[sabelle/jEdit

Makarius Wenzel

25 May 2015

Abstract

Isabelle/jEdit is a fully-featured Prover IDE, based on Isabelle/Scala and the
jEdit text editor. This document provides an overview of general principles
and its main IDE functionality.

Isabelle’s user interface is no advance over LCF’s, which is widely
condemned as “user-unfriendly”: hard to use, bewildering to begin-
ners. Hence the interest in proof editors, where a proof can be con-
structed and modified rule-by-rule using windows, mouse, and menus.
But Edinburgh LCF was invented because real proofs require millions
of inferences. Sophisticated tools — rules, tactics and tacticals, the
language ML, the logics themselves — are hard to learn, yet they are
essential. We may demand a mouse, but we need better education and
training.

Lawrence C. Paulson, “Isabelle: The Next 700 Theorem Provers”

Acknowledgements

Research and implementation of concepts around PIDE and Isabelle/jEdit
has started in 2008 and was kindly supported by:

e TU Miinchen http://www.in.tum.de

BMBF http://www.bmbf.de

Université Paris-Sud http://www.u-psud.fr

Digiteo http://www.digiteo.fr

ANR http://www.agence-nationale-recherche.fr

http://www.in.tum.de
http://www.bmbf.de
http://www.u-psud.fr
http://www.digiteo.fr
http://www.agence-nationale-recherche.fr

Contents

Introduction

1.1 Concepts and terminology

1.2 The Isabelle/jEdit Prover IDE
1.2.1 Documentation
1.22 Plugins. oo
1.23 Options
1.24 Keymaps.

1.3 Command-line invocation

Augmented jEdit functionality

2.1 GUIrendering
2.1.1 Look-and-feel
2.1.2 Displays with very high resolution

2.2 Dockable windows

2.3 Isabelle symbols 0.

2.4 SideKick parsers Lo

2.5 Scalaconsole

2.6 File-system access

Prover IDE functionality

3.1 Document model
3.1.1 Editor buffers and document nodes
3.1.2 Theories
3.1.3 Auxiliary fileso

3.2 Output

3.3 Query ...
3.3.1 Find theorems
3.3.2 Find constants L.
3.3.3 Printcontext

i

CONTENTS

3.4 Tooltips and hyperlinks
3.5 Completion
3.5.1 Varieties of completion
3.5.2 Semantic completion context
3.5.3 Inputevents
3.5.4 Completion popup
3.5.5 Imsertion
3.5.6 Options
3.6 Automatically tried tools L.
3.7 Sledgehammer

4 Isabelle document preparation
4.1 Document outline
4.2 Citations and BibTEX entries

5 Miscellaneous tools
5.1 Timingo
5.2 Low-level output

6 Known problems and workarounds
Bibliography

Index

11

38
38
39

41
41
42

43

45

47

List of Figures

1.1

2.1
2.2

3.1

3.2

3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

The Isabelle/jEdit Prover IDE

Metal look-and-feel with custom fonts for very high resolution

The Isabelle NEWS file with SideKick tree view

Theories panel with an overview of the document-model, and
some jEdit text areas as editable view on some of the document
nodes

Multiple views on prover output: gutter area with icon, text
area with popup, overview area, Theories panel, Output panel

An instance of the Query panel
Tooltip and hyperlink for some formal entity
Nested tooltips over formal entities
Result of automatically tried tools
An instance of the Sledgehammer panel

Isabelle document outline via SideKick tree view
Semantic completion of citations from open BibTgX files
BibTEX mode with context menu and SideKick tree view . . .

v

21

Chapter 1

Introduction

1.1 Concepts and terminology

Isabelle/jEdit is a Prover IDE that integrates parallel proof checking |5, 10|
with asynchronous user interaction [6, 9, 11, 12|, based on a document-
oriented approach to continuous proof processing |7, 8. Many concepts and
system components are fit together in order to make this work. The main
building blocks are as follows.

PIDE is a general framework for Prover IDEs based on Isabelle/Scala. It
is built around a concept of parallel and asynchronous document pro-
cessing, which is supported natively by the parallel proof engine that
is implemented in Isabelle/ML. The traditional prover command loop
is given up; instead there is direct support for editing of source text,
with rich formal markup for GUI rendering.

Isabelle/ML is the implementation and extension language of Isabelle, see
also [3|. It is integrated into the logical context of Isabelle/Isar and
allows to manipulate logical entities directly. Arbitrary add-on tools
may be implemented for object-logics such as Isabelle/HOL.

Isabelle/Scala is the system programming language of Isabelle. It extends
the pure logical environment of Isabelle/ ML towards the “real world”
of graphical user interfaces, text editors, IDE frameworks, web services
etc. Special infrastructure allows to transfer algebraic datatypes and
formatted text easily between ML and Scala, using asynchronous pro-
tocol commands.

jEdit is a sophisticated text editor implemented in Java.! It is easily ex-
tensible by plugins written in languages that work on the JVM, e.g.
Scala?.

Thttp://www.jedit.org
2http://www.scala-lang.org

http://www.jedit.org
http://www.scala-lang.org

CHAPTER 1. INTRODUCTION 2

Isabelle/jEdit is the main example application of the PIDE framework and
the default user-interface for Isabelle. It targets both beginners and ex-
perts. Technically, Isabelle/jEdit combines a slightly modified version
of the jEdit code base with a special plugin for Isabelle, integrated as
standalone application for the main operating system platforms: Linux,
Windows, Mac OS X.

The subtle differences of Isabelle/ML versus Standard ML, Isabelle/Scala
versus Scala, Isabelle/jEdit versus jEdit need to be taken into account when
discussing any of these PIDE building blocks in public forums, mailing lists,
or even scientific publications.

1.2 The Isabelle/jEdit Prover IDE

e0e & Seaq.thy
F * ™ — = fas = .
NEdE &9 ¢ XE0 0@ TEEE-EHE & @ |«»
| 0 Seq.thy (SISABELLE_HOME/src/HOL/ex/)) | isabelle 0
section <Finite sequences: i % B
Filter: ©
-
Seq.thy
o [theory Seq v saction <Finits ssquances: =
imports Main theory Seq %
begin a(atjpg ‘a seq = Enpty\ Seq 'a "'a seq" E
fun reverse seq = 'a seq g
datatype 'a seq = Empty | Seq 'a "'a seq" Lerma conc_emity: "conc x3 Empry = x5
Lama conc_sssec: "cenc (conc xs ys) zs = con| &
. . , , - Lema reverse_conc: "reverss (conc 15 ys) = c| & ‘
& |fun conc :: a seq = 'a seq = a seq I Lama reverse_reverse: reverse (reverse 1s) | &
where 24
"conc Empty ys = ys" 2
| "conc (@ x xs) ys = Seq x (conc xs ys)" 2
<)
& |fun revers| constant "Seq.seq.Seq"
where 11 'a = 'a seq = 'a seq
"reverse — —
| "reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)"
o |Lemma conhc_empty: "conc xs Empty = xs"
L by (induct xs) simp_all
™ Auto update | Update | Search: - [100% -
constants
conc :: "'a seq = 'a seq = 'a seq"
Found termination order: "(\p. size (fst p)) <*mlex*> {}"
B v | Output | Query Sledgehammer Symbols
13,39 (200/789) (isabelle,isabelle,UTF-8-Isabelle) UG I55/410MB 11:45 PM

Figure 1.1: The Isabelle/jEdit Prover IDE

Isabelle/jEdit (figure 1.1) consists of some plugins for the jEdit text editor,
while preserving its general look-and-feel as far as possible. The main plugin

CHAPTER 1. INTRODUCTION 3

is called “Isabelle” and has its own menu Plugins / Isabelle with access to
several panels (see also §2.2), as well as Plugins / Plugin Options / Isabelle
(see also §1.2.3).

The options allow to specify a logic session name — the same selector is
accessible in the Theories panel (§3.1.2). On application startup, the selected
logic session image is provided automatically by the Isabelle build tool [13]:
if it is absent or outdated wrt. its sources, the build process updates it before
entering the Prover IDE. Change of the logic session within Isabelle/jEdit
requires a restart of the whole application.

The main job of the Prover IDE is to manage sources and their changes, tak-
ing the logical structure as a formal document into account (see also §3.1).
The editor and the prover are connected asynchronously in a lock-free man-
ner. The prover is free to organize the checking of the formal text in parallel
on multiple cores, and provides feedback via markup, which is rendered in
the editor via colors, boxes, squiggly underlines, hyperlinks, popup windows,
icons, clickable output etc.

Using the mouse together with the modifier key CONTROL (Linux, Windows)
or COMMAND (Mac OS X) exposes additional formal content via tooltips and/or
hyperlinks (see also §3.4). Output (in popups etc.) may be explored recur-
sively, using the same techniques as in the editor source buffer.

Thus the Prover IDE gives an impression of direct access to formal content of
the prover within the editor, but in reality only certain aspects are exposed,
according to the possibilities of the prover and its many add-on tools.

1.2.1 Documentation

The Documentation panel of Isabelle/jEdit provides access to the standard
Isabelle documentation: PDF files are opened by regular desktop operations
of the underlying platform. The section “Original jEdit Documentation”
contains the original User’s Guide of this sophisticated text editor. The
same is accessible via the Help menu or F1 keyboard shortcut, using the
built-in HTML viewer of Java/Swing. The latter also includes Frequently
Asked Questions and documentation of individual plugins.

Most of the information about generic jEdit is relevant for Isabelle/jEdit as
well, but one needs to keep in mind that defaults sometimes differ, and the
official jEdit documentation does not know about the Isabelle plugin with its

support for continuous checking of formal source text: jEdit is a plain text
editor, but Isabelle/jEdit is a Prover IDE.

CHAPTER 1. INTRODUCTION 4

1.2.2 Plugins

The Plugin Manager of jEdit allows to augment editor functionality by JVM
modules (jars) that are provided by the central plugin repository, which is
accessible via various mirror sites.

Connecting to the plugin server-infrastructure of the jEdit project allows to
update bundled plugins or to add further functionality. This needs to be
done with the usual care for such an open bazaar of contributions. Arbitrary
combinations of add-on features are apt to cause problems. It is advisable
to start with the default configuration of Isabelle/jEdit and develop some
understanding how it is supposed to work, before loading additional plugins
at a grand scale.

The main Isabelle plugin is an integral part of Isabelle/jEdit and needs
to remain active at all times! A few additional plugins are bundled with
Isabelle/jEdit for convenience or out of necessity, notably Console with its
Isabelle/Scala sub-plugin (§2.5) and SideKick with some Isabelle-specific
parsers for document tree structure (§2.4). The Nawvigator plugin is par-
ticularly important for hyperlinks within the formal document-model (§3.4).
Further plugins (e.g. ErrorList, Code2HTML) are included to saturate the
dependencies of bundled plugins, but have no particular use in Isabelle /jEdit.

1.2.3 Options

Both jEdit and Isabelle have distinctive management of persistent options.

Regular jEdit options are accessible via the dialogs Utilities / Global Options
or Plugins / Plugin Options, with a second chance to flip the two within the
central options dialog. Changes are stored in $ISABELLE_HOME_USER/jedit/
properties and $ISABELLE_HOME_USER/jedit/keymaps.

Isabelle system options are managed by Isabelle/Scala and changes are stored
in $ISABELLE_HOME_USER/etc/preferences, independently of other jEdit
properties. See also [13], especially the coverage of sessions and command-
line tools like isabelle build or isabelle options.

Those Isabelle options that are declared as public are configurable in
Isabelle/jEdit via Plugin Options / Isabelle / General. Moreover, there
are various options for rendering of document content, which are config-
urable via Plugin Options / Isabelle / Rendering. Thus Plugin Options /
Isabelle in jEdit provides a view on a subset of Isabelle system options.
Note that some of these options affect general parameters that are rele-
vant outside Isabelle/jEdit as well, e.g. threads or parallel_proofs for

CHAPTER 1. INTRODUCTION 5

the Isabelle build tool [13]|, but it is possible to use the settings variable
ISABELLE_BUILD_OPTIONS to change defaults for batch builds without af-
fecting Isabelle/jEdit.

The jEdit action isabelle.options opens the options dialog for the Isabelle
plugin; it can be mapped to editor GUI elements as usual.

Options are wusually loaded on startup and saved on shutdown of
Isabelle/jEdit. Editing the machine-generated $ISABELLE_HOME_USER/
jedit/properties or $ISABELLE_HOME_USER/etc/preferences manually
while the application is running is likely to cause surprise due to lost update!

1.2.4 Keymaps

Keyboard shortcuts used to be managed as jEdit properties in the past, but
recent versions (2013) have a separate concept of keymap that is configurable
via Global Options / Shortcuts. The imported keymap is derived from the
initial environment of properties that is available at the first start of the
editor; afterwards the keymap file takes precedence.

This is relevant for Isabelle/jEdit due to various fine-tuning of default prop-
erties, and additional keyboard shortcuts for Isabelle-specific functional-
ity. Users may change their keymap later, but need to copy some key-
board shortcuts manually (see also $ISABELLE_HOME_USER/jedit/keymaps
versus shortcut properties in $ISABELLE_HOME/src/Tools/jEdit/src/
jEdit.props).

1.3 Command-line invocation

Isabelle/jEdit is normally invoked as standalone application, with platform-
specific executable wrappers for Linux, Windows, Mac OS X. Nonetheless it is
occasionally useful to invoke the Prover IDE on the command-line, with some
extra options and environment settings as explained below. The command-
line usage of isabelle jedit is as follows:

CHAPTER 1. INTRODUCTION 6

Usage: isabelle jedit [OPTIONS] [FILES ...]

Options are:
-J OPTION add JVM runtime option (default JEDIT_JAVA_OPTIONS)

-b build only

-d DIR include session directory

-f fresh build

-j OPTION add jEdit runtime option (default JEDIT_OPTIONS)
-1 NAME logic image name (default ISABELLE_LOGIC)

-m MODE add print mode for output

-n no build of session image on startup

-s system build mode for session image

Start jEdit with Isabelle plugin setup and open theory FILES
(default "$USER_HOME/Scratch.thy").

The -1 option specifies the session name of the logic image to be used for
proof processing. Additional session root directories may be included via
option -d to augment that name space of isabelle build [13].

By default, the specified image is checked and built on demand. The -s
option determines where to store the result session image of isabelle build.
The -n option bypasses the implicit build process for the selected session
image.

The -m option specifies additional print modes for the prover process. Note
that the system option jedit_print_mode allows to do the same persis-
tently (e.g. via the Plugin Options dialog of Isabelle /jEdit), without requiring
command-line invocation.

The -J and -j options allow to pass additional low-level options to the JVM
or jEdit, respectively. The defaults are provided by the Isabelle settings
environment [13], but note that these only work for the command-line tool
described here, and not the regular application.

The -b and -f options control the self-build mechanism of Isabelle/jEdit.
This is only relevant for building from sources, which also requires an aux-
iliary jedit_build component from http://isabelle.in.tum.de/components.

The official Isabelle release already includes a pre-built version of
Isabelle/jEdit.

http://isabelle.in.tum.de/components

Chapter 2

Augmented jEdit functionality

2.1 GUI rendering

2.1.1 Look-and-feel

jEdit is a Java/AWT /Swing application with some ambition to support “na-
tive” look-and-feel on all platforms, within the limits of what Oracle as Java
provider and major operating system distributors allow (see also §6).

Isabelle/jEdit enables platform-specific look-and-feel by default as follows.

Linux: The platform-independent Nimbus is used by default.

GTK + also works under the side-condition that the overall GTK theme
is selected in a Swing-friendly way.!

Windows: Regular Windows is used by default, but Windows Classic also
works.

Mac OS X: Regular Mac OS X is used by default.

The bundled MacOSX plugin provides various functions that are ex-
pected from applications on that particular platform: quit from menu
or dock, preferences menu, drag-and-drop of text files on the applica-
tion, full-screen mode for main editor windows. It is advisable to have
the MacOSX plugin enabled all the time on that platform.

Users may experiment with different look-and-feels, but need to keep in mind
that this extra variance of GUI functionality is unlikely to work in arbitrary

combinations. The platform-independent Nembus and Metal should always
work. The historic CDE/Motif should be ignored.

LGTK support in Java/Swing was once marketed aggressively by Sun, but never quite
finished. Today (2015) it is lagging behind further development of Swing and GTK.
The graphics rendering performance can be worse than for other Swing look-and-feels.
Nonetheless it has its uses for displays with very high resolution (such as “4K” or “UHD”
models), because the rendering by the external library is subject to global system settings
for font scaling.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 8

After changing the look-and-feel in Global Options / Appearance, it is advis-
able to restart Isabelle/jEdit in order to take full effect.

2.1.2 Displays with very high resolution

Many years ago, displays with 1024 x 768 or 1280 x 1024 pixels were considered
“high resolution” and bitmap fonts with 12 or 14 pixels as adequate for text
rendering. Today (2015), we routinely see “Full HD” monitors at 1920 x 1080
pixels, and occasionally “Ultra HD” at 3840x 2160 or more, but GUI rendering
did not really progress beyond the old standards.

Isabelle/jEdit defaults are a compromise for reasonable out-of-the box results
on common platforms and medium resolution displays (e.g. the “Full HD”
category). Subsequently there are further hints to improve on that.

The operating-system platform usually provides some configuration for
global scaling of text fonts, e.g. 120%-250% on Windows. Changing that only
has a partial effect on GUI rendering; satisfactory display quality requires
further adjustments.

The Isabelle/jEdit application and its plugins provide various font proper-
ties that are summarized below.

e Global Options / Text Area / Text font: the main text area font, which
is also used as reference point for various derived font sizes, e.g. the
Output panel (§3.2).

e Global Options / Gutter / Gutter font: the font for the gutter area left
of the main text area, e.g. relevant for display of line numbers (disabled
by default).

e Global Options / Appearance / Button, menu and label font as well as
List and text field font: this specifies the primary and secondary font
for the old Metal look-and-feel (§2.1.1), which happens to scale better
than newer ones like Nimbus.

e Plugin Options / Isabelle / General / Reset Font Size: the main text
area font size for action isabelle.reset-font-size, e.g. relevant for
quick scaling like in major web browsers.

e Plugin Options / Console / General / Font: the console window font,
e.g. relevant for Isabelle/Scala command-line.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 9

In figure 2.1 the Metal look-and-feel is configured with custom fonts at 30
pixels, and the main text area and console at 36 pixels. Despite the old-
fashioned appearance of Metal, this leads to decent rendering quality on all
platforms.

T Isabelle2015 - Unix.thv.
File Edit Search Markers Folding View Utilities Macros Plugins Help
IEBrE & 66 K0 B® " PEE B8 & @ [¢
“Unix.thy ($|SABELLE_HOME/src/HOL/Unix/) B isabelle M
ssjtext < " Filter: .
s33 The next two rules show how to "“destruct'' known transition Unix thy o
X ~section <Unix file-systems \label{se(§
s3q sequences. Note that the second one actually relies on the +section <File-system transitions \lal§
53| uniqueness property of the basic transition system (see rsubsection <Unix system calls \labe g
i g +subsection <Basic properties of sin 7+
53¢ \secref{sec:unix-single-trans}). theorem transition_unig: &
. theorem transition_type_safe: g
+ subsection «<Iterated transitions> |
538. inductive transitions :: "file = %
: . : = : " =| &
- s3lemma transitions_nilD: "root =[]= root' — root' = root" temna transitions_nileq: *root =[f:
X - o X lemma transitions_cons_eq: =]
sa) by (simp add: transitions_nil_eq) lemma transitions nild: "root =[] 5l
lemma transitions_consD: o
541 N o . °
emma transitions_invariant: =
- sao/lemma transitions_consD: theorem transitions_type safe: &
: A _ L ~section <Executable sequences>
s43 assumes list: root =(x # xs)= root ~section <0dd effects --- treated for|
544 and hd: "root —x— root'"
sass shows "root' =xs= root''"
e D
Scala ‘- s BTOL
The contents of package isabelle and isabelle.jedit are imported.
The following special toplevel bindings are provided:
view -- current jEdit/Swing view (e.g. view.getBuffer, view.getTextArea)
console -- jEdit Console plugin
PIDE -- Isabelle/PIDE plugin (e.g. PIDE.session, PIDE.snapshot, PIDE.rendering)
scala>
‘ s ‘ > ‘Console‘Output‘Query‘SIedgehammer‘Symbols . . 4
\538,1 (19068/37838) (isabelle,isabelle,UTF-8-Isabelle)| o UGIEREJEItMB 4:50 PM

Figure 2.1: Metal look-and-feel with custom fonts for very high resolution

On Linux, it is also possible to use GTK+ with a suitable theme and global
font scaling. On Mac OS X, the default setup for “Retina” displays should
work adequately with the native look-and-feel.

2.2 Dockable windows

In jEdit terminology, a view is an editor window with one or more text areas
that show the content of one or more buffers. A regular view may be sur-
rounded by dockable windows that show additional information in arbitrary
format, not just text; a plain view does not allow dockables. The dockable
window manager of jEdit organizes these dockable windows, either as floating
windows, or docked panels within one of the four margins of the view. There
may be any number of floating instances of some dockable window, but at
most one docked instance; jEdit actions that address the dockable window
of a particular kind refer to the unique docked instance.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 10

Dockables are used routinely in jEdit for important functionality like Hyper-
Search Results or the File System Browser. Plugins often provide a central
dockable to access their key functionality, which may be opened by the user
on demand. The Isabelle/jEdit plugin takes this approach to the extreme:
its plugin menu provides the entry-points to many panels that are managed
as dockable windows. Some important panels are docked by default, e.g.
Documentation, Output, Query, but the user can change this arrangement
easily and persistently.

Compared to plain jEdit, dockable window management in Isabelle/jEdit is
slightly augmented according to the the following principles:

e Floating windows are dependent on the main window as dialog in the
sense of Java/AWT /Swing. Dialog windows always stay on top of the
view, which is particularly important in full-screen mode. The desktop
environment of the underlying platform may impose further policies on
such dependent dialogs, in contrast to fully independent windows, e.g.
some window management functions may be missing.

e Keyboard focus of the main view vs. a dockable window is carefully
managed according to the intended semantics, as a panel mainly for
output or input. For example, activating the Output (§3.2) panel via
the dockable window manager returns keyboard focus to the main text
area, but for Query (§3.3) the focus is given to the main input field of
that panel.

e Panels that provide their own text area for output have an additional
dockable menu item Detach. This produces an independent copy of the
current output as a floating Info window, which displays that content
independently of ongoing changes of the PIDE document-model. Note
that Isabelle/jEdit popup windows (§3.4) provide a similar Detach op-
eration as an icon.

2.3 Isabelle symbols

Isabelle sources consist of symbols that extend plain ASCII to allow infinitely
many mathematical symbols within the formal sources. This works without
depending on particular encodings and varying Unicode standards.? See also

2Raw Unicode characters within formal sources would compromise portability and re-
liability in the face of changing interpretation of special features of Unicode, such as
Combining Characters or Bi-directional Text.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 11

[7].

For the prover back-end, formal text consists of ASCII characters that
are grouped according to some simple rules, e.g. as plain “a” or symbolic
“\<alpha>”. For the editor front-end, a certain subset of symbols is ren-
dered physically via Unicode glyphs, in order to show “\<alpha>” as “a”, for
example. This symbol interpretation is specified by the Isabelle system dis-
tribution in $ISABELLE_HOME/etc/symbols and may be augmented by the

user in $ISABELLE_HOME_USER/etc/symbols.

The appendix of [4] gives an overview of the standard interpretation of finitely
many symbols from the infinite collection. Uninterpreted symbols are dis-
played literally, e.g. “\<foobar>". Overlap of Unicode characters used in
symbol interpretation with informal ones (which might appear e.g. in com-
ments) needs to be avoided. Raw Unicode characters within prover source
files should be restricted to informal parts, e.g. to write text in non-latin
alphabets in comments.

Encoding. Technically, the Unicode view on Isabelle symbols is an en-
coding called UTF-8-Isabelle in jEdit (not in the underlying JVM). It is
provided by the Isabelle/jEdit plugin and enabled by default for all source
files. Sometimes such defaults are reset accidentally, or malformed UTF-8
sequences in the text force jEdit to fall back on a different encoding like
I1S0-8859-15. In that case, verbatim “\<alpha>” will be shown in the text
buffer instead of its Unicode rendering “«o”. The jEdit menu operation File /
Reload with Encoding / UTF-8-Isabelle helps to resolve such problems (after
repairing malformed parts of the text).

Font. Correct rendering via Unicode requires a font that contains glyphs for
the corresponding codepoints. Most system fonts lack that, so Isabelle/jEdit
prefers its own application font IsabelleText, which ensures that standard
collection of Isabelle symbols are actually seen on the screen (or printer).

Note that a Java/AWT /Swing application can load additional fonts only if
they are not installed on the operating system already! Some outdated version
of IsabelleText that happens to be provided by the operating system would
prevent Isabelle/jEdit to use its bundled version. This could lead to missing
glyphs (black rectangles), when the system version of IsabelleText is older
than the application version. This problem can be avoided by refraining
to “install” any version of IsabelleText in the first place, although it is
occasionally tempting to use the same font in other applications.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 12

Input methods. In principle, Isabelle/jEdit could delegate the problem to
produce Isabelle symbols in their Unicode rendering to the underlying oper-
ating system and its input methods. Regular jEdit also provides various ways
to work with abbreviations to produce certain non-ASCII characters. Since
none of these standard input methods work satisfactorily for the mathemati-
cal characters required for Isabelle, various specific Isabelle /jEdit mechanisms
are provided.

This is a summary for practically relevant input methods for Isabelle symbols.

1. The Symbols panel: some GUI buttons allow to insert certain symbols
in the text buffer. There are also tooltips to reveal the official Isabelle
representation with some additional information about symbol abbrevi-
ations (see below).

2. Copy/paste from decoded source files: text that is rendered as Unicode
already can be re-used to produce further text. This also works between
different applications, e.g. Isabelle/jEdit and some web browser or mail
client, as long as the same Unicode view on Isabelle symbols is used.

3. Copy/paste from prover output within Isabelle/jEdit. The same prin-
ciples as for text buffers apply, but note that copy in secondary
Isabelle/jEdit windows works via the keyboard shortcuts C+c or
C+INSERT, while jEdit menu actions always refer to the primary text
area!

4. Completion provided by Isabelle plugin (see §3.5). Isabelle symbols
have a canonical name and optional abbreviations. This can be used
with the text completion mechanism of Isabelle/jEdit, to replace a pre-
fix of the actual symbol like \<lambda>, or its name preceded by back-
slash \lambda, or its ASCII abbreviation % by the Unicode rendering.

The following table is an extract of the information provided by the
standard $ISABELLE_HOME/etc/symbols file:

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 13

name with backslash abbreviation
\lambda YA
\Rightarrow =>
\Longrightarrow ==>

\And 1

\equiv ==

\forall !

\exists ?
\longrightarrow ->

\and &

\or |

\not
\noteq =
\in
\notin

)

<
8
on
=2

mm*1<>lm<”|>ﬂuy

Note that the above abbreviations refer to the input method. The
logical notation provides ASCII alternatives that often coincide, but
sometimes deviate. This occasionally causes user confusion with very
old-fashioned Isabelle source that use ASCII replacement notation like
! or ALL directly in the text.

On the other hand, coincidence of symbol abbreviations with ASCII re-
placement syntax syntax helps to update old theory sources via explicit
completion (see also C+b explained in §3.5).

Control symbols. There are some special control symbols to modify the
display style of a single symbol (without nesting). Control symbols may be
applied to a region of selected text, either using the Symbols panel or key-
board shortcuts or jEdit actions. These editor operations produce a separate
control symbol for each symbol in the text, in order to make the whole text
appear in a certain style.

style symbol shortcut action

superscript \<“sup> C+e UP isabelle.control-sup
subscript \<"sub> C+e DOWN isabelle.control-sub
bold face \<"bold> C+e RIGHT isabelle.control-bold
reset C+e LEFT 1isabelle.control-reset

To produce a single control symbol, it is also possible to complete on \sup,
\sub, \bold as for regular symbols.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 14

2.4 SideKick parsers

The SideKick plugin provides some general services to display buffer struc-
ture in a tree view.

Isabelle/jEdit provides SideKick parsers for its main mode for theory files,
as well as some minor modes for the NEWS file (see figure 2.2), session ROOT
files, and system options.

CEedE ¢ 9¢ XEO @ TREE BX & @ ||«

O NEWS (SISABELLE_HOME/) : E isabelle-news + B8
New in Isabelle2011-1 (October 2011) i % v
____________________________________ el oy

NEWS §
b Isabelle20ls (May 2615) =
=

- Isabelle2ld (August 2014)
b Isabelle2013-2 (Decenber 2013)
b Isabelle2013-1 (Novenber 2013)

[** General *+*

* Improved Isabelle/jEdit Prover IDE (PIDE), which can be invoked as b Tasbelledn13 (February 20031
"isabelle jedit" or "ISABELLE_HOME/Isabelle" on the command line. b Isabelleznn2 (hay 2012)
w [Isabelle2011-1 (October 2611)
- Management of multiple theory files directly from the editor ey
buffer store -- bypassing the file-system (no requirement to save Docurent. preparation

nw

files for checking)

Systan
P Isshelle20ll (January 2011)

- Markup of formal entities within the text buffer, with semantic b Isabelle2009-2 (une 2010)
highlighting, tooltips and hyperlinks to jump to defining source P Lsabelle2005-1 (Decenber 2009
b Isabellez00s iapril 2009)

p051t10ns. b Isabelle2008 (June 2088)

b Isabelle2007 (Novenber 2067)
- Isabelle2005 (Dctober 2005)
[sabelle2004 (April 2664)
Isabelle2003 (Nay 2003)
Isabelle2002 (March 2602)
Isabelle9-2 (February 2001)
Isabelle99-1 (Dctober 2000)
Isabellesd (October 1999)
Isabelled8-1 (Dctober 1938)
Isabelless (January 1998)
Isabelledd-8 (Nay 1997)
Isabelledd-7 iNovenber 96)
Reduced CPU performance requirements, usable on machines with few LesbeTLenios

[sabellesd -5

Isabelledd-4

Improved text rendering, with sub/superscripts in the source
buffer (including support for copy/paste wrt. output panel, HTML
theory output and other non-Isabelle text hoxes).

v

Refined scheduling of proof checking and printing of results,
based on interactive editor view. (Note: jEdit folding and
narrowing allows to restrict buffer perspectives explicitly.)

YYYYYYTYY

cores.

. . Isabelless.3
Reduced memory requirements due to pruning of unused document Lesbellent.2

versions (garbage collection).

3678,1 (148464/496157) General (isabelle-news,sidekick,UTF-8-Isabelle)H UG IEENI409MB 11:00 PM

Figure 2.2: The Isabelle NEWS file with SideKick tree view

Moreover, the special SideKick parser isabelle-markup provides access to
the full (uninterpreted) markup tree of the PIDE document model of the
current buffer. This is occasionally useful for informative purposes, but the
amount of displayed information might cause problems for large buffers, both
for the human and the machine.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 15

2.5 Scala console

The Console plugin manages various shells (command interpreters), e.g.
BeanShell, which is the official jEdit scripting language, and the cross-
platform System shell. Thus the console provides similar functionality than
the Emacs buffers *scratch* and *shellx.

Isabelle/jEdit extends the repertoire of the console by Scala, which is
the regular Scala toplevel loop running inside the same JVM process as
Isabelle/jEdit itself. This means the Scala command interpreter has access
to the JVM name space and state of the running Prover IDE application.
The default environment imports the full content of packages isabelle and
isabelle. jedit.

For example, PIDE refers to the Isabelle/jEdit plugin object, and view to the
current editor view of jEdit. The Scala expression PIDE.snapshot (view)
makes a PIDE document snapshot of the current buffer within the current
editor view.

This helps to explore Isabelle/Scala functionality interactively. Some care is
required to avoid interference with the internals of the running application,
especially in production use.

2.6 File-system access

File specifications in jEdit follow various formats and conventions according
to Virtual File Systems, which may be also provided by additional plugins.
This allows to access remote files via the http: protocol prefix, for example.
Isabelle/jEdit attempts to work with the file-system model of jEdit as far as
possible. In particular, theory sources are passed directly from the editor to
the prover, without indirection via physical files.

Despite the flexibility of URLs in jEdit, local files are particularly important
and are accessible without protocol prefix. Here the path notation is that
of the Java Virtual Machine on the underlying platform. On Windows the
preferred form uses backslashes, but happens to accept also forward slashes
like Unix/POSIX. Further differences arise due to Windows drive letters and
network shares.

The Java notation for files needs to be distinguished from the one of Isabelle,

which uses POSIX notation with forward slashes on all platforms.®> More-
over, environment variables from the Isabelle process may be used freely, e.g.

3Isabelle/ML on Windows uses Cygwin file-system access and Unix-style path notation.

CHAPTER 2. AUGMENTED JEDIT FUNCTIONALITY 16

$ISABELLE_HOME/etc/symbols or $POLYML_HOME/README. There are special
shortcuts: ~ for $USER_HOME and ~~ for $ISABELLE_HOME.

Since jEdit happens to support environment variables within file specifica-
tions as well, it is natural to use similar notation within the editor, e.g.
in the file-browser. This does not work in full generality, though, due to
the bias of jEdit towards platform-specific notation and of Isabelle towards
POSIX. Moreover, the Isabelle settings environment is not yet active when
starting Isabelle/jEdit via its standard application wrapper, in contrast to
isabelle jedit run from the command line (§1.3).

Isabelle/jEdit imitates $ISABELLE_HOME and $ISABELLE_HOME_USER within
the Java process environment, in order to allow easy access to these important
places from the editor. The file browser of jEdit also includes Favorites for
these two important locations.

Path specifications in prover input or output usually include formal markup
that turns it into a hyperlink (see also §3.4). This allows to open the corre-
sponding file in the text editor, independently of the path notation.
Formally checked paths in prover input are subject to completion (§3.5): par-
tial specifications are resolved via directory content and possible completions
are offered in a popup.

Chapter 3

Prover IDE functionality

3.1 Document model

The document model is central to the PIDE architecture: the editor and the
prover have a common notion of structured source text with markup, which
is produced by formal processing. The editor is responsible for edits of doc-
ument source, as produced by the user. The prover is responsible for reports
of document markup, as produced by its processing in the background.

Isabelle/jEdit handles classic editor events of jEdit, in order to connect the
physical world of the GUI (with its singleton state) to the mathematical
world of multiple document versions (with timeless and stateless updates).

3.1.1 Editor buffers and document nodes

As a regular text editor, jEdit maintains a collection of buffers to store text
files; each buffer may be associated with any number of visible text areas.
Buffers are subject to an edit mode that is determined from the file name
extension. The following modes are treated specifically in Isabelle/jEdit:

mode file extension content

isabelle .thy theory source
isabelle-ml .ML Isabelle /ML source
sml .sml or .sig Standard ML source

All jEdit buffers are automatically added to the PIDE document-model as
document nodes. The overall document structure is defined by the theory
nodes in two dimensions:

1. via theory imports that are specified in the theory header using con-
crete syntax of the theory command [4];

2. via auxiliary files that are loaded into a theory by special load com-
mands, notably ML _ file and SML_ file [4].

17

CHAPTER 3. PROVER IDE FUNCTIONALITY 18

In any case, source files are managed by the PIDE infrastructure: the physical
file-system only plays a subordinate role. The relevant version of source text
is passed directly from the editor to the prover, using internal communication
channels.

3.1.2 Theories

The Theories panel (see also figure 3.1) provides an overview of the status
of continuous checking of theory nodes within the document model. Unlike
batch sessions of isabelle build [13], theory nodes are identified by full
path names; this allows to work with multiple (disjoint) Isabelle sessions
simultaneously within the same editor session.

[JoN) & Function_Order.thy, Function_Norm.thy
D830 &9 ¢ X OB R@ TERE B & @ |€»
| & Function_Order.thy (SISABELLE_HOME/src/HOL/Hahn_Banach/) *| @ Continuous checking | Prover: ready B
subsection <Functions ordered by domain extension: HOL AR
4
o text « U \MU‘L‘ ‘ E? ‘
A function @{text h'} is an extension of @{text h}, if '—' &
l @{text h} is a subset of the graph of @{text h'}. T 'J
& lemma graph_extI: O [Countable]
"(Ax. x e H = hx=h"x) = HCH' ,7,
== graph H h C graph H' h'" ,_,
unfolding graph_def by blast u
o lemma graph extDl [dest?]: “"graph H h C graph H' h' = =
| O Function_Norm.thy ($ISABELLE_ HOME,src /HOL/Hahn_Banach/) D=
theory Function_Norm] |Function_Order
{ imports Normed_Space Function_Orderl u
begin
subsection <Continuous linear forms: ,_,
e
A linear form @{text f} on a normed vector space @{tex
is \emph{continuous}, iff it is bounded, i.e.
\begin{center} T
@{text "Jc € R, ¥x € V. If x| < ¢ - |x[|"}
\end{center}
In our application no other functions than linear form
8,36 (185/8812) (isabelle,isabelle,UTF-8-Isabelle) UG BB /447MB 11:17 PM

Figure 3.1: Theories panel with an overview of the document-model, and
some jEdit text areas as editable view on some of the document nodes

Certain events to open or update editor buffers cause Isabelle /jEdit to resolve
dependencies of theory imports. The system requests to load additional
files into editor buffers, in order to be included in the document model for

CHAPTER 3. PROVER IDE FUNCTIONALITY 19

further checking. It is also possible to let the system resolve dependencies
automatically, according to the system option jedit_auto_load.

The visible perspective of Isabelle/jEdit is defined by the collective view on
theory buffers via open text areas. The perspective is taken as a hint for
document processing: the prover ensures that those parts of a theory where
the user is looking are checked, while other parts that are presently not
required are ignored. The perspective is changed by opening or closing text
area windows, or scrolling within a window.

The Theories panel provides some further options to influence the process
of continuous checking: it may be switched off globally to restrict the prover
to superficial processing of command syntax. It is also possible to indicate
theory nodes as required for continuous checking: this means such nodes and
all their imports are always processed independently of the visibility status
(if continuous checking is enabled). Big theory libraries that are marked as
required can have significant impact on performance, though.

Formal markup of checked theory content is turned into GUI rendering, based
on a standard repertoire known from IDEs for programming languages: col-
ors, icons, highlighting, squiggly underlines, tooltips, hyperlinks etc. For
outer syntax of Isabelle/Isar there is some traditional syntax-highlighting
via static keywords and tokenization within the editor; this buffer syntax is
determined from theory imports. In contrast, the painting of inner syntax
(term language etc.) uses semantic information that is reported dynamically
from the logical context. Thus the prover can provide additional markup
to help the user to understand the meaning of formal text, and to produce
more text with some add-on tools (e.g. information messages with sendback
markup by automated provers or disprovers in the background).

3.1.3 Auxiliary files

Special load commands like ML _file and SML _file [4] refer to auxiliary
files within some theory. Conceptually, the file argument of the command
extends the theory source by the content of the file, but its editor buffer may
be loaded / changed / saved separately. The PIDE document model prop-
agates changes of auxiliary file content to the corresponding load command
in the theory, to update and process it accordingly: changes of auxiliary file
content are treated as changes of the corresponding load command.

As a concession to the massive amount of ML files in Isabelle/HOL itself,
the content of auxiliary files is only added to the PIDE document-model on
demand, the first time when opened explicitly in the editor. There are further

CHAPTER 3. PROVER IDE FUNCTIONALITY 20

tricks to manage markup of ML files, such that Isabelle/HOL may be edited
conveniently in the Prover IDE on small machines with only 8 GB of main
memory. Using Pure as logic session image, the exploration may start at the
top $ISABELLE_HOME/src/HOL/Main.thy or the bottom $ISABELLE_HOME/
src/HOL/HOL. thy, for example.

Initially, before an auxiliary file is opened in the editor, the prover reads its
content from the physical file-system. After the file is opened for the first
time in the editor, e.g. by following the hyperlink (§3.4) for the argument of
its ML file command, the content is taken from the jEdit buffer.

The change of responsibility from prover to editor counts as an update of
the document content, so subsequent theory sources need to be re-checked.
When the buffer is closed, the responsibility remains to the editor: the file
may be opened again without causing another document update.

A file that is opened in the editor, but its theory with the load command is
not, is presently inactive in the document model. A file that is loaded via
multiple load commands is associated to an arbitrary one: this situation is
morally unsupported and might lead to confusion.

Output that refers to an auxiliary file is combined with that of the corre-
sponding load command, and shown whenever the file or the command are
active (see also §3.2).

Warnings, errors, and other useful markup is attached directly to the posi-
tions in the auxiliary file buffer, in the manner of other well-known IDEs.
By using the load command SML _file as explained in $ISABELLE_HOME/
src/Tools/SML/Examples. thy, Isabelle/jEdit may be used as fully-featured
IDE for Standard ML, independently of theory or proof development: the
required theory merely serves as some kind of project file for a collection of
SML source modules.

3.2 Output

Prover output consists of markup and messages. Both are directly attached
to the corresponding positions in the original source text, and visualized in
the text area, e.g. as text colours for free and bound variables, or as squiggly
underlines for warnings, errors etc. (see also figure 3.2). In the latter case,
the corresponding messages are shown by hovering with the mouse over the
highlighted text — although in many situations the user should already get
some clue by looking at the position of the text highlighting, without the
text itself.

CHAPTER 3. PROVER IDE FUNCTIONALITY 21

e0e & Countable.thy
DEd@E & 9¢ X080 @ TEEE-RE & © |«-
) Countable.thy ($ISABELLE_HOME/src/HOL/Library/) = =] @it diedin m
section {* Encoding (almost) everything into natural nu HOL o B
-
o [theory Countable =
l imports Old_Datatype Rat Nat_Bijection \é\
begin :
subsection {* The class of countable types *}
ow[class countable =Jj
assumes ex_im]

Additional type variable(s) in locale specification "countable":

i

o |Lemma countablg
l fixes f :: "'a = nat"

assumes "Ax y. f x =fy — x = y"
shows "OFCLASS('a, countable_class)"

proof (intro_classes, rule exI)
show "inj f" =
by (rule injI [OF assmsl) assumption

Subspace

= =

HEEEIEEE

251215 211

EXIEY =R nic
Y N g

|5 g

B3 S]3 EIE

2=z |%ll's EbE

allg|ls |3 b

ag 8| 1

S EN e

4

C

I

3

3

g

B

qed _ _Ext_
& Auto updare [Update] search: | =
Additional type variable(s) in locale specification "countable": 'a
B ~ | Output |
15,18 (388/9594) (isabelle,isabelle,UTF-8-lIsabelle) UG IEEE /391MB 11:32 PM

Figure 3.2: Multiple views on prover output: gutter area with icon, text area
with popup, overview area, Theories panel, Output panel

The “gutter area” on the left-hand-side of the text area uses icons to provide a
summary of the messages within the adjacent line of text. Message priorities
are used to prefer errors over warnings, warnings over information messages,
but plain output is ignored.

The “overview area” on the right-hand-side of the text area uses similar infor-
mation to paint small rectangles for the overall status of the whole text buffer.
The graphics is scaled to fit the logical buffer length into the given window
height. Mouse clicks on the overview area position the cursor approximately
to the corresponding line of text in the buffer. Repainting the overview in
real-time causes problems with big theories, so it is restricted according to
the system option jedit_text_overview_limit (in characters

~—

Another course-grained overview is provided by the Theories panel, but with-
out direct correspondence to text positions. A double-click on one of the the-
ory entries with their status overview opens the corresponding text buffer,
without changing the cursor position.

In addition, the Output panel displays prover messages that correspond to a

CHAPTER 3. PROVER IDE FUNCTIONALITY 22

given command, within a separate window.

The cursor position in the presently active text area determines the prover
command whose cumulative message output is appended and shown in that
window (in canonical order according to the internal execution of the com-
mand). There are also control elements to modify the update policy of the
output wrt. continued editor movements. This is particularly useful with sev-
eral independent instances of the Output panel, which the Dockable Window
Manager of jEdit can handle conveniently.

Former users of the old TTY interaction model (e.g. Proof General) might
find a separate window for prover messages familiar, but it is important to
understand that the main Prover IDE feedback happens elsewhere. It is
possible to do meaningful proof editing within the primary text area and its
markup, while using secondary output windows only rarely.

The main purpose of the output window is to “debug” unclear situations by
inspecting internal state of the prover.! Consequently, some special messages
for tracing or proof state only appear here, and are not attached to the
original source.

In any case, prover messages also contain markup that may be explored
recursively via tooltips or hyperlinks (see §3.4), or clicked directly to initiate
certain actions (see §3.6 and §3.7).

3.3 Query

The Query panel provides various GUI forms to request extra information
from the prover. In old times the user would have issued some diagnostic
command like find theorems and inspected its output, but this is now
integrated into the Prover IDE.

A Query window provides some input fields and buttons for a particular query
command, with output in a dedicated text area. There are various query
modes: Find Theorems, Find Constants, Print Context, e.g. see figure 3.3.
As usual in jEdit, multiple Query windows may be active at the same time:
any number of floating instances, but at most one docked instance (which is
used by default).

The following GUI elements are common to all query modes:

e The spinning wheel provides feedback about the status of a pending

'In that sense, unstructured tactic scripts depend on continuous debugging with inter-
nal state inspection.

CHAPTER 3. PROVER IDE FUNCTIONALITY 23

e0e & Unix.thy
HEdn & ¢ XEE B T 0EE B & 0|«
| O Unix.thy (~/isabelle/repos /src/HOL/Unix /)
=] ahenrem transition_type_safe:
assumes tr: "root —x— root'"
and inv: "dJatt dir. root = Env att dir"
shows "datt dir. root' = Env att dir"
proof (cases “"path_of x")
case Nil
with tr inv show ?thesis
by cases (auto simp add: access_def split: if_splits)
next
case Cons
from tr obtain opt where
"root' = root Vv root' = update (path_of x) opt root"
by cases auto

Find Constants Print Context |

Find: |Env name: simp - | 40 ("] Duplicates | Apply | Search: b(val|Env)\b v | 85% -

find_theorems

"Env"

name: "simp"
found 14 theorem(s) :
« Nested_Environment.env.simps(3): Val ?x1.0 # Env ?x21.0 ?x22.0
« Nested_Environment.env.simps(4): Env ?x21.0 ?x22.0 # Val ?x1.0
» Nested Environment.env.eq.simps(1l): equal_class.equal (Val ?x1.1) (Env ?x21.1 ?x22.1) = False
» Nested_Environment.env.eq.simps(2): equal_class.equal (Env ?x21.1 ?x22.1) (Val ?xl.l) = False
« Nested Environment.env.simps(6):

(case Env ?x21.0 ?x22.0 of Val x = ?f1.0 x | Env x xa = ?f2.0 x xa) = ?f2.0 ?x21.0 ?x22.0

B~ | Query |

462,1 (16732/37838) (isabelle,isabelle UTF-8-Isabelle) UG IEENEERFME 3:15 PM

Figure 3.3: An instance of the Query panel

query wrt. the evaluation of its context and its own operation.

e The Apply button attaches a fresh query invocation to the current
context of the command where the cursor is pointing in the text.

e The Search field allows to highlight query output according to some
regular expression, in the notation that is commonly used on the Java
platform.? This may serve as an additional visual filter of the result.

e The Zoom box controls the font size of the output area.

All query operations are asynchronous: there is no need to wait for the eval-
uation of the document for the query context, nor for the query operation
itself. Query output may be detached as independent Info window, using a
menu operation of the dockable window manager. The printed result usually
provides sufficient clues about the original query, with some hyperlink to its
context (via markup of its head line).

2http://docs.oracle.com /javase/7/docs/api/java/util /regex /Pattern.html

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

CHAPTER 3. PROVER IDE FUNCTIONALITY 24

3.3.1 Find theorems

The Query panel in Find Theorems mode retrieves facts from the theory or
proof context matching all of given criteria in the Find text field. A single
criterium has the following syntax:

o]
\ term /

See also the Isar command find theorems in [4].

3.3.2 Find constants

The Query panel in Find Constants mode prints all constants whose type
meets all of the given criteria in the Find text field. A single criterium has
the following syntax:

@—C} nameref

type

strict

type

See also the Isar command find consts in [4].

CHAPTER 3. PROVER IDE FUNCTIONALITY 25

3.3.3 Print context

The Query panel in Print Context mode prints information from the theory
or proof context, or proof state. See also the Isar commands print context,
print cases, print term bindings, print theorems, print state
described in [4].

3.4 Tooltips and hyperlinks

Formally processed text (prover input or output) contains rich markup in-
formation that can be explored further by using the CONTROL modifier key
on Linux and Windows, or COMMAND on Mac OS X. Hovering with the mouse
while the modifier is pressed reveals a tooltip (grey box over the text with a
yellow popup) and/or a hyperlink (black rectangle over the text with change
of mouse pointer); see also figure 3.4.

[NN] Scratch.thy (modified)

IE®@ET & 6¢ XO0 B 0

| m Scratch.thy (~/) - =
o |theory Scratch

imports Main

begin

term "x H x"j

5 ¥
constant "HOL.eg"

5,13 (47/47)isabelle,isabelle, UTF-8-lsabelle) UG IEE/345MB 11:59 PM

Figure 3.4: Tooltip and hyperlink for some formal entity

Tooltip popups use the same rendering mechanisms as the main text area,
and further tooltips and/or hyperlinks may be exposed recursively by the
same mechanism; see figure 3.5.

CHAPTER 3. PROVER IDE FUNCTIONALITY 26

[NON] Scratch.thy (modified)
D@30 & 9 K 0DE & 0 E
| @ Scratch.thy (~/)] il

o |theory Scratch
imports Main
begin

term "x = x"

<
free variable
TR
3 B
language: type
: fed
free 4 & 9
class "HOL.type"
5,13 (47 /47)isabelle,isabelle,UTF-8-Isabelle) UG R /345MB 11:58 PM

Figure 3.5: Nested tooltips over formal entities

The tooltip popup window provides some controls to close or detach the
window, turning it into a separate Info window managed by jEdit. The
ESCAPE key closes all popups, which is particularly relevant when nested
tooltips are stacking up.

A black rectangle in the text indicates a hyperlink that may be followed by a
mouse click (while the CONTROL or COMMAND modifier key is still pressed). Such
jumps to other text locations are recorded by the Navigator plugin, which
is bundled with Isabelle/jEdit and enabled by default, including navigation
arrows in the main jEdit toolbar.

Also note that the link target may be a file that is itself not subject to formal
document processing of the editor session and thus prevents further explo-
ration: the chain of hyperlinks may end in some source file of the underlying
logic image, or within the ML bootstrap sources of Isabelle/Pure.

3.5 Completion

Smart completion of partial input is the IDE functionality par excellance.
Isabelle/jEdit combines several sources of information to achieve that. De-
spite its complexity, it should be possible to get some idea how completion

CHAPTER 3. PROVER IDE FUNCTIONALITY 27

works by experimentation, based on the overview of completion varieties in
§3.5.1. The remaining subsections explain concepts around completion more
systematically.

Explicit completion is triggered by the action isabelle.complete, which is
bound to the keyboard shortcut C+b, and thus overrides the jEdit default for
complete-word.

Implicit completion hooks into the regular keyboard input stream of the
editor, with some event filtering and optional delays.

Completion options may be configured in Plugin Options / Isabelle / Gen-
eral / Completion. These are explained in further detail below, whenever
relevant. There is also a summary of options in §3.5.6.

The asynchronous nature of PIDE interaction means that information from
the prover is delayed — at least by a full round-trip of the document up-
date protocol. The default options already take this into account, with a
sufficiently long completion delay to speculate on the availability of all rel-
evant information from the editor and the prover, before completing text
immediately or producing a popup. Although there is an inherent danger of
non-deterministic behaviour due to such real-time parameters, the general
completion policy aims at determined results as far as possible.

3.5.1 Varieties of completion

Built-in templates

[sabelle is ultimately a framework of nested sub-languages of different kinds
and purposes. The completion mechanism supports this by the following
built-in templates:

¢ (single ASCII back-quote) supports quotations via text cartouches. There
are three selections, which are always presented in the same order and
do not depend on any context information. The default choice pro-
duces a template “«()”, where the box indicates the cursor position
after insertion; the other choices help to repair the block structure of
unbalanced text cartouches.

@{ is completed to the template “@{J}”, where the box indicates the cursor
position after insertion. Here it is convenient to use the wildcard “__"
or a more specific name prefix to let semantic completion of name-space
entries propose antiquotation names.

CHAPTER 3. PROVER IDE FUNCTIONALITY 28

With some practice, input of quoted sub-languages and antiquotations of em-
bedded languages should work fluently. Note that national keyboard layouts
might cause problems with back-quote as dead key: if possible, dead keys
should be disabled.

Syntax keywords

Syntax completion tables are determined statically from the keywords of the
“outer syntax” of the underlying edit mode: for theory files this is the syntax
of Isar commands according to the cumulative theory imports.

Keywords are usually plain words, which means the completion mechanism
only inserts them directly into the text for explicit completion (§3.5.3), but
produces a popup (§3.5.4) otherwise.

At the point where outer syntax keywords are defined, it is possible to specify
an alternative replacement string to be inserted instead of the keyword itself.
An empty string means to suppress the keyword altogether, which is occa-
sionally useful to avoid confusion, e.g. the rare keyword simproc_setup vs.
the frequent name-space entry simp.

Isabelle symbols

The completion tables for Isabelle symbols (§2.3) are determined stati-
cally from $ISABELLE_HOME/etc/symbols and $ISABELLE_HOME_USER/etc/
symbols for each symbol specification as follows:

completion entry example
literal symbol \<forall>
symbol name with backslash \forall
symbol abbreviation ALL or !

When inserted into the text, the above examples all produce the same Uni-
code rendering V of the underlying symbol \<forall>.

A symbol abbreviation that is a plain word, like ALL, is treated like a syntax
keyword. Non-word abbreviations like -> are inserted more aggressively,
except for single-character abbreviations like ! above.

Symbol completion depends on the semantic language context (§3.5.2), to
enable or disable that aspect for a particular sub-language of Isabelle. For
example, symbol completion is suppressed within document source to avoid
confusion with I¥TEX macros that use similar notation.

CHAPTER 3. PROVER IDE FUNCTIONALITY 29

Name-space entries

This is genuine semantic completion, using information from the prover, so it
requires some delay. A failed name-space lookup produces an error message
that is annotated with a list of alternative names that are legal. The list of
results is truncated according to the system option completion_limit. The
completion mechanism takes this into account when collecting information
on the prover side.

Already recognized names are not completed further, but completion may
be extended by appending a suffix of underscores. This provokes a failed
lookup, and another completion attempt while ignoring the underscores. For
example, in a name space where foo and foobar are known, the input foo
remains unchanged, but foo_ may be completed to foo or foobar.

13 7

The special identifier “__" serves as a wild-card for arbitrary completion:
it exposes the name-space content to the completion mechanism (truncated
according to completion_limit). This is occasionally useful to explore an
unknown name-space, e.g. in some template.

File-system paths

Depending on prover markup about file-system path specifications in the
source text, e.g. for the argument of a load command (§3.1.3), the completion
mechanism explores the directory content and offers the result as completion
popup. Relative path specifications are understood wrt. the master directory
of the document node (§3.1.1) of the enclosing editor buffer; this requires a
proper theory, not an auxiliary file.

A suffix of slashes may be used to continue the exploration of an already
recognized directory name.

Spell-checking

The spell-checker combines semantic markup from the prover (regions of plain
words) with static dictionaries (word lists) that are known to the editor.

Unknown words are underlined in the text, using spell_checker_color
(blue by default). This is not an error, but a hint to the user that some
action may be taken. The jEdit context menu provides various actions, as
far as applicable:

CHAPTER 3. PROVER IDE FUNCTIONALITY 30

isabelle.complete-word
isabelle.exclude-word
isabelle.exclude-word-permanently
isabelle.include-word
isabelle.include-word-permanently

Instead of the specific isabelle.complete-word, it is also possible to use the
generic isabelle.complete with its default keyboard shortcut C+b.

Dictionary lookup uses some educated guesses about lower-case, upper-case,
and capitalized words. This is oriented on common use in English, where this
aspect is not decisive for proper spelling, in contrast to German, for example.

3.5.2 Semantic completion context

Completion depends on a semantic context that is provided by the prover,
although with some delay, because at least a full PIDE protocol round-trip is
required. Until that information becomes available in the PIDE document-
model, the default context is given by the outer syntax of the editor mode
(see also §3.1.1).

The semantic language context provides information about nested sub-
languages of Isabelle: keywords are only completed for outer syntax, symbols
or antiquotations for languages that support them. E.g. there is no symbol
completion for ML source, but within ML strings, comments, antiquotations.

The prover may produce no completion markup in exceptional situations, to
tell that some language keywords should be excluded from further completion
attempts. For example, : within accepted Isar syntax looses its meaning as
abbreviation for symbol €.

The completion context is 1gnored for built-in templates and symbols in their
explicit form “\<foobar>"; see also §3.5.1. This allows to complete within
broken input that escapes its normal semantic context, e.g. antiquotations
or string literals in ML, which do not allow arbitrary backslash sequences.

3.5.3 Input events

Completion is triggered by certain events produced by the user, with optional
delay after keyboard input according to jedit_completion_delay.

Explicit completion works via action isabelle.complete with keyboard
shortcut C+b. This overrides the shortcut for complete-word in jEdit,

CHAPTER 3. PROVER IDE FUNCTIONALITY 31

but it is possible to restore the original jEdit keyboard mapping of
complete-word via Global Options / Shortcuts and invent a different
one for isabelle.complete.

Explicit spell-checker completion works via isabelle.complete-word,
which is exposed in the jEdit context menu, if the mouse points to a
word that the spell-checker can complete.

Implicit completion works via regular keyboard input of the editor. It
depends on further side-conditions:

1.

The system option jedit_completion needs to be enabled (de-
fault).

Completion of syntax keywords requires at least 3 relevant char-
acters in the text.

The system option jedit_completion_delay determines an addi-
tional delay (0.5 by default), before opening a completion popup.
The delay gives the prover a chance to provide semantic comple-
tion information, notably the context (§3.5.2).

The system option jedit_completion_immediate (en-
abled by default) controls whether replacement text should
be inserted immediately without popup, regardless of
jedit_completion_delay. This aggressive mode of completion
is restricted to Isabelle symbols and their abbreviations (§2.3).

Completion of symbol abbreviations with only one relevant char-
acter in the text always enforces an explicit popup, regardless of
jedit_completion_immediate.

3.5.4 Completion popup

A completion popup is a minimally invasive GUI component over the text
area that offers a selection of completion items to be inserted into the text,
e.g. by mouse clicks. Items are sorted dynamically, according to the frequency
of selection, with persistent history. The popup may interpret special keys
ENTER, TAB, ESCAPE, UP, DOWN, PAGE_UP, PAGE_DOWN, but all other key events
are passed to the underlying text area. This allows to ignore unwanted
completions most of the time and continue typing quickly. Thus the popup
serves as a mechanism of confirmation of proposed items, but the default is
to continue without completion.

CHAPTER 3. PROVER IDE FUNCTIONALITY 32

The meaning of special keys is as follows:

key action

ENTER select completion (if jedit_completion_select_enter)
TAB select completion (if jedit_completion_select_tab)
ESCAPE dismiss popup

UP move up one item

DOWN move down one item

PAGE_UP move up one page of items
PAGE_DOWN move down one page of items

Movement within the popup is only active for multiple items. Otherwise the
corresponding key event retains its standard meaning within the underlying
text area.

3.5.5 Insertion

Completion may first propose replacements to be selected (via a popup),
or replace text immediately in certain situations and depending on certain
options like jedit_completion_immediate. In any case, insertion works
uniformly, by imitating normal jEdit text insertion, depending on the state
of the text selection. Isabelle/jEdit tries to accommodate the most common
forms of advanced selections in jEdit, but not all combinations make sense.
At least the following important cases are well-defined:

No selection. The original is removed and the replacement inserted, de-
pending on the caret position.

Rectangular selection of zero width. This special case is treated by
jEdit as “tall caret” and insertion of completion imitates its normal
behaviour: separate copies of the replacement are inserted for each line
of the selection.

Other rectangular selection or multiple selections. Here the original
is removed and the replacement is inserted for each line (or segment)
of the selection.

Support for multiple selections is particularly useful for HyperSearch: clicking
on one of the items in the HyperSearch Results window makes jEdit select all
its occurrences in the corresponding line of text. Then explicit completion
can be invoked via C+b, e.g. to replace occurrences of -> by —.

CHAPTER 3. PROVER IDE FUNCTIONALITY 33

Insertion works by removing and inserting pieces of text from the buffer.
This counts as one atomic operation on the jEdit history. Thus unintended
completions may be reverted by the regular undo action of jEdit. According
to normal jEdit policies, the recovered text after undo is selected: ESCAPE is
required to reset the selection and to continue typing more text.

3.5.6 Options

This is a summary of Isabelle/Scala system options that are relevant for
completion. They may be configured in Plugin Options / Isabelle / General
as usual.

e completion_limit specifies the maximum number of items for various
semantic completion operations (name-space entries etc.)

e jedit_completion guards implicit completion via regular jEdit key
events (§3.5.3): it allows to disable implicit completion altogether.

e jedit_completion_select_enter and jedit_completion_select_tab
enable keys to select a completion item from the popup (§3.5.4). Note
that a regular mouse click on the list of items is always possible.

e jedit_completion_context specifies whether the language context
provided by the prover should be used at all. Disabling that option
makes completion less “semantic”. Note that incomplete or severely
broken input may cause some disagreement of the prover and the user
about the intended language context.

e jedit_completion_delay and jedit_completion_immediate deter-
mine the handling of keyboard events for implicit completion (§3.5.3).

A jedit_completion_delay > O postpones the processing of key
events, until after the user has stopped typing for the given time span,
but jedit_completion_immediate = true means that abbreviations
of Isabelle symbols are handled nonetheless.

e jedit_completion_path_ignore specifies “glob” patterns to ignore in
file-system path completion (separated by colons), e.g. backup files end-
ing with tilde.

e spell_checker is a global guard for all spell-checker operations: it
allows to disable that mechanism altogether.

CHAPTER 3. PROVER IDE FUNCTIONALITY 34

e spell_checker_dictionary determines the current dictionary,
taken from the colon-separated list in the settings variable
JORTHO_DICTIONARIES. There are jEdit actions to specify local
updates to a dictionary, by including or excluding words. The
result of permanent dictionary updates is stored in the directory
$ISABELLE_HOME_USER/dictionaries, in a separate file for each dic-
tionary.

e spell_checker_elements specifies a comma-separated list of markup
elements that delimit words in the source that is subject to spell-
checking, including various forms of comments.

3.6 Automatically tried tools

Continuous document processing works asynchronously in the background.
Visible document source that has been evaluated may get augmented by
additional results of asynchronous print functions. The canonical example
is proof state output, which is always enabled. More heavy-weight print
functions may be applied, in order to prove or disprove parts of the formal
text by other means.

Isabelle/HOL provides various automatically tried tools that operate on out-
ermost goal statements (e.g. lemma, theorem), independently of the state
of the current proof attempt. They work implicitly without any arguments.
Results are output as information messages, which are indicated in the text
area by blue squiggles and a blue information sign in the gutter (see fig-
ure 3.6). The message content may be shown as for other output (see also
§3.2). Some tools produce output with sendback markup, which means that
clicking on certain parts of the output inserts that text into the source in the
proper place.

The following Isabelle system options control the behavior of automatically
tried tools (see also the jEdit dialog window Plugin Options / Isabelle /
General / Automatically tried tools):

e auto_methods controls automatic use of a combination of standard
proof methods (auto, simp, blast, etc.). This corresponds to the Isar
command try0 [4].

The tool is disabled by default, since unparameterized invocation of
standard proof methods often consumes substantial CPU resources
without leading to success.

CHAPTER 3. PROVER IDE FUNCTIONALITY 35

® ® & Scratch.thy
NEAT & 6 XDE BB " BEE B & ©:|e
| O Scratch.thy (~/)

o [theory Scratch
[imports Main

begin
datatype 'a tree = Tip | Tree 'a "'a tree" "'a tree"
o |fun tree_of_list :: "'a list = 'a tree"
where
"tree_of_list [] = Tip"
| "tree_of_list (x # xs) = Tree x Tip (tree_of_list xs)"

o |fun list_of_tree :: a tree = 'a list"
where
"list_of_tree Tip = []"

| "list_of_tree (Tree x t1 t2) = x # list_of_tree tl @ list_of_tree t2"

lemma "list of_tree (tree_of_list xs) = xs"
[by (induct xs) simp_all

a@|lemma "tree_of_list (list_of_tree t) = t"l
| ==
o Auto Quickcheck found a counterexample:
L t = Tree a; (Tree a; Tip Tip) Tip
o Evaluated terms:
tree_of list (list_of tree t) =
Tree a, Tip (Tree ay Tip Tip)

B~ Query
20,42 (476/477) Input/output complete (isabelle,isabelle UTF-8-lIsabelle) UGEG/391MB 11:38 PM

Figure 3.6: Result of automatically tried tools

e auto_nitpick controls a slightly reduced version of nitpick, which
tests for counterexamples using first-order relational logic. See also the
Nitpick manual [2].

This tool is disabled by default, due to the extra overhead of invoking
an external Java process for each attempt to disprove a subgoal.

e auto_quickcheck controls automatic use of quickcheck, which tests
for counterexamples using a series of assignments for free variables of
a subgoal.

This tool is enabled by default. It requires little overhead, but is a bit
weaker than nitpick.

e auto_sledgehammer controls a significantly reduced version of
sledgehammer, which attempts to prove a subgoal using external
automatic provers. See also the Sledgehammer manual [1].

This tool is disabled by default, due to the relatively heavy nature of
Sledgehammer.

CHAPTER 3. PROVER IDE FUNCTIONALITY 36

e auto_solve_direct controls automatic use of solve direct, which
checks whether the current subgoals can be solved directly by an exist-
ing theorem. This also helps to detect duplicate lemmas.

This tool is enabled by default.

Invocation of automatically tried tools is subject to some global policies of
parallel execution, which may be configured as follows:

e auto_time_limit (default 2.0) determines the timeout (in seconds) for
each tool execution.

e auto_time_start (default 1.0) determines the start delay (in seconds)
for automatically tried tools, after the main command evaluation is

finished.

Each tool is submitted independently to the pool of parallel execution tasks in
Isabelle/ML, using hardwired priorities according to its relative “heaviness”.
The main stages of evaluation and printing of proof states take precedence,
but an already running tool is not canceled and may thus reduce reactivity
of proof document processing.

Users should experiment how the available CPU resources (number of cores)
are best invested to get additional feedback from prover in the background,
by using a selection of weaker or stronger tools.

3.7 Sledgehammer

The Sledgehammer panel (figure 3.7) provides a view on some independent
execution of the Isar command sledgehammer, with process indicator (spin-
ning wheel) and GUI elements for important Sledgehammer arguments and
options. Any number of Sledgehammer panels may be active, according to
the standard policies of Dockable Window Management in jEdit. Closing
such windows also cancels the corresponding prover tasks.

The Apply button attaches a fresh invocation of sledgehammer to the com-
mand where the cursor is pointing in the text — this should be some pending
proof problem. Further buttons like Cancel and Locate help to manage the
running process.

Results appear incrementally in the output window of the panel. Proposed
proof snippets are marked-up as sendback, which means a single mouse click
inserts the text into a suitable place of the original source. Some manual
editing may be required nonetheless, say to remove earlier proof attempts.

CHAPTER 3. PROVER IDE FUNCTIONALITY

[XoX Scratch.thy (modified)
M@®hE & 9¢ XO0 B@ DDEE X & O €»
| ®Scratch.thy (~/)
o [theory Scratch
1 imports Main
begin

lemma "[x] = [y] = x = y"lby (metis list.inject)

Provers: |cvcd remote_vampire z3 spass e

-

[Isar proofs | Try methods
"cvc4": Try this: by (metis list.inject) (14 ms).

| Apply | | Cancel |
"z3": Try this: by (metis list.inject) (18 ms).

"spass": Try this: by (metis list.inject) (18 ms).
"e": Try this: by (metis the_elem_set) (14 ms).

"remote_vampire": Try this: by (metis list.inject) (16 ms).

8~ | Sledgehammer |
5,26 (60/83)

| Locate | |100%

(isabelle,isabelle, UTF-8-Isabelle) uG

Figure 3.7: An instance of the Sledgehammer panel

FEJEE 1MB 12:14 AM

b

37

Chapter 4

Isabelle document preparation

The ultimate purpose of Isabelle is to produce nicely rendered documents
with the Isabelle document preparation system, which is based on I¥TEX; see
also [13, 4]. Isabelle/jEdit provides some additional support for document
editing.

4.1 Document outline

Theory sources may contain document markup commands, such as chapter,
section, subsection. The Isabelle SideKick parser (§2.4) represents this
document outline as structured tree view, with formal statements and proofs
nested inside; see figure 4.1.

eoe & Synopsis.thy
= = p Q : [=) Sk
D@ @ 9¢ XOB @ TS0 B & @ e
| O Synopsis.thy (SISABELLE_HOME/src/Doc/lIsar_Ref/) il E | isabelle | @
. Filter: v
subsubsection <Example> w
Synopsis.thy o
heory Synopeis z
s [text < [13 lines] v chaper «Synopsis: 2
b section <Notepad:
b section «Caleulational reasoning \labelsec: calculations-synopsists
Eemma ¥ ssction <Induction:
fixes n :: nat ¥ subssction <Induction s Natursl Deduction:
shows "(}i=0..n. i) = n * (n + 1) div 2" "”‘“"“:
) notepa
proof (induct n) ¥ subsubsaction Example:
case 0
have "(Ei=0. .0. i) = (0::nat)" by simp b subsection <Induction with local parameters and premisess
. . b subsection Inplicit induction contexts
W - % "
also have e T 0 (0 > 1) dlv 2 by Slmp b subsection <Advanced induction with term definitions-
finally show ?case . b section <Natural Deduction \Label{sec: natural-deduction-synopsisl >
next b section <Generalized elimination and cases:
case (Suc n)
have "(}.i=0..Suc n. i) = (}i=0..n. i) + (&
also have "... = n * (nh + 1) div 2 + (nh + 1)
also have "... = (n * (n +1) +2 * (n + 1))
also have "... = (Suc n * (Suc n + 1)) div 2'

437,1(7882/21039) (isabelle,isabelle,UTF-8-Isabelle) uG BERM228ME 7:31 PM

Figure 4.1: Isabelle document outline via SideKick tree view

It is also possible to use text folding according to this structure, by adjust-
ing Utilities / Buffer Options / Folding mode of jEdit. The default mode

38

CHAPTER 4. ISABELLE DOCUMENT PREPARATION 39

isabelle uses the structure of formal definitions, statements, and proofs.
The alternative mode sidekick uses the document structure of the SideKick
parser, as explained above.

4.2 Citations and BibTgX entries

Citations are managed by IXTEX and BibTEX in .bib files. The Isabelle
session build process and the isabelle latex tool [13]| are smart enough to
assemble the result, based on the session directory layout.

The document antiquotation @{cite} is described in [4]. Within the Prover
IDE it provides semantic markup for tooltips, hyperlinks, and completion
for BibTEX database entries. Isabelle/jEdit does not know about the actual
BibTEX environment used in KTEX batch-mode, but it can take citations
from those .Dbib files that happen to be open in the editor; see figure 4.2.

® Q manual.bib, Inner_Syntax.thy (modified)

NMEdE & 9¢ XD0R:BF 10 B & @ [«»
| O manual.bib ($ISABELLE_HOME/src/Dec/) &
] Ehanual{isabelle—implementation,
= {Makarius Wenzel},
title = {The {Isabelle/Isar} Implementation},
institution = {TU Munich},
= {\url{http://isabelle. in.tum.de/doc/implementation.pdf}}}

| @ Inner_Syntax.thy ($ISABELLE_HOME/src/Doc/Isar_Ref/) +
These intermediate syntax tree formats eventually lead to a pre-term

with all names and binding scopes resolved, but most type

information still missing. Explicit type constraints might be given by

the user, or implicit position information by the system --- both

need to be passed-through carefully by syntax transformations.

Pre-terms are further processed by the so-called \emph{check} and
\emph{uncheck} phases that are intertwined with type-inference (see
also @{cite ['isabelle-imf}). The latter allows to operate

LR YT [cabelle - implementation (Bib Tlbinding and type
information already availab

1027,27 (46185/74842) (isabelle,isabelle,UTF-8-lIsabelle) uG 7:57 PM

Figure 4.2: Semantic completion of citations from open BibTEX files

Isabelle/jEdit also provides some support for editing .bib files themselves.
There is syntax highlighting based on entry types (according to standard
BibTEX styles), a context-menu to compose entries systematically, and a
SideKick tree view of the overall content; see figure 4.3.

CE®@bE & 9¢ X0E L& C

manual bib (modified)

CHAPTER 4. ISABELLE DOCUMENT PREPARATION

BEE B & O e

[@ manual.bib (SISABELLE_HOME/src/Doc /) B [& [(bibtex 3] B
@manual{lsabelle-sy.stem, Fier [isabelle | %y T
= {Makarius Wenzel and Stefan Berghofer}, T — w
. manual.bil [=9
title = {The {Isabelle} System Manual}, manual isabelle-locale |%
institution = {TU Munich}, manual isabelle-nitpick =
L = {\url{http://isabelle.in.tum.de/doc/system. manual isabelie-sledgehammer
manual isabelle-datatypes
manual isabelle-classes
@manual{isabelle -j edit, manual isabelle-codegen
= {I"Iaka rius Wenzel}, manual isabelle-function
. A manual isabelle-HOL
‘Fltle_ = {{Isabelle/:! Edit}}, manual isabelle-intro
institution = {TU Munich}, manual isabelle-logics
L = {\url{http://isabelle.in.tum.de/doc/jedit.} manual isabelie-ref
manual isabelle-ZF
Book isabelle-hol-book
@Manual{, manual isabelle-system
title = {}, manual isabelle-|
= {h # Cut #x manual isabelle-implementation
[[Copy £ {d
= {}, DPaste Hv
= Paste Previous...
= Paste Deleted...
= {}, Article
= {} Select Code Block #[InProceedings
4 To Upper Case InCollection
= {1}, To Lower Case InBook
Proceedings
}I @ HyperSearch for Word ~. Book g
. . Booklet
@nanual{isabelle- isar- [®] Add/Remove Marker PhdThesis
u = {Makarius | Collapse Fold ~& MastersThesis
title = {The {Isabi ExpandFold Fully ~ger | TechReport
i i i = N to Fold
institution {TU Mur Narrowto Fo Unpublished
CIRAVYIN gibTeX entries > Misc [-re
|
1850,2 (54672/69835) Customize This Menu... (bibtex,sidekick, UTF-8-Isabelle)! uG EEMB 11:34 PM ‘

Figure 4.3: BibTEX mode with context menu and SideKick tree view

40

Chapter 5

Miscellaneous tools

5.1 Timing

Managed evaluation of commands within PIDE documents includes timing
information, which consists of elapsed (wall-clock) time, CPU time, and GC
(garbage collection) time. Note that in a multithreaded system it is difficult
to measure execution time precisely: elapsed time is closer to the real require-
ments of runtime resources than CPU or GC time, which are both subject
to influences from the parallel environment that are outside the scope of the
current command transaction.

The Timing panel provides an overview of cumulative command timings
for each document node. Commands with elapsed time below the given
threshold are ignored in the grand total. Nodes are sorted according to their
overall timing. For the document node that corresponds to the current buffer,
individual command timings are shown as well. A double-click on a theory
node or command moves the editor focus to that particular source position.

It is also possible to reveal individual timing information via some tooltip for
the corresponding command keyword, using the technique of mouse hovering
with CONTROL/COMMAND modifier key as explained in §3.4. Actual display of
timing depends on the global option jedit_timing_threshold, which can
be configured in Plugin Options / Isabelle / General.

The Monitor panel visualizes various data collections about recent activity
of the Isabelle/ML task farm and the underlying ML runtime system. The
display is continuously updated according to editor_chart_delay. Note
that the painting of the chart takes considerable runtime itself — on the
Java Virtual Machine that runs Isabelle/Scala, not Isabelle/ML. Internally,
the Isabelle/Scala module isabelle.ML_Statistics provides further access
to statistics of Isabelle/ML.

41

CHAPTER 5. MISCELLANEOUS TOOLS 42

5.2 Low-level output

Prover output is normally shown directly in the main text area or secondary
Output panels, as explained in §3.2.

Beyond this, it is occasionally useful to inspect low-level output channels via
some of the following additional panels:

e Protocol shows internal messages between the Isabelle/Scala and
Isabelle/ML side of the PIDE document editing protocol. Recording of
messages starts with the first activation of the corresponding dockable
window; earlier messages are lost.

Actual display of protocol messages causes considerable slowdown, so
it is important to undock all Protocol panels for production work.

e Raw Output shows chunks of text from the stdout and stderr chan-
nels of the prover process. Recording of output starts with the first
activation of the corresponding dockable window; earlier output is lost.

The implicit stateful nature of physical I/O channels makes it difficult
to relate raw output to the actual command from where it was originat-
ing. Parallel execution may add to the confusion. Peeking at physical
process 1/0 is only the last resort to diagnose problems with tools that
are not PIDE compliant.

Under normal circumstances, prover output always works via
managed message channels (corresponding to writeln, warning,
Output.error_message in Isabelle/ML), which are displayed by regu-
lar means within the document model (§3.2). Unhandled Isabelle/ ML
exceptions are printed by the system via Output.error_message.

e Syslog shows system messages that might be relevant to diagnose prob-
lems with the startup or shutdown phase of the prover process; this also
includes raw output on stderr. Isabelle/ML also provides an explicit
Output.system_message operation, which is occasionally useful for di-
agnostic purposes within the system infrastructure itself.

A limited amount of syslog messages are buffered, independently of
the docking state of the Syslog panel. This allows to diagnose seri-
ous problems with Isabelle/PIDE process management, outside of the
actual protocol layer.

Under normal situations, such low-level system output can be ignored.

Chapter 6

Known problems and
workarounds

e Problem: Odd behavior of some diagnostic commands with global
side-effects, like writing a physical file.

Workaround: Copy/paste complete command text from elsewhere, or
disable continuous checking temporarily.

e Problem: No direct support to remove document nodes from the col-
lection of theories.

Workaround: Clear the buffer content of unused files and close without
saving changes.

e Problem: Keyboard shortcuts C+PLUS and C+MINUS for adjusting the
editor font size depend on platform details and national keyboards.

Workaround: Rebind keys via Global Options / Shortcuts.

e Problem: The Mac OS X key sequence COMMAND+COMMA for application
Preferences is in conflict with the jEdit default keyboard shortcut for
Incremental Search Bar (action quick-search).

Workaround: Rebind key via Global Options / Shortcuts according
to national keyboard, e.g. COMMAND+SLASH on English ones.

e Problem: Mac OS X system fonts sometimes lead to character drop-
outs in the main text area.
Workaround: Use the default IsabelleText font. (Do not install
that font on the system.)

e Problem: Some Linux/X11 input methods such as IBus tend to dis-
rupt key event handling of Java/AWT /Swing.

Workaround: Do not use X11 input methods. Note that environment
variable XMODIFIERS is reset by default within Isabelle settings.

43

CHAPTER 6. KNOWN PROBLEMS AND WORKAROUNDS 44

[4

e Problem: Some Linux/X11 window managers that are not ‘“re-
parenting” cause problems with additional windows opened by Java.
This affects either historic or neo-minimalistic window managers like
awesome or xmonad.

Workaround: Use a regular re-parenting X11 window manager.
e Problem: Various forks of Linux/X11 window managers and desktop

environments (like Gnome) disrupt the handling of menu popups and
mouse positions of Java/AWT /Swing.

Workaround: Use mainstream versions of Linux desktops.

e Problem: Native Windows look-and-feel with global font scaling leads
to bad GUI rendering of various tree views.
Workaround: Use Metal look-and-feel and re-adjust its primary and

secondary font as explained in §2.1.2.

e Problem: Full-screen mode via jEdit action toggle-full-screen (de-
fault keyboard shortcut F11) works on Windows, but not on Mac OS
X or various Linux/X11 window managers.

Workaround: Use native full-screen control of the window manager
(notably on Mac OS X).

Bibliography

1]

2l

3]

4]

[5]

(6]

7]

8]

19]

[10]

J. C. Blanchette. Hammering Away: A User’s Guide to Sledgehammer for
Isabelle/HOL. http://isabelle.in.tum.de/doc/sledgehammer.pdf.

J. C. Blanchette. Picking Nits: A User’s Guide to Nitpick for Isabelle/HOL.
http://isabelle.in.tum.de/doc/nitpick.pdf.

M. Wenzel. The Isabelle/Isar Implementation.
http://isabelle.in.tum.de/doc/implementation.pdf.

M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc /isar-ref.pdf.

M. Wenzel. Parallel proof checking in Isabelle/Isar. In G. Dos Reis and

L. Théry, editors, ACM SIGSAM Workshop on Programming Languages for
Mechanized Mathematics Systems (PLMMS 2009). ACM Digital Library,
2009.

M. Wenzel. Asynchronous proof processing with Isabelle/Scala and
Isabelle/jEdit. In C. S. Coen and D. Aspinall, editors, User Interfaces for
Theorem Provers (UITP 2010), FLOC 2010 Satellite Workshop, ENTCS.
Elsevier, July 2010.

M. Wenzel. Isabelle as document-oriented proof assistant. In J. H.
Davenport, W. M. Farmer, F. Rabe, and J. Urban, editors, Conference on
Intelligent Computer Mathematics / Mathematical Knowledge Management
(CICM/MKM 2011), volume 6824 of LNAI Springer, 2011.

M. Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework. In
J. Jeuring et al., editors, Conference on Intelligent Computer Mathematics
(CICM 2012), volume 7362 of LNAI Springer, 2012.

M. Wenzel. READ-EVAL-PRINT in parallel and asynchronous
proof-checking. In User Interfaces for Theorem Provers (UITP 2012),
EPTCS, 2013.

M. Wenzel. Shared-memory multiprocessing for interactive theorem proving.
In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, Interactive
Theorem Proving — 4th International Conference, ITP 20183, Rennes,
France, July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in
Computer Science. Springer, 2013.

45

http://isabelle.in.tum.de/doc/sledgehammer.pdf
http://isabelle.in.tum.de/doc/nitpick.pdf
http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

BIBLIOGRAPHY 46

[11] M. Wenzel. Asynchronous user interaction and tool integration in
Isabelle/PIDE. In G. Klein and R. Gamboa, editors, Interactive Theorem
Proving — 5th International Conference, ITP 2014, Vienna, Austria,
volume 8558 of Lecture Notes in Computer Science. Springer, 2014.

[12] M. Wenzel. System description: Isabelle/jEdit in 2014. In C. Benzmiiller and
B. Woltzenlogel Paleo, editors, User Interfaces for Theorem Provers (UITP
2014), EPTCS, July 2014.
http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11.

[13] M. Wenzel and S. Berghofer. The Isabelle System Manual.
http://isabelle.in.tum.de/doc/system.pdf.

http://eptcs.web.cse.unsw.edu.au/paper.cgi?UITP2014:11
http://isabelle.in.tum.de/doc/system.pdf

Index

auto_methods (system option), 34 jedit (tool), 5

auto_ nitpick (system option), 35 jedit completion (system option),

auto_quickcheck (system option), 35 31, 33

auto sledgehammer (system option), jedit completion context (system
35 option), 33

auto_solve direct (system option), jedit completion delay (system op-
36 tion), 31, 33

auto_time limit (system option), 36 jedit completion immediate (sys-

auto time start (system option), 36 tem option), 31, 33

jedit completion path ignore (sys-
tem option), 33

jedit completion select enter (sys-
tem option), 33

chapter (command), 38
complete-word (action), 27, 30
completion limit (system option),

29, 33 jedit completion select tab (sys-
editor chart delay (system option), . t.em option), 33 '
A1 jedit print _mode (system option), 6
jedit timing threshold (system op-
find consts (command), 24 tion), 41
find theorems (command), 24 JORTHO DICTIONARIES (set-
ting), 34

isabelle.complete (action), 27, 30
isabelle.complete-word (action), 30, ML_file (command), 17, 19
31
isabelle.control-bold (action), 13
isabelle.control-reset (action), 13
isabelle.control-sub (action), 13
isabelle.control-sup (action), 13
isabelle.exclude-word (action), 30
isabelle.exclude-word-permanently
(action), 30
isabelle.include-word (action), 30 quick-search (action), 43
isabelle.include-word-permanently quickcheck (command), 35
(action), 30
isabelle.options (action), 5
isabelle.reset-font-size (action), 8

nitpick (command), 35

print _cases (command), 25

print _context (command), 25
print_state (command), 25
print_term_bindings (command), 25
print_theorems (command), 25

section (command), 38
sledgehammer (command), 35, 36

47

INDEX

SML_ file (command), 17, 19
solve_direct (command), 36

spell _checker (system option), 33
spell checker color (system option),

29

spell checker dictionary (system
option), 34

spell checker elements (system op-
tion), 34

theory (command), 17
toggle-full-screen (action), 44
try0 (command), 34

48

	Introduction
	Concepts and terminology
	The Isabelle/jEdit Prover IDE
	Documentation
	Plugins
	Options
	Keymaps

	Command-line invocation

	Augmented jEdit functionality
	GUI rendering
	Look-and-feel
	Displays with very high resolution

	Dockable windows
	Isabelle symbols
	SideKick parsers
	Scala console
	File-system access

	Prover IDE functionality
	Document model
	Editor buffers and document nodes
	Theories
	Auxiliary files

	Output
	Query
	Find theorems
	Find constants
	Print context

	Tooltips and hyperlinks
	Completion
	Varieties of completion
	Semantic completion context
	Input events
	Completion popup
	Insertion
	Options

	Automatically tried tools
	Sledgehammer

	Isabelle document preparation
	Document outline
	Citations and BibTeX entries

	Miscellaneous tools
	Timing
	Low-level output

	Known problems and workarounds
	Bibliography
	Index

