

Old Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

9 October 2011

Note: this document is part of the earlier Isabelle documentation and is mostly outdated. Fully obsolete parts of the original text have already been removed. The remaining material covers some aspects that did not make it into the newer manuals yet.

Acknowledgements

Tobias Nipkow, of T. U. Munich, wrote most of Chapters 4 and 7. Markus Wenzel contributed to Chapter 5. Jeremy Dawson, Sara Kalvala, Martin Simons and others suggested changes and corrections. The research has been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381, GR/K77051, GR/M75440) and by ESPRIT (projects 3245: Logical Frameworks, and 6453: Types), and by the DFG Schwerpunktprogramm *Deduktion*.

Contents

1.1	Other	basic tactics
		basic tactics
	1.1.1	Inserting premises and facts
	1.1.2	"Putting off" a subgoal
	1.1.3	Definitions and meta-level rewriting
	1.1.4	Theorems useful with tactics
1.2	Obscu	re tactics
	1.2.1	Manipulating assumptions
	1.2.2	Tidying the proof state
	1.2.3	Composition: resolution without lifting 4
1.3	*Mana	aging lots of rules
	1.3.1	Combined resolution and elim-resolution 4
	1.3.2	Discrimination nets for fast resolution
Tac	ticals	7
		asic tacticals
		Joining two tactics
		Joining a list of tactics
		Repetition tacticals
	_	Identities for tacticals
2.2		ol and search tacticals
		Filtering a tactic's results
		Depth-first search
		Other search strategies
	_	Auxiliary tacticals for searching
		Predicates and functions useful for searching
2.3		als for subgoal numbering
2.0		Restricting a tactic to one subgoal
		Scanning for a subgoal by number
		Joining tactic functions
		Applying a list of tactics to 1
	1.3	1.1.3 1.1.4 1.2 Obscu 1.2.1 1.2.2 1.2.3 1.3 *Mana 1.3.1 1.3.2 Tacticals 2.1 The ba 2.1.1 2.1.2 2.1.3 2.1.4 2.2 Contro 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5

CONTENTS iii

3	The	eorems and Forward Proof						
	3.1	.1 Basic operations on theorems						
		3.1.1 Forward proof: joining rules by resolution						
		3.1.2 Expanding definitions in theorems						
		3.1.3 Instantiating unknowns in a theorem						
		3.1.4 Miscellaneous forward rules						
		3.1.5 Taking a theorem apart						
		3.1.6 *Sort hypotheses						
		3.1.7 Tracing flags for unification						
	3.2	*Primitive meta-level inference rules						
		3.2.1 Logical equivalence rules						
		3.2.2 Equality rules						
		3.2.3 The λ -conversion rules						
	3.3	Derived rules for goal-directed proof						
		3.3.1 Proof by assumption						
		3.3.2 Resolution						
		3.3.3 Composition: resolution without lifting						
		3.3.4 Other meta-rules						
	3.4	Proof terms						
		3.4.1 Reconstructing and checking proof terms						
		3.4.2 Parsing and printing proof terms						
4	Def	Defining Logics 3						
	4.1							
		4.1.1 The general mixfix form						
		4.1.2 Example: arithmetic expressions						
		4.1.3 Infixes						
		4.1.4 Binders						
	4.2	*Alternative print modes						
	4.3	Ambiguity of parsed expressions						
5	Syn	atax Transformations						
•	5.1	Abstract syntax trees						
	5.2	Transforming parse trees to ASTs						
	5.3	Transforming ASTs to terms						
	5.4	Printing of terms						
	5.5	Macros: syntactic rewriting						
	5.5	5.5.1 Specifying macros						
		5.5.2 Applying rules						
		5.5.3 Example: the syntax of finite sets						
		5.5.4 Example: a parse macro for dependent types						

CONTENTS	iv	

	5.6	Translation functions	. 48 . 49
6	Sub	titution Tactics	52
	6.1	Substitution rules	
	6.2	Substitution in the hypotheses	
	6.3	Setting up the package	. 54
7	Sim	olification	57
	7.1	Simplification for dummies	. 57
		7.1.1 Simplification tactics	. 57
		7.1.2 Modifying the current simpset	. 59
	7.2	Simplification sets	. 60
		7.2.1 Inspecting simpsets	. 61
		7.2.2 Building simpsets	. 61
		7.2.3 Rewrite rules	
		7.2.4 *Congruence rules	
		7.2.5 *The subgoaler	
		7.2.6 *The solver	
		7.2.7 *The looper	
	7.3	The simplification tactics	
	7.4	Forward rules and conversions	
	7.5	Permutative rewrite rules	
		7.5.1 Example: sums of natural numbers	
	- 0	7.5.2 Re-orienting equalities	
	7.6	*Setting up the Simplifier	
		7.6.1 A collection of standard rewrite rules	
		7.6.2 Functions for preprocessing the rewrite rules	
		7.6.3 Making the initial simpset	. 75
8	The	Classical Reasoner	77
	8.1	Classical rule sets	. 77
		8.1.1 Modifying the search step	
	8.2	The classical tactics	
		8.2.1 Other classical tactics	
		8.2.2 Other useful tactics	. 79
	8.3	Setting up the classical reasoner	. 80

Tactics

1.1 Other basic tactics

1.1.1 Inserting premises and facts

```
cut_facts_tac : thm list -> int -> tactic
cut_inst_tac : (string*string)list -> thm -> int -> tactic
subgoal_tac : string -> int -> tactic
subgoals_tac : string list -> int -> tactic
```

These tactics add assumptions to a subgoal.

cut_facts_tac thms i adds the thms as new assumptions to subgoal i. Once they have been inserted as assumptions, they become subject to tactics such as eresolve_tac and rewrite_goals_tac. Only rules with no premises are inserted: Isabelle cannot use assumptions that contain \Longrightarrow or \bigwedge . Sometimes the theorems are premises of a rule being derived, returned by goal; instead of calling this tactic, you could state the goal with an outermost meta-quantifier.

cut_inst_tac insts thm i instantiates the thm with the instantiations insts, as described in §??. It adds the resulting theorem as a new assumption to subgoal i.

subgoal_tac formula i adds the formula as an assumption to subgoal i, and inserts the same formula as a new subgoal, i + 1.

subgoals_tac formulae i uses subgoal_tac to add the members of the list of formulae as assumptions to subgoal i.

1.1.2 "Putting off" a subgoal

```
defer_tac : int -> tactic
```

defer_tac i moves subgoal i to the last position in the proof state. It can be useful when correcting a proof script: if the tactic given for subgoal i

fails, calling defer_tac instead will let you continue with the rest of the script.

The tactic fails if subgoal i does not exist or if the proof state contains type unknowns.

1.1.3 Definitions and meta-level rewriting

Definitions in Isabelle have the form $t \equiv u$, where t is typically a constant or a constant applied to a list of variables, for example $sqr(n) \equiv n \times n$. Conditional definitions, $\phi \Longrightarrow t \equiv u$, are also supported. **Unfolding** the definition $t \equiv u$ means using it as a rewrite rule, replacing t by u throughout a theorem. **Folding** $t \equiv u$ means replacing u by t. Rewriting continues until no rewrites are applicable to any subterm.

There are rules for unfolding and folding definitions; Isabelle does not do this automatically. The corresponding tactics rewrite the proof state, yielding a single next state. See also the <code>goalw</code> command, which is the easiest way of handling definitions.

```
rewrite_goals_tac : thm list -> tactic
rewrite_tac : thm list -> tactic
fold_goals_tac : thm list -> tactic
fold_tac : thm list -> tactic
```

rewrite_goals_tac defs unfolds the defs throughout the subgoals of the proof state, while leaving the main goal unchanged. Use SELECT_GOAL to restrict it to a particular subgoal.

rewrite_tac defs unfolds the defs throughout the proof state, including the main goal — not normally desirable!

fold_goals_tac defs folds the defs throughout the subgoals of the proof state, while leaving the main goal unchanged.

fold_tac defs folds the defs throughout the proof state.

These tactics only cope with definitions expressed as meta-level equalities (\equiv). More general equivalences are handled by the simplifier, provided that it is set up appropriately for your logic (see Chapter 7).

1.1.4 Theorems useful with tactics

```
asm_rl: thm
cut_rl: thm
```

asm_rl is $\psi \Longrightarrow \psi$. Under elim-resolution it does proof by assumption, and eresolve_tac (asm_rl::thms) i is equivalent to

```
assume\_tac i ORELSE eresolve\_tac thms i
```

cut_rl is $[\![\psi \Longrightarrow \theta, \psi]\!] \Longrightarrow \theta$. It is useful for inserting assumptions; it underlies forward_tac, cut_facts_tac and subgoal_tac.

1.2 Obscure tactics

1.2.1 Manipulating assumptions

```
thin_tac : string -> int -> tactic
rotate_tac : int -> int -> tactic
```

thin_tac formula i deletes the specified assumption from subgoal i. Often the assumption can be abbreviated, replacing subformulæ by unknowns; the first matching assumption will be deleted. Removing useless assumptions from a subgoal increases its readability and can make search tactics run faster.

rotate_tac n i rotates the assumptions of subgoal i by n positions: from right to left if n is positive, and from left to right if n is negative. This is sometimes necessary in connection with asm_full_simp_tac, which processes assumptions from left to right.

1.2.2 Tidying the proof state

distinct_subgoals_tac : tactic
prune_params_tac : tactic
flexflex_tac : tactic

distinct_subgoals_tac removes duplicate subgoals from a proof state. (These arise especially in ZF, where the subgoals are essentially type constraints.)

prune_params_tac removes unused parameters from all subgoals of the proof state. It works by rewriting with the theorem $(\bigwedge x \cdot V) \equiv V$. This tactic can make the proof state more readable. It is used with rule_by_tactic to simplify the resulting theorem.

flexflex_tac removes all flex-flex pairs from the proof state by applying the trivial unifier. This drastic step loses information, and should only be done as the last step of a proof.

Flex-flex constraints arise from difficult cases of higher-order unification. To prevent this, use res_inst_tac to instantiate some variables in a rule (§??). Normally flex-flex constraints can be ignored; they often disappear as unknowns get instantiated.

1.2.3 Composition: resolution without lifting

```
compose_tac: (bool * thm * int) -> int -> tactic
```

Composing two rules means resolving them without prior lifting or renaming of unknowns. This low-level operation, which underlies the resolution tactics, may occasionally be useful for special effects. A typical application is res_inst_tac, which lifts and instantiates a rule, then passes the result to compose_tac.

compose_tac (flag, rule, m) i refines subgoal i using rule, without lifting. The rule is taken to have the form $[\![\psi_1;\ldots;\psi_m]\!] \Longrightarrow \psi$, where ψ need not be atomic; thus m determines the number of new subgoals. If flag is true then it performs elim-resolution — it solves the first premise of rule by assumption and deletes that assumption.

1.3 *Managing lots of rules

These operations are not intended for interactive use. They are concerned with the processing of large numbers of rules in automatic proof strategies. Higher-order resolution involving a long list of rules is slow. Filtering techniques can shorten the list of rules given to resolution, and can also detect whether a subgoal is too flexible, with too many rules applicable.

1.3.1 Combined resolution and elim-resolution

```
biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
```

 $subgoals_of_brl : bool*thm -> int$

lessb : (bool*thm) * (bool*thm) -> bool

Bi-resolution takes a list of (*flag*, *rule*) pairs. For each pair, it applies resolution if the flag is **false** and elim-resolution if the flag is **true**. A single tactic call handles a mixture of introduction and elimination rules.

biresolve_tac brls i refines the proof state by resolution or elim-resolution on each rule, as indicated by its flag. It affects subgoal i of the proof state.

bimatch_tac is like biresolve_tac, but performs matching: unknowns in the proof state are never updated (see §??).

subgoals_of_brl(flag, rule) returns the number of new subgoals that biresolution would yield for the pair (if applied to a suitable subgoal). This is n if the flag is false and n-1 if the flag is true, where n is the number of premises of the rule. Elim-resolution yields one fewer subgoal than ordinary resolution because it solves the major premise by assumption.

lessb (brl1, brl2) returns the result of

```
subgoals_of_brl\ brl1 < subgoals_of_brl\ brl2
```

Note that **sort lessb** brls sorts a list of (flag, rule) pairs by the number of new subgoals they will yield. Thus, those that yield the fewest subgoals should be tried first.

1.3.2 Discrimination nets for fast resolution

```
net_resolve_tac : thm list -> int -> tactic
net_match_tac : thm list -> int -> tactic
net_biresolve_tac: (bool*thm) list -> int -> tactic
net_bimatch_tac : (bool*thm) list -> int -> tactic
filt_resolve_tac : thm list -> int -> int -> tactic
could_unify : term*term->bool
filter_thms : (term*term->bool) -> int*term*thm list -> thm list
```

The module Net implements a discrimination net data structure for fast selection of rules [3, Chapter 14]. A term is classified by the symbol list obtained by flattening it in preorder. The flattening takes account of function applications, constants, and free and bound variables; it identifies all unknowns and also regards λ -abstractions as unknowns, since they could η -contract to anything.

A discrimination net serves as a polymorphic dictionary indexed by terms. The module provides various functions for inserting and removing items from nets. It provides functions for returning all items whose term could match or unify with a target term. The matching and unification tests are overly lax (due to the identifications mentioned above) but they serve as useful filters.

A net can store introduction rules indexed by their conclusion, and elimination rules indexed by their major premise. Isabelle provides several functions for 'compiling' long lists of rules into fast resolution tactics. When supplied with a list of theorems, these functions build a discrimination net; the net is used when the tactic is applied to a goal. To avoid repeatedly constructing the nets, use currying: bind the resulting tactics to ML identifiers.

- net_resolve_tac thms builds a discrimination net to obtain the effect of a similar call to resolve_tac.
- net_match_tac *thms* builds a discrimination net to obtain the effect of a similar call to match_tac.
- net_biresolve_tac brls builds a discrimination net to obtain the effect of a similar call to biresolve_tac.
- net_bimatch_tac brls builds a discrimination net to obtain the effect of a similar call to bimatch_tac.
- filt_resolve_tac thms maxr i uses discrimination nets to extract the thms that are applicable to subgoal i. If more than maxr theorems are applicable then the tactic fails. Otherwise it calls resolve_tac.

 This tactic helps avoid runaway instantiation of unknowns, for example in type inference.
- could_unify (t, u) returns false if t and u are 'obviously' non-unifiable, and otherwise returns true. It assumes all variables are distinct, reporting that ?a=?a may unify with 0=1.
- filter_thms could (limit, prem, thms) returns the list of potentially resolvable rules (in thms) for the subgoal prem, using the predicate could to compare the conclusion of the subgoal with the conclusion of each rule. The resulting list is no longer than limit.

Tacticals

Tacticals are operations on tactics. Their implementation makes use of functional programming techniques, especially for sequences. Most of the time, you may forget about this and regard tacticals as high-level control structures.

2.1 The basic tacticals

2.1.1 Joining two tactics

The tacticals THEN and ORELSE, which provide sequencing and alternation, underlie most of the other control structures in Isabelle. APPEND and INTLEAVE provide more sophisticated forms of alternation.

```
THEN : tactic * tactic -> tactic

ORELSE : tactic * tactic -> tactic

APPEND : tactic * tactic -> tactic

INTLEAVE : tactic * tactic -> tactic

infix

infix
```

- tac_1 THEN tac_2 is the sequential composition of the two tactics. Applied to a proof state, it returns all states reachable in two steps by applying tac_1 followed by tac_2 . First, it applies tac_1 to the proof state, getting a sequence of next states; then, it applies tac_2 to each of these and concatenates the results.
- tac_1 ORELSE tac_2 makes a choice between the two tactics. Applied to a state, it tries tac_1 and returns the result if non-empty; if tac_1 fails then it uses tac_2 . This is a deterministic choice: if tac_1 succeeds then tac_2 is excluded.
- tac_1 APPEND tac_2 concatenates the results of tac_1 and tac_2 . By not making a commitment to either tactic, APPEND helps avoid incompleteness during search.

 tac_1 INTLEAVE tac_2 interleaves the results of tac_1 and tac_2 . Thus, it includes all possible next states, even if one of the tactics returns an infinite sequence.

2.1.2 Joining a list of tactics

EVERY : tactic list -> tactic
FIRST : tactic list -> tactic

EVERY and FIRST are block structured versions of THEN and ORELSE.

EVERY $[tac_1, ..., tac_n]$ abbreviates tac_1 THEN ... THEN tac_n . It is useful for writing a series of tactics to be executed in sequence.

FIRST $[tac_1, \ldots, tac_n]$ abbreviates tac_1 ORELSE \ldots ORELSE tac_n . It is useful for writing a series of tactics to be attempted one after another.

2.1.3 Repetition tacticals

TRY : tactic -> tactic REPEAT_DETERM : tactic -> tactic

 $\label{eq:repeat_def} \texttt{REPEAT_DETERM_N} \; : \; \texttt{int} \; \text{->} \; \texttt{tactic} \; \text{->} \; \texttt{tactic}$

REPEAT : tactic -> tactic REPEAT1 : tactic -> tactic

DETERM_UNTIL : (thm -> bool) -> tactic -> tactic

trace_REPEAT : bool ref initially false

TRY tac applies tac to the proof state and returns the resulting sequence, if non-empty; otherwise it returns the original state. Thus, it applies tac at most once.

REPEAT_DETERM tac applies tac to the proof state and, recursively, to the head of the resulting sequence. It returns the first state to make tac fail. It is deterministic, discarding alternative outcomes.

REPEAT_DETERM_N n tac is like REPEAT_DETERM tac but the number of repititions is bound by n (unless negative).

REPEAT tac applies tac to the proof state and, recursively, to each element of the resulting sequence. The resulting sequence consists of those states that make tac fail. Thus, it applies tac as many times as possible (including zero times), and allows backtracking over each invocation of tac. It is more general than REPEAT_DETERM, but requires more space.

- REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing if this is impossible.
- DETERM_UNTIL p tac applies tac to the proof state and, recursively, to the head of the resulting sequence, until the predicate p (applied on the proof state) yields true. It fails if tac fails on any of the intermediate states. It is deterministic, discarding alternative outcomes.
- set trace_REPEAT; enables an interactive tracing mode for the tacticals REPEAT_DETERM and REPEAT. To view the tracing options, type h at the prompt.

2.1.4 Identities for tacticals

all_tac : tactic
no_tac : tactic

- all_tac maps any proof state to the one-element sequence containing that state. Thus, it succeeds for all states. It is the identity element of the tactical THEN.
- no_tac maps any proof state to the empty sequence. Thus it succeeds for
 no state. It is the identity element of ORELSE, APPEND, and INTLEAVE.
 Also, it is a zero element for THEN, which means that tac THEN no_tac
 is equivalent to no_tac.

These primitive tactics are useful when writing tacticals. For example, TRY and REPEAT (ignoring tracing) can be coded as follows:

```
fun TRY tac = tac ORELSE all_tac;
fun REPEAT tac =
    (fn state => ((tac THEN REPEAT tac) ORELSE all_tac) state);
```

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT uses ORELSE and not APPEND or INTLEAVE, it applies tac as many times as possible in each outcome.

Note REPEAT's explicit abstraction over the proof state. Recursive tacticals must be coded in this awkward fashion to avoid infinite recursion. With the following definition, REPEAT tac would loop due to ML's eager evaluation strategy:

```
fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;
```

The built-in REPEAT avoids THEN, handling sequences explicitly and using tail recursion. This sacrifices clarity, but saves much space by discarding intermediate proof states.

2.2 Control and search tacticals

A predicate on theorems, namely a function of type thm->bool, can test whether a proof state enjoys some desirable property — such as having no subgoals. Tactics that search for satisfactory states are easy to express. The main search procedures, depth-first, breadth-first and best-first, are provided as tacticals. They generate the search tree by repeatedly applying a given tactic.

2.2.1 Filtering a tactic's results

```
FILTER : (thm -> bool) -> tactic -> tactic
CHANGED : tactic -> tactic
```

FILTER p tac applies tac to the proof state and returns a sequence consisting of those result states that satisfy p.

CHANGED tac applies tac to the proof state and returns precisely those states that differ from the original state. Thus, CHANGED tac always has some effect on the state.

2.2.2 Depth-first search

```
DEPTH_FIRST : (thm->bool) -> tactic -> tactic

DEPTH_SOLVE : tactic -> tactic

DEPTH_SOLVE_1 : tactic -> tactic
```

trace_DEPTH_FIRST: bool ref initially false

DEPTH_FIRST satp tac returns the proof state if satp returns true. Otherwise it applies tac, then recursively searches from each element of the resulting sequence. The code uses a stack for efficiency, in effect applying tac THEN DEPTH_FIRST satp tac to the state.

DEPTH_SOLVE tac uses DEPTH_FIRST to search for states having no subgoals.

DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer subgoals than the given state. Thus, it insists upon solving at least one subgoal.

set trace_DEPTH_FIRST; enables interactive tracing for DEPTH_FIRST. To view the tracing options, type h at the prompt.

2.2.3 Other search strategies

These search strategies will find a solution if one exists. However, they do not enumerate all solutions; they terminate after the first satisfactory result from tac.

BREADTH_FIRST satp tac uses breadth-first search to find states for which satp is true. For most applications, it is too slow.

BEST_FIRST (satp, distf) tac does a heuristic search, using distf to estimate the distance from a satisfactory state. It maintains a list of states ordered by distance. It applies tac to the head of this list; if the result contains any satisfactory states, then it returns them. Otherwise, BEST_FIRST adds the new states to the list, and continues.

The distance function is typically size_of_thm, which computes the size of the state. The smaller the state, the fewer and simpler subgoals it has.

- tac_0 THEN_BEST_FIRST (satp, distf, tac) is like BEST_FIRST, except that the priority queue initially contains the result of applying tac_0 to the proof state. This tactical permits separate tactics for starting the search and continuing the search.
- set trace_BEST_FIRST; enables an interactive tracing mode for the tactical BEST_FIRST. To view the tracing options, type h at the prompt.

2.2.4 Auxiliary tacticals for searching

```
COND : (thm->bool) -> tactic -> tactic -> tactic

IF_UNSOLVED : tactic -> tactic

SOLVE : tactic -> tactic

DETERM : tactic -> tactic

DETERM_UNTIL_SOLVED : tactic -> tactic
```

COND p tac_1 tac_2 applies tac_1 to the proof state if it satisfies p, and applies tac_2 otherwise. It is a conditional tactical in that only one of tac_1 and tac_2 is applied to a proof state. However, both tac_1 and tac_2 are evaluated because ML uses eager evaluation.

- IF_UNSOLVED *tac* applies *tac* to the proof state if it has any subgoals, and simply returns the proof state otherwise. Many common tactics, such as resolve_tac, fail if applied to a proof state that has no subgoals.
- SOLVE tac applies tac to the proof state and then fails iff there are subgoals left.
- DETERM tac applies tac to the proof state and returns the head of the resulting sequence. DETERM limits the search space by making its argument deterministic.
- DETERM_UNTIL_SOLVED tac forces repeated deterministic application of tac to the proof state until the goal is solved completely.

2.2.5 Predicates and functions useful for searching

```
has_fewer_prems : int -> thm -> bool
eq_thm : thm * thm -> bool
eq_thm_prop : thm * thm -> bool
size_of_thm : thm -> int
```

- has_fewer_prems n thm reports whether thm has fewer than n premises. By currying, has_fewer_prems n is a predicate on theorems; it may be given to the searching tacticals.
- eq_thm (thm_1 , thm_2) reports whether thm_1 and thm_2 are equal. Both theorems must have compatible signatures. Both theorems must have the same conclusions, the same hypotheses (in the same order), and the same set of sort hypotheses. Names of bound variables are ignored.
- eq_thm_prop (thm_1 , thm_2) reports whether the propositions of thm_1 and thm_2 are equal. Names of bound variables are ignored.
- size_of_thm thm computes the size of thm, namely the number of variables, constants and abstractions in its conclusion. It may serve as a distance function for BEST_FIRST.

2.3 Tacticals for subgoal numbering

When conducting a backward proof, we normally consider one goal at a time. A tactic can affect the entire proof state, but many tactics — such as resolve_tac and assume_tac — work on a single subgoal. Subgoals are designated by a positive integer, so Isabelle provides tacticals for combining values of type int->tactic.

2.3.1 Restricting a tactic to one subgoal

SELECT_GOAL : tactic -> int -> tactic
METAHYPS : (thm list -> tactic) -> int -> tactic

SELECT_GOAL tac i restricts the effect of tac to subgoal i of the proof state. It fails if there is no subgoal i, or if tac changes the main goal (do not use rewrite_tac). It applies tac to a dummy proof state and uses the result to refine the original proof state at subgoal i. If tac returns multiple results then so does SELECT_GOAL tac i.

SELECT_GOAL works by creating a state of the form $\phi \Longrightarrow \phi$, with the one subgoal ϕ . If subgoal i has the form $\psi \Longrightarrow \theta$ then $(\psi \Longrightarrow \theta) \Longrightarrow (\psi \Longrightarrow \theta)$ is in fact $[\![\psi \Longrightarrow \theta; \psi]\!] \Longrightarrow \theta$, a proof state with two subgoals. Such a proof state might cause tactics to go astray. Therefore SELECT_GOAL inserts a quantifier to create the state

$$(\bigwedge x \cdot \psi \Longrightarrow \theta) \Longrightarrow (\bigwedge x \cdot \psi \Longrightarrow \theta).$$

METAHYPS tacf i takes subgoal i, of the form

$$\bigwedge x_1 \dots x_l \cdot \llbracket \theta_1; \dots; \theta_k \rrbracket \Longrightarrow \theta,$$

and creates the list $\theta'_1, \ldots, \theta'_k$ of meta-level assumptions. In these theorems, the subgoal's parameters (x_1, \ldots, x_l) become free variables. It supplies the assumptions to tacf and applies the resulting tactic to the proof state $\theta \Longrightarrow \theta$.

If the resulting proof state is $\llbracket \phi_1; \ldots; \phi_n \rrbracket \Longrightarrow \phi$, possibly containing $\theta'_1, \ldots, \theta'_k$ as assumptions, then it is lifted back into the original context, yielding n subgoals.

Meta-level assumptions may not contain unknowns. Unknowns in the hypotheses $\theta_1, \ldots, \theta_k$ become free variables in $\theta_1', \ldots, \theta_k'$, and are restored afterwards; the METAHYPS call cannot instantiate them. Unknowns in θ may be instantiated. New unknowns in ϕ_1, \ldots, ϕ_n are lifted over the parameters.

Here is a typical application. Calling hyp_res_tac i resolves subgoal i with one of its own assumptions, which may itself have the form of an inference rule (these are called **higher-level assumptions**).

```
val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);
```

The function gethyps is useful for debugging applications of METAHYPS.

METAHYPS fails if the context or new subgoals contain type unknowns. In principle, the tactical could treat these like ordinary unknowns.

2.3.2 Scanning for a subgoal by number

```
ALLGOALS : (int -> tactic) -> tactic

TRYALL : (int -> tactic) -> tactic

SOMEGOAL : (int -> tactic) -> tactic

FIRSTGOAL : (int -> tactic) -> tactic

REPEAT_SOME : (int -> tactic) -> tactic

REPEAT_FIRST : (int -> tactic) -> tactic

trace_goalno_tac : (int -> tactic) -> int -> tactic
```

These apply a tactic function of type int -> tactic to all the subgoal numbers of a proof state, and join the resulting tactics using THEN or ORELSE. Thus, they apply the tactic to all the subgoals, or to one subgoal.

Suppose that the original proof state has n subgoals.

- ALLGOALS tacf is equivalent to tacf(n) THEN ... THEN tacf(1).

 It applies tacf to all the subgoals, counting downwards (to avoid prob-
- lems when subgoals are added or deleted). TRYALL tacf is equivalent to TRY(tacf(n)) THEN ... THEN TRY(tacf(1)).
 - It attempts to apply *tacf* to all the subgoals. For instance, the tactic TRYALL assume_tac attempts to solve all the subgoals by assumption.
- SOMEGOAL tacf is equivalent to tacf(n) ORELSE ... ORELSE tacf(1).

 It applies tacf to one subgoal, counting downwards. For instance, the tactic SOMEGOAL assume_tac solves one subgoal by assumption, failing if this is impossible.
- FIRSTGOAL tacf is equivalent to tacf(1) ORELSE . . . ORELSE tacf(n). It applies tacf to one subgoal, counting upwards.
- REPEAT_SOME *tacf* applies *tacf* once or more to a subgoal, counting downwards.
- REPEAT_FIRST tacf applies tacf once or more to a subgoal, counting upwards.
- trace_goalno_tac tac i applies tac i to the proof state. If the resulting sequence is non-empty, then it is returned, with the side-effect of printing Subgoal i selected. Otherwise, trace_goalno_tac returns the empty sequence and prints nothing.

It indicates that 'the tactic worked for subgoal i' and is mainly used with SOMEGOAL and FIRSTGOAL.

2.3.3 Joining tactic functions

```
THEN' : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic infix 1

ORELSE' : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic infix

APPEND' : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic infix

INTLEAVE' : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic infix

EVERY' : ('a -> tactic) list -> 'a -> tactic

FIRST' : ('a -> tactic) list -> 'a -> tactic
```

These help to express tactics that specify subgoal numbers. The tactic

```
SOMEGOAL (fn i => resolve_tac rls i ORELSE eresolve_tac erls i)
can be simplified to
```

```
SOMEGOAL (resolve_tac rls ORELSE' eresolve_tac erls)
```

Note that TRY', REPEAT', DEPTH_FIRST', etc. are not provided, because function composition accomplishes the same purpose. The tactic

```
ALLGOALS (fn i => REPEAT (etac exE i ORELSE atac i))

can be simplified to

ALLGOALS (REPEAT o (etac exE ORELSE' atac))
```

These tacticals are polymorphic; x need not be an integer.

2.3.4 Applying a list of tactics to 1

```
EVERY1: (int -> tactic) list -> tactic
FIRST1: (int -> tactic) list -> tactic
```

A common proof style is to treat the subgoals as a stack, always restricting attention to the first subgoal. Such proofs contain long lists of tactics, each applied to 1. These can be simplified using EVERY1 and FIRST1:

```
EVERY1 [tacf_1, ..., tacf_n] abbreviates EVERY [tacf_1(1), ..., tacf_n(1)]
FIRST1 [tacf_1, ..., tacf_n] abbreviates FIRST [tacf_1(1), ..., tacf_n(1)]
```

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics, have type thm. This chapter describes operations that join theorems in forward proof. Most theorem operations are intended for advanced applications, such as programming new proof procedures.

3.1 Basic operations on theorems

3.1.1 Forward proof: joining rules by resolution

Joining rules together is a simple way of deriving new rules. These functions are especially useful with destruction rules. To store the result in the theorem database, use bind_thm (\S ??).

- thm_1 RSN (i, thm_2) resolves the conclusion of thm_1 with the ith premise of thm_2 . Unless there is precisely one resolvent it raises exception THM; in that case, use RLN.
- thm_1 RS thm_2 abbreviates thm_1 RSN $(1, thm_2)$. Thus, it resolves the conclusion of thm_1 with the first premise of thm_2 .
- $[thm_1, \ldots, thm_n]$ MRS thm uses RSN to resolve thm_i against premise i of thm, for $i = n, \ldots, 1$. This applies thm_n, \ldots, thm_1 to the first n premises of thm. Because the theorems are used from right to left, it does not matter if the thm_i create new premises. MRS is useful for expressing proof trees.
- thm OF $[thm_1, \ldots, thm_n]$ is the same as $[thm_1, \ldots, thm_n]$ MRS thm, with slightly more readable argument order, though.

 $thms_1$ RLN $(i, thms_2)$ joins lists of theorems. For every thm_1 in $thms_1$ and thm_2 in $thms_2$, it resolves the conclusion of thm_1 with the ith premise of thm_2 , accumulating the results.

 $thms_1$ RL $thms_2$ abbreviates $thms_1$ RLN $(1, thms_2)$.

 $[thms_1, \ldots, thms_n]$ MRL thms is analogous to MRS, but combines theorem lists rather than theorems. It too is useful for expressing proof trees.

3.1.2 Expanding definitions in theorems

```
rewrite_rule : thm list -> thm -> thm
rewrite_goals_rule : thm list -> thm -> thm
```

rewrite_rule defs thm unfolds the defs throughout the theorem thm.

rewrite_goals_rule defs thm unfolds the defs in the premises of thm, but it leaves the conclusion unchanged. This rule is the basis for rewrite_goals_tac, but it serves little purpose in forward proof.

3.1.3 Instantiating unknowns in a theorem

```
read_instantiate : (string*string) list -> thm -> thm read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm cterm_instantiate : (cterm*cterm) list -> thm -> thm instantiate : ctyp option list -> cterm option list -> thm -> thm
```

These meta-rules instantiate type and term unknowns in a theorem. They are occasionally useful. They can prevent difficulties with higher-order unification, and define specialized versions of rules.

read_instantiate insts thm processes the instantiations insts and instantiates the rule thm. The processing of instantiations is described in §??, under res_inst_tac.

Use res_inst_tac, not read_instantiate, to instantiate a rule and refine a particular subgoal. The tactic allows instantiation by the subgoal's parameters, and reads the instantiations using the signature associated with the proof state.

Use read_instantiate_sg below if *insts* appears to be treated incorrectly.

- read_instantiate_sg sg insts thm is like read_instantiate insts thm, but it reads the instantiations under signature sg. This is necessary to instantiate a rule from a general theory, such as first-order logic, using the notation of some specialized theory. Use the function sign_of to get a theory's signature.
- cterm_instantiate ctpairs thm is similar to read_instantiate, but the instantiations are provided as pairs of certified terms, not as strings to be read.
- instantiate' ctyps cterms thm instantiates thm according to the positional arguments ctyps and cterms. Counting from left to right, schematic variables ?x are either replaced by t for any argument Some t, or left unchanged in case of None or if the end of the argument list is encountered. Types are instantiated before terms.

3.1.4 Miscellaneous forward rules

 standard
 :
 thm -> thm

 zero_var_indexes
 :
 thm -> thm

 make_elim
 :
 tactic
 -> thm -> thm

 rule_by_tactic
 :
 tactic
 -> thm -> thm

 rotate_prems
 :
 int -> int -> thm -> thm
 -> thm

 permute_prems
 :
 int list -> thm -> thm
 -> thm

- standard thm puts thm into the standard form of object-rules. It discharges all meta-assumptions, replaces free variables by schematic variables, renames schematic variables to have subscript zero, also strips outer (meta) quantifiers and removes dangling sort hypotheses.
- zero_var_indexes thm makes all schematic variables have subscript zero, renaming them to avoid clashes.
- make_elim thm converts thm, which should be a destruction rule of the form $[\![P_1;\ldots;P_m]\!] \Longrightarrow Q$, to the elimination rule $[\![P_1;\ldots;P_m;Q\Longrightarrow R]\!] \Longrightarrow R$. This is the basis for destruct-resolution: dresolve_tac, etc.
- rule_by_tactic tac thm applies tac to the thm, freezing its variables first, then yields the proof state returned by the tactic. In typical usage, the thm represents an instance of a rule with several premises, some with contradictory assumptions (because of the instantiation). The tactic proves those subgoals and does whatever else it can, and returns whatever is left.

rotate_prems k thm rotates the premises of thm to the left by k positions (to the right if k < 0). It simply calls permute_prems, below, with j = 0. Used with eresolve_tac, it gives the effect of applying the tactic to some other premise of thm than the first.

permute_prems j k thm rotates the premises of thm leaving the first j premises unchanged. It requires $0 \le j \le n$, where n is the number of premises. If k is positive then it rotates the remaining n-j premises to the left; if k is negative then it rotates the premises to the right.

rearrange_prems ps thm permutes the premises of thm where the value at the i-th position (counting from 0) in the list ps gives the position within the original thm to be transferred to position i. Any remaining trailing positions are left unchanged.

3.1.5 Taking a theorem apart

```
cprop_of
             : thm -> cterm
concl_of
             : thm -> term
prems_of
             : thm -> term list
cprems_of
             : thm -> cterm list
nprems_of
             : thm -> int
tpairs_of
            : thm -> (term*term) list
sign_of_thm : thm -> Sign.sg
theory_of_thm : thm -> theory
dest_state : thm * int -> (term*term) list * term list * term * term
rep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,
                    shyps: sort list, hyps: term list, prop: term}
crep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,
                    shyps: sort list, hyps: cterm list, prop:cterm}
```

cprop_of thm returns the statement of thm as a certified term.

concl_of thm returns the conclusion of thm as a term.

prems_of thm returns the premises of thm as a list of terms.

cprems_of thm returns the premises of thm as a list of certified terms.

nprems_of thm returns the number of premises in thm, and is equivalent to length (prems_of thm).

tpairs_of thm returns the flex-flex constraints of thm.

sign_of_thm thm returns the signature associated with thm.

- theory_of_thm thm returns the theory associated with thm. Note that this does a lookup in Isabelle's global database of loaded theories.
- dest_state (thm, i) decomposes thm as a tuple containing a list of flex-flex constraints, a list of the subgoals 1 to i-1, subgoal i, and the rest of the theorem (this will be an implication if there are more than i subgoals).
- rep_thm thm decomposes thm as a record containing the statement of thm (prop), its list of meta-assumptions (hyps), its derivation (der), a bound on the maximum subscript of its unknowns (maxidx), and a reference to its signature (sign_ref). The shyps field is discussed below.

crep_thm thm like rep_thm, but returns the hypotheses and statement as certified terms.

3.1.6 *Sort hypotheses

```
strip_shyps : thm -> thm
strip_shyps_warning : thm -> thm
```

Isabelle's type variables are decorated with sorts, constraining them to certain ranges of types. This has little impact when sorts only serve for syntactic classification of types — for example, FOL distinguishes between terms and other types. But when type classes are introduced through axioms, this may result in some sorts becoming *empty*: where one cannot exhibit a type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort, then that theorem has no instances. It is basically an instance of *ex falso quodlibet*. But what if it is used to prove another theorem that no longer involves that sort? The latter theorem holds only if under an additional non-emptiness assumption.

Therefore, Isabelle's theorems carry around sort hypotheses. The shyps field is a list of sorts occurring in type variables in the current prop and hyps fields. It may also includes sorts used in the theorem's proof that no longer appear in the prop or hyps fields — so-called *dangling* sort constraints. These are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at the end of a proof, provided that non-emptiness can be established by looking at the theorem's signature: from the classes and arities information. This operation is performed by strip_shyps and strip_shyps_warning.

strip_shyps thm removes any extraneous sort hypotheses that can be witnessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of any pending sort hypotheses that do not have a (syntactic) witness.

3.1.7 Tracing flags for unification

```
Unify.trace_simp : bool ref initially false
Unify.trace_types : bool ref initially false
Unify.trace_bound : int ref initially 10
Unify.search_bound : int ref initially 20
```

Tracing the search may be useful when higher-order unification behaves unexpectedly. Letting res_inst_tac circumvent the problem is easier, though.

```
set Unify.trace_simp; causes tracing of the simplification phase.
```

- set Unify.trace_types; generates warnings of incompleteness, when unification is not considering all possible instantiations of type unknowns.
- Unify.trace_bound := n; causes unification to print tracing information once it reaches depth n. Use n = 0 for full tracing. At the default value of 10, tracing information is almost never printed.
- Unify.search_bound := n; prevents unification from searching past the depth n. Because of this bound, higher-order unification cannot return an infinite sequence, though it can return an exponentially long one. The search rarely approaches the default value of 20. If the search is cut off, unification prints a warning Unification bound exceeded.

3.2 *Primitive meta-level inference rules

3.2.1 Logical equivalence rules

```
equal_intr : thm -> thm -> thm
equal_elim : thm -> thm -> thm
```

- equal_intr thm_1 thm_2 applies ($\equiv I$) to thm_1 and thm_2 . It maps the premises ψ and ϕ to the conclusion $\phi \equiv \psi$; the assumptions are those of the first premise with ϕ removed, plus those of the second premise with ψ removed.
- equal_elim thm_1 thm_2 applies $(\equiv E)$ to thm_1 and thm_2 . It maps the premises $\phi \equiv \psi$ and ϕ to the conclusion ψ .

3.2.2 Equality rules

reflexive : cterm -> thm
symmetric : thm -> thm
transitive : thm -> thm -> thm

reflexive ct makes the theorem $ct \equiv ct$.

symmetric thm maps the premise $a \equiv b$ to the conclusion $b \equiv a$.

transitive thm_1 thm_2 maps the premises $a \equiv b$ and $b \equiv c$ to the conclusion $a \equiv c$.

3.2.3 The λ -conversion rules

beta_conversion : cterm -> thm
extensional : thm -> thm

abstract_rule : string -> cterm -> thm -> thm

combination : thm -> thm -> thm

There is no rule for α -conversion because Isabelle regards α -convertible theorems as equal.

beta_conversion ct makes the theorem $((\lambda x \cdot a)(b)) \equiv a[b/x]$, where ct is the term $(\lambda x \cdot a)(b)$.

extensional thm maps the premise $f(x) \equiv g(x)$ to the conclusion $f \equiv g$. Parameter x is taken from the premise. It may be an unknown or a free variable (provided it does not occur in the assumptions); it must not occur in f or g.

abstract_rule v x thm maps the premise $a \equiv b$ to the conclusion $(\lambda x \cdot a) \equiv (\lambda x \cdot b)$, abstracting over all occurrences (if any!) of x. Parameter x is supplied as a cterm. It may be an unknown or a free variable (provided it does not occur in the assumptions). In the conclusion, the bound variable is named v.

combination thm_1 thm_2 maps the premises $f \equiv g$ and $a \equiv b$ to the conclusion $f(a) \equiv g(b)$.

3.3 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics. There are few occasions for applying them directly to a theorem.

3.3.1 Proof by assumption

assumption : int -> thm -> thm Seq.seq eq_assumption : int -> thm -> thm

assumption i thm attempts to solve premise i of thm by assumption.

eq_assumption is like assumption but does not use unification.

3.3.2 Resolution

biresolution match rules i state performs bi-resolution on subgoal i of state, using the list of (flag, rule) pairs. For each pair, it applies resolution if the flag is false and elim-resolution if the flag is true. If match is true, the state is not instantiated.

3.3.3 Composition: resolution without lifting

 $\verb|compose| : thm * int * thm -> thm list|$

COMP : thm * thm -> thm

bicompose : bool \rightarrow bool * thm * int \rightarrow int \rightarrow thm

-> thm Seq.seq

In forward proof, a typical use of composition is to regard an assertion of the form $\phi \Longrightarrow \psi$ as atomic. Schematic variables are not renamed, so beware of clashes!

compose (thm_1 , i, thm_2) uses thm_1 , regarded as an atomic formula, to solve premise i of thm_2 . Let thm_1 and thm_2 be ψ and $[\![\phi_1; \ldots; \phi_n]\!] \Longrightarrow \phi$. For each s that unifies ψ and ϕ_i , the result list contains the theorem

$$(\llbracket \phi_1; \dots; \phi_{i-1}; \phi_{i+1}; \dots; \phi_n \rrbracket \Longrightarrow \phi)s.$$

 thm_1 COMP thm_2 calls compose (thm_1 , 1, thm_2) and returns the result, if unique; otherwise, it raises exception THM. It is analogous to RS.

For example, suppose that thm_1 is $a = b \implies b = a$, a symmetry rule, and that thm_2 is $\llbracket P \implies Q; \neg Q \rrbracket \implies \neg P$, which is the principle of contrapositives. Then the result would be the derived rule $\neg(b = a) \implies \neg(a = b)$.

bicompose match (flag, rule, m) i state refines subgoal i of state using rule, without lifting. The rule is taken to have the form $[\![\psi_1;\ldots;\psi_m]\!] \Longrightarrow \psi$, where ψ need not be atomic; thus m determines the number of new subgoals. If flag is true then it performs elim-resolution — it solves the first premise of rule by assumption and deletes that assumption. If match is true, the state is not instantiated.

3.3.4 Other meta-rules

trivial : cterm -> thm

lift_rule : (thm * int) -> thm -> thm
rename_params_rule : string list * int -> thm -> thm

flexflex_rule : thm -> thm Seq.seq

trivial ct makes the theorem $\phi \Longrightarrow \phi$, where ϕ is the value of ct. This is the initial state for a goal-directed proof of ϕ . The rule checks that ct has type prop.

lift_rule (state, i) rule prepares rule for resolution by lifting it over the parameters and assumptions of subgoal i of state.

rename_params_rule (names, i) thm uses the names to rename the parameters of premise i of thm. The names must be distinct. If there are fewer names than parameters, then the rule renames the innermost parameters and may modify the remaining ones to ensure that all the parameters are distinct.

flexflex_rule thm removes all flex-flex pairs from thm using the trivial unifier.

3.4 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term contains all logical inferences in detail. Resolution and rewriting steps are broken down to primitive rules of the meta-logic. The proof term can be inspected by a separate proof-checker, for example.

According to the well-known *Curry-Howard isomorphism*, a proof can be viewed as a λ -term. Following this idea, proofs in Isabelle are internally represented by a datatype similar to the one for terms described in §??.

- Abst (a, τ, prf) is the abstraction over a *term variable* of type τ in the body prf. Logically, this corresponds to Λ introduction. The name a is used only for parsing and printing.
- AbsP (a, φ, prf) is the abstraction over a proof variable standing for a proof of proposition φ in the body prf. This corresponds to \Longrightarrow introduction.
- prf % t is the application of proof prf to term t which corresponds to \land elimination.
- prf_1 %% prf_2 is the application of proof prf_1 to proof prf_2 which corresponds to \Longrightarrow elimination.
- PBound i is a proof variable with de Bruijn [4] index i.
- Hyp φ corresponds to the use of a meta level hypothesis φ .
- PThm ((name, tags), prf, φ , $\overline{\tau}$) stands for a pre-proved theorem, where name is the name of the theorem, prf is its actual proof, φ is the proven proposition, and $\overline{\tau}$ is a type assignment for the type variables occurring in the proposition.
- PAxm (name, φ , $\overline{\tau}$) corresponds to the use of an axiom with name name and proposition φ , where $\overline{\tau}$ is a type assignment for the type variables occurring in the proposition.
- Oracle (name, φ , $\overline{\tau}$) denotes the invocation of an oracle with name name which produced a proposition φ , where $\overline{\tau}$ is a type assignment for the type variables occurring in the proposition.

MinProof *prfs* represents a *minimal proof* where *prfs* is a list of theorems, axioms or oracles.

Note that there are no separate constructors for abstraction and application on the level of *types*, since instantiation of type variables is accomplished via the type assignments attached to Thm, Axm and Oracle.

Each theorem's derivation is stored as the der field of its internal record:

```
#2 (#der (rep_thm conjI));
PThm (("HOL.conjI", []),
   AbsP ("H", None, AbsP ("H", None, ...)), ..., None) %
   None % None : Proofterm.proof
```

This proof term identifies a labelled theorem, conjI of theory HOL, whose underlying proof is AbsP ("H", None, AbsP ("H", None, ...)). The theorem is applied to two (implicit) term arguments, which correspond to the two variables occurring in its proposition.

Isabelle's inference kernel can produce proof objects with different levels of detail. This is controlled via the global reference variable proofs:

```
proofs := 0; only record uses of oracles
```

proofs := 1; record uses of oracles as well as dependencies on other theorems and axioms

```
proofs := 2; record inferences in full detail
```

Reconstruction and checking of proofs as described in §3.4.1 will not work for proofs constructed with proofs set to 0 or 1. Theorems involving oracles will be printed with a suffixed [!] to point out the different quality of confidence achieved.

The dependencies of theorems can be viewed using the function thm_deps:

```
thm_deps [thm_1, ..., thm_n];
```

generates the dependency graph of the theorems thm_1, \ldots, thm_n and displays it using Isabelle's graph browser. For this to work properly, the theorems in question have to be proved with **proofs** set to a value greater than 0. You can use

```
ThmDeps.enable : unit -> unit
ThmDeps.disable : unit -> unit
```

to set proofs appropriately.

3.4.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that some arguments of constructors are *optional*. The reason for this is that keeping a full proof term for each theorem would result in enormous memory requirements. Fortunately, typical proof terms usually contain quite a lot of redundant information that can be reconstructed from the context. Therefore, Isabelle's inference kernel creates only *partial* (or *implicit*) proof terms, in which all typing information in terms, all term and type labels of abstractions AbsP and Abst, and (if possible) some argument terms of % are omitted. The following functions are available for reconstructing and checking proof terms:

```
Reconstruct.reconstruct_proof :
   Sign.sg -> term -> Proofterm.proof -> Proofterm.proof
Reconstruct.expand_proof :
   Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof
ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm
```

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf into a full proof of the proposition denoted by t, with respect to signature sg. Reconstruction will fail with an error message if prf is not a proof of t, is ill-formed, or does not contain sufficient information for reconstruction by higher order pattern unification [7, 1]. The latter may only happen for proofs built up "by hand" but not for those produced automatically by Isabelle's inference kernel.

Reconstruct.expand_proof sg [$name_1$, ..., $name_n$] prf expands and reconstructs the proofs of all theorems with names $name_1$, ..., $name_n$ in the (full) proof prf.

ProofChecker.thm_of_proof thy prf turns the (full) proof prf into a theorem with respect to theory thy by replaying it using only primitive rules from Isabelle's inference kernel.

3.4.2 Parsing and printing proof terms

Isabelle offers several functions for parsing and printing proof terms. The concrete syntax for proof terms is described in Fig. 3.1. Implicit term arguments in partial proofs are indicated by "_". Type arguments for theorems and axioms may be specified using % or "." with an argument of the form TYPE(type) (see §??). They must appear before any other term argument of a theorem or axiom. In contrast to term arguments, type arguments may be completely omitted.

```
proof = Lam \ params. \ proof \mid \Lambda params. \ proof \mid proof \% \ any \mid proof \cdot any \mid proof \% \ proof \mid proof \cdot proof \mid id \mid longid
param = idt \mid idt : prop \mid (param)
params = param \mid param \ params
```

Figure 3.1: Proof term syntax

```
ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof
ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T
ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T
ProofSyntax.print_proof_of : bool -> thm -> unit
```

The function read_proof reads in a proof term with respect to a given theory. The boolean flag indicates whether the proof term to be parsed contains explicit typing information to be taken into account. Usually, typing information is left implicit and is inferred during proof reconstruction. The pretty printing functions operating on theorems take a boolean flag as an argument which indicates whether the proof term should be reconstructed before printing.

The following example (based on Isabelle/HOL) illustrates how to parse and check proof terms. We start by parsing a partial proof term

```
val prf = ProofSyntax.read_proof Main.thy false
"impI % _ % _ %% (Lam H : _. conjE % _ % _ % _ % _ % H %%
        (Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";
val prf = PThm (("HOL.impI", []), ..., None) % None % None %%
    AbsP ("H", None, PThm (("HOL.conjE", []), ..., None) %
    None % None % None %% PBound 0 %%
    AbsP ("H1", None, AbsP ("H2", None, ...))) : Proofterm.proof
```

The statement to be established by this proof is

```
val t = term_of
  (read_cterm (sign_of Main.thy) ("A & B --> B & A", propT));
val t = Const ("Trueprop", "bool => prop") $
    (Const ("op -->", "[bool, bool] => bool") $
    ... $ ... : Term.term
```

Using t we can reconstruct the full proof

```
val prf' = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;
val prf' = PThm (("HOL.impI", []), ..., ..., Some []) %
   Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) %
   Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) %%
   AbsP ("H", Some (Const ("Trueprop", ...) $ ...), ...)
   : Proofterm.proof
```

This proof can finally be turned into a theorem

```
val thm = ProofChecker.thm_of_proof Main.thy prf';
val thm = "A & B --> B & A" : Thm.thm
```

Defining Logics

4.1 Mixfix declarations

When defining a theory, you declare new constants by giving their names, their type, and an optional **mixfix annotation**. Mixfix annotations allow you to extend Isabelle's basic λ -calculus syntax with readable notation. They can express any context-free priority grammar. Isabelle syntax definitions are inspired by OBJ [5]; they are more general than the priority declarations of ML and Prolog.

A mixfix annotation defines a production of the priority grammar. It describes the concrete syntax, the translation to abstract syntax, and the pretty printing. Special case annotations provide a simple means of specifying infix operators and binders.

4.1.1 The general mixfix form

Here is a detailed account of mixfix declarations. Suppose the following line occurs within a consts or syntax section of a .thy file:

$$c :: "\sigma" ("template" ps p)$$

This constant declaration and mixfix annotation are interpreted as follows:

- The string c is the name of the constant associated with the production; unless it is a valid identifier, it must be enclosed in quotes. If c is empty (given as "") then this is a copy production. Otherwise, parsing an instance of the phrase template generates the AST ("c" $a_1 \ldots a_n$), where a_i is the AST generated by parsing the i-th argument.
- The constant c, if non-empty, is declared to have type σ (consts section only).
- The string *template* specifies the right-hand side of the production. It has the form

$$w_0 - w_1 - \ldots - w_n$$

where each occurrence of $_$ denotes an argument position and the w_i do not contain $_$. (If you want a literal $_$ in the concrete syntax, you must escape it as described below.) The w_i may consist of delimiters, spaces or pretty printing annotations (see below).

- The type σ specifies the production's nonterminal symbols (or name tokens). If template is of the form above then σ must be a function type with at least n argument positions, say $\sigma = [\tau_1, \ldots, \tau_n] \Rightarrow \tau$. Nonterminal symbols are derived from the types $\tau_1, \ldots, \tau_n, \tau$ as described below. Any of these may be function types.
- The optional list ps may contain at most n integers, say $[p_1, \ldots, p_m]$, where p_i is the minimal priority required of any phrase that may appear as the i-th argument. Missing priorities default to 0.
- The integer p is the priority of this production. If omitted, it defaults to the maximal priority. Priorities range between 0 and max_pri (= 1000).

The resulting production is

$$A^{(p)} = w_0 A_1^{(p_1)} w_1 A_2^{(p_2)} \dots A_n^{(p_n)} w_n$$

where A and the A_i are the nonterminals corresponding to the types τ and τ_i respectively. The nonterminal symbol associated with a type (...)ty is logic, if this is a logical type (namely one of class logic excluding prop). Otherwise it is ty (note that only the outermost type constructor is taken into account). Finally, the nonterminal of a type variable is any.

Theories must sometimes declare types for purely syntactic purposes — merely playing the role of nonterminals. One example is *type*, the built-in type of types. This is a 'type of all types' in the syntactic sense only. Do not declare such types under arities as belonging to class logic, for that would make them useless as separate nonterminal symbols.

Associating nonterminals with types allows a constant's type to specify syntax as well. We can declare the function f to have type $[\tau_1, \ldots, \tau_n] \Rightarrow \tau$ and, through a mixfix annotation, specify the layout of the function's n arguments. The constant's name, in this case f, will also serve as the label in the abstract syntax tree.

You may also declare mixfix syntax without adding constants to the theory's signature, by using a syntax section instead of consts. Thus a production need not map directly to a logical function (this typically requires additional syntactic translations, see also Chapter 5).

As a special case of the general mixfix declaration, the form

```
c :: "\sigma" ("template")
```

specifies no priorities. The resulting production puts no priority constraints on any of its arguments and has maximal priority itself. Omitting priorities in this manner is prone to syntactic ambiguities unless the production's right-hand side is fully bracketed, as in "if _ then _ else _ fi".

Omitting the mixfix annotation completely, as in $c:: "\sigma"$, is sensible only if c is an identifier. Otherwise you will be unable to write terms involving c.

4.1.2 Example: arithmetic expressions

This theory specification contains a syntax section with mixfix declarations encoding the priority grammar from §??:

```
ExpSyntax = Pure +
types
  exp
syntax
                             ("0"
  "0" :: exp
                                        9)
  "+" :: [exp, exp] => exp
                             ("_ + _"
                                       [0, 1] 0)
  "*" :: [exp, exp] => exp
                             ("_ * _"
                                       [3, 2] 2)
  "-" :: exp => exp
                             ("- _"
                                        [3] 3)
end
```

Executing Syntax.print_gram reveals the productions derived from the above mixfix declarations (lots of additional information deleted):

```
Syntax.print_gram (syn_of ExpSyntax.thy);
exp = "0" => "0" (9)
exp = exp[0] "+" exp[1] => "+" (0)
exp = exp[3] "*" exp[2] => "*" (2)
exp = "-" exp[3] => "-" (3)
```

Note that because exp is not of class logic, it has been retained as a separate nonterminal. This also entails that the syntax does not provide for identifiers or paranthesized expressions. Normally you would also want to add the declaration arities exp::logic after types and use consts instead of syntax. Try this as an exercise and study the changes in the grammar.

4.1.3 Infixes

Infix operators associating to the left or right can be declared using infixl or infixr. Basically, the form $c::\sigma$ (infixl p) abbreviates the mixfix declarations

```
"op c" :: \sigma ("(_ c/ _)" [p, p+1] p) "op c" :: \sigma ("op c")
```

and $c :: \sigma$ (infixr p) abbreviates the mixfix declarations

```
"op c" :: \sigma ("(_ c/__)" [p+1, p] p) "op c" :: \sigma ("op c")
```

The infix operator is declared as a constant with the prefix op. Thus, prefixing infixes with op makes them behave like ordinary function symbols, as in ML. Special characters occurring in c must be escaped, as in delimiters, using a single quote.

A slightly more general form of infix declarations allows constant names to be independent from their concrete syntax, namely $c::\sigma$ (infix1 "sy" p), the same for infixr. As an example consider:

```
and :: [bool, bool] => bool (infixr "&" 35)
```

The internal constant name will then be just and, without any op prefixed.

4.1.4 Binders

A **binder** is a variable-binding construct such as a quantifier. The constant declaration

```
c :: \sigma (binder "Q" [pb] p)
```

introduces a constant c of type σ , which must have the form $(\tau_1 \Rightarrow \tau_2) \Rightarrow \tau_3$. Its concrete syntax is \mathcal{Q} x. P, where x is a bound variable of type τ_1 , the body P has type τ_2 and the whole term has type τ_3 . The optional integer pb specifies the body's priority, by default p. Special characters in \mathcal{Q} must be escaped using a single quote.

The declaration is expanded internally to something like

Here idts is the nonterminal symbol for a list of identifiers with optional type constraints (see Fig.??). The declaration also installs a parse translation for Q and a print translation for c to translate between the internal and external forms.

A binder of type $(\sigma \Rightarrow \tau) \Rightarrow \tau$ can be nested by giving a list of variables. The external form $Q x_1 x_2 \dots x_n$. P corresponds to the internal form

$$c(\lambda x_1 \cdot c(\lambda x_2 \cdot \ldots \cdot c(\lambda x_n \cdot P) \cdot \ldots)).$$

For example, let us declare the quantifier \forall :

```
All :: ('a => o) => o (binder "ALL " 10)
```

This lets us write $\forall x . P$ as either All(%x.P) or ALL x.P. When printing, Isabelle prefers the latter form, but must fall back on All(P) if P is not an abstraction. Both P and ALL x.P have type o, the type of formulae, while the bound variable can be polymorphic.

4.2 *Alternative print modes

Isabelle's pretty printer supports alternative output syntaxes. These may be used independently or in cooperation. The currently active print modes (with precedence from left to right) are determined by a reference variable.

```
print_mode: string list ref
```

Initially this may already contain some print mode identifiers, depending on how Isabelle has been invoked (e.g. by some user interface). So changes should be incremental — adding or deleting modes relative to the current value.

Any ML string is a legal print mode identifier, without any predeclaration required. The following names should be considered reserved, though: "" (the empty string), symbols, xsymbols, and latex.

There is a separate table of mixfix productions for pretty printing associated with each print mode. The currently active ones are conceptually just concatenated from left to right, with the standard syntax output table always coming last as default. Thus mixfix productions of preceding modes in the list may override those of later ones.

The canonical application of print modes is optional printing of mathematical symbols from a special screen font instead of ASCII. Another example is to re-use Isabelle's advanced λ -term printing mechanisms to generate completely different output, say for interfacing external tools like model checkers (see also HOL/Modelcheck).

4.3 Ambiguity of parsed expressions

To keep the grammar small and allow common productions to be shared all logical types (except prop) are internally represented by one nonterminal, namely logic. This and omitted or too freely chosen priorities may lead to ways of parsing an expression that were not intended by the theory's maker. In most cases Isabelle is able to select one of multiple parse trees that an

expression has lead to by checking which of them can be typed correctly. But this may not work in every case and always slows down parsing. The warning and error messages that can be produced during this process are as follows:

If an ambiguity can be resolved by type inference the following warning is shown to remind the user that parsing is (unnecessarily) slowed down. In cases where it's not easily possible to eliminate the ambiguity the frequency of the warning can be controlled by changing the value of Syntax.ambiguity_level which has type int ref. Its default value is 1 and by increasing it one can control how many parse trees are necessary to generate the warning.

```
Ambiguous input "..."

produces the following parse trees:
...

Fortunately, only one parse tree is type correct.

You may still want to disambiguate your grammar or your input.
```

The following message is normally caused by using the same syntax in two different productions:

```
Ambiguous input "..."

produces the following parse trees:
...

More than one term is type correct:
```

Ambiguities occurring in syntax translation rules cannot be resolved by type inference because it is not necessary for these rules to be type correct. Therefore Isabelle always generates an error message and the ambiguity should be eliminated by changing the grammar or the rule.

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define macros or code their own translation functions. It describes the transformations between parse trees, abstract syntax trees and terms.

5.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a parse tree. By applying some internal transformations the parse tree becomes an abstract syntax tree, or AST. Macro expansion, further translations and finally type inference yields a well-typed term. The printing process is the reverse, except for some subtleties to be discussed later.

Figure 5.1 outlines the parsing and printing process. Much of the complexity is due to the macro mechanism. Using macros, you can specify most forms of concrete syntax without writing any ML code.

Abstract syntax trees are an intermediate form between the raw parse trees and the typed λ -terms. An AST is either an atom (constant or variable) or a list of at least two subtrees. Internally, they have type Syntax.ast:

Isabelle uses an S-expression syntax for abstract syntax trees. Constant atoms are shown as quoted strings, variable atoms as non-quoted strings and applications as a parenthesised list of subtrees. For example, the AST

is shown as ("_constrain" ("_abs" x t) ("fun" 'a 'b)). Both () and (f) are illegal because they have too few subtrees.

The resemblance to Lisp's S-expressions is intentional, but there are two kinds of atomic symbols: Constant x and Variable x. Do not take the

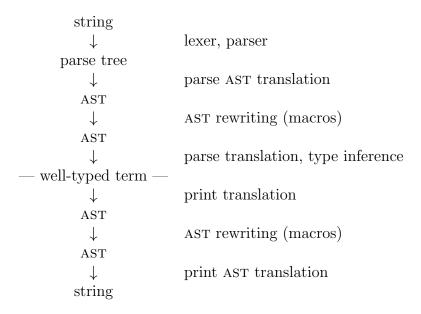


Figure 5.1: Parsing and printing

names Constant and Variable too literally; in the later translation to terms, Variable x may become a constant, free or bound variable, even a type constructor or class name; the actual outcome depends on the context.

Similarly, you can think of $(f x_1 \ldots x_n)$ as the application of f to the arguments x_1, \ldots, x_n . But the kind of application is determined later by context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but ASTs are first-order: the "_abs" does not bind the x in any way. Later at the term level, ("_abs" x t) will become an Abs node and occurrences of x in t will be replaced by bound variables (the term constructor Bound).

5.2 Transforming parse trees to ASTs

The parse tree is the raw output of the parser. Translation functions, called **parse AST translations**, transform the parse tree into an abstract syntax tree.

The parse tree is constructed by nesting the right-hand sides of the productions used to recognize the input. Such parse trees are simply lists of tokens and constituent parse trees, the latter representing the nonterminals of the productions. Let us refer to the actual productions in the form displayed by print_syntax (see §?? for an example).

input string	AST
"f"	f
"'a"	'a
"t == u"	("==" t u)
"f(x)"	("_appl" f x)
"f(x, y)"	("_appl" f ("_args" x y))
"f(x, y, z)"	("_appl" f ("_args" x ("_args" y z)))
"%x y. t"	("_lambda" ("_idts" x y) t)

Figure 5.2: Parsing examples using the Pure syntax

Ignoring parse AST translations, parse trees are transformed to ASTs by stripping out delimiters and copy productions. More precisely, the mapping $\llbracket - \rrbracket$ is derived from the productions as follows:

- Name tokens: [t] = Variable s, where t is an id, var, tid, tvar, num, xnum or xstr token, and s its associated string. Note that for xstr this does not include the quotes.
- Copy productions: $[\![\ldots P\ldots]\!] = [\![P]\!]$. Here \ldots stands for strings of delimiters, which are discarded. P stands for the single constituent that is not a delimiter; it is either a nonterminal symbol or a name token.
- 0-ary productions: [...=>c] = Constant c. Here there are no constituents other than delimiters, which are discarded.
- n-ary productions, where $n \geq 1$: delimiters are discarded and the remaining constituents P_1, \ldots, P_n are built into an application whose head constant is c:

$$\llbracket \dots P_1 \dots P_n \dots \Rightarrow c \rrbracket = \text{Appl [Constant } c, \llbracket P_1 \rrbracket, \dots, \llbracket P_n \rrbracket \rrbracket$$

Figure 5.2 presents some simple examples, where ==, _appl, _args, and so forth name productions of the Pure syntax. These examples illustrate the need for further translations to make ASTs closer to the typed λ -calculus. The Pure syntax provides predefined parse AST translations for ordinary applications, type applications, nested abstractions, meta implications and function types. Figure 5.3 shows their effect on some representative input strings.

The names of constant heads in the AST control the translation process. The list of constants invoking parse AST translations appears in the output of print_syntax under parse_ast_translation.

input string	AST
"f(x, y, z)"	(f x y z)
"'a ty"	(ty 'a)
"('a, 'b) ty"	(ty 'a 'b)
"%x y z. t"	("_abs" x ("_abs" y ("_abs" z t)))
"%x :: 'a. t"	("_abs" ("_constrain" x 'a) t)
"[P; Q; R] => S"	("==>" P ("==>" Q ("==>" R S)))
"['a, 'b, 'c] => 'd"	("fun" 'a ("fun" 'b ("fun" 'c 'd)))

Figure 5.3: Built-in parse AST translations

5.3 Transforming ASTs to terms

The AST, after application of macros (see §5.5), is transformed into a term. This term is probably ill-typed since type inference has not occurred yet. The term may contain type constraints consisting of applications with head "_constrain"; the second argument is a type encoded as a term. Type inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect this process. If we ignore parse translations for the time being, then ASTs are transformed to terms by mapping AST constants to constants, AST variables to schematic or free variables and AST applications to applications.

More precisely, the mapping [-] is defined by

- Constants: [Constant x] = Const(x, dummyT).
- Schematic variables: [Variable"?xi"] = Var((x, i), dummyT), where x is the base name and i the index extracted from xi.
- Free variables: [Variable x] = Free(x, dummyT).
- Function applications with n arguments:

$$[Appl [f, x_1, \dots, x_n]] = [f] \$ [x_1] \$ \dots \$ [x_n]$$

Here Const, Var, Free and \$ are constructors of the datatype term, while dummyT stands for some dummy type that is ignored during type inference.

So far the outcome is still a first-order term. Abstractions and bound variables (constructors Abs and Bound) are introduced by parse translations. Such translations are attached to "_abs", "!!" and user-defined binders.

5.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are translated via abstract syntax trees into strings. Finally the strings are pretty printed.

Print translations (§5.6) may affect the transformation of terms into ASTs. Ignoring those, the transformation maps term constants, variables and applications to the corresponding constructs on ASTs. Abstractions are mapped to applications of the special constant _abs.

More precisely, the mapping [-] is defined as follows:

- $[Const(x, \tau)] = Constant x$.
- $[Free(x,\tau)] = constrain(Variable x, \tau).$
- $[Var((x,i),\tau)] = constrain(Variable "?xi",\tau)$, where ?xi is the string representation of the indexname (x,i).
- For the abstraction $\lambda x :: \tau \cdot t$, let x' be a variant of x renamed to differ from all names occurring in t, and let t' be obtained from t by replacing all bound occurrences of x by the free variable x'. This replaces corresponding occurrences of the constructor Bound by the term Free(x', dummyT):

$$[\![\mathsf{Abs}(x,\tau,t)]\!] = \mathsf{Appl}\,[\![\mathsf{Constant}\, \texttt{"_abs"}, constrain(\mathsf{Variable}\, x',\tau), [\![t']\!]]$$

- [Bound i] = Variable "B.i". The occurrence of constructor Bound should never happen when printing well-typed terms; it indicates a de Bruijn index with no matching abstraction.
- Where f is not an application,

$$[\![f \ \$ \ x_1 \ \$ \dots \$ \ x_n]\!] = \mathsf{Appl} [[\![f]\!], [\![x_1]\!], \dots, [\![x_n]\!]]$$

Type constraints are inserted to allow the printing of types. This is governed by the boolean variable show_types:

- $constrain(x,\tau) = x$ if $\tau = dummyT$ or show_types is set to false.
- $constrain(x,\tau) = \text{Appl [Constant "_constrain"}, x, \llbracket \tau \rrbracket]$ otherwise. Here, $\llbracket \tau \rrbracket$ is the AST encoding of τ : type constructors go to Constants; type identifiers go to Variables; type applications go to Appls with the type constructor as the first element. If show_sorts is set to true,

some type variables are decorated with an AST encoding of their sort.

The AST, after application of macros (see §5.5), is transformed into the final output string. The built-in **print AST translations** reverse the parse AST translations of Fig. 5.3.

For the actual printing process, the names attached to productions of the form ... $A_1^{(p_1)} ... A_n^{(p_n)} ... \Rightarrow c$ play a vital role. Each AST with constant head c, namely "c" or ("c" $x_1 ... x_n$), is printed according to the production for c. Each argument x_i is converted to a string, and put in parentheses if its priority (p_i) requires this. The resulting strings and their syntactic sugar (denoted by ... above) are joined to make a single string.

If an application ("c" $x_1 \ldots x_m$) has more arguments than the corresponding production, it is first split into (("c" $x_1 \ldots x_n$) $x_{n+1} \ldots x_m$). Applications with too few arguments or with non-constant head or without a corresponding production are printed as $f(x_1, \ldots, x_l)$ or $(\alpha_1, \ldots, \alpha_l)ty$. Multiple productions associated with some name c are tried in order of appearance. An occurrence of Variable x is simply printed as x.

Blanks are *not* inserted automatically. If blanks are required to separate tokens, specify them in the mixfix declaration, possibly preceded by a slash (/) to allow a line break.

5.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct connection between the concrete syntax and the underlying term. Sometimes we require a more elaborate concrete syntax, such as quantifiers and list notation. Isabelle's **macros** and **translation functions** can perform translations such as

```
ALL x:A.P \rightleftharpoons Ball(A, %x.P)
[x, y, z] \rightleftharpoons Cons(x, Cons(y, Cons(z, Nil)))
```

Translation functions (see §5.6) must be coded in ML; they are the most powerful translation mechanism but are difficult to read or write. Macros are specified by first-order rewriting systems that operate on abstract syntax trees. They are usually easy to read and write, and can express all but the most obscure translations.

Figure 5.4 defines a fragment of first-order logic and set theory. Theory SetSyntax declares constants for set comprehension (Collect), replacement (Replace) and bounded universal quantification (Ball). Each of these binds

¹This and the following theories are complete working examples, though they specify only syntax, no axioms. The file ZF/ZF.thy presents a full set theory definition, including many macro rules.

```
SetSyntax = Pure +
types
 iо
arities
 i, o :: logic
consts
                                            ("_" 5)
               :: o => prop
 Trueprop
  Collect
               :: [i, i => o] => i
 Replace
               :: [i, [i, i] => o] => i
 Ball
               :: [i, i => o] => o
syntax
  "@Collect"
                                            ("(1{_:_./ _})")
               :: [idt, i, o] => i
  "@Replace"
               :: [idt, idt, i, o] => i
                                           ("(1{_./ _:_, _})")
  "@Ball"
               :: [idt, i, o] => o
                                            ("(3ALL _:_./ _)" 10)
translations
  "\{x:A. P\}" == "Collect(A, \%x. P)"
  "\{y. x:A, Q\}" == "Replace(A, %x y. Q)"
  "ALL x:A. P" == "Ball(A, %x. P)"
end
```

Figure 5.4: Macro example: set theory

some variables. Without additional syntax we should have to write $\forall x \in A.P$ as Ball(A, %x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional productions that have mixfix declarations. Each non-copy production must specify some constant, which is used for building ASTs. The additional constants are decorated with @ to stress their purely syntactic purpose; they may not occur within the final well-typed terms, being declared as syntax rather than consts.

The translations cause the replacement of external forms by internal forms after parsing, and vice versa before printing of terms. As a specification of the set theory notation, they should be largely self-explanatory. The syntactic constants, <code>@Collect</code>, <code>@Replace</code> and <code>@Ball</code>, appear implicitly in the macro rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on ASTs, which have no inbuilt notion of bound variable. The macro variables \mathbf{x} and \mathbf{y} have type idt and therefore range over identifiers, in this case bound variables. The macro variables P and Q range over formulae containing bound variable occurrences.

Other applications of the macro system can be less straightforward, and there are peculiarities. The rest of this section will describe in detail how Isabelle macros are preprocessed and applied.

5.5.1 Specifying macros

Macros are basically rewrite rules on ASTs. But unlike other macro systems found in programming languages, Isabelle's macros work in both directions. Therefore a syntax contains two lists of rewrites: one for parsing and one for printing.

The translations section specifies macros. The syntax for a macro is

$$(root) string \begin{cases} = > \\ < = \\ = = \end{cases} (root) string$$

This specifies a parse rule (=>), a print rule (<=), or both (==). The two strings specify the left and right-hand sides of the macro rule. The (root) specification is optional; it specifies the nonterminal for parsing the string and if omitted defaults to logic. AST rewrite rules (l, r) must obey certain conditions:

- Rules must be left linear: l must not contain repeated variables.
- Every variable in r must also occur in l.

Macro rules may refer to any syntax from the parent theories. They may also refer to anything defined before the current translations section — including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse AST translations (see §5.1), but do not themselves undergo macro expansion. The lexer runs in a different mode that additionally accepts identifiers of the form $_letter\ quasiletter^*$ (like $_idt$, $_K$). Thus, a constant whose name starts with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule's AST are designated as constants for matching. These are all names that have been declared as classes, types or constants (logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a pair of ASTs. They can be viewed using print_syntax (sections parse_rules and print_rules). For theory SetSyntax of Fig. 5.4 these are

```
parse_rules:
    ("@Collect" x A P) -> ("Collect" A ("_abs" x P))
    ("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
    ("@Ball" x A P) -> ("Ball" A ("_abs" x P))
print_rules:
    ("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
    ("Replace" A ("_abs" x ("_abs" y Q))) -> ("@Replace" y x A Q)
    ("Ball" A ("_abs" x P)) -> ("@Ball" x A P)
```

Avoid choosing variable names that have previously been used as constants, types or type classes; the consts section in the output of print_syntax lists all such names. If a macro rule works incorrectly, inspect its internal form as shown above, recalling that constants appear as quoted strings and variables without quotes.

If eta_contract is set to true, terms will be η -contracted before the AST rewriter sees them. Thus some abstraction nodes needed for print rules to match may vanish. For example, Ball(A, %x. P(x)) contracts to Ball(A, P); the print rule does not apply and the output will be Ball(A, P). This problem would not occur if ML translation functions were used instead of macros (as is done for binder declarations).

Another trap concerns type constraints. If show_types is set to true, bound variables will be decorated by their meta types at the binding place (but not at occurrences in the body). Matching with Collect(A, %x. P) binds x to something like ("_constrain" y "i") rather than only y. AST rewriting will cause the constraint to appear in the external form, say {y::i:A::i. P::o}.

To allow such constraints to be re-read, your syntax should specify bound variables using the nonterminal idt. This is the case in our example. Choosing id instead of idt is a common error.

5.5.2 Applying rules

As a term is being parsed or printed, an AST is generated as an intermediate form (recall Fig. 5.1). The AST is normalised by applying macro rules in the manner of a traditional term rewriting system. We first examine how a single rule is applied.

Let t be the abstract syntax tree to be normalised and (l, r) some translation rule. A subtree u of t is a **redex** if it is an instance of l; in this case l is said to **match** u. A redex matched by l may be replaced by the corresponding instance of r, thus **rewriting** the AST t. Matching requires some notion of **place-holders** that may occur in rule patterns but not in ordinary ASTS; Variable atoms serve this purpose.

The matching of the object u by the pattern l is performed as follows:

- Every constant matches itself.
- Variable x in the object matches Constant x in the pattern. This point is discussed further below.
- Every AST in the object matches Variable x in the pattern, binding x to u.

- One application matches another if they have the same number of subtrees and corresponding subtrees match.
- In every other case, matching fails. In particular, Constant x can only match itself.

A successful match yields a substitution that is applied to r, generating the instance that replaces u.

The second case above may look odd. This is where Variables of non-rule ASTs behave like Constants. Recall that ASTs are not far removed from parse trees; at this level it is not yet known which identifiers will become constants, bounds, frees, types or classes. As §5.1 describes, former parse tree heads appear in ASTs as Constants, while the name tokens id, var, tid, tvar, num, xnum and xstr become Variables. On the other hand, when ASTs generated from terms for printing, all constants and type constructors become Constants; see §5.1. Thus ASTs may contain a messy mixture of Variables and Constants. This is insignificant at macro level because matching treats them alike.

Because of this behaviour, different kinds of atoms with the same name are indistinguishable, which may make some rules prone to misbehaviour. Example:

```
types
  Nil
consts
  Nil :: 'a list
syntax
  "[]" :: 'a list ("[]")
translations
  "[]" == "Nil"
```

The term Nil will be printed as [], just as expected. The term %Nil.t will be printed as %[].t, which might not be expected! Guess how type Nil is printed?

Normalizing an AST involves repeatedly applying macro rules until none are applicable. Macro rules are chosen in order of appearance in the theory definitions. You can watch the normalization of ASTs during parsing and printing by setting Syntax.trace_ast to true. The information displayed when tracing includes the AST before normalization (pre), redexes with results (rewrote), the normal form finally reached (post) and some statistics (normalize).

5.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a convenient notation for finite sets.

```
FinSyntax = SetSyntax +
types
  is
syntax
                                              ("_")
  11 11
                :: i => is
  "@Enum"
                :: [i, is] => is
                                              ("_,/ _")
consts
                                               ("{}")
  empty
                :: [i, i] => i
  insert
syntax
  "@Finset"
                                              ("{(_)}")
                :: is => i
translations
  "{x, xs}"
                == "insert(x, {xs})"
  "{x}"
                == "insert(x, {})"
end
```

Finite sets are internally built up by empty and insert. The declarations above specify {x, y, z} as the external representation of

```
insert(x, insert(y, insert(z, empty)))
```

The nonterminal symbol is stands for one or more objects of type i separated by commas. The mixfix declaration "_,/ _" allows a line break after the comma for pretty printing; if no line break is required then a space is printed instead.

The nonterminal is declared as the type is, but with no arities declaration. Hence is is not a logical type and may be used safely as a new nonterminal for custom syntax. The nonterminal is can later be re-used for other enumerations of type i like lists or tuples. If we had needed polymorphic enumerations, we could have used the predefined nonterminal symbol args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax {}, and insert without concrete syntax. The syntactic constant @Finset provides concrete syntax for enumerations of i enclosed in curly braces. Remember that a pair of parentheses, as in "{(_)}", specifies a block of indentation for pretty printing.

The translations may look strange at first. Macro rules are best understood in their internal forms:

```
parse_rules:
    ("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
    ("@Finset" x) -> ("insert" x "empty")
print_rules:
    ("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
    ("insert" x "empty") -> ("@Finset" x)
```

This shows that $\{x,xs\}$ indeed matches any set enumeration of at least two elements, binding the first to x and the rest to xs. Likewise, $\{xs\}$ and $\{x\}$ represent any set enumeration. The parse rules only work in the order given.

The AST rewriter cannot distinguish constants from variables and looks only for names of atoms. Thus the names of Constants occurring in the (internal) left-hand side of translation rules should be regarded as reserved words. Choose non-identifiers like @Finset or sufficiently long and strange names. If a bound variable's name gets rewritten, the result will be incorrect; for example, the term

```
%empty insert. insert(x, empty)
```

is incorrectly printed as %empty insert. {x}.

5.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the right-hand side. Something like "K(B)" => "x.B" is illegal; if allowed, it could cause variable capture. In such cases you usually must fall back on translation functions. But a trick can make things readable in some cases: calling translation functions by parse macros:

```
ProdSyntax = SetSyntax +
consts
                :: [i, i => i] => i
 Ρi
syntax
  "@PROD"
                :: [idt, i, i] => i
                                          ("(3PROD _:_./ _)" 10)
  "@->"
                                          ("(_ ->/ _)" [51, 50] 50)
                :: [i, i] => i
translations
  "PROD x:A. B" => "Pi(A, %x. B)"
  "A -> B"
                => "Pi(A, _K(B))"
end
MT.
  val print_translation = [("Pi", dependent_tr' ("@PROD", "@->"))];
```

Here Pi is a logical constant for constructing general products. Two external forms exist: the general case PROD x:A.B and the function space $A \rightarrow B$, which abbreviates Pi(A, %x.B) when B does not depend on x.

The second parse macro introduces _K(B), which later becomes %x.B due to a parse translation associated with _K. Unfortunately there is no such trick for printing, so we have to add a ML section for the print translation dependent_tr'.

Recall that identifiers with a leading _ are allowed in translation rules, but not in ordinary terms. Thus we can create ASTs containing names that are not directly expressible.

The parse translation for _K is already installed in Pure, and the function dependent_tr' is exported by the syntax module for public use. See §5.6 below for more of the arcane lore of translation functions.

5.6 Translation functions

This section describes the translation function mechanism. By writing ML functions, you can do almost everything to terms or ASTs during parsing and printing. The logic LK is a good example of sophisticated transformations between internal and external representations of sequents; here, macros would be useless.

A full understanding of translations requires some familiarity with Isabelle's internals, especially the datatypes term, typ, Syntax.ast and the encodings of types and terms as such at the various stages of the parsing or printing process. Most users should never need to use translation functions.

5.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two variants. Each such function is associated with a name, which triggers calls to it. Such names can be constants (logical or syntactic) or type constructors.

Function print_syntax displays the sets of names associated with the translation functions of a theory under parse_ast_translation, etc. You can add new ones via the ML section of a theory definition file. Even though the ML section is the very last part of the file, newly installed translation functions are already effective when processing all of the preceding sections.

The ML section's contents are simply copied verbatim near the beginning of the ML file generated from a theory definition file. Definitions made here are accessible as components of an ML structure; to make some parts private, use an ML local declaration. The ML code may install translation functions by declaring any of the following identifiers:

```
val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :
    (string * (bool -> typ -> term list -> term)) list
```

5.6.2 The translation strategy

The different kinds of translation functions are called during the transformations between parse trees, ASTs and terms (recall Fig. 5.1). Whenever a combination of the form ("c" $x_1 ldots x_n$) is encountered, and a translation function f of appropriate kind exists for c, the result is computed by the ML function call $f[x_1, \ldots, x_n]$.

For AST translations, the arguments x_1, \ldots, x_n are ASTs. A combination has the form Constant c or Appl [Constant c, x_1, \ldots, x_n]. For term translations, the arguments are terms and a combination has the form $\text{Const}(c,\tau)$ or $\text{Const}(c,\tau)$ \$ x_1 \$... \$ x_n . Terms allow more sophisticated transformations than ASTs do, typically involving abstractions and bound variables. Typed print translations may even peek at the type τ of the constant they are invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or ASTS, translation functions called during the parsing process differ from those for printing more fundamentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in translated form. The translations must not fail; exceptions trigger an error message. There may never be more than one function associated with any syntactic name.

Print translations are applied top-down. They are supplied with arguments that are partly still in internal form. The result again undergoes translation; therefore a print translation should not introduce as head the very constant that invoked it. The function may raise exception Match to indicate failure; in this event it has no effect. Multiple functions associated with some syntactic name are tried in an unspecified order.

Only constant atoms — constructor Constant for ASTs and Const for terms — can invoke translation functions. This causes another difference between parsing and printing.

Parsing starts with a string and the constants are not yet identified. Only parse tree heads create Constants in the resulting AST, as described in §5.2. Macros and parse AST translations may introduce further Constants. When the final AST is converted to a term, all Constants become Consts, as described in §5.3.

Printing starts with a well-typed term and all the constants are known. So all logical constants and type constructors may invoke print translations. These, and macros, may introduce further constants.

5.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 47) by examining the parse translation for _K and the print translation dependent_tr', which are both built-in. By convention, parse translations have names ending with _tr and print translations have names ending with _tr'. Search for such names in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

If k_tr is called with exactly one argument t, it creates a new Abs node with a body derived from t. Since terms given to parse translations are not yet typed, the type of the bound variable in the new Abs is simply dummyT. The function increments all Bound nodes referring to outer abstractions by calling incr_boundvars, a basic term manipulation function defined in Pure/term.ML.

Here is the print translation for dependent types:

```
fun dependent_tr' (q, r) (A :: Abs (x, T, B) :: ts) =
    if 0 mem (loose_bnos B) then
    let val (x', B') = Syntax.variant_abs' (x, dummyT, B) in
        list_comb
        (Const (q,dummyT) $
            Syntax.mark_boundT (x',T) $ A $ B', ts)
        end
    else list_comb (Const (r, dummyT) $ A $ B, ts)
    | dependent_tr' _ _ = raise Match;
```

The argument (q,r) is supplied to the curried function dependent_tr' by a partial application during its installation. For example, we could set up print translations for both Pi and Sigma by including

```
val print_translation =
  [("Pi", dependent_tr' ("@PROD", "@->")),
   ("Sigma", dependent_tr' ("@SUM", "@*"))];
```

within the ML section. The first of these transforms Pi(A, Abs(x, T, B)) into QPROD(x', A, B') or Q->(A, B), choosing the latter form if B does not de-

pend on x. It checks this using loose_bnos, yet another function from Pure/term.ML. Note that x' is a version of x renamed away from all names in B, and B' is the body B with Bound nodes referring to the Abs node replaced by Free(x', dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored, type constraints may be printed for some Frees and Vars if show_types is set to true. Variables of type dummyT are never printed with constraint, though. The line

```
let val (x', B') = Syntax.variant_abs' (x, dummyT, B);
```

replaces bound variable occurrences in B by the free variable x' with type dummyT. Only the binding occurrence of x' is given the correct type T, so this is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually represent bound variables. This is achieved by Syntax.variant_abs' and Syntax.mark_boundT above. Failing to do so may cause these names to be printed in the wrong style.

Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports several kinds of equality reasoning. **Substitution** means replacing free occurrences of t by u in a subgoal. This is easily done, given an equality t=u, provided the logic possesses the appropriate rule. The tactic hyp_subst_tac performs substitution even in the assumptions. But it works via object-level implication, and therefore must be specially set up for each suitable object-logic.

Substitution should not be confused with object-level **rewriting**. Given equalities of the form t=u, rewriting replaces instances of t by corresponding instances of u, and continues until it reaches a normal form. Substitution handles 'one-off' replacements by particular equalities while rewriting handles general equations. Chapter 7 discusses Isabelle's rewriting tactics.

6.1 Substitution rules

Many logics include a substitution rule of the form

$$[?a = ?b; ?P(?a)] \Longrightarrow ?P(?b)$$
 (subst)

In backward proof, this may seem difficult to use: the conclusion P(b) admits far too many unifiers. But, if the theorem eqth asserts t = u, then eqth RS subst is the derived rule

$$?P(t) \Longrightarrow ?P(u).$$

Provided u is not an unknown, resolution with this rule is well-behaved.¹ To replace u by t in subgoal i, use

resolve_tac [eqth RS subst] i.

To replace t by u in subgoal i, use

¹Unifying ?P(u) with a formula Q expresses Q in terms of its dependence upon u. There are still 2^k unifiers, if Q has k occurrences of u, but Isabelle ensures that the first unifier includes all the occurrences.

resolve_tac [eqth RS ssubst] i,

where ssubst is the 'swapped' substitution rule

$$[?a = ?b; ?P(?b)] \Longrightarrow ?P(?a).$$
 (ssubst)

If sym denotes the symmetry rule $?a = ?b \implies ?b = ?a$, then ssubst is just sym RS subst. Many logics with equality include the rules subst and ssubst, as well as refl, sym and trans (for the usual equality laws). Examples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form t=u. To replace u by t or t by u in subgoal i, use

```
eresolve_tac [subst] i or eresolve_tac [ssubst] i.
```

Logics HOL, FOL and ZF define the tactic stac by

fun stac eqth = CHANGED o rtac (eqth RS ssubst);

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valuable property of failing if the substitution has no effect.

6.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the assumptions. This can be inconvenient. Consider proving the subgoal

$$\llbracket c = a; c = b \rrbracket \Longrightarrow a = b.$$

Calling eresolve_tac [ssubst] i simply discards the assumption c = a, since c does not occur in a = b. Of course, we can work out a solution. First apply eresolve_tac [subst] i, replacing a by c:

$$c = b \Longrightarrow c = b$$

Equality reasoning can be difficult, but this trivial proof requires nothing more sophisticated than substitution in the assumptions. Object-logics that include the rule (subst) provide tactics for this purpose:

hyp_subst_tac : int -> tactic bound_hyp_subst_tac : int -> tactic

hyp_subst_tac i selects an equality assumption of the form t = u or u = t, where t is a free variable or parameter. Deleting this assumption, it replaces t by u throughout subgoal i, including the other assumptions.

bound_hyp_subst_tac i is similar but only substitutes for parameters (bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution for constants is usually unhelpful, since they may appear in other theorems. For instance, the best way to use the assumption 0 = 1 is to contradict a theorem that states $0 \neq 1$, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as 2x = 0, is a bad idea: we might prove the subgoal more easily by instantiating 2x to 1. Substitution for free variables is unhelpful if they appear in the premises of a rule being derived: the substitution affects object-level assumptions, not meta-level assumptions. For instance, replacing a by b could make the premise P(a) worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively, call cut_facts_tac to insert the atomic premises as object-level assumptions.

6.3 Setting up the package

Many Isabelle object-logics, such as FOL, HOL and their descendants, come with hyp_subst_tac already defined. A few others, such as CTT, do not support this tactic because they lack the rule (subst). When defining a new logic that includes a substitution rule and implication, you must set up hyp_subst_tac yourself. It is packaged as the ML functor HypsubstFun, which takes the argument signature HYPSUBST_DATA:

```
signature HYPSUBST_DATA =
  structure Simplifier : SIMPLIFIER
 val dest_Trueprop : term -> term
 val dest_eq
                    : term -> (term*term)*typ
                   : term -> term*term
 val dest_imp
 val eq_reflection : thm
                                 (* a=b ==> a==b *)
                                  (* a==b ==> a=b *)
 val rev_eq_reflection: thm
                                  (*(P ==> Q) ==> P-->Q *)
 val imp_intr : thm
                                  (* [| P; P-->Q |] ==> Q *)
 val rev_mp
                    : thm
 val subst
                    : thm
                                  (* [| a=b; P(a) |] ==> P(b) *)
                                  (* a=b ==> b=a *)
                    : thm
 val sym
 val thin_refl
                    : thm
                                  (* [|x=x; P|] ==> P *)
  end;
```

Thus, the functor requires the following items:

Simplifier should be an instance of the simplifier (see Chapter 7).

- $dest_Trueprop$ should coerce a meta-level formula to the corresponding object-level one. Typically, it should return P when applied to the term Trueprop P (see example below).
- dest_eq should return the triple ((t, u), T), where T is the type of t and u, when applied to the ML term that represents t = u. For other terms, it should raise an exception.
- dest_imp should return the pair (P, Q) when applied to the ML term that represents the implication $P \to Q$. For other terms, it should raise an exception.

eq_reflection is the theorem discussed in $\S7.6$.

rev_eq_reflection is the reverse of eq_reflection.

imp_intr should be the implies introduction rule $(?P \Longrightarrow ?Q) \Longrightarrow ?P \to ?Q$.

rev_mp should be the 'reversed' implies elimination rule $[P; P \rightarrow P] \Longrightarrow PQ$.

subst should be the substitution rule $[?a = ?b; ?P(?a)] \Longrightarrow ?P(?b)$.

sym should be the symmetry rule $?a = ?b \Longrightarrow ?b = ?a$.

thin_refl should be the rule $[?a = ?a; ?P] \implies ?P$, which is used to erase trivial equalities.

The functor resides in file Provers/hypsubst.ML in the Isabelle distribution directory. It is not sensitive to the precise formalization of the object-logic. It is not concerned with the names of the equality and implication symbols, or the types of formula and terms.

Coding the functions dest_Trueprop, dest_eq and dest_imp requires knowledge of Isabelle's representation of terms. For FOL, they are declared by

```
fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
    | dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);
fun dest_eq (Const("op =",T) $ t $ u) = ((t, u), domain_type T)
fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
    | dest_imp t = raise TERM ("dest_imp", [t]);
```

Recall that Trueprop is the coercion from type o to type prop, while op = is the internal name of the infix operator =. Function domain_type, given the

function type $S \Rightarrow T$, returns the type S. Pattern-matching expresses the function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suitable equality assumption, possibly re-orienting it using sym. Then it moves other assumptions into the conclusion of the goal, by repeatedly calling etac rev_mp. Then, it uses asm_full_simp_tac or ssubst to substitute throughout the subgoal. (If the equality involves unknowns then it must use ssubst.) Then, it deletes the equality. Finally, it moves the assumptions back to their original positions by calling resolve_tac[imp_intr].

Simplification

This chapter describes Isabelle's generic simplification package. It performs conditional and unconditional rewriting and uses contextual information ('local assumptions'). It provides several general hooks, which can provide automatic case splits during rewriting, for example. The simplifier is already set up for many of Isabelle's logics: FOL, ZF, HOL, HOLCF.

The first section is a quick introduction to the simplifier that should be sufficient to get started. The later sections explain more advanced features.

7.1 Simplification for dummies

Basic use of the simplifier is particularly easy because each theory is equipped with sensible default information controlling the rewrite process — namely the implicit *current simpset*. A suite of simple commands is provided that refer to the implicit simpset of the current theory context.

Make sure that you are working within the correct theory context. Executing proofs interactively, or loading them from ML files without associated theories may require setting the current theory manually via the context command.

7.1.1 Simplification tactics

Simp_tac : int -> tactic

Asm_simp_tac : int -> tactic

Full_simp_tac : int -> tactic

Asm_full_simp_tac : int -> tactic

trace_simp : bool ref initially false

debug_simp : bool ref initially false

Simp_tac i simplifies subgoal i using the current simpset. It may solve the subgoal completely if it has become trivial, using the simpset's solver tactic.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from the local assumptions.

- Full_simp_tac is like Simp_tac, but also simplifies the assumptions (without using the assumptions to simplify each other or the actual goal).
- Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assumptions. In particular, assumptions can simplify each other. ¹
- set trace_simp; makes the simplifier output internal operations. This includes rewrite steps, but also bookkeeping like modifications of the simpset.
- set debug_simp; makes the simplifier output some extra information about internal operations. This includes any attempted invocation of simplification procedures.

As an example, consider the theory of arithmetic in HOL. The (rather trivial) goal 0+(x+0)=x+0+0 can be solved by a single call of Simp_tac as follows:

```
context Arith.thy;
Goal "0 + (x + 0) = x + 0 + 0";
   1. 0 + (x + 0) = x + 0 + 0
by (Simp_tac 1);
   Level 1
   0 + (x + 0) = x + 0 + 0
   No subgoals!
```

The simplifier uses the current simpset of Arith.thy, which contains suitable theorems like n + 0 = n and n + n = n.

In many cases, assumptions of a subgoal are also needed in the simplification process. For example, x = 0 ==> x + x = 0 is solved by Asm_simp_tac as follows:

```
1. x = 0 ==> x + x = 0
by (Asm_simp_tac 1);
```

Asm_full_simp_tac is the most powerful of this quartet of tactics but may also loop where some of the others terminate. For example,

```
1. ALL x. f x = g (f (g x)) ==> f 0 = f 0 + 0
```

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop because the rewrite rule f ?x = g(f(g?x)) extracted from the assumption does

¹Asm_full_simp_tac used to process the assumptions from left to right. For backwards compatibilty reasons only there is now Asm_lr_simp_tac that behaves like the old Asm_full_simp_tac.

not terminate. Isabelle notices certain simple forms of nontermination, but not this one. Because assumptions may simplify each other, there can be very subtle cases of nontermination. For example, invoking Asm_full_simp_tac on

1.
$$[| P (f x); y = x; f x = f y |] ==> Q$$

gives rise to the infinite reduction sequence

$$P(f x) \stackrel{f x=f y}{\longmapsto} P(f y) \stackrel{y=x}{\longmapsto} P(f x) \stackrel{f x=f y}{\longmapsto} \cdots$$

whereas applying the same tactic to

1.
$$[| y = x; f x = f y; P (f x) |] ==> Q$$

terminates.

Using the simplifier effectively may take a bit of experimentation. Set the trace_simp flag to get a better idea of what is going on. The resulting output can be enormous, especially since invocations of the simplifier are often nested (e.g. when solving conditions of rewrite rules).

7.1.2 Modifying the current simpset

Addsimps : thm list -> unit
Delsimps : thm list -> unit
Addsimprocs : simproc list -> unit
Delsimprocs : simproc list -> unit
Addcongs : thm list -> unit
Delcongs : thm list -> unit
Addsplits : thm list -> unit
Delsplits : thm list -> unit

Depending on the theory context, the Add and Del functions manipulate basic components of the associated current simpset. Internally, all rewrite rules have to be expressed as (conditional) meta-equalities. This form is derived automatically from object-level equations that are supplied by the user. Another source of rewrite rules are *simplification procedures*, that is ML functions that produce suitable theorems on demand, depending on the current redex. Congruences are a more advanced feature; see §7.2.4.

Addsimps thms; adds rewrite rules derived from thms to the current simpset.

Delsimps thms; deletes rewrite rules derived from thms from the current simpset.

Addsimprocs procs; adds simplification procedures procs to the current simpset.

Delsimprocs *procs*; deletes simplification procedures *procs* from the current simpset.

Addcongs thms; adds congruence rules to the current simpset.

Delcongs thms; deletes congruence rules from the current simpset.

Addsplits thms; adds splitting rules to the current simpset.

Delsplits thms; deletes splitting rules from the current simpset.

When a new theory is built, its implicit simpset is initialized by the union of the respective simpsets of its parent theories. In addition, certain theory definition constructs (e.g. datatype and primrec in HOL) implicitly augment the current simpset. Ordinary definitions are not added automatically!

It is up the user to manipulate the current simpset further by explicitly adding or deleting theorems and simplification procedures.

Good simpsets are hard to design. Rules that obviously simplify, like n + 0 = n, should be added to the current simpset right after they have been proved. More specific ones (such as distributive laws, which duplicate subterms) should be added only for specific proofs and deleted afterwards. Conversely, sometimes a rule needs to be removed for a certain proof and restored afterwards. The need of frequent additions or deletions may indicate a badly designed simpset.

The union of the parent simpsets (as described above) is not always a good starting point for the new theory. If some ancestors have deleted simplification rules because they are no longer wanted, while others have left those rules in, then the union will contain the unwanted rules. After this union is formed, changes to a parent simpset have no effect on the child simpset.

7.2 Simplification sets

The simplifier is controlled by information contained in **simpsets**. These consist of several components, including rewrite rules, simplification procedures, congruence rules, and the subgoaler, solver and looper tactics. The simplifier should be set up with sensible defaults so that most simplifier calls specify only rewrite rules or simplification procedures. Experienced users can exploit the other components to streamline proofs in more sophisticated manners.

7.2.1 Inspecting simpsets

print_ss ss; displays the printable contents of simpset ss. This includes the rewrite rules and congruences in their internal form expressed as meta-equalities. The names of the simplification procedures and the patterns they are invoked on are also shown. The other parts, functions and tactics, are non-printable.

rep_ss ss; decomposes ss as a record of its internal components, namely the meta simpset, the subgoaler, the loop, and the safe and unsafe solvers.

7.2.2 Building simpsets

```
empty_ss : simpset
merge_ss : simpset * simpset -> simpset
```

empty_ss is the empty simpset. This is not very useful under normal circumstances because it doesn't contain suitable tactics (subgoaler etc.). When setting up the simplifier for a particular object-logic, one will typically define a more appropriate "almost empty" simpset. For example, in HOL this is called HOL_basic_ss.

merge_ss (ss_1 , ss_2) merges simpsets ss_1 and ss_2 by building the union of their respective rewrite rules, simplification procedures and congruences. The other components (tactics etc.) cannot be merged, though; they are taken from either simpset².

7.2.3 Rewrite rules

```
addsimps : simpset * thm list -> simpset
delsimps : simpset * thm list -> simpset
infix 4
```

 $^{^{2}}$ Actually from ss_{1} , but it would unwise to count on that.

Rewrite rules are theorems expressing some form of equality, for example:

$$Suc(?m) + ?n = ?m + Suc(?n)$$

 $?P \land ?P \leftrightarrow ?P$
 $?A \cup ?B \equiv \{x \cdot x \in ?A \lor x \in ?B\}$

Conditional rewrites such as $?m < ?n \Longrightarrow ?m/?n = 0$ are also permitted; the conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems with conclusion $lhs \equiv rhs$. Each simpset contains a function for extracting equalities from arbitrary theorems. For example, $\neg(?x \in \{\})$ could be turned into $?x \in \{\} \equiv False$. This function can be installed using setmksimps but only the definer of a logic should need to do this; see §7.6.2. The function processes theorems added by addsimps as well as local assumptions.

ss addsimps thms adds rewrite rules derived from thms to the simpset ss.

ss delsimps thms deletes rewrite rules derived from thms from the simpset ss.

The simplifier will accept all standard rewrite rules: those where all unknowns are of base type. Hence ?i + (?j + ?k) = (?i + ?j) + ?k is OK.

It will also deal gracefully with all rules whose left-hand sides are so-called higher-order patterns [7]. These are terms in β -normal form (this will always be the case unless you have done something strange) where each occurrence of an unknown is of the form $?F(x_1, \ldots, x_n)$, where the x_i are distinct bound variables. Hence $(\forall x.?P(x) \land ?Q(x)) \leftrightarrow (\forall x.?P(x)) \land (\forall x.?Q(x))$ is also OK, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for example $?f(?x) \in range(?f) = True$ rewrites $g(a) \in range(g)$ to True, but will fail to match $g(h(b)) \in range(\lambda x \cdot g(h(x)))$. However, you can replace the offending subterms (in our case ?f(?x), which is not a pattern) by adding new variables and conditions: $?y = ?f(?x) \Longrightarrow ?y \in range(?f) = True$ is acceptable as a conditional rewrite rule since conditions can be arbitrary terms.

There is basically no restriction on the form of the right-hand sides. They may not contain extraneous term or type variables, though.

7.2.4 *Congruence rules

addcor	ngs	:	simpset	*	thm	list	->	simpset	i	nfix 4
delcor	ngs	:	simpset	*	thm	list	->	simpset	i	nfix 4
addeq	congs	:	simpset	*	thm	list	->	simpset	i	nfix 4
deleq	congs	:	simpset	*	thm	list	->	simpset	i	nfix 4

Congruence rules are meta-equalities of the form

$$\ldots \Longrightarrow f(?x_1,\ldots,?x_n) \equiv f(?y_1,\ldots,?y_n).$$

This governs the simplification of the arguments of f. For example, some arguments can be simplified under additional assumptions:

$$[P_1 \leftrightarrow P_2] \leftrightarrow P_2 \leftrightarrow P_2 \leftrightarrow P_2 \implies (P_1 \rightarrow P_2) \equiv (P_1 \rightarrow P_2) \equiv (P_2 \rightarrow P_2)$$

Given this rule, the simplifier assumes Q_1 and extracts rewrite rules from it when simplifying P_2 . Such local assumptions are effective for rewriting formulae such as $x = 0 \rightarrow y + x = y$. The local assumptions are also provided as theorems to the solver; see § 7.2.6 below.

- ss addcongs thms adds congruence rules to the simpset ss. These are derived from thms in an appropriate way, depending on the underlying object-logic.
- ss delcongs thms deletes congruence rules derived from thms.
- ss addeqcongs thms adds congruence rules in their internal form (conclusions using meta-equality) to simpset ss. This is the basic mechanism that addcongs is built on. It should be rarely used directly.
- ss deleqcongs thms deletes congruence rules in internal form from simpset ss.

Here are some more examples. The congruence rule for bounded quantifiers also supplies contextual information, this time about the bound variable:

$$[?A = ?B; \bigwedge x \cdot x \in ?B \Longrightarrow ?P(x) = ?Q(x)] \Longrightarrow (\forall x \in ?A \cdot ?P(x)) = (\forall x \in ?B \cdot ?Q(x))$$

The congruence rule for conditional expressions can supply contextual information for simplifying the arms:

$$[?p = ?q; ?q \Longrightarrow ?a = ?c; \neg ?q \Longrightarrow ?b = ?d] \Longrightarrow if(?p, ?a, ?b) \equiv if(?q, ?c, ?d)$$

A congruence rule can also *prevent* simplification of some arguments. Here is an alternative congruence rule for conditional expressions:

$$?p = ?q \Longrightarrow if(?p, ?a, ?b) \equiv if(?q, ?a, ?b)$$

Only the first argument is simplified; the others remain unchanged. This can make simplification much faster, but may require an extra case split to prove the goal.

7.2.5 *The subgoaler

The subgoaler is the tactic used to solve subgoals arising out of conditional rewrite rules or congruence rules. The default should be simplification itself. Occasionally this strategy needs to be changed. For example, if the premise of a conditional rule is an instance of its conclusion, as in $Suc(?m) < ?n \implies ?m < ?n$, the default strategy could loop.

ss setsubgoaler tacf sets the subgoaler of ss to tacf. The function tacf will be applied to the current simplifier context expressed as a simpset.

prems_of_ss ss retrieves the current set of premises from simplifier context ss. This may be non-empty only if the simplifier has been told to utilize local assumptions in the first place, e.g. if invoked via asm_simp_tac.

As an example, consider the following subgoaler:

```
fun subgoaler ss =
   assume_tac ORELSE'
   resolve_tac (prems_of_ss ss) ORELSE'
   asm_simp_tac ss;
```

This tactic first tries to solve the subgoal by assumption or by resolving with with one of the premises, calling simplification only if that fails.

7.2.6 *The solver

```
mk_solver : string -> (thm list -> int -> tactic) -> solver
setSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
setSSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
```

A solver is a tactic that attempts to solve a subgoal after simplification. Typically it just proves trivial subgoals such as True and t = t. It could

use sophisticated means such as blast_tac, though that could make simplification expensive. To keep things more abstract, solvers are packaged up in type solver. The only way to create a solver is via mk_solver.

Rewriting does not instantiate unknowns. For example, rewriting cannot prove $a \in A$ since this requires instantiating A. The solver, however, is an arbitrary tactic and may instantiate unknowns as it pleases. This is the only way the simplifier can handle a conditional rewrite rule whose condition contains extra variables. When a simplification tactic is to be combined with other provers, especially with the classical reasoner, it is important whether it can be considered safe or not. For this reason a simpset contains two solvers, a safe and an unsafe one.

The standard simplification strategy solely uses the unsafe solver, which is appropriate in most cases. For special applications where the simplification process is not allowed to instantiate unknowns within the goal, simplification starts with the safe solver, but may still apply the ordinary unsafe one in nested simplifications for conditional rules or congruences. Note that in this way the overall tactic is not totally safe: it may instantiate unknowns that appear also in other subgoals.

 $mk_solver \ s \ tacf$ converts tacf into a new solver; the string s is only attached as a comment and has no other significance.

- ss setSSolver tacf installs tacf as the safe solver of ss.
- ss addSSolver tacf adds tacf as an additional safe solver; it will be tried after the solvers which had already been present in ss.
- ss setSolver tacf installs tacf as the unsafe solver of ss.
- ss addSolver tacf adds tacf as an additional unsafe solver; it will be tried after the solvers which had already been present in ss.

The solver tactic is invoked with a list of theorems, namely assumptions that hold in the local context. This may be non-empty only if the simplifier has been told to utilize local assumptions in the first place, e.g. if invoked via asm_simp_tac. The solver is also presented the full goal including its assumptions in any case. Thus it can use these (e.g. by calling assume_tac), even if the list of premises is not passed.

As explained in §7.2.5, the subgoaler is also used to solve the premises of congruence rules. These are usually of the form s = ?x, where s needs to be simplified and ?x needs to be instantiated with the result. Typically, the subgoaler will invoke the simplifier at some point, which will eventually call

the solver. For this reason, solver tactics must be prepared to solve goals of the form t = 2x, usually by reflexivity. In particular, reflexivity should be tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer an equality. For example $False \leftrightarrow ?Q$ could be rewritten to $\neg ?Q$. To cover this case, the solver could try resolving with the theorem $\neg False$.

If a premise of a congruence rule cannot be proved, then the congruence is ignored. This should only happen if the rule is conditional — that is, contains premises not of the form t = 2x; otherwise it indicates that some congruence rule, or possibly the subgoaler or solver, is faulty.

7.2.7 *The looper

```
setloop : simpset * (int -> tactic) -> simpset infix 4
addloop : simpset * (string * (int -> tactic)) -> simpset infix 4
delloop : simpset * string -> simpset infix 4
addsplits : simpset * thm list -> simpset infix 4
delsplits : simpset * thm list -> simpset infix 4
```

The looper is a list of tactics that are applied after simplification, in case the solver failed to solve the simplified goal. If the looper succeeds, the simplification process is started all over again. Each of the subgoals generated by the looper is attacked in turn, in reverse order.

A typical looper is: the expansion of a conditional. Another possibility is to apply an elimination rule on the assumptions. More adventurous loopers could start an induction.

- ss setloop tacf installs tacf as the only looper tactic of ss.
- ss addloop (name, tacf) adds tacf as an additional looper tactic with name name; it will be tried after the looper tactics that had already been present in ss.
- ss delloop name deletes the looper tactic name from ss.
- ss addsplits thms adds split tactics for thms as additional looper tactics of ss.
- ss addsplits thms deletes the split tactics for thms from the looper tactics of ss.

The splitter replaces applications of a given function; the right-hand side of the replacement can be anything. For example, here is a splitting rule for conditional expressions:

$$?P(if(?Q,?x,?y)) \leftrightarrow (?Q \rightarrow ?P(?x)) \land (\neg?Q \rightarrow ?P(?y))$$

Another example is the elimination operator for Cartesian products (which happens to be called *split*):

```
?P(split(?f,?p)) \leftrightarrow (\forall a \ b \ . ?p = \langle a,b \rangle \rightarrow ?P(?f(a,b)))
```

For technical reasons, there is a distinction between case splitting in the conclusion and in the premises of a subgoal. The former is done by split_tac with rules like split_if or option.split, which do not split the subgoal, while the latter is done by split_asm_tac with rules like split_if_asm or option.split_asm, which split the subgoal. The operator addsplits automatically takes care of which tactic to call, analyzing the form of the rules given as argument.

Due to split_asm_tac, the simplifier may split subgoals!

Case splits should be allowed only when necessary; they are expensive and hard to control. Here is an example of use, where **split_if** is the first rule above:

Users would usually prefer the following shortcut using addsplits:

```
by (simp_tac (simpset() addsplits [split_if]) 1);
```

Case-splitting on conditional expressions is usually beneficial, so it is enabled by default in the object-logics HOL and FOL.

7.3 The simplification tactics

generic_simp_tac is the basic tactic that is underlying any actual simplification work. The others are just instantiations of it. The rewriting

strategy is always strictly bottom up, except for congruence rules, which are applied while descending into a term. Conditions in conditional rewrite rules are solved recursively before the rewrite rule is applied.

generic_simp_tac safe (simp_asm, use_asm, mutual) gives direct access to the various simplification modes:

- if safe is true, the safe solver is used as explained in §7.2.6,
- $simp_asm$ determines whether the local assumptions are simplified,
- use_asm determines whether the assumptions are used as local rewrite rules, and
- *mutual* determines whether assumptions can simplify each other rather than being processed from left to right.

This generic interface is intended for building special tools, e.g. for combining the simplifier with the classical reasoner. It is rarely used directly.

simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac are the basic simplification tactics that work exactly like their namesakes in §7.1, except that they are explicitly supplied with a simpset.

Local modifications of simpsets within a proof are often much cleaner by using above tactics in conjunction with explicit simpsets, rather than their capitalized counterparts. For example

```
Addsimps thms; by (Simp_tac i); Delsimps thms;
```

can be expressed more appropriately as

```
by (simp_tac (simpset() addsimps thms) i);
```

Also note that functions depending implicitly on the current theory context (like capital Simp_tac and the other commands of §7.1) should be considered harmful outside of actual proof scripts. In particular, ML programs like theory definition packages or special tactics should refer to simpsets only explicitly, via the above tactics used in conjunction with simpset_of or the SIMPSET tacticals.

7.4 Forward rules and conversions

```
simplify : simpset -> thm -> thm
asm_simplify : simpset -> thm -> thm
full_simplify : simpset -> thm -> thm
asm_full_simplify : simpset -> thm -> thm

Simplifier.rewrite : simpset -> cterm -> thm
Simplifier.asm_rewrite : simpset -> cterm -> thm
Simplifier.full_rewrite : simpset -> cterm -> thm
Simplifier.asm_full_rewrite : simpset -> cterm -> thm
```

The first four of these functions provide forward rules for simplification. Their effect is analogous to the corresponding tactics described in $\S7.3$, but affect the whole theorem instead of just a certain subgoal. Also note that the looper / solver process as described in $\S7.2.7$ and $\S7.2.6$ is omitted in forward simplification.

The latter four are *conversions*, establishing proven equations of the form $t \equiv u$ where the l.h.s. t has been given as argument.

Forward simplification rules and conversions should be used rarely in ordinary proof scripts. The main intention is to provide an internal interface to the simplifier for special utilities.

7.5 Permutative rewrite rules

A rewrite rule is **permutative** if the left-hand side and right-hand side are the same up to renaming of variables. The most common permutative rule is commutativity: x+y=y+x. Other examples include (x-y)-z=(x-z)-y in arithmetic and insert(x,insert(y,A))=insert(y,insert(x,A)) for sets. Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs a special strategy, called **ordered rewriting**. There is a standard lexicographic ordering on terms. This should be perfectly OK in most cases, but can be changed for special applications.

```
settermless : simpset * (term * term -> bool) -> simpset infix 4
```

ss settermless rel installs relation rel as term order in simpset ss.

A permutative rewrite rule is applied only if it decreases the given term with respect to this ordering. For example, commutativity rewrites b + a to

a+b, but then stops because a+b is strictly less than b+a. The Boyer-Moore theorem prover [2] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite rules; the simplifier recognizes their special status automatically. They are most effective in the case of associative-commutative operators. (Associativity by itself is not permutative.) When dealing with an AC-operator f, keep the following points in mind:

- The associative law must always be oriented from left to right, namely f(f(x,y),z) = f(x,f(y,z)). The opposite orientation, if used with commutativity, leads to looping in conjunction with the standard term order.
- To complete your set of rewrite rules, you must add not just associativity (A) and commutativity (C) but also a derived rule, **left-commutativity** (LC): f(x, f(y, z)) = f(y, f(x, z)).

Ordered rewriting with the combination of A, C, and LC sorts a term lexicographically:

$$(b+c) + a \xrightarrow{A} b + (c+a) \xrightarrow{C} b + (a+c) \xrightarrow{LC} a + (b+c)$$

Martin and Nipkow [6] discuss the theory and give many examples; other algebraic structures are amenable to ordered rewriting, such as boolean rings.

7.5.1 Example: sums of natural numbers

This example is again set in HOL (see $\mathtt{HOL/ex/NatSum}$). Theory Arith contains natural numbers arithmetic. Its associated simpset contains many arithmetic laws including distributivity of \times over +, while $\mathtt{add_ac}$ is a list consisting of the A, C and LC laws for + on type \mathtt{nat} . Let us prove the theorem

$$\sum_{i=1}^{n} i = n \times (n+1)/2.$$

A functional sum represents the summation operator under the interpretation $\sup f(n+1) = \sum_{i=0}^{n} f(i)$. We extend Arith as follows:

```
NatSum = Arith +
consts sum          :: [nat=>nat, nat] => nat
primrec
    "sum f 0 = 0"
    "sum f (Suc n) = f(n) + sum f n"
end
```

The primrec declaration automatically adds rewrite rules for sum to the default simpset. We now remove the nat_cancel simplification procedures

(in order not to spoil the example) and insert the AC-rules for +:

```
Delsimprocs nat_cancel;
Addsimps add_ac;
```

Our desired theorem now reads $sum(\lambda i \cdot i)(n+1) = n \times (n+1)/2$. The Isabelle goal has both sides multiplied by 2:

```
Goal "2 * sum (%i.i) (Suc n) = n * Suc n";
Level 0
2 * sum (%i. i) (Suc n) = n * Suc n
1. 2 * sum (%i. i) (Suc n) = n * Suc n
```

Induction should not be applied until the goal is in the simplest form:

```
by (Simp_tac 1);
  Level 1
  2 * sum (%i. i) (Suc n) = n * Suc n
  1. n + (sum (%i. i) n + sum (%i. i) n) = n * n
```

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is now ready for induction:

Simplification proves both subgoals immediately:

```
by (ALLGOALS Asm_simp_tac);
  Level 3
  2 * sum (%i. i) (Suc n) = n * Suc n
  No subgoals!
```

Simplification cannot prove the induction step if we omit add_ac from the simpset. Observe that like terms have not been collected:

```
Level 3

2 * sum (\%i. i) (Suc n) = n * Suc n

1. !!n. n + sum (\%i. i) n + (n + sum (\%i. i) n) = n + n * n

=> n + (n + sum (\%i. i) n) + (n + (n + sum (\%i. i) n)) = n + (n + (n + n * n))
```

Ordered rewriting proves this by sorting the left-hand side. Proving arithmetic theorems without ordered rewriting requires explicit use of commutativity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving $\sum_{i=1}^{n} i^3 = n^2 \times (n+1)^2/4$.

7.5.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equations:

This is frequently useful. Assumptions of the form s=t, where t occurs in the conclusion but not s, can often be brought into the right form. For example, ordered rewriting with symmetry can prove the goal

$$f(a) = b \wedge f(a) = c \rightarrow b = c.$$

Here symmetry reverses both f(a) = b and f(a) = c because f(a) is lexicographically greater than b and c. These re-oriented equations, as rewrite rules, replace b and c in the conclusion by f(a).

Another example is the goal $\neg(t=u) \rightarrow \neg(u=t)$. The differing orientations make this appear difficult to prove. Ordered rewriting with symmetry makes the equalities agree. (Without knowing more about t and u we cannot say whether they both go to t=u or u=t.) Then the simplifier can prove the goal outright.

7.6 *Setting up the Simplifier

Setting up the simplifier for new logics is complicated in the general case. This section describes how the simplifier is installed for intuitionistic first-order logic; the code is largely taken from FOL/simpdata.ML of the Isabelle sources.

The case splitting tactic, which resides on a separate files, is not part of Pure Isabelle. It needs to be loaded explicitly by the object-logic as follows (below ~~ refers to \$ISABELLE_HOME):

```
use "~~/src/Provers/splitter.ML";
```

Simplification requires converting object-equalities to meta-level rewrite rules. This demands rules stating that equal terms and equivalent formulae are also equal at the meta-level. The rule declaration part of the file FOL/IFOL.thy contains the two lines

```
eq_reflection "(x=y) ==> (x==y)" iff_reflection "(P<->Q) ==> (P==Q)"
```

Of course, you should only assert such rules if they are true for your particular logic. In Constructive Type Theory, equality is a ternary relation of

the form $a = b \in A$; the type A determines the meaning of the equality essentially as a partial equivalence relation. The present simplifier cannot be used. Rewriting in CTT uses another simplifier, which resides in the file Provers/typedsimp.ML and is not documented. Even this does not work for later variants of Constructive Type Theory that use intensional equality [8].

7.6.1 A collection of standard rewrite rules

We first prove lots of standard rewrite rules about the logical connectives. These include cancellation and associative laws. We define a function that echoes the desired law and then supplies it the prover for intuitionistic FOL:

The following rewrite rules about conjunction are a selection of those proved on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

The file also proves some distributive laws. As they can cause exponential blowup, they will not be included in the standard simpset. Instead they are merely bound to an ML identifier, for user reference.

```
val distrib_simps = map int_prove_fun
["P & (Q | R) <-> P&Q | P&R",
    "(Q | R) & P <-> Q&P | R&P",
    "(P | Q --> R) <-> (P --> R) & (Q --> R)"];
```

7.6.2 Functions for preprocessing the rewrite rules

```
setmksimps : simpset * (thm -> thm list) -> simpset infix 4
```

The next step is to define the function for preprocessing rewrite rules. This will be installed by calling setmksimps below. Preprocessing occurs whenever rewrite rules are added, whether by user command or automatically. Preprocessing involves extracting atomic rewrites at the object-level, then reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the front of the given theorem.

The function atomize analyses a theorem in order to extract atomic rewrite rules. The head of all the patterns, matched by the wildcard _, is the coercion function Trueprop.

There are several cases, depending upon the form of the conclusion:

- Conjunction: extract rewrites from both conjuncts.
- Implication: convert $P \to Q$ to the meta-implication $P \Longrightarrow Q$ and extract rewrites from Q; these will be conditional rewrites with the condition P.
- Universal quantification: remove the quantifier, replacing the bound variable by a schematic variable, and extract rewrites from the body.
- True and False contain no useful rewrites.
- Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic — they could be disjunctive, for example — but are broken down as much as possible. See the file ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into rewrite rules.

For standard situations like the above, there is a generic auxiliary function mk_atomize that takes a list of pairs (name, thms), where name is an operator name and thms is a list of theorems to resolve with in case the pattern matches, and returns a suitable atomize function.

The simplified rewrites must now be converted into meta-equalities. The rule eq_reflection converts equality rewrites, while iff_reflection converts if-and-only-if rewrites. The latter possibility can arise in two other ways: the negative theorem $\neg P$ is converted to $P \equiv \texttt{False}$, and any other theorem P is converted to $P \equiv \texttt{True}$. The rules iff_reflection_F and iff_reflection_T accomplish this conversion.

```
val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;
```

The function mk_eq converts a theorem to a meta-equality using the case analysis described above.

```
fun mk_eq th = case concl_of th of
   _ $ (Const("op =",_)$_$_) => th RS eq_reflection
| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
| _ => th RS iff_reflection_T;
```

The three functions gen_all, atomize and mk_eq will be composed together and supplied below to setmksimps.

7.6.3 Making the initial simpset

It is time to assemble these items. The list IFOL_simps contains the default rewrite rules for intuitionistic first-order logic. The first of these is the reflexive law expressed as the equivalence $(a=a) \leftrightarrow \mathsf{True}$; the rewrite rule a=a is clearly useless.

```
val IFOL_simps =
   [refl RS P_iff_T] @ conj_simps @ disj_simps @ not_simps @
   imp_simps @ iff_simps @ quant_simps;
```

The list triv_rls contains trivial theorems for the solver. Any subgoal that is simplified to one of these will be removed.

```
val notFalseI = int_prove_fun "~False";
val triv_rls = [TrueI,refl,iff_refl,notFalseI];
```

We also define the function mk_meta_cong to convert the conclusion of congruence rules into meta-equalities.

```
fun mk_meta_cong rl = standard (mk_meta_eq (mk_meta_prems rl));
```

The basic simpset for intuitionistic FOL is FOL_basic_ss. It preprocess rewrites using gen_all, atomize and mk_eq. It solves simplified subgoals using triv_rls and assumptions, and by detecting contradictions. It uses asm_simp_tac to tackle subgoals of conditional rewrites.

Other simpsets built from FOL_basic_ss will inherit these items. In particular, IFOL_ss, which introduces IFOL_simps as rewrite rules. FOL_ss will later extend IFOL_ss with classical rewrite rules such as $\neg \neg P \leftrightarrow P$.

```
fun unsafe_solver prems = FIRST'[resolve_tac (triv_rls @ prems),
                                 atac, etac FalseE];
fun safe_solver prems = FIRST' [match_tac (triv_rls @ prems),
                               eq_assume_tac, ematch_tac [FalseE]];
val FOL_basic_ss =
      empty_ss setsubgoaler asm_simp_tac
               addsimprocs [defALL_regroup, defEX_regroup]
               setSSolver
                           safe_solver
               setSolver unsafe_solver
               setmksimps (map mk_eq o atomize o gen_all)
               setmkcong mk_meta_cong;
val IFOL_ss =
      FOL_basic_ss addsimps (IFOL_simps @
                             int_ex_simps @ int_all_simps)
                   addcongs [imp_cong];
```

This simpset takes imp_cong as a congruence rule in order to use contextual information to simplify the conclusions of implications:

$$[PP \leftrightarrow P'; P' \Longrightarrow P' \Longrightarrow P'] \Longrightarrow (PP \rightarrow P) \leftrightarrow (P' \rightarrow P')$$

By adding the congruence rule <code>conj_cong</code>, we could obtain a similar effect for conjunctions.

The Classical Reasoner

8.1 Classical rule sets

For elimination and destruction rules there are variants of the add operations adding a rule in a way such that it is applied only if also its second premise can be unified with an assumption of the current proof state:

A rule to be added in this special way must be given a name, which is used to delete it again – when desired – using delSWrappers or delWrappers, respectively. This is because these add operations are implemented as wrappers (see 8.1.1 below).

8.1.1 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe inferences as possible; or else, apply certain safe rules, allowing instantiation of unknowns; or else, apply an unsafe rule. The tactics also eliminate assumptions of the form x=t by substitution if they have been set up to do so (see hyp_subst_tacs in §8.3 below). They may perform a form of Modus Ponens: if there are assumptions $P \to Q$ and P, then replace $P \to Q$ by Q.

The classical reasoning tactics — except blast_tac! — allow you to modify this basic proof strategy by applying two lists of arbitrary wrapper tacticals to it. The first wrapper list, which is considered to contain safe wrappers only, affects safe_step_tac and all the tactics that call it. The second one, which may contain unsafe wrappers, affects the unsafe parts of step_tac, slow_step_tac, and the tactics that call them. A wrapper transforms each step of the search, for example by attempting other tactics before or after the original step tactic. All members of a wrapper list are applied in turn to the respective step tactic.

Initially the two wrapper lists are empty, which means no modification of the step tactics. Safe and unsafe wrappers are added to a claset with the functions given below, supplying them with wrapper names. These names may be used to selectively delete wrappers.

```
type wrapper = (int -> tactic) -> (int -> tactic);
addSWrapper : claset * (string * wrapper
                                                 ) -> claset
                                                              infix 4
addSbefore
            : claset * (string * (int -> tactic)) -> claset
                                                              infix 4
addSafter
            : claset * (string * (int -> tactic)) -> claset
                                                              infix 4
                                                              infix 4
delSWrapper : claset * string
                                                   -> claset
addWrapper : claset * (string * wrapper
                                                ) -> claset
                                                              infix 4
            : claset * (string * (int -> tactic)) -> claset
                                                              infix 4
addbefore
            : claset * (string * (int -> tactic)) -> claset
                                                              infix 4
addafter
delWrapper
            : claset * string
                                                   -> claset
                                                              infix 4
                                                              infix 4
            : claset * simpset -> claset
addSss
             : claset * simpset -> claset
                                                              infix 4
addss
```

- cs addSWrapper (name, wrapper) adds a new wrapper, which should yield a safe tactic, to modify the existing safe step tactic.
- cs addSbefore (name, tac) adds the given tactic as a safe wrapper, such that it is tried before each safe step of the search.
- cs addSafter (name, tac) adds the given tactic as a safe wrapper, such that it is tried when a safe step of the search would fail.
- cs delSWrapper name deletes the safe wrapper with the given name.
- cs addWrapper (name, wrapper) adds a new wrapper to modify the existing (unsafe) step tactic.
- cs addbefore (name, tac) adds the given tactic as an unsafe wrapper, such that it its result is concatenated before the result of each unsafe step.
- cs addafter (name, tac) adds the given tactic as an unsafe wrapper, such that it its result is concatenated after the result of each unsafe step.
- cs delWrapper name deletes the unsafe wrapper with the given name.
- cs addSss ss adds the simpset ss to the classical set. The assumptions and goal will be simplified, in a rather safe way, after each safe step of the search.

cs adds ss adds the simpset ss to the classical set. The assumptions and goal will be simplified, before the each unsafe step of the search.

Strictly speaking, the operators addss and addSss are not part of the classical reasoner. , which are used as primitives for the automatic tactics described in \S ??, are implemented as wrapper tacticals. they

Peing defined as wrappers, these operators are inappropriate for adding more than one simpset at a time: the simpset added last overwrites any earlier ones. When a simpset combined with a claset is to be augmented, this should done before combining it with the claset.

8.2 The classical tactics

8.2.1 Other classical tactics

```
slow_best_tac : claset -> int -> tactic
```

 $slow_best_tac$ cs i applies $slow_step_tac$ with best-first search to prove subgoal i.

8.2.2 Other useful tactics

```
contr_tac : int -> tactic
mp_tac : int -> tactic
eq_mp_tac : int -> tactic
swap_res_tac : thm list -> int -> tactic
```

These can be used in the body of a specialized search.

- contr_tac i solves subgoal i by detecting a contradiction among two assumptions of the form P and $\neg P$, or fail. It may instantiate unknowns. The tactic can produce multiple outcomes, enumerating all possible contradictions.
- mp_tac i is like contr_tac, but also attempts to perform Modus Ponens in subgoal i. If there are assumptions $P \to Q$ and P, then it replaces $P \to Q$ by Q. It may instantiate unknowns. It fails if it can do nothing.
- eq_mp_tac i is like mp_tac i, but may not instantiate unknowns thus, it is safe.

swap_res_tac thms i refines subgoal i of the proof state using thms, which should be a list of introduction rules. First, it attempts to prove the goal using assume_tac or contr_tac. It then attempts to apply each rule in turn, attempting resolution and also elim-resolution with the swapped form.

8.3 Setting up the classical reasoner

Isabelle's classical object-logics, including FOL and HOL, have the classical reasoner already set up. When defining a new classical logic, you should set up the reasoner yourself. It consists of the ML functor ClassicalFun, which takes the argument signature CLASSICAL_DATA:

Thus, the functor requires the following items:

```
mp should be the Modus Ponens rule [?P \rightarrow ?Q; ?P] \Longrightarrow ?Q.
```

not_elim should be the contradiction rule $\llbracket \neg ?P; ?P \rrbracket \Longrightarrow ?R$.

```
swap should be the swap rule [\neg ?P; \neg ?R \Longrightarrow ?P] \Longrightarrow ?R.
```

sizef is the heuristic function used for best-first search. It should estimate the size of the remaining subgoals. A good heuristic function
is size_of_thm, which measures the size of the proof state. Another
size function might ignore certain subgoals (say, those concerned with
type-checking). A heuristic function might simply count the subgoals.

hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typically created by HypsubstFun (see Chapter 6). This list can, of course, be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It does not even examine the rules, but merely applies them according to its fixed strategy. The functor resides in Provers/classical.ML in the Isabelle sources.

Bibliography

- [1] Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher order logic. In J. Harrison and M. Aagaard, editors, *Theorem Proving in Higher Order Logics: TPHOLs 2000*, volume 1869 of *Lecture Notes in Computer Science*, pages 38–52. Springer-Verlag, 2000.
- [2] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press, 1988.
- [3] E. Charniak, C. K. Riesbeck, and D. V. McDermott. *Artificial Intelligence Programming*. Lawrence Erlbaum Associates, 1980.
- [4] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem. *Indag. Math.*, 34:381–392, 1972.
- [5] K. Futatsugi, J.A. Goguen, Jean-Pierre Jouannaud, and J. Meseguer. Principles of OBJ2. In Symposium on Principles of Programming Languages, pages 52–66, 1985.
- [6] Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In Mark E. Stickel, editor, 10th International Conference on Automated Deduction, LNAI 449, pages 366–380. Springer, 1990.
- [7] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi, editor, Eighth Annual Symposium on Logic in Computer Science, pages 64–74. IEEE Computer Society Press, 1993.
- [8] Bengt Nordström, Kent Petersson, and Jan Smith. *Programming in Martin-Löf's Type Theory. An Introduction*. Oxford University Press, 1990.

Index

\$, 39 %, 25 %%, 25 _K constant, 48, 50 Abs, 39 AbsP, 25 Abst, 25 abstract_rule, 22 addafter, 78 addbefore, 78 Addcongs, 60 addcongs, 63, 75 addD2, 77 adde2, 77 addeqcongs, 63 addloop, 66 addSafter, 78 addSbefore, 75 addSimprocs, 60 Addsimps, 59 addsimps, 62, 75 addSolver, 65 Addsplits, 60 addsplits, 66 addss, 78, 79 addSSolver, 65	APPEND, 7, 9 APPEND', 15 Appl, 36 args nonterminal, 46 Arith theory, 70 Asm_full_simp_tac, 58 asm_full_simp_tac, 3, 68 asm_full_simplify, 69 asm_rl theorem, 3 Asm_simp_tac, 57 asm_simp_tac, 68, 75 asm_simplify, 69 associative-commutative operators,
_ :	
	-
addSWrapper, 78	bimatch_tac, 5
addWrapper, 78	bind_thm, 16
all_tac, 9	binders, 33
ALLGOALS, 14, 71	biresolution, 23
ambiguity	biresolve_tac, 5
of parsed expressions, 34	Bound, 37, 39, 40

bound_hyp_subst_tac, 54	Delsimprocs, 60
BREADTH_FIRST, 11	Delsimps, 59
	delsimps, 62
case splitting, 66	Delsplits, 60
CHANGED, 10	delSWrapper, 78
classical reasoner, 77–80	delWrapper, 78
setting up, 80	dependent_tr', 48, 50
classical sets, 77	DEPTH_FIRST, 10
ClassicalFun, 80	DEPTH_SOLVE, 10
combination, ${f 22}$	DEPTH_SOLVE_1, 10
COMP, 23	dest_eq, 55
compose, 23	dest_imp, 55
${\tt compose_tac}, {\tt 4}$	dest_state, 20
$\mathtt{concl_of},19$	dest_Trueprop, 55
COND, 11	DETERM, 12
congruence rules, 63	DETERM_UNTIL, 9
Const, 39, 49	DETERM_UNTIL_SOLVED, 12
Constant, $36, 49$	discrimination nets, 5
constants	distinct_subgoals_tac, 3
syntactic, 42	domain_type, 55
context, 57	dummyT, 39, 40, 51
contr_tac, 79	duplicate subgoals
could_unify, 6	removing, 3
cprems_of, 19	
cprop_of, 19	empty_ss, 61
crep_thm, 20	$ ext{eq_assumption}, 23$
cterm_instantiate, 18	eq_mp_tac, 79
$\mathtt{cut_facts_tac}, 1, 54$	eq_reflection theorem, 55, 72
cut_inst_tac, 1	eq_thm, 12
cut_rl theorem, 3	eq_thm_prop, 12
datatype, 60	equal_elim, 21
debug_simp, 58	equal_intr, 21
defer_tac, 1	equality, 52–56
definitions, see rewriting, meta-level,	eresolve_tac
9	on other than first premise, 19
Delcongs, 60	eta_contract, 44
delcongs, 63	EVERY, 8
delequences, 63	EVERY', 15
delimiters, 31	EVERY1, 15
delloop, 66	examples
401100p, 00	of macros, 46, 47

of mixfix declarations, 32 of translations, 50 extensional, 22	incr_boundvars, 50 infixes, 32 instantiate', 18 instantiation, 17
filt_resolve_tac, 6	instantiation, 17 INTLEAVE, 8, 9
FILTER, 10	INTLEAVE, 6, 9 INTLEAVE', 15
filter_thms, 6	is nonterminal, 46
FIRST, 8	15 Homocrimion, 10
FIRST', 15	λ -abstractions, 5
FIRST1, 15	λ -calculus, 22
FIRSTGOAL, 14	$\mathtt{lessb}, 5$
flex-flex constraints, 3, 19, 24	lift_rule, 24
${ t flexflex_rule}, { t 24}$	lifting, 24
flexflex_tac, 4	logic class, 31
FOL_basic_ss, 75	$loose_bnos, 51$
FOL_ss, 75	41 40
${ t fold_goals_tac,2}$	macros, 41–48
${ t fold_tac}, { t 2}$	make_elim, 18
forward proof, 16	Match exception, 49
Free, 39	max_pri, 31
$Full_simp_tac, 58$	merge_ss, 61
full_simp_tac, 68	meta-assumptions, 13, 23
full_simplify, 69	meta-equality, 21, 22
	meta-rewriting, 2, see also tactics,
generic_simp_tac, 68	theorems
gethyps, 13	in theorems, 17
has_fewer_prems, 12	meta-rules, see meta-rules, 21–24
higher-order pattern, 62	METAHYPS, 13
HOL_basic_ss, 61	MinProof, 26
Нур, 25	mixfix declarations, 30–34
hyp_subst_tac, 53	mk_atomize, 74
hyp_subst_tacs, 80	mk_meta_cong, 75
HypsubstFun, 54, 80	mk_solver, 65
nypoubbol un, o 1, co	ML section, 48, 50
id nonterminal, 38, 45	model checkers, 34
idt nonterminal, 44	mp theorem, 80
idts nonterminal, 33	mp_tac, 79
IF_UNSOLVED, 12	MRL, 17
iff_reflection theorem, 72	MRS, 16
IFOL_ss, 75	net_bimatch_tac, 6
<pre>imp_intr theorem, 55</pre>	net_biresolve_tac, 6
	<u> </u>

net_resolve_tac, 6 quantifiers, 33 not_clim theorem, 80 read_instantiate, 17 nprems_of, 19 read_instantiate, 17 num nonterminal, 38, 45 rearrange_prems, 19 OF, 16 reflexive, 22 op symbol, 33 rename_params_rule, 24 ORELSE, 7, 9, 14 rep_s, 61 ORELSE', 15 REPEAT, 8, 9 REPEAT, 8, 9 REPEAT, 9 REPEAT, BEPEAT, BEPEAT, BEPEAT, BEPEAT_DETERM, 8 REPEAT_DETERM, 8 removing unused, 3 REPEAT_DETERM, 8 removing unused, 3 REPEAT_DETERM, 8 removing unused, 4 REPEAT_SOME, 14 parse_rules, 43 res_inst_tac, 4 parse_rules, 43 res_inst_tac, 4 parse_rules, 43 reserved words, 47 resolution, 16, 23 without lifting, 23 permute_prems, 19 rev_eq_reflection theorem, 55 rev_eq_reflection theorem, 55 rewrite_goals_rule, 17 remite_goals_rule, 17 rewrite_goals_rule, 17 rewrite_mode, 34 rewrite_goals_rule, 17 print_mode, 34 rewrite_rule, 17 print_s, 61 rewrite_po	net_match_tac, 6	PThm, 25
not_elim theorem, 80 nprems_of, 19 num nonterminal, 38, 45 OF, 16 op symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE', 15 parameters removing unused, 3 renaming, 24 parter, higher-order, 62 PAxm, 25 PBound, 25 prems_of, 19 prems_of, 19 read_instantiate, 17 read_instantiate_sg, 18 rearrange_prems, 19 reflexive, 22 rename_params_rule, 24 rep_ss, 61 rep_thm, 20 REPEAT, 8, 9 REPEAT, 9 REPEAT, DETERM, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_SOME, 14 rescrived words, 47 resolution, 16, 23 without lifting, 23 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rewrite rules, 61-62 permutative, 69-72 rewrite_goals_rule, 17 rewrite_tac, 2 rewrite_tac, 3 rewrite_tac, 3 RS, 16	•	,
not_elim theorem, 80 nprems_of, 19 num nonterminal, 38, 45 OF, 16 op symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE', 15 parameters removing unused, 3 renaming, 24 parse trees, 36 parse_rules, 43 pattern, higher-order, 62 PBound, 25 permute_prems, 19 prems_of, 19 print_rules, 43 print_r	no_tac, 9	quantifiers, 33
nprems_of, 19 num nonterminal, 38, 45 OF, 16 op symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE, 7, 15 parameters removing unused, 3 renaming, 24 parse trees, 36 pattern, higher-order, 62 PAxm, 25 PBound, 25 permute_prems, 19 prems_of, 34 pretty printing, 31, 46 pretty printing, 31, 46 print_modes, 34 print_rules, 43 print_s, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 parsing, 27 partial, 27 printing, 27 reflexive, 22 rename_params_rule, 24 rep_ss, 61 rep_thm, 20 REPEAT, 8, 9 REPEAT, 9 REPEAT_DETERM, 8 REPEAT_BETRM, 8 REPEAT_SOME, 14 reserved words, 47 reveletion theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rewrite rules, 61-62 permutative, 69-72 rewrite_goals_rule, 17 rewrite_goals_rule, 17 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 RL, 17 RLN, 17 rotate_prems, 19 rotate_tac, 3 RS, 16	•	road ingtantiate 17
num nonterminal, 38, 45 rearrange_prems, 19 reflexive, 22 op symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE', 15 Parameters removing unused, 3 renaming, 24 parse trees, 36 pattern, higher-order, 62 PAxm, 25 PBound, 25 prems_of, 19 prems_of, 19 prems_of, 19 prems_of, 34 print_mode, 34 print_mode, 34 print_rules, 43 print_rules, 43 print_rules, 43 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 printing, 31, 46 reflexive, 22 rearrange_prems, 19 reflexive, 22 rearrange_prems, 19 reflexive, 22 rename_params_rule, 24 rep_ss, 61 rep_thm, 20 REPEAT_DETERM, 8 rewrite, 20 rewritm, 8 rewrite, 20 rewrite, 20 rewrite, 20 rewrite, 69 rewrite, 21 rewrite, 22 rewrite, 41 object-level, see simplification ordered, 69 syntactic, 41 rearrange_prems, 19 rep_thm, 20 rep_thm,	nprems_of, 19	•
OF, 16 op symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE', 15 parameters removing unused, 3 renaming, 24 parse trees, 36 pattern, higher-order, 62 PAxm, 25 PBound, 25 permute_prems, 19 prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 print_rules, 43 print_rules, 43 print_rules, 43 print_rules, 43 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 prof terms, 27 partial, 27 partial, 27 partial, 27 printing, 27 Parmams_rule, 24 rename_params_rule, 24 rep_ss, 61 rep_thm, 20 REPEAT, 8, 9 REPEAT, BOR REPEAT_DETERM, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 respect words, 47 respect words, 47 respect words, 47 reserved words, 47 reveq_reflection theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 revrite rules, 61–62 permutative, 69–72 rewrite_goals_rule, 17 rewrite_tac, 2 rewrite_goals_tac, 2, 17 rewrite_tac, 2 rewrite_soals_tac, 2, 17 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41–48 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 removing unused, 3 rep_thm, 20 rep_stall, 16 rep_thm, 20 rep_stall, 17 resp_tam, 19 reductions, 16 rep_tam, 19 rep_tam, 19 reductions, 16 rep_tam, 19 rep_tam, 19 rep_tam, 19 rep_tam, 19 rep_tam, 19 rep_tam, 19 reductions, 16 rep_tam, 19 rep_tam, 10 r	-	
or symbol, 33 Oracle, 25 ORELSE, 7, 9, 14 ORELSE', 15 Parameters removing unused, 3 renaming, 24 Parse trees, 36 Pattern, higher-order, 62 Parmute_prems, 19 Prems_of, 19 Prems_of_ss, 64 Pretty printing, 31, 46 Print_mode, 34 Print_mode, 34 Print_mode, 34 Print_rules, 43 Print_rules, 43 Print_rules, 43 Print_rules, 43 Print_rules, 43 Print_s, 61 Priorities, 31 Productions, 30 Copy, 30, 38 Productions, 27 Parsing, 27 Parsing, 27 Porities, 31 Productions, 27 Parsing, 27 Printing, 26 Prep_ss, 61 Prep_thm, 20 REPEAT_SOME, 14 Prep_thm, 20 REPEAT_DETERM, 8 REPEAT_DETERM_N, 9 REPEAT_DETERM_N REPEAT_DETERM. Repeat_Determ, 9 Repeat_Determ_s, 19 Repeat_Dete	, ,	<u> </u>
Oracle, 25 Oracle, 25 Oracle, 25 ORELSE, 7, 9, 14 ORELSE, 7, 9, 14 ORELSE, 7, 9, 14 ORELSE, 7, 15 Parameters removing unused, 3 renaming, 24 parse trees, 36 partern, higher-order, 62 PAxm, 25 PBound, 25 Prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24–29 checking, 27 printing, 27 rep_ss, 61 rep_thm, 20 REPEAT_BR REPEAT_DETERM, 8 REPEAT_DETERM_N, 9 REPEAT_DETERM_N, 9 REPEAT_DETERM_N, 9 REPEAT_DETERM_N, 9 REPEAT_SOME, 14 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 9 REPEAT_DETERM_N REPEAT_DETERM_N, 9 REPEAT_DETERM_N, 9 REPEAT_DETERM_N, 9 REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_DETERM_N REPEAT_LOTER	•	*
ORELSE, 7, 9, 14 ORELSE', 15 Parameters removing unused, 3 renaming, 24 Parse trees, 36 Party, 25 Pauth, 26 Parmute_prems, 19 Parems_of_ss, 64 Pretty printing, 31, 46 Print_modes, 34 Print_rules, 43 Productions, 30 Copy, 30, 38 Proof terms, 24 Party, 15 Print_rule, 27 Printing, 27 Printing, 27 Print_rules, 27 Printing, 27 Print_rules, 27 Printing, 27 Print_rules, 27 Printing, 27 Print_rules, 27 Printing, 20 Print	<u>.</u>	_
ORELSE', 15 REPEAT, 8, 9 REPEATL, 9 Parameters removing unused, 3 renaming, 24 Parse trees, 36 REPEAT_DETERM, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_SOME, 14 Parse_rules, 43 Pattern, higher-order, 62 Paxm, 25 PBound, 25 PBound, 25 permute_prems, 19 prems_of_ss, 64 pretty printing, 31, 46 print_modes, 34 print_rules, 43 print_rules, 43 print_rules, 43 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24–29 checking, 27 partial, 27 partial, 27 printing, 37 REPEAT, 8, 9 REPEAT, 9 REPEAT, 8, 9 REPEAT, 14 REPEAT, 9 Repeat, 14 Repeat, 4 REPEAT, 9 REPEAT, 14 REPEAT, 9 REPEAT, 9 Repeat, 14 Repeat, 4 Repeat	Oracle, ${f 25}$	-
REPEAT1, 9 parameters removing unused, 3 renaming, 24 REPEAT_DETERM_N, 8 renaming, 24 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_DETERM_N, 8 REPEAT_SOME, 14 res_inst_tac, 4 reserved words, 47 resolution, 16, 23 PBound, 25 PBound, 25 PEROUND, 19 PEROUND, 19 PEROUND, 19 PEROUND, 10 PERO	ORELSE, 7 , 9, 14	= -
parameters removing unused, 3 renaming, 24 REPEAT_DETERM_N, 8 renaming, 24 REPEAT_FIRST, 14 parse trees, 36 REPEAT_SOME, 14 res_inst_tac, 4 res_inst_tac, 4 reserved words, 47 PAXM, 25 PBound, 25 resolution, 16, 23 without lifting, 23 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rewrite rules, 61–62 prems_of_ss, 64 pretty printing, 31, 46 print_modes, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24–29 checking, 27 partial, 27 partial, 27 printing, 27 REPEAT_DETERM_N, 8 respect July respiration, 8 repeat_peter, 14 repaired_n, 8 repeat_peter, 14 repaired_n, 14 respiration, 8 repeat_peter, 14 repaired_n, 14 respiration, 8 repeat_setrical and 14 respiration,	ORELSE', 15	•
removing unused, 3 renaming, 24 REPEAT_BETERM_N, 8 REPEAT_FIRST, 14 parse trees, 36 REPEAT_SOME, 14 res_inst_tac, 4 res_inst_tac, 4 res_inst_tac, 4 res_inst_tac, 4 reserved words, 47 PAxm, 25 PBound, 25 resolution, 16, 23 without lifting, 23 rev_eq_reflection theorem, 55 rew_mp theorem, 55 rewrite rules, 61–62 permutating, 31, 46 permutative, 69–72 rewrite_goals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_tac, 2 rewrite_s, 61 print_rules, 43 rewrite_tac, 2 rewrite, 31 object-level, see simplification ordered, 69 copy, 30, 38 proof terms, 24–29 checking, 27 partial, 27 partial, 27 printing, 27 REN, 16		•
renaming, 24 parse trees, 36 parse_rules, 43 pattern, higher-order, 62 PAxm, 25 PBound, 25 prems_of, 19 prems_of_ss, 64 primrec, 60 primrec, 60 print_modes, 34 print_rules, 43 print_rules, 43 print_ss, 61 priorities, 31 priorities, 31 productions, 30 copy, 30, 38 productions, 27 partial, 27 partial, 27 printing, 24 prescripted words, 47 prev_eq_reflection theorem, 55 rev_mp theorem, 55 rew_mp theorem, 55 rewrite rules, 61-62 permutative, 69-72 rewrite_goals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_tac, 2 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41-48 REPEAT_SOME, 14 prescripted, 41 prescripted words, 47 prev_eq_reflection theorem, 55 rev_mp theorem, 55 rew_mp theorem, 55 rewrite rules, 61-62 permutative, 69-72 rewrite_goals_rule, 17 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 3 REPEAT_SOME, 14 prescripted words, 47 prescripted	-	*
parse trees, 36 parse_rules, 43 pattern, higher-order, 62 PAxm, 25 PBound, 25 permute_prems, 19 prems_of_ss, 64 pretty printing, 31, 46 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 productions, 27 partial, 27 partial, 27 printing, 43 partial, 27 partial, 27 partial, 27 printing, 42 res_inst_tac, 4 reverte_rule, 55 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rewrite rules, 61–62 permutative, 69–72 rewrite_goals_rule, 17 rewrite_rule, 17 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41–48 RL, 17 rotate_prems, 19 rotate_prems, 19 rotate_tac, 3 RS, 16	,	•
parse_rules, 43 pattern, higher-order, 62 PAxm, 25 PBound, 25 permute_prems, 19 prems_of, 19 prems_of_ss, 64 primrec, 60 primrec, 60 primred, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 31 priorities, 32 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 printing,	0,	,
pattern, higher-order, 62 PAxm, 25 PBound, 25 permute_prems, 19 prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 primrec, 60 primred, 34 print_rules, 43 print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 printing, 25 reserved words, 47 reserved words, 47 resolution, 16, 23 without lifting, 23 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rewrite rules, 61-62 permutative, 69-72 rewrite_goals_rule, 17 rewrite_tac, 2, 17 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41-48 RL, 17 RLN, 17 rotate_prems, 19 rotate_tac, 3 RS, 16		•
PAxm, 25 PBound, 25 permute_prems, 19 prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 31 priorites, 32 priorites, 32 productions, 30 copy, 30, 38 proof terms, 24–29 checking, 27 printing, 27 presolution, 16, 23 without lifting, 23 prev_eq_reflection theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_eq_reflection theorem, 55 rev_eq_reflection theorem, 55 rev_eq_reflection theorem, 55 rev_eq_reflection theorem, 55 rev_mp theorem, 55 rev_mp theorem, 55 rev_eq_reflection theorem, 55 rev_mp theorem, 52 rewrite_goals_rule, 17 rewrite_goals_rule,	-	,
pBound, 25 permute_prems, 19 prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 print_modes, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 printing, 19 prems_of_ss, 64 prev_mp theorem, 55 prew_mp theorem, 55 prew_mp theorem, 55 prew_mp theorem, 55 prev_mp theorem, 55 pre		
permute_prems, 19	•	
prems_of, 19 prems_of_ss, 64 pretty printing, 31, 46 primrec, 60 primrec, 60 print_modes, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 31 priorities, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 printing, 31 printing, 31 printing, 31 printing, 32 printing productions, 30 printing, 27 partial, 27 printing productions, 30 printing, 27 pri	•	9,
prems_of_ss, 64 pretty printing, 31, 46 primrec, 60 primrec, 60 print_modes, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 prioductions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 printing, 31 prewrite rules, 61-62 premrite goals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_rule, 17 rewrite_rule, 17 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41-48 RL, 17 RLN, 17 rotate_prems, 19 rotate_tac, 3 RS, 16	-	-
pretty printing, 31, 46 primrec, 60 primrec, 60 print modes, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 30 copy, 30, 38 proof terms, 24–29 checking, 27 parsing, 27 printing, 27 printing printing, 31, 46 premutative, 69–72 rewrite_goals_rule, 17 rewrite_rule, 17 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41–48 RL, 17 RLN, 17 rewrite_rule, 17 rewrite_soals_rule, 17 rewrite_goals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_soals_rule, 17 rewrite_goals_rule, 17 rewrite_soals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_soals_rule, 17 rewrite_goals_tac, 2, 17 rewrite_soals_rule, 17 rewrite_goals_rule, 17 rewrite_soals_rule, 17 rewrite_soals_tac, 2, 17 rewrite_soals_ta	-	-
primrec, 60 print modes, 34 print_mode, 34 print_mode, 34 print_rules, 43 print_ss, 61 priorities, 31 priorities, 30 copy, 30, 38 proof terms, 24-29 checking, 27 partial, 27 print_rule, 17 rewrite_rule, 17 rewrite_tac, 2 rewriting object-level, see simplification ordered, 69 syntactic, 41-48 RL, 17 RLN, 17 parsing, 27 rotate_prems, 19 rotate_tac, 3 RS, 16	prems_of_ss, 64	rewrite rules, 61–62
print modes, 34	pretty printing, 31, 46	permutative, 69–72
print_mode, 34 rewrite_rule, 17 print_rules, 43 rewrite_tac, 2 print_ss, 61 rewriting priorities, 31 object-level, see simplification productions, 30 ordered, 69 copy, 30, 38 syntactic, 41–48 proof terms, 24–29 RL, 17 checking, 27 RLN, 17 parsing, 27 rotate_prems, 19 partial, 27 rotate_tac, 3 printing, 27 RS, 16	primrec, 60	${ t rewrite_goals_rule}, {f 17}$
print_rules, 43 print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 parsing, 27 partial, 27 printing, 27 printi	print modes, 34	rewrite_goals_tac, $2,17$
print_ss, 61 priorities, 31 productions, 30 copy, 30, 38 proof terms, 24-29 checking, 27 parsing, 27 partial, 27 printing, 27 printing, 27 printing, 27 printing, 27 printing, 27 printing, 27 rewriting rotate_level, see simplification rewriting re	print_mode, 34	rewrite_rule, 17
priorities, 31 object-level, see simplification productions, 30 ordered, 69 syntactic, 41–48 proof terms, 24–29 RL, 17 checking, 27 RLN, 17 parsing, 27 rotate_prems, 19 partial, 27 pointing, 27 RS, 16	$print_rules, 43$	$rewrite_tac, 2$
productions, 30 ordered, 69 ordered, 69 syntactic, 41–48 proof terms, 24–29 RL, 17 checking, 27 RLN, 17 parsing, 27 rotate_prems, 19 partial, 27 rotate_tac, 3 printing, 27 RS, 16	print_ss, 61	rewriting
copy, 30, 38 syntactic, 41–48 proof terms, 24–29 RL, 17 checking, 27 RLN, 17 parsing, 27 rotate_prems, 19 partial, 27 rotate_tac, 3 printing, 27 RS, 16	priorities, 31	object-level, see simplification
proof terms, 24–29	productions, 30	ordered, 69
checking, 27 parsing, 27 partial, 27 printing, 27 RLN, 17 rotate_prems, 19 rotate_tac, 3 printing, 27 RS, 16	copy, 30, 38	syntactic, 41–48
parsing, 27 rotate_prems, 19 partial, 27 rotate_tac, 3 printing, 27 RS, 16	proof terms, 24–29	RL, 17
partial, 27 rotate_tac, 3 printing, 27 RS, 16	checking, 27	RLN, 17
printing, 27 RS, 16	parsing, 27	rotate_prems, 19
	partial, 27	rotate_tac, 3
reconstructing 97 RSN 16	printing, 27	RS, 16
recombination, 21	reconstructing, 27	RSN, 16
proofs, 26 rule_by_tactic, 3, 18	proofs, 26	${\tt rule_by_tactic},3,{f 18}$
prune_params_tac, 3 rules	${\tt prune_params_tac}, {f 3}$	rules

converting destruction to elimi-	standard, 18
nation, 18	step_tac, 77
	${ t strip_shyps}, {f 21}$
safe_step_tac, 77	${ t strip_shyps_warning, 21}$
search, 7	${ t subgoal_tac}, { t 1}$
tacticals, 10–12	${ t subgoals_of_brl},{ t 5}$
SELECT_GOAL, 2, 13	subgoals_tac, 1
setloop, 66	subst theorem, 52, 55
setmksimps, 62, 73 , 75	substitution
setSolver, 65, 75	rules, 52
setSSolver, 65, 75	swap theorem, 80
setsubgoaler, 64, 75	swap_res_tac, 80
settermless, 69	sym theorem, 53, 55
$show_sorts, 40, 49$	symmetric, 22
$\verb show_types , 40, 44, 51 $	syntax
${\tt sign_of_thm}, 19$	transformations, 36–51
Simp_tac, 57	Syntax.ast ML type, 36
$\mathtt{simp_tac}, 68$	Syntax.mark_boundT, 51
simplification, 57–76	Syntax.trace_ast, 45
conversions, 69	Syntax.variant_abs', 51
forward rules, 69	- ,
from classical reasoner, 79	tacticals, 7–15
setting up, 72	conditional, 11
tactics, 67	deterministic, 11
simplification sets, 60	for filtering, 10
Simplifier.asm_full_rewrite, 69	for restriction to a subgoal, 13
Simplifier.asm_rewrite, 69	identities for, 9
Simplifier.full_rewrite, 69	joining a list of tactics, 8
Simplifier.rewrite, 69	joining tactic functions, 15
simplify, 69	joining two tactics, 7
simpset	repetition, 8
current, 57	scanning for subgoals, 14
size_of_thm, 11, 12, 80	searching, 10, 11
sizef, 80	tactics, 1–6
slow_best_tac, 79	filtering results of, 10
slow_step_tac, 77	for composition, 4
SOLVE, 12	for contradiction, 79
SOMEGOAL, 14	for inserting facts, 1
sort hypotheses, 20	for Modus Ponens, 79
ssubst theorem, 53	meta-rewriting, 2
stac, 53	resolution, 4, 5

restricting to a subgoal, 13	translations section, 43
simplification, 67	trivial, 24
substitution, 52–56	TRY, 8, 9
term ML type, 39	TRYALL, 14
terms	tvar nonterminal, 38, 45
made from ASTs, 39	type type, 31
THEN, 7, 9, 14	type constraints, 33, 40
THEN', 15	W 20
THEN_BEST_FIRST, 11	Var, 39
theorems, 16–29	var nonterminal, 38, 45
dependencies, 26	Variable, 36
equality of, 12	xnum nonterminal, 38, 45
joining by resolution, 16	
of pure theory, 3	xstr nonterminal, 38, 45
size of, 12	zero_var_indexes, 18
standardizing, 18	,
taking apart, 19	
theory_of_thm, 20	
thin_refl theorem, 55	
thin_tac, 3	
THM exception, 16, 23	
thm ML type, 16	
thm_deps, 26	
tid nonterminal, 38, 45	
tpairs_of, 19	
-	
trace_BEST_FIRST, 11	
trace_DEPTH_FIRST, 10	
trace_goalno_tac, 14	
trace_REPEAT, 9	
trace_simp, 58	
tracing	
of macros, 45	
of searching tacticals, 10, 11	
of simplification, 59	
of unification, 21	
transitive, ${f 22}$	
translations, 48–51	
parse, 33, 39	
parse AST, 37 , 38	
print, 33	
print AST, 41	