Theory Relations

theory Relations
imports Main
theory Relations imports Main begin

(*Id is only used in UNITY*)
(*refl, antisym,trans,univalent,… ho hum*)

text{*
@{thm[display] Id_def[no_vars]}
\rulename{Id_def}
*}

text{*
@{thm[display] relcomp_unfold[no_vars]}
\rulename{relcomp_unfold}
*}

text{*
@{thm[display] R_O_Id[no_vars]}
\rulename{R_O_Id}
*}

text{*
@{thm[display] relcomp_mono[no_vars]}
\rulename{relcomp_mono}
*}

text{*
@{thm[display] converse_iff[no_vars]}
\rulename{converse_iff}
*}

text{*
@{thm[display] converse_relcomp[no_vars]}
\rulename{converse_relcomp}
*}

text{*
@{thm[display] Image_iff[no_vars]}
\rulename{Image_iff}
*}

text{*
@{thm[display] Image_UN[no_vars]}
\rulename{Image_UN}
*}

text{*
@{thm[display] Domain_iff[no_vars]}
\rulename{Domain_iff}
*}

text{*
@{thm[display] Range_iff[no_vars]}
\rulename{Range_iff}
*}

text{*
@{thm[display] relpow.simps[no_vars]}
\rulename{relpow.simps}

@{thm[display] rtrancl_refl[no_vars]}
\rulename{rtrancl_refl}

@{thm[display] r_into_rtrancl[no_vars]}
\rulename{r_into_rtrancl}

@{thm[display] rtrancl_trans[no_vars]}
\rulename{rtrancl_trans}

@{thm[display] rtrancl_induct[no_vars]}
\rulename{rtrancl_induct}

@{thm[display] rtrancl_idemp[no_vars]}
\rulename{rtrancl_idemp}

@{thm[display] r_into_trancl[no_vars]}
\rulename{r_into_trancl}

@{thm[display] trancl_trans[no_vars]}
\rulename{trancl_trans}

@{thm[display] trancl_into_rtrancl[no_vars]}
\rulename{trancl_into_rtrancl}

@{thm[display] trancl_converse[no_vars]}
\rulename{trancl_converse}
*}

text{*Relations.  transitive closure*}

lemma rtrancl_converseD: "(x,y) ∈ (r¯)* ⟹ (y,x) ∈ r*"
apply (erule rtrancl_induct)
txt{*
@{subgoals[display,indent=0,margin=65]}
*}
 apply (rule rtrancl_refl)
apply (blast intro: rtrancl_trans)
done


lemma rtrancl_converseI: "(y,x) ∈ r* ⟹ (x,y) ∈ (r¯)*"
apply (erule rtrancl_induct)
 apply (rule rtrancl_refl)
apply (blast intro: rtrancl_trans)
done

lemma rtrancl_converse: "(r¯)* = (r*)¯"
by (auto intro: rtrancl_converseI dest: rtrancl_converseD)

lemma rtrancl_converse: "(r¯)* = (r*)¯"
apply (intro equalityI subsetI)
txt{*
after intro rules

@{subgoals[display,indent=0,margin=65]}
*}
apply clarify
txt{*
after splitting
@{subgoals[display,indent=0,margin=65]}
*}
oops


lemma "(∀u v. (u,v) ∈ A ⟶ u=v) ⟹ A ⊆ Id"
apply (rule subsetI)
txt{*
@{subgoals[display,indent=0,margin=65]}

after subsetI
*}
apply clarify
txt{*
@{subgoals[display,indent=0,margin=65]}

subgoals after clarify
*}
by blast




text{*rejects*}

lemma "(a ∈ {z. P z} ∪ {y. Q y}) = P a ∨ Q a"
apply (blast)
done

text{*Pow, Inter too little used*}

lemma "(A ⊂ B) = (A ⊆ B ∧ A ≠ B)"
apply (simp add: psubset_eq)
done

end