header {* Definitions extending HOL as logical basis of Bali *}
theory Basis
imports Main "~~/src/HOL/Library/Old_Recdef"
begin
section "misc"
ML {* fun strip_tac i = REPEAT (resolve_tac [impI, allI] i) *}
declare split_if_asm [split] option.split [split] option.split_asm [split]
setup {* map_theory_simpset (fn ctxt => ctxt addloop ("split_all_tac", split_all_tac)) *}
declare if_weak_cong [cong del] option.weak_case_cong [cong del]
declare length_Suc_conv [iff]
lemma Collect_split_eq: "{p. P (split f p)} = {(a,b). P (f a b)}"
by auto
lemma subset_insertD: "A ⊆ insert x B ==> A ⊆ B ∧ x ∉ A ∨ (∃B'. A = insert x B' ∧ B' ⊆ B)"
apply (case_tac "x ∈ A")
apply (rule disjI2)
apply (rule_tac x = "A - {x}" in exI)
apply fast+
done
abbreviation nat3 :: nat ("3") where "3 ≡ Suc 2"
abbreviation nat4 :: nat ("4") where "4 ≡ Suc 3"
lemma irrefl_tranclI': "r¯ ∩ r⇧+ = {} ==> ∀x. (x, x) ∉ r⇧+"
by (blast elim: tranclE dest: trancl_into_rtrancl)
lemma trancl_rtrancl_trancl: "[|(x, y) ∈ r⇧+; (y, z) ∈ r⇧*|] ==> (x, z) ∈ r⇧+"
by (auto dest: tranclD rtrancl_trans rtrancl_into_trancl2)
lemma rtrancl_into_trancl3: "[|(a, b) ∈ r⇧*; a ≠ b|] ==> (a, b) ∈ r⇧+"
apply (drule rtranclD)
apply auto
done
lemma rtrancl_into_rtrancl2: "[|(a, b) ∈ r; (b, c) ∈ r⇧*|] ==> (a, c) ∈ r⇧*"
by (auto intro: rtrancl_trans)
lemma triangle_lemma:
assumes unique: "!!a b c. [|(a,b)∈r; (a,c)∈r|] ==> b = c"
and ax: "(a,x)∈r⇧*" and ay: "(a,y)∈r⇧*"
shows "(x,y)∈r⇧* ∨ (y,x)∈r⇧*"
using ax ay
proof (induct rule: converse_rtrancl_induct)
assume "(x,y)∈r⇧*"
then show ?thesis by blast
next
fix a v
assume a_v_r: "(a, v) ∈ r"
and v_x_rt: "(v, x) ∈ r⇧*"
and a_y_rt: "(a, y) ∈ r⇧*"
and hyp: "(v, y) ∈ r⇧* ==> (x, y) ∈ r⇧* ∨ (y, x) ∈ r⇧*"
from a_y_rt show "(x, y) ∈ r⇧* ∨ (y, x) ∈ r⇧*"
proof (cases rule: converse_rtranclE)
assume "a = y"
with a_v_r v_x_rt have "(y,x) ∈ r⇧*"
by (auto intro: rtrancl_trans)
then show ?thesis by blast
next
fix w
assume a_w_r: "(a, w) ∈ r"
and w_y_rt: "(w, y) ∈ r⇧*"
from a_v_r a_w_r unique have "v=w" by auto
with w_y_rt hyp show ?thesis by blast
qed
qed
lemma rtrancl_cases:
assumes "(a,b)∈r⇧*"
obtains (Refl) "a = b"
| (Trancl) "(a,b)∈r⇧+"
apply (rule rtranclE [OF assms])
apply (auto dest: rtrancl_into_trancl1)
done
lemma Ball_weaken: "[|Ball s P; !! x. P x-->Q x|]==>Ball s Q"
by auto
lemma finite_SetCompr2:
"finite (Collect P) ==> ∀y. P y --> finite (range (f y)) ==>
finite {f y x |x y. P y}"
apply (subgoal_tac "{f y x |x y. P y} = UNION (Collect P) (λy. range (f y))")
prefer 2 apply fast
apply (erule ssubst)
apply (erule finite_UN_I)
apply fast
done
lemma list_all2_trans: "∀a b c. P1 a b --> P2 b c --> P3 a c ==>
∀xs2 xs3. list_all2 P1 xs1 xs2 --> list_all2 P2 xs2 xs3 --> list_all2 P3 xs1 xs3"
apply (induct_tac xs1)
apply simp
apply (rule allI)
apply (induct_tac xs2)
apply simp
apply (rule allI)
apply (induct_tac xs3)
apply auto
done
section "pairs"
lemma surjective_pairing5:
"p = (fst p, fst (snd p), fst (snd (snd p)), fst (snd (snd (snd p))),
snd (snd (snd (snd p))))"
by auto
lemma fst_splitE [elim!]:
assumes "fst s' = x'"
obtains x s where "s' = (x,s)" and "x = x'"
using assms by (cases s') auto
lemma fst_in_set_lemma: "(x, y) : set l ==> x : fst ` set l"
by (induct l) auto
section "quantifiers"
lemma All_Ex_refl_eq2 [simp]: "(∀x. (∃b. x = f b ∧ Q b) --> P x) = (∀b. Q b --> P (f b))"
by auto
lemma ex_ex_miniscope1 [simp]: "(∃w v. P w v ∧ Q v) = (∃v. (∃w. P w v) ∧ Q v)"
by auto
lemma ex_miniscope2 [simp]: "(∃v. P v ∧ Q ∧ R v) = (Q ∧ (∃v. P v ∧ R v))"
by auto
lemma ex_reorder31: "(∃z x y. P x y z) = (∃x y z. P x y z)"
by auto
lemma All_Ex_refl_eq1 [simp]: "(∀x. (∃b. x = f b) --> P x) = (∀b. P (f b))"
by auto
section "sums"
hide_const In0 In1
notation case_sum (infixr "'(+')"80)
primrec the_Inl :: "'a + 'b => 'a"
where "the_Inl (Inl a) = a"
primrec the_Inr :: "'a + 'b => 'b"
where "the_Inr (Inr b) = b"
datatype ('a, 'b, 'c) sum3 = In1 'a | In2 'b | In3 'c
primrec the_In1 :: "('a, 'b, 'c) sum3 => 'a"
where "the_In1 (In1 a) = a"
primrec the_In2 :: "('a, 'b, 'c) sum3 => 'b"
where "the_In2 (In2 b) = b"
primrec the_In3 :: "('a, 'b, 'c) sum3 => 'c"
where "the_In3 (In3 c) = c"
abbreviation In1l :: "'al => ('al + 'ar, 'b, 'c) sum3"
where "In1l e ≡ In1 (Inl e)"
abbreviation In1r :: "'ar => ('al + 'ar, 'b, 'c) sum3"
where "In1r c ≡ In1 (Inr c)"
abbreviation the_In1l :: "('al + 'ar, 'b, 'c) sum3 => 'al"
where "the_In1l ≡ the_Inl o the_In1"
abbreviation the_In1r :: "('al + 'ar, 'b, 'c) sum3 => 'ar"
where "the_In1r ≡ the_Inr o the_In1"
ML {*
fun sum3_instantiate ctxt thm =
map (fn s =>
simplify (ctxt delsimps @{thms not_None_eq})
(Rule_Insts.read_instantiate ctxt [(("t", 0), "In" ^ s ^ " x")] ["x"] thm))
["1l","2","3","1r"]
*}
section "quantifiers for option type"
syntax
"_Oall" :: "[pttrn, 'a option, bool] => bool" ("(3! _:_:/ _)" [0,0,10] 10)
"_Oex" :: "[pttrn, 'a option, bool] => bool" ("(3? _:_:/ _)" [0,0,10] 10)
syntax (symbols)
"_Oall" :: "[pttrn, 'a option, bool] => bool" ("(3∀_∈_:/ _)" [0,0,10] 10)
"_Oex" :: "[pttrn, 'a option, bool] => bool" ("(3∃_∈_:/ _)" [0,0,10] 10)
translations
"∀x∈A: P" \<rightleftharpoons> "∀x∈CONST set_option A. P"
"∃x∈A: P" \<rightleftharpoons> "∃x∈CONST set_option A. P"
section "Special map update"
text{* Deemed too special for theory Map. *}
definition chg_map :: "('b => 'b) => 'a => ('a \<rightharpoonup> 'b) => ('a \<rightharpoonup> 'b)"
where "chg_map f a m = (case m a of None => m | Some b => m(a\<mapsto>f b))"
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m"
unfolding chg_map_def by auto
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a\<mapsto>f b)"
unfolding chg_map_def by auto
lemma chg_map_other [simp]: "a ≠ b ==> chg_map f a m b = m b"
by (auto simp: chg_map_def)
section "unique association lists"
definition unique :: "('a × 'b) list => bool"
where "unique = distinct o map fst"
lemma uniqueD: "unique l ==> (x, y) ∈ set l ==> (x', y') ∈ set l ==> x = x' ==> y = y'"
unfolding unique_def o_def
by (induct l) (auto dest: fst_in_set_lemma)
lemma unique_Nil [simp]: "unique []"
by (simp add: unique_def)
lemma unique_Cons [simp]: "unique ((x,y)#l) = (unique l ∧ (∀y. (x,y) ∉ set l))"
by (auto simp: unique_def dest: fst_in_set_lemma)
lemma unique_ConsD: "unique (x#xs) ==> unique xs"
by (simp add: unique_def)
lemma unique_single [simp]: "!!p. unique [p]"
by simp
lemma unique_append [rule_format (no_asm)]: "unique l' ==> unique l ==>
(∀(x,y)∈set l. ∀(x',y')∈set l'. x' ≠ x) --> unique (l @ l')"
by (induct l) (auto dest: fst_in_set_lemma)
lemma unique_map_inj: "unique l ==> inj f ==> unique (map (λ(k,x). (f k, g k x)) l)"
by (induct l) (auto dest: fst_in_set_lemma simp add: inj_eq)
lemma map_of_SomeI: "unique l ==> (k, x) : set l ==> map_of l k = Some x"
by (induct l) auto
section "list patterns"
definition lsplit :: "[['a, 'a list] => 'b, 'a list] => 'b"
where "lsplit = (λf l. f (hd l) (tl l))"
text {* list patterns -- extends pre-defined type "pttrn" used in abstractions *}
syntax
"_lpttrn" :: "[pttrn, pttrn] => pttrn" ("_#/_" [901,900] 900)
translations
"λy # x # xs. b" \<rightleftharpoons> "CONST lsplit (λy x # xs. b)"
"λx # xs. b" \<rightleftharpoons> "CONST lsplit (λx xs. b)"
lemma lsplit [simp]: "lsplit c (x#xs) = c x xs"
by (simp add: lsplit_def)
lemma lsplit2 [simp]: "lsplit P (x#xs) y z = P x xs y z"
by (simp add: lsplit_def)
end