header {* Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs *}
theory Glbs
imports Lubs
begin
definition greatestP :: "('a => bool) => 'a::ord => bool"
where "greatestP P x = (P x ∧ Collect P *<= x)"
definition isLb :: "'a set => 'a set => 'a::ord => bool"
where "isLb R S x = (x <=* S ∧ x: R)"
definition isGlb :: "'a set => 'a set => 'a::ord => bool"
where "isGlb R S x = greatestP (isLb R S) x"
definition lbs :: "'a set => 'a::ord set => 'a set"
where "lbs R S = Collect (isLb R S)"
subsection {* Rules about the Operators @{term greatestP}, @{term isLb}
and @{term isGlb} *}
lemma leastPD1: "greatestP P x ==> P x"
by (simp add: greatestP_def)
lemma greatestPD2: "greatestP P x ==> Collect P *<= x"
by (simp add: greatestP_def)
lemma greatestPD3: "greatestP P x ==> y: Collect P ==> x ≥ y"
by (blast dest!: greatestPD2 setleD)
lemma isGlbD1: "isGlb R S x ==> x <=* S"
by (simp add: isGlb_def isLb_def greatestP_def)
lemma isGlbD1a: "isGlb R S x ==> x: R"
by (simp add: isGlb_def isLb_def greatestP_def)
lemma isGlb_isLb: "isGlb R S x ==> isLb R S x"
unfolding isLb_def by (blast dest: isGlbD1 isGlbD1a)
lemma isGlbD2: "isGlb R S x ==> y : S ==> y ≥ x"
by (blast dest!: isGlbD1 setgeD)
lemma isGlbD3: "isGlb R S x ==> greatestP (isLb R S) x"
by (simp add: isGlb_def)
lemma isGlbI1: "greatestP (isLb R S) x ==> isGlb R S x"
by (simp add: isGlb_def)
lemma isGlbI2: "isLb R S x ==> Collect (isLb R S) *<= x ==> isGlb R S x"
by (simp add: isGlb_def greatestP_def)
lemma isLbD: "isLb R S x ==> y : S ==> y ≥ x"
by (simp add: isLb_def setge_def)
lemma isLbD2: "isLb R S x ==> x <=* S "
by (simp add: isLb_def)
lemma isLbD2a: "isLb R S x ==> x: R"
by (simp add: isLb_def)
lemma isLbI: "x <=* S ==> x: R ==> isLb R S x"
by (simp add: isLb_def)
lemma isGlb_le_isLb: "isGlb R S x ==> isLb R S y ==> x ≥ y"
unfolding isGlb_def by (blast intro!: greatestPD3)
lemma isGlb_ubs: "isGlb R S x ==> lbs R S *<= x"
unfolding lbs_def isGlb_def by (rule greatestPD2)
end