section ‹Nested datatypes› theory Nested_Datatype imports Main begin subsection ‹Terms and substitution› datatype ('a, 'b) "term" = Var 'a | App 'b "('a, 'b) term list" primrec subst_term :: "('a ⇒ ('a, 'b) term) ⇒ ('a, 'b) term ⇒ ('a, 'b) term" and subst_term_list :: "('a ⇒ ('a, 'b) term) ⇒ ('a, 'b) term list ⇒ ('a, 'b) term list" where "subst_term f (Var a) = f a" | "subst_term f (App b ts) = App b (subst_term_list f ts)" | "subst_term_list f [] = []" | "subst_term_list f (t # ts) = subst_term f t # subst_term_list f ts" lemmas subst_simps = subst_term.simps subst_term_list.simps text ‹┉ A simple lemma about composition of substitutions.› lemma "subst_term (subst_term f1 ∘ f2) t = subst_term f1 (subst_term f2 t)" and "subst_term_list (subst_term f1 ∘ f2) ts = subst_term_list f1 (subst_term_list f2 ts)" by (induct t and ts rule: subst_term.induct subst_term_list.induct) simp_all lemma "subst_term (subst_term f1 ∘ f2) t = subst_term f1 (subst_term f2 t)" proof - let "?P t" = ?thesis let ?Q = "λts. subst_term_list (subst_term f1 ∘ f2) ts = subst_term_list f1 (subst_term_list f2 ts)" show ?thesis proof (induct t rule: subst_term.induct) show "?P (Var a)" for a by simp show "?P (App b ts)" if "?Q ts" for b ts using that by (simp only: subst_simps) show "?Q []" by simp show "?Q (t # ts)" if "?P t" "?Q ts" for t ts using that by (simp only: subst_simps) qed qed subsection ‹Alternative induction› lemma "subst_term (subst_term f1 ∘ f2) t = subst_term f1 (subst_term f2 t)" proof (induct t rule: term.induct) case (Var a) show ?case by (simp add: o_def) next case (App b ts) then show ?case by (induct ts) simp_all qed end