Up to index of Isabelle/HOL/HOL-Library
theory Inner_Product(* Title: Inner_Product.thy
Author: Brian Huffman
*)
header {* Inner Product Spaces and the Gradient Derivative *}
theory Inner_Product
imports Complex_Main FrechetDeriv
begin
subsection {* Real inner product spaces *}
text {*
Temporarily relax type constraints for @{term "open"},
@{term dist}, and @{term norm}.
*}
setup {* Sign.add_const_constraint
(@{const_name "open"}, SOME @{typ "'a::open set => bool"}) *}
setup {* Sign.add_const_constraint
(@{const_name dist}, SOME @{typ "'a::dist => 'a => real"}) *}
setup {* Sign.add_const_constraint
(@{const_name norm}, SOME @{typ "'a::norm => real"}) *}
class real_inner = real_vector + sgn_div_norm + dist_norm + open_dist +
fixes inner :: "'a => 'a => real"
assumes inner_commute: "inner x y = inner y x"
and inner_add_left: "inner (x + y) z = inner x z + inner y z"
and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)"
and inner_ge_zero [simp]: "0 ≤ inner x x"
and inner_eq_zero_iff [simp]: "inner x x = 0 <-> x = 0"
and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)"
begin
lemma inner_zero_left [simp]: "inner 0 x = 0"
using inner_add_left [of 0 0 x] by simp
lemma inner_minus_left [simp]: "inner (- x) y = - inner x y"
using inner_add_left [of x "- x" y] by simp
lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
by (simp add: diff_minus inner_add_left)
text {* Transfer distributivity rules to right argument. *}
lemma inner_add_right: "inner x (y + z) = inner x y + inner x z"
using inner_add_left [of y z x] by (simp only: inner_commute)
lemma inner_scaleR_right [simp]: "inner x (scaleR r y) = r * (inner x y)"
using inner_scaleR_left [of r y x] by (simp only: inner_commute)
lemma inner_zero_right [simp]: "inner x 0 = 0"
using inner_zero_left [of x] by (simp only: inner_commute)
lemma inner_minus_right [simp]: "inner x (- y) = - inner x y"
using inner_minus_left [of y x] by (simp only: inner_commute)
lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z"
using inner_diff_left [of y z x] by (simp only: inner_commute)
lemmas inner_add [algebra_simps] = inner_add_left inner_add_right
lemmas inner_diff [algebra_simps] = inner_diff_left inner_diff_right
lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
text {* Legacy theorem names *}
lemmas inner_left_distrib = inner_add_left
lemmas inner_right_distrib = inner_add_right
lemmas inner_distrib = inner_left_distrib inner_right_distrib
lemma inner_gt_zero_iff [simp]: "0 < inner x x <-> x ≠ 0"
by (simp add: order_less_le)
lemma power2_norm_eq_inner: "(norm x)² = inner x x"
by (simp add: norm_eq_sqrt_inner)
lemma Cauchy_Schwarz_ineq:
"(inner x y)² ≤ inner x x * inner y y"
proof (cases)
assume "y = 0"
thus ?thesis by simp
next
assume y: "y ≠ 0"
let ?r = "inner x y / inner y y"
have "0 ≤ inner (x - scaleR ?r y) (x - scaleR ?r y)"
by (rule inner_ge_zero)
also have "… = inner x x - inner y x * ?r"
by (simp add: inner_diff)
also have "… = inner x x - (inner x y)² / inner y y"
by (simp add: power2_eq_square inner_commute)
finally have "0 ≤ inner x x - (inner x y)² / inner y y" .
hence "(inner x y)² / inner y y ≤ inner x x"
by (simp add: le_diff_eq)
thus "(inner x y)² ≤ inner x x * inner y y"
by (simp add: pos_divide_le_eq y)
qed
lemma Cauchy_Schwarz_ineq2:
"¦inner x y¦ ≤ norm x * norm y"
proof (rule power2_le_imp_le)
have "(inner x y)² ≤ inner x x * inner y y"
using Cauchy_Schwarz_ineq .
thus "¦inner x y¦² ≤ (norm x * norm y)²"
by (simp add: power_mult_distrib power2_norm_eq_inner)
show "0 ≤ norm x * norm y"
unfolding norm_eq_sqrt_inner
by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero)
qed
subclass real_normed_vector
proof
fix a :: real and x y :: 'a
show "0 ≤ norm x"
unfolding norm_eq_sqrt_inner by simp
show "norm x = 0 <-> x = 0"
unfolding norm_eq_sqrt_inner by simp
show "norm (x + y) ≤ norm x + norm y"
proof (rule power2_le_imp_le)
have "inner x y ≤ norm x * norm y"
by (rule order_trans [OF abs_ge_self Cauchy_Schwarz_ineq2])
thus "(norm (x + y))² ≤ (norm x + norm y)²"
unfolding power2_sum power2_norm_eq_inner
by (simp add: inner_add inner_commute)
show "0 ≤ norm x + norm y"
unfolding norm_eq_sqrt_inner
by (simp add: add_nonneg_nonneg)
qed
have "sqrt (a² * inner x x) = ¦a¦ * sqrt (inner x x)"
by (simp add: real_sqrt_mult_distrib)
then show "norm (a *\<^sub>R x) = ¦a¦ * norm x"
unfolding norm_eq_sqrt_inner
by (simp add: power2_eq_square mult_assoc)
qed
end
text {*
Re-enable constraints for @{term "open"},
@{term dist}, and @{term norm}.
*}
setup {* Sign.add_const_constraint
(@{const_name "open"}, SOME @{typ "'a::topological_space set => bool"}) *}
setup {* Sign.add_const_constraint
(@{const_name dist}, SOME @{typ "'a::metric_space => 'a => real"}) *}
setup {* Sign.add_const_constraint
(@{const_name norm}, SOME @{typ "'a::real_normed_vector => real"}) *}
interpretation inner:
bounded_bilinear "inner::'a::real_inner => 'a => real"
proof
fix x y z :: 'a and r :: real
show "inner (x + y) z = inner x z + inner y z"
by (rule inner_add_left)
show "inner x (y + z) = inner x y + inner x z"
by (rule inner_add_right)
show "inner (scaleR r x) y = scaleR r (inner x y)"
unfolding real_scaleR_def by (rule inner_scaleR_left)
show "inner x (scaleR r y) = scaleR r (inner x y)"
unfolding real_scaleR_def by (rule inner_scaleR_right)
show "∃K. ∀x y::'a. norm (inner x y) ≤ norm x * norm y * K"
proof
show "∀x y::'a. norm (inner x y) ≤ norm x * norm y * 1"
by (simp add: Cauchy_Schwarz_ineq2)
qed
qed
interpretation inner_left:
bounded_linear "λx::'a::real_inner. inner x y"
by (rule inner.bounded_linear_left)
interpretation inner_right:
bounded_linear "λy::'a::real_inner. inner x y"
by (rule inner.bounded_linear_right)
subsection {* Class instances *}
instantiation real :: real_inner
begin
definition inner_real_def [simp]: "inner = op *"
instance proof
fix x y z r :: real
show "inner x y = inner y x"
unfolding inner_real_def by (rule mult_commute)
show "inner (x + y) z = inner x z + inner y z"
unfolding inner_real_def by (rule left_distrib)
show "inner (scaleR r x) y = r * inner x y"
unfolding inner_real_def real_scaleR_def by (rule mult_assoc)
show "0 ≤ inner x x"
unfolding inner_real_def by simp
show "inner x x = 0 <-> x = 0"
unfolding inner_real_def by simp
show "norm x = sqrt (inner x x)"
unfolding inner_real_def by simp
qed
end
instantiation complex :: real_inner
begin
definition inner_complex_def:
"inner x y = Re x * Re y + Im x * Im y"
instance proof
fix x y z :: complex and r :: real
show "inner x y = inner y x"
unfolding inner_complex_def by (simp add: mult_commute)
show "inner (x + y) z = inner x z + inner y z"
unfolding inner_complex_def by (simp add: left_distrib)
show "inner (scaleR r x) y = r * inner x y"
unfolding inner_complex_def by (simp add: right_distrib)
show "0 ≤ inner x x"
unfolding inner_complex_def by (simp add: add_nonneg_nonneg)
show "inner x x = 0 <-> x = 0"
unfolding inner_complex_def
by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff)
show "norm x = sqrt (inner x x)"
unfolding inner_complex_def complex_norm_def
by (simp add: power2_eq_square)
qed
end
subsection {* Gradient derivative *}
definition
gderiv ::
"['a::real_inner => real, 'a, 'a] => bool"
("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
where
"GDERIV f x :> D <-> FDERIV f x :> (λh. inner h D)"
lemma deriv_fderiv: "DERIV f x :> D <-> FDERIV f x :> (λh. h * D)"
by (simp only: deriv_def field_fderiv_def)
lemma gderiv_deriv [simp]: "GDERIV f x :> D <-> DERIV f x :> D"
by (simp only: gderiv_def deriv_fderiv inner_real_def)
lemma GDERIV_DERIV_compose:
"[|GDERIV f x :> df; DERIV g (f x) :> dg|]
==> GDERIV (λx. g (f x)) x :> scaleR dg df"
unfolding gderiv_def deriv_fderiv
apply (drule (1) FDERIV_compose)
apply (simp add: mult_ac)
done
lemma FDERIV_subst: "[|FDERIV f x :> df; df = d|] ==> FDERIV f x :> d"
by simp
lemma GDERIV_subst: "[|GDERIV f x :> df; df = d|] ==> GDERIV f x :> d"
by simp
lemma GDERIV_const: "GDERIV (λx. k) x :> 0"
unfolding gderiv_def inner_right.zero by (rule FDERIV_const)
lemma GDERIV_add:
"[|GDERIV f x :> df; GDERIV g x :> dg|]
==> GDERIV (λx. f x + g x) x :> df + dg"
unfolding gderiv_def inner_right.add by (rule FDERIV_add)
lemma GDERIV_minus:
"GDERIV f x :> df ==> GDERIV (λx. - f x) x :> - df"
unfolding gderiv_def inner_right.minus by (rule FDERIV_minus)
lemma GDERIV_diff:
"[|GDERIV f x :> df; GDERIV g x :> dg|]
==> GDERIV (λx. f x - g x) x :> df - dg"
unfolding gderiv_def inner_right.diff by (rule FDERIV_diff)
lemma GDERIV_scaleR:
"[|DERIV f x :> df; GDERIV g x :> dg|]
==> GDERIV (λx. scaleR (f x) (g x)) x
:> (scaleR (f x) dg + scaleR df (g x))"
unfolding gderiv_def deriv_fderiv inner_right.add inner_right.scaleR
apply (rule FDERIV_subst)
apply (erule (1) scaleR.FDERIV)
apply (simp add: mult_ac)
done
lemma GDERIV_mult:
"[|GDERIV f x :> df; GDERIV g x :> dg|]
==> GDERIV (λx. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df"
unfolding gderiv_def
apply (rule FDERIV_subst)
apply (erule (1) FDERIV_mult)
apply (simp add: inner_add mult_ac)
done
lemma GDERIV_inverse:
"[|GDERIV f x :> df; f x ≠ 0|]
==> GDERIV (λx. inverse (f x)) x :> - (inverse (f x))² *\<^sub>R df"
apply (erule GDERIV_DERIV_compose)
apply (erule DERIV_inverse [folded numeral_2_eq_2])
done
lemma GDERIV_norm:
assumes "x ≠ 0" shows "GDERIV (λx. norm x) x :> sgn x"
proof -
have 1: "FDERIV (λx. inner x x) x :> (λh. inner x h + inner h x)"
by (intro inner.FDERIV FDERIV_ident)
have 2: "(λh. inner x h + inner h x) = (λh. inner h (scaleR 2 x))"
by (simp add: fun_eq_iff inner_commute)
have "0 < inner x x" using `x ≠ 0` by simp
then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
by (rule DERIV_real_sqrt)
have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x"
by (simp add: sgn_div_norm norm_eq_sqrt_inner)
show ?thesis
unfolding norm_eq_sqrt_inner
apply (rule GDERIV_subst [OF _ 4])
apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"])
apply (subst gderiv_def)
apply (rule FDERIV_subst [OF _ 2])
apply (rule 1)
apply (rule 3)
done
qed
lemmas FDERIV_norm = GDERIV_norm [unfolded gderiv_def]
end