Theory Groebner_Basis

Up to index of Isabelle/HOL

theory Groebner_Basis
imports Semiring_Normalization
uses (Tools/groebner.ML)
(*  Title:      HOL/Groebner_Basis.thy
Author: Amine Chaieb, TU Muenchen
*)


header {* Groebner bases *}

theory Groebner_Basis
imports Semiring_Normalization
uses
("Tools/groebner.ML")
begin


subsection {* Groebner Bases *}

lemmas bool_simps = simp_thms(1-34)

lemma dnf:
"(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))"
"(P ∧ Q) = (Q ∧ P)" "(P ∨ Q) = (Q ∨ P)"

by blast+

lemmas weak_dnf_simps = dnf bool_simps

lemma nnf_simps:
"(¬(P ∧ Q)) = (¬P ∨ ¬Q)" "(¬(P ∨ Q)) = (¬P ∧ ¬Q)" "(P --> Q) = (¬P ∨ Q)"
"(P = Q) = ((P ∧ Q) ∨ (¬P ∧ ¬ Q))" "(¬ ¬(P)) = P"

by blast+

lemma PFalse:
"P ≡ False ==> ¬ P"
"¬ P ==> (P ≡ False)"

by auto

ML {*
structure Algebra_Simplification = Named_Thms(
val name = "algebra"
val description = "pre-simplification rules for algebraic methods"
)
*}


setup Algebra_Simplification.setup

use "Tools/groebner.ML"

method_setup algebra = Groebner.algebra_method
"solve polynomial equations over (semi)rings and ideal membership problems using Groebner bases"


declare dvd_def[algebra]
declare dvd_eq_mod_eq_0[symmetric, algebra]
declare mod_div_trivial[algebra]
declare mod_mod_trivial[algebra]
declare conjunct1[OF DIVISION_BY_ZERO, algebra]
declare conjunct2[OF DIVISION_BY_ZERO, algebra]
declare zmod_zdiv_equality[symmetric,algebra]
declare zdiv_zmod_equality[symmetric, algebra]
declare zdiv_zminus_zminus[algebra]
declare zmod_zminus_zminus[algebra]
declare zdiv_zminus2[algebra]
declare zmod_zminus2[algebra]
declare zdiv_zero[algebra]
declare zmod_zero[algebra]
declare mod_by_1[algebra]
declare div_by_1[algebra]
declare zmod_minus1_right[algebra]
declare zdiv_minus1_right[algebra]
declare mod_div_trivial[algebra]
declare mod_mod_trivial[algebra]
declare mod_mult_self2_is_0[algebra]
declare mod_mult_self1_is_0[algebra]
declare zmod_eq_0_iff[algebra]
declare dvd_0_left_iff[algebra]
declare zdvd1_eq[algebra]
declare zmod_eq_dvd_iff[algebra]
declare nat_mod_eq_iff[algebra]

end