by step. More complex
Isar proofs should be done in regular theory source, before compiling
the corresponding ML text that uses the result.

2.3.2 Auxiliary definitions

Theory Pure provides a few auxiliary definitions, see figure 2.5. These spe-
cial constants are normally not exposed to the user, but appear in internal
encodings.

The introduction A =⇒ B =⇒ A &&& B, and eliminations (projections) A
&&& B =⇒ A and A &&& B =⇒ B are available as derived rules. Conjunc-
tion allows to treat simultaneous assumptions and conclusions uniformly, e.g.
consider A =⇒ B =⇒ C &&& D. In particular, the goal mechanism rep-
resents multiple claims as explicit conjunction internally, but this is refined
(via backwards introduction) into separate sub-goals before the user com-
mences the proof; the final result is projected into a list of theorems using
eliminations (cf. §4.1).

The prop marker (#) makes arbitrarily complex propositions appear as
atomic, without changing the meaning: Γ ` A and Γ ` #A are interchange-
able. See §4.1 for specific operations.
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conjunction :: prop ⇒ prop ⇒ prop (infix &&&)
` A &&& B ≡ (

∧
C . (A =⇒ B =⇒ C ) =⇒ C )

prop :: prop ⇒ prop (prefix #, suppressed)
#A ≡ A

term :: α ⇒ prop (prefix TERM )
term x ≡ (

∧
A. A =⇒ A)

TYPE :: α itself (prefix TYPE )
(unspecified)

Figure 2.5: Definitions of auxiliary connectives

The term marker turns any well-typed term into a derivable proposition: `
TERM t holds unconditionally. Although this is logically vacuous, it allows
to treat terms and proofs uniformly, similar to a type-theoretic framework.

The TYPE constructor is the canonical representative of the unspecified type
α itself ; it essentially injects the language of types into that of terms. There
is specific notation TYPE (τ) for TYPE τ itself. Although being devoid of any
particular meaning, the term TYPE (τ) accounts for the type τ within the
term language. In particular, TYPE (α) may be used as formal argument
in primitive definitions, in order to circumvent hidden polymorphism (cf.
§2.2). For example, c TYPE (α) ≡ A[α] defines c :: α itself ⇒ prop in terms
of a proposition A that depends on an additional type argument, which is
essentially a predicate on types.

ML Reference

Conjunction.intr: thm -> thm -> thm

Conjunction.elim: thm -> thm * thm

Drule.mk_term: cterm -> thm

Drule.dest_term: thm -> cterm

Logic.mk_type: typ -> term

Logic.dest_type: term -> typ

Conjunction.intr derives A &&& B from A and B.

Conjunction.elim derives A and B from A &&& B.

Drule.mk_term derives TERM t.

Drule.dest_term recovers term t from TERM t.
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Logic.mk_type τ produces the term TYPE (τ).

Logic.dest_type TYPE (τ) recovers the type τ .

2.4 Object-level rules

The primitive inferences covered so far mostly serve foundational purposes.
User-level reasoning usually works via object-level rules that are represented
as theorems of Pure. Composition of rules involves backchaining, higher-order
unification modulo αβη-conversion of λ-terms, and so-called lifting of rules
into a context of

∧
and =⇒ connectives. Thus the full power of higher-order

Natural Deduction in Isabelle/Pure becomes readily available.

2.4.1 Hereditary Harrop Formulae

The idea of object-level rules is to model Natural Deduction inferences in the
style of Gentzen [5], but we allow arbitrary nesting similar to [13]. The most
basic rule format is that of a Horn Clause:

A1 . . . An

A

where A, A1, . . ., An are atomic propositions of the framework, usually of
the form Trueprop B, where B is a (compound) object-level statement. This
object-level inference corresponds to an iterated implication in Pure like this:

A1 =⇒ . . . An =⇒ A

As an example consider conjunction introduction: A =⇒ B =⇒ A ∧ B. Any
parameters occurring in such rule statements are conceptionally treated as
arbitrary:∧

x 1 . . . xm . A1 x 1 . . . xm =⇒ . . . An x 1 . . . xm =⇒ A x 1 . . . xm

Nesting of rules means that the positions of Ai may again hold compound
rules, not just atomic propositions. Propositions of this format are called
Hereditary Harrop Formulae in the literature [8]. Here we give an inductive
characterization as follows:

x set of variables
A set of atomic propositions
H =

∧
x∗. H∗ =⇒ A set of Hereditary Harrop Formulas
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Thus we essentially impose nesting levels on propositions formed from
∧

and
=⇒. At each level there is a prefix of parameters and compound premises,
concluding an atomic proposition. Typical examples are −→-introduction
(A =⇒ B) =⇒ A −→ B or mathematical induction P 0 =⇒ (

∧
n. P n =⇒

P (Suc n)) =⇒ P n. Even deeper nesting occurs in well-founded induction
(
∧

x . (
∧

y . y ≺ x =⇒ P y) =⇒ P x ) =⇒ P x, but this already marks the
limit of rule complexity that is usually seen in practice.

Regular user-level inferences in Isabelle/Pure always maintain the following
canonical form of results:

• Normalization by (A =⇒ (
∧

x . B x )) ≡ (
∧

x . A =⇒ B x ), which is a
theorem of Pure, means that quantifiers are pushed in front of implica-
tion at each level of nesting. The normal form is a Hereditary Harrop
Formula.

• The outermost prefix of parameters is represented via schematic vari-
ables: instead of

∧
~x . ~H ~x =⇒ A ~x we have ~H ?~x =⇒ A ?~x . Note that

this representation looses information about the order of parameters,
and vacuous quantifiers vanish automatically.

ML Reference

Simplifier.norm_hhf: thm -> thm

Simplifier.norm_hhf thm normalizes the given theorem according to the
canonical form specified above. This is occasionally helpful to repair
some low-level tools that do not handle Hereditary Harrop Formulae
properly.

2.4.2 Rule composition

The rule calculus of Isabelle/Pure provides two main inferences: resolution
(i.e. back-chaining of rules) and assumption (i.e. closing a branch), both
modulo higher-order unification. There are also combined variants, notably
elim resolution and dest resolution.

To understand the all-important resolution principle, we first consider raw
composition (modulo higher-order unification with substitution θ):

~A =⇒ B B ′ =⇒ C Bθ = B ′θ
~Aθ =⇒ C θ

(composition)
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Here the conclusion of the first rule is unified with the premise of the second;
the resulting rule instance inherits the premises of the first and conclusion
of the second. Note that C can again consist of iterated implications. We
can also permute the premises of the second rule back-and-forth in order
to compose with B ′ in any position (subsequently we shall always refer to
position 1 w.l.o.g.).

In composition the internal structure of the common part B and B ′ is not
taken into account. For proper resolution we require B to be atomic, and
explicitly observe the structure

∧
~x . ~H ~x =⇒ B ′ ~x of the premise of the second

rule. The idea is to adapt the first rule by “lifting” it into this context, by
means of iterated application of the following inferences:

~A =⇒ B

(~H =⇒ ~A) =⇒ (~H =⇒ B)
(imp lift)

~A ?~a =⇒ B ?~a

(
∧
~x . ~A (?~a ~x )) =⇒ (

∧
~x . B (?~a ~x ))

(all lift)

By combining raw composition with lifting, we get full resolution as follows:

~A ?~a =⇒ B ?~a

(
∧
~x . ~H ~x =⇒ B ′ ~x ) =⇒ C

(λ~x . B (?~a ~x ))θ = B ′θ

(
∧
~x . ~H ~x =⇒ ~A (?~a ~x ))θ =⇒ C θ

(resolution)

Continued resolution of rules allows to back-chain a problem towards more
and sub-problems. Branches are closed either by resolving with a rule of 0
premises, or by producing a “short-circuit” within a solved situation (again
modulo unification):

(
∧
~x . ~H ~x =⇒ A ~x ) =⇒ C Aθ = H iθ (for some i)

C θ
(assumption)

FIXME elim resolution, dest resolution

ML Reference

op RS: thm * thm -> thm

op OF: thm * thm list -> thm
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rule1 RS rule2 resolves rule1 with rule2 according to the resolution principle
explained above. Note that the corresponding rule attribute in the Isar
language is called THEN .

rule OF rules resolves a list of rules with the first rule, addressing its
premises 1, . . ., length rules (operating from last to first). This means
the newly emerging premises are all concatenated, without interfering.
Also note that compared to RS, the rule argument order is swapped:
rule1 RS rule2 = rule2 OF [rule1].
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Concrete syntax and
type-checking

FIXME

3.1 Reading and pretty printing

FIXME

ML Reference

Syntax.read_typ: Proof.context -> string -> typ

Syntax.read_term: Proof.context -> string -> term

Syntax.read_prop: Proof.context -> string -> term

Syntax.pretty_typ: Proof.context -> typ -> Pretty.T

Syntax.pretty_term: Proof.context -> term -> Pretty.T

FIXME

3.2 Parsing and unparsing

FIXME

ML Reference

Syntax.parse_typ: Proof.context -> string -> typ

Syntax.parse_term: Proof.context -> string -> term

Syntax.parse_prop: Proof.context -> string -> term

Syntax.unparse_typ: Proof.context -> typ -> Pretty.T

Syntax.unparse_term: Proof.context -> term -> Pretty.T

FIXME

76
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3.3 Checking and unchecking

FIXME

ML Reference

Syntax.check_typs: Proof.context -> typ list -> typ list

Syntax.check_terms: Proof.context -> term list -> term list

Syntax.check_props: Proof.context -> term list -> term list

Syntax.uncheck_typs: Proof.context -> typ list -> typ list

Syntax.uncheck_terms: Proof.context -> term list -> term list

FIXME

3.4 Syntax translations

FIXME

ML Antiquotations

class syntax : ML antiquotation
type syntax : ML antiquotation

const syntax : ML antiquotation
syntax const : ML antiquotation

class_syntax
�� ���

�type_syntax
�� ���const_syntax
�� ���syntax_const
�� ��

�
�
�
�

name

FIXME
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Tactical reasoning

Tactical reasoning works by refining an initial claim in a backwards fashion,
until a solved form is reached. A goal consists of several subgoals that need
to be solved in order to achieve the main statement; zero subgoals means
that the proof may be finished. A tactic is a refinement operation that maps
a goal to a lazy sequence of potential successors. A tactical is a combinator
for composing tactics.

4.1 Goals

Isabelle/Pure represents a goal as a theorem stating that the subgoals imply
the main goal: A1 =⇒ . . . =⇒ An =⇒ C. The outermost goal structure is
that of a Horn Clause: i.e. an iterated implication without any quantifiers1.
For n = 0 a goal is called “solved”.

The structure of each subgoal Ai is that of a general Hereditary Harrop
Formula

∧
x 1 . . .

∧
x k . H 1 =⇒ . . . =⇒ H m =⇒ B. Here x 1, . . ., x k are goal

parameters, i.e. arbitrary-but-fixed entities of certain types, and H 1, . . .,
H m are goal hypotheses, i.e. facts that may be assumed locally. Together,
this forms the goal context of the conclusion B to be established. The goal
hypotheses may be again arbitrary Hereditary Harrop Formulas, although
the level of nesting rarely exceeds 1–2 in practice.

The main conclusion C is internally marked as a protected proposition, which
is represented explicitly by the notation #C here. This ensures that the de-
composition into subgoals and main conclusion is well-defined for arbitrarily
structured claims.

Basic goal management is performed via the following Isabelle/Pure rules:

C =⇒ #C
(init)

#C
C

(finish)

1Recall that outermost
∧

x . ϕ[x ] is always represented via schematic variables in the
body: ϕ[?x ]. These variables may get instantiated during the course of reasoning.

78
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The following low-level variants admit general reasoning with protected
propositions:

C
#C

(protect)
A1 =⇒ . . . =⇒ An =⇒ #C
A1 =⇒ . . . =⇒ An =⇒ C

(conclude)

ML Reference

Goal.init: cterm -> thm

Goal.finish: Proof.context -> thm -> thm

Goal.protect: thm -> thm

Goal.conclude: thm -> thm

Goal.init C initializes a tactical goal from the well-formed proposition C.

Goal.finish ctxt thm checks whether theorem thm is a solved goal (no
subgoals), and concludes the result by removing the goal protection.
The context is only required for printing error messages.

Goal.protect thm protects the full statement of theorem thm.

Goal.conclude thm removes the goal protection, even if there are pending
subgoals.

4.2 Tactics

A tactic is a function goal → goal∗∗ that maps a given goal state (represented
as a theorem, cf. §4.1) to a lazy sequence of potential successor states. The
underlying sequence implementation is lazy both in head and tail, and is
purely functional in not supporting memoing.2

An empty result sequence means that the tactic has failed: in a compound
tactic expression other tactics might be tried instead, or the whole refinement
step might fail outright, producing a toplevel error message in the end. When
implementing tactics from scratch, one should take care to observe the basic
protocol of mapping regular error conditions to an empty result; only serious
faults should emerge as exceptions.

2The lack of memoing and the strict nature of SML requires some care when working
with low-level sequence operations, to avoid duplicate or premature evaluation of results.
It also means that modified runtime behavior, such as timeout, is very hard to achieve for
general tactics.
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By enumerating multiple results, a tactic can easily express the potential out-
come of an internal search process. There are also combinators for building
proof tools that involve search systematically, see also §4.3.

As explained before, a goal state essentially consists of a list of subgoals that
imply the main goal (conclusion). Tactics may operate on all subgoals or on
a particularly specified subgoal, but must not change the main conclusion
(apart from instantiating schematic goal variables).

Tactics with explicit subgoal addressing are of the form int → tactic and may
be applied to a particular subgoal (counting from 1). If the subgoal number
is out of range, the tactic should fail with an empty result sequence, but must
not raise an exception!

Operating on a particular subgoal means to replace it by an interval of zero or
more subgoals in the same place; other subgoals must not be affected, apart
from instantiating schematic variables ranging over the whole goal state.

A common pattern of composing tactics with subgoal addressing is to try the
first one, and then the second one only if the subgoal has not been solved
yet. Special care is required here to avoid bumping into unrelated subgoals
that happen to come after the original subgoal. Assuming that there is only
a single initial subgoal is a very common error when implementing tactics!

Tactics with internal subgoal addressing should expose the subgoal index as
int argument in full generality; a hardwired subgoal 1 is not acceptable.

The main well-formedness conditions for proper tactics are summarized as
follows.

• General tactic failure is indicated by an empty result, only serious faults
may produce an exception.

• The main conclusion must not be changed, apart from instantiating
schematic variables.

• A tactic operates either uniformly on all subgoals, or specifically on a
selected subgoal (without bumping into unrelated subgoals).

• Range errors in subgoal addressing produce an empty result.

Some of these conditions are checked by higher-level goal infrastructure
(§5.3); others are not checked explicitly, and violating them merely results
in ill-behaved tactics experienced by the user (e.g. tactics that insist in be-
ing applicable only to singleton goals, or prevent composition via standard
tacticals).
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ML Reference

type tactic = thm -> thm Seq.seq

no_tac: tactic

all_tac: tactic

print_tac: string -> tactic

PRIMITIVE: (thm -> thm) -> tactic

SUBGOAL: (term * int -> tactic) -> int -> tactic

CSUBGOAL: (cterm * int -> tactic) -> int -> tactic

Type tactic represents tactics. The well-formedness conditions described
above need to be observed. See also ~~/src/Pure/General/seq.ML

for the underlying implementation of lazy sequences.

Type int -> tactic represents tactics with explicit subgoal addressing,
with well-formedness conditions as described above.

no_tac is a tactic that always fails, returning the empty sequence.

all_tac is a tactic that always succeeds, returning a singleton sequence
with unchanged goal state.

print_tac message is like all_tac, but prints a message together with the
goal state on the tracing channel.

PRIMITIVE rule turns a primitive inference rule into a tactic with unique
result. Exception THM is considered a regular tactic failure and produces
an empty result; other exceptions are passed through.

SUBGOAL (fn (subgoal , i) => tactic) is the most basic form to produce a
tactic with subgoal addressing. The given abstraction over the subgoal
term and subgoal number allows to peek at the relevant information of
the full goal state. The subgoal range is checked as required above.

CSUBGOAL is similar to SUBGOAL, but passes the subgoal as cterm instead
of raw term. This avoids expensive re-certification in situations where
the subgoal is used directly for primitive inferences.

4.2.1 Resolution and assumption tactics

Resolution is the most basic mechanism for refining a subgoal using a theo-
rem as object-level rule. Elim-resolution is particularly suited for elimination
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rules: it resolves with a rule, proves its first premise by assumption, and fi-
nally deletes that assumption from any new subgoals. Destruct-resolution
is like elim-resolution, but the given destruction rules are first turned into
canonical elimination format. Forward-resolution is like destruct-resolution,
but without deleting the selected assumption. The r/e/d/f naming conven-
tion is maintained for several different kinds of resolution rules and tactics.

Assumption tactics close a subgoal by unifying some of its premises against
its conclusion.

All the tactics in this section operate on a subgoal designated by a positive
integer. Other subgoals might be affected indirectly, due to instantiation of
schematic variables.

There are various sources of non-determinism, the tactic result sequence enu-
merates all possibilities of the following choices (if applicable):

1. selecting one of the rules given as argument to the tactic;

2. selecting a subgoal premise to eliminate, unifying it against the first
premise of the rule;

3. unifying the conclusion of the subgoal to the conclusion of the rule.

Recall that higher-order unification may produce multiple results that are
enumerated here.

ML Reference

resolve_tac: thm list -> int -> tactic

eresolve_tac: thm list -> int -> tactic

dresolve_tac: thm list -> int -> tactic

forward_tac: thm list -> int -> tactic

assume_tac: int -> tactic

eq_assume_tac: int -> tactic

match_tac: thm list -> int -> tactic

ematch_tac: thm list -> int -> tactic

dmatch_tac: thm list -> int -> tactic

resolve_tac thms i refines the goal state using the given theorems, which
should normally be introduction rules. The tactic resolves a rule’s
conclusion with subgoal i, replacing it by the corresponding versions of
the rule’s premises.
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eresolve_tac thms i performs elim-resolution with the given theorems,
which should normally be elimination rules.

dresolve_tac thms i performs destruct-resolution with the given theorems,
which should normally be destruction rules. This replaces an assump-
tion by the result of applying one of the rules.

forward_tac is like dresolve_tac except that the selected assumption is
not deleted. It applies a rule to an assumption, adding the result as a
new assumption.

assume_tac i attempts to solve subgoal i by assumption (modulo higher-
order unification).

eq_assume_tac is similar to assume_tac, but checks only for immediate
α-convertibility instead of using unification. It succeeds (with a unique
next state) if one of the assumptions is equal to the subgoal’s con-
clusion. Since it does not instantiate variables, it cannot make other
subgoals unprovable.

match_tac, ematch_tac, and dmatch_tac are similar to resolve_tac,
eresolve_tac, and dresolve_tac, respectively, but do not instanti-
ate schematic variables in the goal state.

Flexible subgoals are not updated at will, but are left alone. Strictly
speaking, matching means to treat the unknowns in the goal state as
constants; these tactics merely discard unifiers that would update the
goal state.

4.2.2 Explicit instantiation within a subgoal context

The main resolution tactics (§4.2.1) use higher-order unification, which works
well in many practical situations despite its daunting theoretical properties.
Nonetheless, there are important problem classes where unguided higher-
order unification is not so useful. This typically involves rules like universal
elimination, existential introduction, or equational substitution. Here the
unification problem involves fully flexible ?P ?x schemes, which are hard to
manage without further hints.

By providing a (small) rigid term for ?x explicitly, the remaining unification
problem is to assign a (large) term to ?P, according to the shape of the given
subgoal. This is sufficiently well-behaved in most practical situations.
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Isabelle provides separate versions of the standard r/e/d/f resolution tactics
that allow to provide explicit instantiations of unknowns of the given rule,
wrt. terms that refer to the implicit context of the selected subgoal.

An instantiation consists of a list of pairs of the form (?x , t), where ?x is
a schematic variable occurring in the given rule, and t is a term from the
current proof context, augmented by the local goal parameters of the selected
subgoal; cf. the focus operation described in §5.1.

Entering the syntactic context of a subgoal is a brittle operation, because its
exact form is somewhat accidental, and the choice of bound variable names
depends on the presence of other local and global names. Explicit renaming
of subgoal parameters prior to explicit instantiation might help to achieve a
bit more robustness.

Type instantiations may be given as well, via pairs like (? ′a, τ). Type in-
stantiations are distinguished from term instantiations by the syntactic form
of the schematic variable. Types are instantiated before terms are. Since
term instantiation already performs simple type-inference, so explicit type
instantiations are seldom necessary.

ML Reference

res_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic

eres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic

dres_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic

forw_inst_tac: Proof.context -> (indexname * string) list -> thm -> int -> tactic

rename_tac: string list -> int -> tactic

res_inst_tac ctxt insts thm i instantiates the rule thm with the instantia-
tions insts, as described above, and then performs resolution on subgoal
i.

eres_inst_tac is like res_inst_tac, but performs elim-resolution.

dres_inst_tac is like res_inst_tac, but performs destruct-resolution.

forw_inst_tac is like dres_inst_tac except that the selected assumption
is not deleted.

rename_tac names i renames the innermost parameters of subgoal i ac-
cording to the provided names (which need to be distinct indentifiers).

For historical reasons, the above instantiation tactics take unparsed string
arguments, which makes them hard to use in general ML code. The slightly
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more advanced Subgoal.FOCUS combinator of §5.3 allows to refer to internal
goal structure with explicit context management.

4.3 Tacticals

A tactical is a functional combinator for building up complex tactics from
simpler ones. Typical tactical perform sequential composition, disjunction
(choice), iteration, or goal addressing. Various search strategies may be ex-
pressed via tacticals.

FIXME

The chapter on tacticals in [10] is still applicable, despite a few outdated
details.



Chapter 5

Structured proofs

5.1 Variables

Any variable that is not explicitly bound by λ-abstraction is considered as
“free”. Logically, free variables act like outermost universal quantification at
the sequent level: A1(x ), . . ., An(x ) ` B(x ) means that the result holds for
all values of x. Free variables for terms (not types) can be fully internalized
into the logic: ` B(x ) and ` ∧

x . B(x ) are interchangeable, provided that
x does not occur elsewhere in the context. Inspecting ` ∧

x . B(x ) more
closely, we see that inside the quantifier, x is essentially “arbitrary, but fixed”,
while from outside it appears as a place-holder for instantiation (thanks to∧

elimination).

The Pure logic represents the idea of variables being either inside or outside
the current scope by providing separate syntactic categories for fixed variables
(e.g. x ) vs. schematic variables (e.g. ?x ). Incidently, a universal result ` ∧

x .
B(x ) has the HHF normal form ` B(?x ), which represents its generality
without requiring an explicit quantifier. The same principle works for type
variables: ` B(?α) represents the idea of “` ∀α. B(α)” without demanding
a truly polymorphic framework.

Additional care is required to treat type variables in a way that facilitates
type-inference. In principle, term variables depend on type variables, which
means that type variables would have to be declared first. For example, a
raw type-theoretic framework would demand the context to be constructed
in stages as follows: Γ = α: type, x : α, a: A(xα).

We allow a slightly less formalistic mode of operation: term variables x are
fixed without specifying a type yet (essentially all potential occurrences of
some instance x τ are fixed); the first occurrence of x within a specific term
assigns its most general type, which is then maintained consistently in the
context. The above example becomes Γ = x : term, α: type, A(xα), where
type α is fixed after term x, and the constraint x :: α is an implicit conse-
quence of the occurrence of xα in the subsequent proposition.

This twist of dependencies is also accommodated by the reverse operation

86
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of exporting results from a context: a type variable α is considered fixed as
long as it occurs in some fixed term variable of the context. For example,
exporting x : term, α: type ` xα ≡ xα produces in the first step x : term ` xα

≡ xα for fixed α, and only in the second step ` ?x ?α ≡ ?x ?α for schematic
?x and ?α. The following Isar source text illustrates this scenario.

notepad
begin
{

fix x — all potential occurrences of some x ::τ are fixed
{

have x :: ′a ≡ x — implicit type assigment by concrete occurrence
by (rule reflexive)

}
thm this — result still with fixed type ′a
}
thm this — fully general result for arbitrary ?x ::? ′a

end

The Isabelle/Isar proof context manages the details of term vs. type variables,
with high-level principles for moving the frontier between fixed and schematic
variables.

The add fixes operation explictly declares fixed variables; the declare term
operation absorbs a term into a context by fixing new type variables and
adding syntactic constraints.

The export operation is able to perform the main work of generalizing term
and type variables as sketched above, assuming that fixing variables and
terms have been declared properly.

There import operation makes a generalized fact a genuine part of the con-
text, by inventing fixed variables for the schematic ones. The effect can be
reversed by using export later, potentially with an extended context; the
result is equivalent to the original modulo renaming of schematic variables.

The focus operation provides a variant of import for nested propositions
(with explicit quantification):

∧
x 1 . . . xn . B(x 1, . . ., xn) is decomposed by

inventing fixed variables x 1, . . ., xn for the body.
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ML Reference

Variable.add_fixes:

string list -> Proof.context -> string list * Proof.context

Variable.variant_fixes:

string list -> Proof.context -> string list * Proof.context

Variable.declare_term: term -> Proof.context -> Proof.context

Variable.declare_constraints: term -> Proof.context -> Proof.context

Variable.export: Proof.context -> Proof.context -> thm list -> thm list

Variable.polymorphic: Proof.context -> term list -> term list

Variable.import: bool -> thm list -> Proof.context ->

(((ctyp * ctyp) list * (cterm * cterm) list) * thm list) * Proof.context

Variable.focus: term -> Proof.context ->

((string * (string * typ)) list * term) * Proof.context

Variable.add_fixes xs ctxt fixes term variables xs, returning the resulting
internal names. By default, the internal representation coincides with
the external one, which also means that the given variables must not
be fixed already. There is a different policy within a local proof body:
the given names are just hints for newly invented Skolem variables.

Variable.variant_fixes is similar to Variable.add_fixes, but always
produces fresh variants of the given names.

Variable.declare_term t ctxt declares term t to belong to the context.
This automatically fixes new type variables, but not term variables.
Syntactic constraints for type and term variables are declared uni-
formly, though.

Variable.declare_constraints t ctxt declares syntactic constraints from
term t, without making it part of the context yet.

Variable.export inner outer thms generalizes fixed type and term vari-
ables in thms according to the difference of the inner and outer context,
following the principles sketched above.

Variable.polymorphic ctxt ts generalizes type variables in ts as far as pos-
sible, even those occurring in fixed term variables. The default policy
of type-inference is to fix newly introduced type variables, which is es-
sentially reversed with Variable.polymorphic: here the given terms
are detached from the context as far as possible.

Variable.import open thms ctxt invents fixed type and term variables for
the schematic ones occurring in thms. The open flag indicates whether
the fixed names should be accessible to the user, otherwise newly in-
troduced names are marked as “internal” (§1.2).
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Variable.focus B decomposes the outermost
∧

prefix of proposition B.

ML Examples

The following example shows how to work with fixed term and type param-
eters and with type-inference.

ML {*

(*static compile-time context -- for testing only*)

val ctxt0 = @{context};

(*locally fixed parameters -- no type assignment yet*)

val ([x, y], ctxt1) = ctxt0 |> Variable.add_fixes ["x", "y"];

(*t1: most general fixed type; t1’: most general arbitrary type*)

val t1 = Syntax.read_term ctxt1 "x";

val t1’ = singleton (Variable.polymorphic ctxt1) t1;

(*term u enforces specific type assignment*)

val u = Syntax.read_term ctxt1 "(x::nat) ≡ y";

(*official declaration of u -- propagates constraints etc.*)

val ctxt2 = ctxt1 |> Variable.declare_term u;

val t2 = Syntax.read_term ctxt2 "x"; (*x::nat is enforced*)

*}

In the above example, the starting context is derived from the toplevel theory,
which means that fixed variables are internalized literally: x is mapped again
to x, and attempting to fix it again in the subsequent context is an error.
Alternatively, fixed parameters can be renamed explicitly as follows:

ML {*

val ctxt0 = @{context};

val ([x1, x2, x3], ctxt1) =

ctxt0 |> Variable.variant_fixes ["x", "x", "x"];

*}

The following ML code can now work with the invented names of x1, x2, x3,
without depending on the details on the system policy for introducing these
variants. Recall that within a proof body the system always invents fresh
“skolem constants”, e.g. as follows:

notepad
begin

ML prf {*



CHAPTER 5. STRUCTURED PROOFS 90

val ctxt0 = @{context};

val ([x1], ctxt1) = ctxt0 |> Variable.add_fixes ["x"];

val ([x2], ctxt2) = ctxt1 |> Variable.add_fixes ["x"];

val ([x3], ctxt3) = ctxt2 |> Variable.add_fixes ["x"];

val ([y1, y2], ctxt4) =

ctxt3 |> Variable.variant_fixes ["y", "y"];

*}

end

In this situation Variable.add_fixes and Variable.variant_fixes are
very similar, but identical name proposals given in a row are only accepted
by the second version.

5.2 Assumptions

An assumption is a proposition that it is postulated in the current context.
Local conclusions may use assumptions as additional facts, but this imposes
implicit hypotheses that weaken the overall statement.

Assumptions are restricted to fixed non-schematic statements, i.e. all gener-
ality needs to be expressed by explicit quantifiers. Nevertheless, the result
will be in HHF normal form with outermost quantifiers stripped. For exam-
ple, by assuming

∧
x :: α. P x we get

∧
x :: α. P x ` P ?x for schematic ?x of

fixed type α. Local derivations accumulate more and more explicit references
to hypotheses: A1, . . ., An ` B where A1, . . ., An needs to be covered by the
assumptions of the current context.

The add assms operation augments the context by local assumptions, which
are parameterized by an arbitrary export rule (see below).

The export operation moves facts from a (larger) inner context into a
(smaller) outer context, by discharging the difference of the assumptions as
specified by the associated export rules. Note that the discharged portion is
determined by the difference of contexts, not the facts being exported! There
is a separate flag to indicate a goal context, where the result is meant to
refine an enclosing sub-goal of a structured proof state.

The most basic export rule discharges assumptions directly by means of the
=⇒ introduction rule:

Γ ` B
Γ − A ` A =⇒ B

(=⇒-intro)
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The variant for goal refinements marks the newly introduced premises, which
causes the canonical Isar goal refinement scheme to enforce unification with
local premises within the goal:

Γ ` B
Γ − A ` #A =⇒ B

(#=⇒-intro)

Alternative versions of assumptions may perform arbitrary transformations
on export, as long as the corresponding portion of hypotheses is removed
from the given facts. For example, a local definition works by fixing x and
assuming x ≡ t, with the following export rule to reverse the effect:

Γ ` B x
Γ − (x ≡ t) ` B t

(≡-expand)

This works, because the assumption x ≡ t was introduced in a context with
x being fresh, so x does not occur in Γ here.

ML Reference

type Assumption.export

Assumption.assume: cterm -> thm

Assumption.add_assms: Assumption.export ->

cterm list -> Proof.context -> thm list * Proof.context

Assumption.add_assumes:

cterm list -> Proof.context -> thm list * Proof.context

Assumption.export: bool -> Proof.context -> Proof.context -> thm -> thm

Type Assumption.export represents arbitrary export rules, which is any
function of type bool -> cterm list

-> thm -> thm, where the bool indicates goal mode, and the
cterm list the collection of assumptions to be discharged simulta-
neously.

Assumption.assume A turns proposition A into a primitive assumption A
` A ′, where the conclusion A ′ is in HHF normal form.

Assumption.add_assms r As augments the context by assumptions As with
export rule r. The resulting facts are hypothetical theorems as pro-
duced by the raw Assumption.assume.

Assumption.add_assumes As is a special case of Assumption.add_assms
where the export rule performs =⇒-intro or #=⇒-intro, depending on
goal mode.
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Assumption.export is goal inner outer thm exports result thm from
the the inner context back into the outer one; is goal = true
means this is a goal context. The result is in HHF normal form.
Note that Proof_Context.export combines Variable.export and
Assumption.export in the canonical way.

ML Examples

The following example demonstrates how rules can be derived by building
up a context of assumptions first, and exporting some local fact afterwards.
We refer to Pure equality here for testing purposes.

ML {*

(*static compile-time context -- for testing only*)

val ctxt0 = @{context};

val ([eq], ctxt1) =

ctxt0 |> Assumption.add_assumes [@{cprop "x ≡ y"}];

val eq’ = Thm.symmetric eq;

(*back to original context -- discharges assumption*)

val r = Assumption.export false ctxt1 ctxt0 eq’;

*}

Note that the variables of the resulting rule are not generalized. This
would have required to fix them properly in the context beforehand, and
export wrt. variables afterwards (cf. Variable.export or the combined
Proof_Context.export).

5.3 Structured goals and results

Local results are established by monotonic reasoning from facts within a con-
text. This allows common combinations of theorems, e.g. via

∧
/=⇒ elimina-

tion, resolution rules, or equational reasoning, see §2.3. Unaccounted context
manipulations should be avoided, notably raw

∧
/=⇒ introduction or ad-hoc

references to free variables or assumptions not present in the proof context.

The SUBPROOF combinator allows to structure a tactical proof recursively
by decomposing a selected sub-goal: (

∧
x . A(x ) =⇒ B(x )) =⇒ . . . is turned

into B(x ) =⇒ . . . after fixing x and assuming A(x ). This means the tactic
needs to solve the conclusion, but may use the premise as a local fact, for
locally fixed variables.
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The family of FOCUS combinators is similar to SUBPROOF, but allows to
retain schematic variables and pending subgoals in the resulting goal state.

The prove operation provides an interface for structured backwards reasoning
under program control, with some explicit sanity checks of the result. The
goal context can be augmented by additional fixed variables (cf. §5.1) and
assumptions (cf. §5.2), which will be available as local facts during the proof
and discharged into implications in the result. Type and term variables are
generalized as usual, according to the context.

The obtain operation produces results by eliminating existing facts by means
of a given tactic. This acts like a dual conclusion: the proof demonstrates
that the context may be augmented by parameters and assumptions, without
affecting any conclusions that do not mention these parameters. See also [15]
for the user-level obtain and guess elements. Final results, which may not
refer to the parameters in the conclusion, need to exported explicitly into the
original context.

ML Reference

SUBPROOF: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic

Subgoal.FOCUS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic

Subgoal.FOCUS_PREMS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic

Subgoal.FOCUS_PARAMS: (Subgoal.focus -> tactic) ->

Proof.context -> int -> tactic

Subgoal.focus: Proof.context -> int -> thm -> Subgoal.focus * thm

Subgoal.focus_prems: Proof.context -> int -> thm -> Subgoal.focus * thm

Subgoal.focus_params: Proof.context -> int -> thm -> Subgoal.focus * thm

Goal.prove: Proof.context -> string list -> term list -> term ->

({prems: thm list, context: Proof.context} -> tactic) -> thm

Goal.prove_multi: Proof.context -> string list -> term list -> term list ->

({prems: thm list, context: Proof.context} -> tactic) -> thm list

Obtain.result: (Proof.context -> tactic) -> thm list ->

Proof.context -> ((string * cterm) list * thm list) * Proof.context

SUBPROOF tac ctxt i decomposes the structure of the specified sub-goal,
producing an extended context and a reduced goal, which needs to be
solved by the given tactic. All schematic parameters of the goal are
imported into the context as fixed ones, which may not be instantiated
in the sub-proof.
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Subgoal.FOCUS, Subgoal.FOCUS_PREMS, and Subgoal.FOCUS_PARAMS are
similar to SUBPROOF, but are slightly more flexible: only the specified
parts of the subgoal are imported into the context, and the body tactic
may introduce new subgoals and schematic variables.

Subgoal.focus, Subgoal.focus_prems, Subgoal.focus_params extract
the focus information from a goal state in the same way as the cor-
responding tacticals above. This is occasionally useful to experiment
without writing actual tactics yet.

Goal.prove ctxt xs As C tac states goal C in the context augmented by
fixed variables xs and assumptions As, and applies tactic tac to solve
it. The latter may depend on the local assumptions being presented as
facts. The result is in HHF normal form.

Goal.prove_multi is simular to Goal.prove, but states several conclusions
simultaneously. The goal is encoded by means of Pure conjunction;
Goal.conjunction_tac will turn this into a collection of individual
subgoals.

Obtain.result tac thms ctxt eliminates the given facts using a tactic, which
results in additional fixed variables and assumptions in the context.
Final results need to be exported explicitly.

ML Examples

The following minimal example illustrates how to access the focus informa-
tion of a structured goal state.

notepad
begin

fix A B C :: ′a ⇒ bool

have
∧

x . A x =⇒ B x =⇒ C x
ML val
{*

val {goal, context = goal_ctxt, ...} = @{Isar.goal};

val (focus as {params, asms, concl, ...}, goal’) =

Subgoal.focus goal_ctxt 1 goal;

val [A, B] = #prems focus;

val [(_, x)] = #params focus;

*}
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oops

The next example demonstrates forward-elimination in a local context, using
Obtain.result.

notepad
begin

assume ex : ∃ x . B x

ML prf {*

val ctxt0 = @{context};

val (([(_, x)], [B]), ctxt1) = ctxt0

|> Obtain.result (fn _ => etac @{thm exE} 1) [@{thm ex}];

*}

ML prf {*

singleton (Proof_Context.export ctxt1 ctxt0) @{thm refl};

*}

ML prf {*

Proof_Context.export ctxt1 ctxt0 [Thm.reflexive x]

handle ERROR msg => (warning msg; []);

*}

end



Chapter 6

Isar language elements

The Isar proof language (see also [15, §2]) consists of three main categories
of language elements as follows.

1. Proof commands define the primary language of transactions of the
underlying Isar/VM interpreter. Typical examples are fix, assume,
show, proof , and qed.

Composing proof commands according to the rules of the Isar/VM leads
to expressions of structured proof text, such that both the machine and
the human reader can give it a meaning as formal reasoning.

2. Proof methods define a secondary language of mixed forward-backward
refinement steps involving facts and goals. Typical examples are rule,
unfold , and simp.

Methods can occur in certain well-defined parts of the Isar proof lan-
guage, say as arguments to proof , qed, or by.

3. Attributes define a tertiary language of small annotations to theorems
being defined or referenced. Attributes can modify both the context
and the theorem.

Typical examples are intro (which affects the context), and symmetric
(which affects the theorem).

6.1 Proof commands

A proof command is state transition of the Isar/VM proof interpreter.

In principle, Isar proof commands could be defined in user-space as well.
The system is built like that in the first place: one part of the commands
are primitive, the other part is defined as derived elements. Adding to the
genuine structured proof language requires profound understanding of the
Isar/VM machinery, though, so this is beyond the scope of this manual.

96
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What can be done realistically is to define some diagnostic commands that
inspect the general state of the Isar/VM, and report some feedback to the
user. Typically this involves checking of the linguistic mode of a proof state,
or peeking at the pending goals (if available).

Another common application is to define a toplevel command that poses a
problem to the user as Isar proof state and processes the final result relatively
to the context. Thus a proof can be incorporated into the context of some
user-space tool, without modifying the Isar proof language itself.

ML Reference

type Proof.state

Proof.assert_forward: Proof.state -> Proof.state

Proof.assert_chain: Proof.state -> Proof.state

Proof.assert_backward: Proof.state -> Proof.state

Proof.simple_goal: Proof.state -> {context: Proof.context, goal: thm}

Proof.goal: Proof.state ->

{context: Proof.context, facts: thm list, goal: thm}

Proof.raw_goal: Proof.state ->

{context: Proof.context, facts: thm list, goal: thm}

Proof.theorem: Method.text option ->

(thm list list -> Proof.context -> Proof.context) ->

(term * term list) list list -> Proof.context -> Proof.state

Type Proof.state represents Isar proof states. This is a block-structured
configuration with proof context, linguistic mode, and optional goal.
The latter consists of goal context, goal facts (“using”), and tactical
goal state (see §4.1).

The general idea is that the facts shall contribute to the refinement of
some parts of the tactical goal — how exactly is defined by the proof
method that is applied in that situation.

Proof.assert_forward, Proof.assert_chain, Proof.assert_backward

are partial identity functions that fail unless a certain linguistic mode
is active, namely “proof (state)”, “proof (chain)”, “proof (prove)”, re-
spectively (using the terminology of [15]).

It is advisable study the implementations of existing proof commands
for suitable modes to be asserted.

Proof.simple_goal state returns the structured Isar goal (if available) in
the form seen by “simple” methods (like simp or blast). The Isar
goal facts are already inserted as premises into the subgoals, which are
presented individually as in Proof.goal.
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Proof.goal state returns the structured Isar goal (if available) in the form
seen by regular methods (like rule). The auxiliary internal encoding of
Pure conjunctions is split into individual subgoals as usual.

Proof.raw_goal state returns the structured Isar goal (if available) in
the raw internal form seen by “raw” methods (like induct). This
form is rarely appropriate for dignostic tools; Proof.simple_goal or
Proof.goal should be used in most situations.

Proof.theorem before qed after qed statement ctxt initializes a toplevel Isar
proof state within a given context.

The optional before qed method is applied at the end of the proof, just
before extracting the result (this feature is rarely used).

The after qed continuation receives the extracted result in order to
apply it to the final context in a suitable way (e.g. storing named
facts). Note that at this generic level the target context is specified
as Proof.context, but the usual wrapping of toplevel proofs into com-
mand transactions will provide a local_theory here (chapter 7). This
affects the way how results are stored.

The statement is given as a nested list of terms, each associated with
optional is patterns as usual in the Isar source language. The original
nested list structure over terms is turned into one over theorems when
after qed is invoked.

ML Antiquotations

Isar .goal : ML antiquotation

@{Isar .goal} refers to the regular goal state (if available) of the current
proof state managed by the Isar toplevel — as abstract value.

This only works for diagnostic ML commands, such as ML val or
ML command.

ML Examples

The following example peeks at a certain goal configuration.

notepad
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begin
have A and B and C

ML val {*

val n = Thm.nprems_of (#goal @{Isar.goal});

@{assert} (n = 3);

*}

oops

Here we see 3 individual subgoals in the same way as regular proof methods
would do.

6.2 Proof methods

A method is a function context → thm∗ → goal → (cases × goal)∗∗ that
operates on the full Isar goal configuration with context, goal facts, and
tactical goal state and enumerates possible follow-up goal states, with the
potential addition of named extensions of the proof context (cases). The
latter feature is rarely used.

This means a proof method is like a structurally enhanced tactic (cf. §4.2).
The well-formedness conditions for tactics need to hold for methods accord-
ingly, with the following additions.

• Goal addressing is further limited either to operate either uniformly on
all subgoals, or specifically on the first subgoal.

Exception: old-style tactic emulations that are embedded into the
method space, e.g. rule tac.

• A non-trivial method always needs to make progress: an identical
follow-up goal state has to be avoided.1

Exception: trivial stuttering steps, such as “−” or succeed .

• Goal facts passed to the method must not be ignored. If there is no
sensible use of facts outside the goal state, facts should be inserted into
the subgoals that are addressed by the method.

Syntactically, the language of proof methods appears as arguments to Isar
commands like by or apply. User-space additions are reasonably easy by

1This enables the user to write method expressions like meth+ without looping, while
the trivial do-nothing case can be recovered via meth?.



CHAPTER 6. ISAR LANGUAGE ELEMENTS 100

plugging suitable method-valued parser functions into the framework, using
the method setup command, for example.

To get a better idea about the range of possibilities, consider the following
Isar proof schemes. This is the general form of structured proof text:

from facts1 have props using facts2

proof (initial method)
body

qed (terminal method)

The goal configuration consists of facts1 and facts2 appended in that order,
and various props being claimed. The initial method is invoked with facts
and goals together and refines the problem to something that is handled
recursively in the proof body. The terminal method has another chance to
finish any remaining subgoals, but it does not see the facts of the initial step.

This pattern illustrates unstructured proof scripts:

have props
using facts1 apply method1

apply method2

using facts3 apply method3

done

The method1 operates on the original claim while using facts1. Since the
apply command structurally resets the facts, the method2 will operate on the
remaining goal state without facts. The method3 will see again a collection
of facts3 that has been inserted into the script explicitly.

Empirically, any Isar proof method can be categorized as follows.

1. Special method with cases with named context additions associated with
the follow-up goal state.

Example: induct , which is also a “raw” method since it operates on
the internal representation of simultaneous claims as Pure conjunction
(§??), instead of separate subgoals (§??).

2. Structured method with strong emphasis on facts outside the goal state.

Example: rule, which captures the key ideas behind structured reason-
ing in Isar in purest form.

3. Simple method with weaker emphasis on facts, which are inserted into
subgoals to emulate old-style tactical as “premises”.

Examples: simp, blast , auto.
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4. Old-style tactic emulation with detailed numeric goal addressing and
explicit references to entities of the internal goal state (which are oth-
erwise invisible from proper Isar proof text). The naming convention
foo tac makes this special non-standard status clear.

Example: rule tac.

When implementing proof methods, it is advisable to study existing im-
plementations carefully and imitate the typical “boiler plate” for context-
sensitive parsing and further combinators to wrap-up tactic expressions as
methods.2

ML Reference

type Proof.method

METHOD_CASES: (thm list -> cases_tactic) -> Proof.method

METHOD: (thm list -> tactic) -> Proof.method

SIMPLE_METHOD: tactic -> Proof.method

SIMPLE_METHOD’: (int -> tactic) -> Proof.method

HEADGOAL: (int -> tactic) -> tactic

Method.insert_tac: thm list -> int -> tactic

Method.setup: binding -> (Proof.context -> Proof.method) context_parser ->

string -> theory -> theory

Type Proof.method represents proof methods as abstract type.

METHOD_CASES (fn facts => cases tactic) wraps cases tactic depending on
goal facts as proof method with cases; the goal context is passed via
method syntax.

METHOD (fn facts => tactic) wraps tactic depending on goal facts as regular
proof method; the goal context is passed via method syntax.

SIMPLE_METHOD tactic wraps a tactic that addresses all subgoals uniformly
as simple proof method. Goal facts are already inserted into all subgoals
before tactic is applied.

SIMPLE_METHOD’ tactic wraps a tactic that addresses a specific subgoal as
simple proof method. Goal facts are already inserted into the first
subgoal before tactic is applied to the same.

2Aliases or abbreviations of the standard method combinators should be avoided. Note
that from Isabelle99 until Isabelle2009 the system did provide various odd combinations
of method wrappers that made user applications more complicated than necessary.
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HEADGOAL tactic applies tactic to the first subgoal. This is convenient to
reproduce part the SIMPLE_METHOD’ wrapping within regular METHOD,
for example.

Method.insert_tac facts i inserts facts into subgoal i. This is convenient
to reproduce part of the SIMPLE_METHOD or SIMPLE_METHOD’ wrapping
within regular METHOD, for example.

Method.setup name parser description provides the functionality of the
Isar command method setup as ML function.

ML Examples

See also method setup in [15] which includes some abstract examples.

The following toy examples illustrate how the goal facts and state are passed
to proof methods. The pre-defined proof method called “tactic” wraps ML
source of type tactic (abstracted over facts). This allows immediate ex-
perimentation without parsing of concrete syntax.

notepad
begin

assume a: A and b: B

have A ∧ B
apply (tactic 〈〈 rtac @{thm conjI } 1 〉〉)
using a apply (tactic 〈〈 resolve tac facts 1 〉〉)
using b apply (tactic 〈〈 resolve tac facts 1 〉〉)
done

have A ∧ B
using a and b
ML val "@{Isar.goal}"

apply (tactic 〈〈 Method .insert tac facts 1 〉〉)
apply (tactic 〈〈 (rtac @{thm conjI } THEN ALL NEW atac) 1 〉〉)
done

end

The next example implements a method that simplifies the first subgoal by
rewrite rules given as arguments.

method setup my_simp = {*

Attrib.thms >> (fn thms => fn ctxt =>
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SIMPLE_METHOD’ (fn i =>

CHANGED (asm_full_simp_tac

(HOL_basic_ss addsimps thms) i)))

*} "rewrite subgoal by given rules"

The concrete syntax wrapping of method setup always passes-through the
proof context at the end of parsing, but it is not used in this example.

The Attrib.thms parser produces a list of theorems from the usual Isar
syntax involving attribute expressions etc. (syntax category thmrefs) [15].
The resulting thms are added to HOL_basic_ss which already contains the
basic Simplifier setup for HOL.

The tactic asm_full_simp_tac is the one that is also used in method simp
by default. The extra wrapping by the CHANGED tactical ensures progress of
simplification: identical goal states are filtered out explicitly to make the raw
tactic conform to standard Isar method behaviour.

Method my simp can be used in Isar proofs like this:

notepad
begin

fix a b c
assume a: a = b
assume b: b = c
have a = c by (my simp a b)

end

Here is a similar method that operates on all subgoals, instead of just the
first one.

method setup my_simp_all = {*

Attrib.thms >> (fn thms => fn ctxt =>

SIMPLE_METHOD

(CHANGED

(ALLGOALS (asm_full_simp_tac

(HOL_basic_ss addsimps thms)))))

*} "rewrite all subgoals by given rules"

notepad
begin

fix a b c
assume a: a = b
assume b: b = c
have a = c and c = b by (my simp all a b)

end
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Apart from explicit arguments, common proof methods typically work with
a default configuration provided by the context. As a shortcut to rule
management we use a cheap solution via functor Named_Thms (see also
~~/src/Pure/Tools/named_thms.ML).

ML {*

structure My_Simps =

Named_Thms

(val name = "my_simp" val description = "my_simp rule")

*}

setup My_Simps.setup

This provides ML access to a list of theorems in canonical declaration or-
der via My_Simps.get. The user can add or delete rules via the attribute
my simp. The actual proof method is now defined as before, but we append
the explicit arguments and the rules from the context.

method setup my_simp’ = {*

Attrib.thms >> (fn thms => fn ctxt =>

SIMPLE_METHOD’ (fn i =>

CHANGED (asm_full_simp_tac

(HOL_basic_ss addsimps (thms @ My_Simps.get ctxt)) i)))

*} "rewrite subgoal by given rules and my_simp rules from the

context"

Method my simp ′ can be used in Isar proofs like this:

notepad
begin

fix a b c
assume [my simp]: a ≡ b
assume [my simp]: b ≡ c
have a ≡ c by my simp ′

end

The my simp variants defined above are “simple” methods, i.e. the goal
facts are merely inserted as goal premises by the SIMPLE_METHOD’ or
SIMPLE_METHOD wrapper. For proof methods that are similar to the stan-
dard collection of simp, blast , fast , auto there is little more that can be
done.

Note that using the primary goal facts in the same manner as the method
arguments obtained via concrete syntax or the context does not meet the
requirement of “strong emphasis on facts” of regular proof methods, be-
cause rewrite rules as used above can be easily ignored. A proof text
“using foo by my simp” where foo is not used would deceive the reader.
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The technical treatment of rules from the context requires further attention.
Above we rebuild a fresh simpset from the arguments and all rules retrieved
from the context on every invocation of the method. This does not scale to
really large collections of rules, which easily emerges in the context of a big
theory library, for example.

This is an inherent limitation of the simplistic rule management via functor
Named_Thms, because it lacks tool-specific storage and retrieval. More real-
istic applications require efficient index-structures that organize theorems in
a customized manner, such as a discrimination net that is indexed by the
left-hand sides of rewrite rules. For variations on the Simplifier, re-use of
the existing type simpset is adequate, but scalability would require it be
maintained statically within the context data, not dynamically on each tool
invocation.

6.3 Attributes

An attribute is a function context × thm → context × thm, which means
both a (generic) context and a theorem can be modified simultaneously. In
practice this fully general form is very rare, instead attributes are presented
either as declaration attribute: thm → context → context or rule attribute:
context → thm → thm.

Attributes can have additional arguments via concrete syntax. There is a
collection of context-sensitive parsers for various logical entities (types, terms,
theorems). These already take care of applying morphisms to the arguments
when attribute expressions are moved into a different context (see also §7.2).

When implementing declaration attributes, it is important to operate exactly
on the variant of the generic context that is provided by the system, which
is either global theory context or local proof context. In particular, the
background theory of a local context must not be modified in this situation!

ML Reference

type attribute = Context.generic * thm -> Context.generic * thm

Thm.rule_attribute: (Context.generic -> thm -> thm) -> attribute

Thm.declaration_attribute:

(thm -> Context.generic -> Context.generic) -> attribute

Attrib.setup: binding -> attribute context_parser ->

string -> theory -> theory

Type attribute represents attributes as concrete type alias.
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Thm.rule_attribute (fn context => rule) wraps a context-dependent rule
(mapping on thm) as attribute.

Thm.declaration_attribute (fn thm => decl) wraps a theorem-
dependent declaration (mapping on Context.generic) as attribute.

Attrib.setup name parser description provides the functionality of the
Isar command attribute setup as ML function.

ML Examples

See also attribute setup in [15] which includes some abstract examples.
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Local theory specifications

A local theory combines aspects of both theory and proof context (cf. §1.1),
such that definitional specifications may be given relatively to parameters
and assumptions. A local theory is represented as a regular proof context,
augmented by administrative data about the target context.

The target is usually derived from the background theory by adding local
fix and assume elements, plus suitable modifications of non-logical context
data (e.g. a special type-checking discipline). Once initialized, the target
is ready to absorb definitional primitives: define for terms and note for
theorems. Such definitions may get transformed in a target-specific way, but
the programming interface hides such details.

Isabelle/Pure provides target mechanisms for locales, type-classes, type-class
instantiations, and general overloading. In principle, users can implement
new targets as well, but this rather arcane discipline is beyond the scope
of this manual. In contrast, implementing derived definitional packages to
be used within a local theory context is quite easy: the interfaces are even
simpler and more abstract than the underlying primitives for raw theories.

Many definitional packages for local theories are available in Isabelle. Al-
though a few old packages only work for global theories, the standard way of
implementing definitional packages in Isabelle is via the local theory inter-
face.

7.1 Definitional elements

There are separate elements define c ≡ t for terms, and note b = thm for
theorems. Types are treated implicitly, according to Hindley-Milner disci-
pline (cf. §5.1). These definitional primitives essentially act like let-bindings
within a local context that may already contain earlier let-bindings and some
initial λ-bindings. Thus we gain dependent definitions that are relative to
an initial axiomatic context. The following diagram illustrates this idea of
axiomatic elements versus definitional elements:

107
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λ-binding let-binding
types fixed α arbitrary β
terms fix x :: τ define c ≡ t
theorems assume a: A note b = 〈B 〉

A user package merely needs to produce suitable define and note elements
according to the application. For example, a package for inductive defini-
tions might first define a certain predicate as some fixed-point construction,
then note a proven result about monotonicity of the functor involved here,
and then produce further derived concepts via additional define and note
elements.

The cumulative sequence of define and note produced at package runtime is
managed by the local theory infrastructure by means of an auxiliary context.
Thus the system holds up the impression of working within a fully abstract
situation with hypothetical entities: define c ≡ t always results in a literal
fact 〈c ≡ t 〉, where c is a fixed variable c. The details about global constants,
name spaces etc. are handled internally.

So the general structure of a local theory is a sandwich of three layers:

auxiliary context target context background theory

When a definitional package is finished, the auxiliary context is reset to the
target context. The target now holds definitions for terms and theorems that
stem from the hypothetical define and note elements, transformed by the
particular target policy (see [7, §4–5] for details).

ML Reference

type local_theory = Proof.context

Named_Target.init: (local_theory -> local_theory) ->

string -> theory -> local_theory

Local_Theory.define: (binding * mixfix) * (Attrib.binding * term) ->

local_theory -> (term * (string * thm)) * local_theory

Local_Theory.note: Attrib.binding * thm list ->

local_theory -> (string * thm list) * local_theory

Type local_theory represents local theories. Although this is merely an
alias for Proof.context, it is semantically a subtype of the same: a
local_theory holds target information as special context data. Sub-
typing means that any value lthy : local_theory can be also used with
operations on expecting a regular ctxt : Proof.context.
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Named_Target.init before exit name thy initializes a local theory derived
from the given background theory. An empty name refers to a global
theory context, and a non-empty name refers to a locale or class con-
text (a fully-qualified internal name is expected here). This is useful
for experimentation — normally the Isar toplevel already takes care
to initialize the local theory context. The given before exit function is
invoked before leaving the context; in most situations plain identity I

is sufficient.

Local_Theory.define ((b, mx ), (a, rhs)) lthy defines a local entity ac-
cording to the specification that is given relatively to the current lthy
context. In particular the term of the RHS may refer to earlier local
entities from the auxiliary context, or hypothetical parameters from
the target context. The result is the newly defined term (which is al-
ways a fixed variable with exactly the same name as specified for the
LHS), together with an equational theorem that states the definition
as a hypothetical fact.

Unless an explicit name binding is given for the RHS, the resulting fact
will be called b def. Any given attributes are applied to that same fact
— immediately in the auxiliary context and in any transformed ver-
sions stemming from target-specific policies or any later interpretations
of results from the target context (think of locale and interpretation,
for example). This means that attributes should be usually plain dec-
larations such as simp, while non-trivial rules like simplified are better
avoided.

Local_Theory.note (a, ths) lthy is analogous to Local_Theory.define,
but defines facts instead of terms. There is also a slightly more general
variant Local_Theory.notes that defines several facts (with attribute
expressions) simultaneously.

This is essentially the internal version of the lemmas command, or
declare if an empty name binding is given.

7.2 Morphisms and declarations

FIXME

See also [3].
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System integration

8.1 Isar toplevel

The Isar toplevel may be considered the centeral hub of the Isabelle/Isar
system, where all key components and sub-systems are integrated into a
single read-eval-print loop of Isar commands, which also incorporates the
underlying ML compiler.

Isabelle/Isar departs from the original “LCF system architecture” where ML
was really The Meta Language for defining theories and conducting proofs.
Instead, ML now only serves as the implementation language for the system
(and user extensions), while the specific Isar toplevel supports the concepts
of theory and proof development natively. This includes the graph structure
of theories and the block structure of proofs, support for unlimited undo,
facilities for tracing, debugging, timing, profiling etc.

The toplevel maintains an implicit state, which is transformed by a sequence
of transitions – either interactively or in batch-mode. In interactive mode,
Isar state transitions are encapsulated as safe transactions, such that both
failure and undo are handled conveniently without destroying the underly-
ing draft theory (cf. §1.1.1). In batch mode, transitions operate in a linear
(destructive) fashion, such that error conditions abort the present attempt
to construct a theory or proof altogether.

The toplevel state is a disjoint sum of empty toplevel, or theory, or proof. On
entering the main Isar loop we start with an empty toplevel. A theory is
commenced by giving a theory header; within a theory we may issue theory
commands such as definition, or state a theorem to be proven. Now we
are within a proof state, with a rich collection of Isar proof commands for
structured proof composition, or unstructured proof scripts. When the proof
is concluded we get back to the theory, which is then updated by storing
the resulting fact. Further theory declarations or theorem statements with
proofs may follow, until we eventually conclude the theory development by
issuing end. The resulting theory is then stored within the theory database
and we are back to the empty toplevel.
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In addition to these proper state transformations, there are also some diag-
nostic commands for peeking at the toplevel state without modifying it (e.g.
thm, term, print-cases).

ML Reference

type Toplevel.state

Toplevel.UNDEF: exn

Toplevel.is_toplevel: Toplevel.state -> bool

Toplevel.theory_of: Toplevel.state -> theory

Toplevel.proof_of: Toplevel.state -> Proof.state

Toplevel.debug: bool Unsynchronized.ref

Toplevel.timing: bool Unsynchronized.ref

Toplevel.profiling: int Unsynchronized.ref

Type Toplevel.state represents Isar toplevel states, which are normally
manipulated through the concept of toplevel transitions only (§8.1.1).
Also note that a raw toplevel state is subject to the same linearity
restrictions as a theory context (cf. §1.1.1).

Toplevel.UNDEF is raised for undefined toplevel operations. Many opera-
tions work only partially for certain cases, since Toplevel.state is a
sum type.

Toplevel.is_toplevel state checks for an empty toplevel state.

Toplevel.theory_of state selects the background theory of state, raises
Toplevel.UNDEF for an empty toplevel state.

Toplevel.proof_of state selects the Isar proof state if available, otherwise
raises Toplevel.UNDEF.

Toplevel.debug := true makes the toplevel print further details about
internal error conditions, exceptions being raised etc.

Toplevel.timing := true makes the toplevel print timing information for
each Isar command being executed.

Toplevel.profiling := n controls low-level profiling of the underlying
ML runtime system. For Poly/ML, n = 1 means time and n = 2 space
profiling.
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ML Antiquotations

Isar .state : ML antiquotation

@{Isar .state} refers to Isar toplevel state at that point — as abstract value.

This only works for diagnostic ML commands, such as ML val or
ML command.

8.1.1 Toplevel transitions

An Isar toplevel transition consists of a partial function on the toplevel state,
with additional information for diagnostics and error reporting: there are
fields for command name, source position, optional source text, as well as
flags for interactive-only commands (which issue a warning in batch-mode),
printing of result state, etc.

The operational part is represented as the sequential union of a list of partial
functions, which are tried in turn until the first one succeeds. This acts
like an outer case-expression for various alternative state transitions. For
example, qed works differently for a local proofs vs. the global ending of the
main proof.

Toplevel transitions are composed via transition transformers. Internally,
Isar commands are put together from an empty transition extended by name
and source position. It is then left to the individual command parser to turn
the given concrete syntax into a suitable transition transformer that adjoins
actual operations on a theory or proof state etc.

ML Reference

Toplevel.print: Toplevel.transition -> Toplevel.transition

Toplevel.no_timing: Toplevel.transition -> Toplevel.transition

Toplevel.keep: (Toplevel.state -> unit) ->

Toplevel.transition -> Toplevel.transition

Toplevel.theory: (theory -> theory) ->

Toplevel.transition -> Toplevel.transition

Toplevel.theory_to_proof: (theory -> Proof.state) ->

Toplevel.transition -> Toplevel.transition

Toplevel.proof: (Proof.state -> Proof.state) ->

Toplevel.transition -> Toplevel.transition

Toplevel.proofs: (Proof.state -> Proof.state Seq.seq) ->

Toplevel.transition -> Toplevel.transition

Toplevel.end_proof: (bool -> Proof.state -> Proof.context) ->

Toplevel.transition -> Toplevel.transition
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Toplevel.print tr sets the print flag, which causes the toplevel loop to
echo the result state (in interactive mode).

Toplevel.no_timing tr indicates that the transition should never show
timing information, e.g. because it is a diagnostic command.

Toplevel.keep tr adjoins a diagnostic function.

Toplevel.theory tr adjoins a theory transformer.

Toplevel.theory_to_proof tr adjoins a global goal function, which turns
a theory into a proof state. The theory may be changed before entering
the proof; the generic Isar goal setup includes an argument that specifies
how to apply the proven result to the theory, when the proof is finished.

Toplevel.proof tr adjoins a deterministic proof command, with a singleton
result.

Toplevel.proofs tr adjoins a general proof command, with zero or more
result states (represented as a lazy list).

Toplevel.end_proof tr adjoins a concluding proof command, that returns
the resulting theory, after storing the resulting facts in the context etc.

8.2 Theory database

The theory database maintains a collection of theories, together with some
administrative information about their original sources, which are held in an
external store (i.e. some directory within the regular file system).

The theory database is organized as a directed acyclic graph; entries are
referenced by theory name. Although some additional interfaces allow to
include a directory specification as well, this is only a hint to the underlying
theory loader. The internal theory name space is flat!

Theory A is associated with the main theory file A.thy, which needs to be
accessible through the theory loader path. Any number of additional ML
source files may be associated with each theory, by declaring these depen-
dencies in the theory header as uses, and loading them consecutively within
the theory context. The system keeps track of incoming ML sources and
associates them with the current theory.

The basic internal actions of the theory database are update and remove:
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• update A introduces a link of A with a theory value of the same name;
it asserts that the theory sources are now consistent with that value;

• remove A deletes entry A from the theory database.

These actions are propagated to sub- or super-graphs of a theory entry as
expected, in order to preserve global consistency of the state of all loaded
theories with the sources of the external store. This implies certain causalities
between actions: update or remove of an entry will remove all descendants.

There are separate user-level interfaces to operate on the theory database
directly or indirectly. The primitive actions then just happen automatically
while working with the system. In particular, processing a theory header
theory A imports B1 . . . Bn begin ensures that the sub-graph of the
collective imports B1 . . . Bn is up-to-date, too. Earlier theories are reloaded
as required, with update actions proceeding in topological order according to
theory dependencies. There may be also a wave of implied remove actions
for derived theory nodes until a stable situation is achieved eventually.

ML Reference

use_thy: string -> unit

use_thys: string list -> unit

Thy_Info.get_theory: string -> theory

Thy_Info.remove_thy: string -> unit

Thy_Info.register_thy: theory -> unit

datatype action = Update | Remove

Thy_Info.add_hook: (Thy_Info.action -> string -> unit) -> unit

use_thy A ensures that theory A is fully up-to-date wrt. the external file
store, reloading outdated ancestors as required. In batch mode, the
simultaneous use_thys should be used exclusively.

use_thys is similar to use_thy, but handles several theories simultaneously.
Thus it acts like processing the import header of a theory, without
performing the merge of the result. By loading a whole sub-graph
of theories like that, the intrinsic parallelism can be exploited by the
system, to speedup loading.

Thy_Info.get_theory A retrieves the theory value presently associated
with name A. Note that the result might be outdated.
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Thy_Info.remove_thy A deletes theory A and all descendants from the
theory database.

Thy_Info.register_thy text thy registers an existing theory value with
the theory loader database and updates source version information ac-
cording to the current file-system state.

Thy_Info.add_hook f registers function f as a hook for theory database
actions. The function will be invoked with the action and theory name
being involved; thus derived actions may be performed in associated
system components, e.g. maintaining the state of an editor for the the-
ory sources.

The kind and order of actions occurring in practice depends both on
user interactions and the internal process of resolving theory imports.
Hooks should not rely on a particular policy here! Any exceptions raised
by the hook are ignored.
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