theory Tacticals imports Main begin
text{*REPEAT*}
lemma "⟦P⟶Q; Q⟶R; R⟶S; P⟧ ⟹ S"
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (drule mp, assumption)
apply (assumption)
done
lemma "⟦P⟶Q; Q⟶R; R⟶S; P⟧ ⟹ S"
by (drule mp, assumption)+
text{*ORELSE with REPEAT*}
lemma "⟦Q⟶R; P⟶Q; x<5⟶P; Suc x < 5⟧ ⟹ R"
by (drule mp, (assumption|arith))+
text{*exercise: what's going on here?*}
lemma "⟦P∧Q⟶R; P⟶Q; P⟧ ⟹ R"
by (drule mp, (intro conjI)?, assumption+)+
text{*defer and prefer*}
lemma "hard ∧ (P ∨ ~P) ∧ (Q⟶Q)"
apply (intro conjI) --{* @{subgoals[display,indent=0,margin=65]} *}
defer 1 --{* @{subgoals[display,indent=0,margin=65]} *}
apply blast+ --{* @{subgoals[display,indent=0,margin=65]} *}
oops
lemma "ok1 ∧ ok2 ∧ doubtful"
apply (intro conjI) --{* @{subgoals[display,indent=0,margin=65]} *}
prefer 3 --{* @{subgoals[display,indent=0,margin=65]} *}
oops
lemma "bigsubgoal1 ∧ bigsubgoal2 ∧ bigsubgoal3 ∧ bigsubgoal4 ∧ bigsubgoal5 ∧ bigsubgoal6"
apply (intro conjI) --{* @{subgoals[display,indent=0,margin=65]} *}
txt{* @{subgoals[display,indent=0,margin=65]}
A total of 6 subgoals...
*}
oops
lemma "(P∨Q) ∧ (R∨S) ⟹ PP"
apply (elim conjE disjE)
oops
lemma "((P∨Q) ∧ R) ∧ (Q ∧ (P∨S)) ⟹ PP"
apply (elim conjE)
oops
lemma "((P∨Q) ∧ R) ∧ (Q ∧ (P∨S)) ⟹ PP"
apply (erule conjE)+
oops
end