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With contributions by Jesús Aransay, Clemens Ballarin, Stephan
Hohe, Florian Kammüller and Lawrence C Paulson

October 8, 2017

Contents

1 Objects 8
1.1 Structure with Carrier Set. . . . . . . . . . . . . . . . . . . . 8
1.2 Structure with Carrier and Equivalence Relation eq . . . . . . 8

2 Orders 16
2.1 Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The order relation . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Upper and lower bounds of a set . . . . . . . . . . . . 18
2.1.3 Least and greatest, as predicate . . . . . . . . . . . . . 22
2.1.4 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.5 Isotone functions . . . . . . . . . . . . . . . . . . . . . 26
2.1.6 Idempotent functions . . . . . . . . . . . . . . . . . . 27
2.1.7 Order embeddings . . . . . . . . . . . . . . . . . . . . 27
2.1.8 Commuting functions . . . . . . . . . . . . . . . . . . 27

2.2 Partial orders where eq is the Equality . . . . . . . . . . . . . 27
2.3 Bounded Orders . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Total Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Total orders where eq is the Equality . . . . . . . . . . . . . . 30

3 Lattices 31
3.1 Supremum and infimum . . . . . . . . . . . . . . . . . . . . . 31
3.2 Dual operators . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Supremum . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Infimum . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Weak Bounded Lattices . . . . . . . . . . . . . . . . . . . . . 44
3.5 Lattices where eq is the Equality . . . . . . . . . . . . . . . . 45
3.6 Bounded Lattices . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



2

4 Complete Lattices 47
4.1 Infimum Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Supremum Laws . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Fixed points of a lattice . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Least fixed points . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Greatest fixed points . . . . . . . . . . . . . . . . . . . 56

4.4 Complete lattices where eq is the Equality . . . . . . . . . . . 58
4.5 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Interval complete lattices . . . . . . . . . . . . . . . . . . . . 60
4.7 Knaster-Tarski theorem and variants . . . . . . . . . . . . . . 62
4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8.1 The Powerset of a Set is a Complete Lattice . . . . . . 71
4.9 Limit preserving functions . . . . . . . . . . . . . . . . . . . . 72

5 Galois connections 73
5.1 Definition and basic properties . . . . . . . . . . . . . . . . . 73
5.2 Well-typed connections . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Galois connections . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Composition of Galois connections . . . . . . . . . . . . . . . 78
5.5 Retracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Coretracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Galois Bijections . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Monoids and Groups 82
6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Cancellation Laws and Basic Properties . . . . . . . . . . . . 88
6.4 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Direct Products . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.6 Homomorphisms and Isomorphisms . . . . . . . . . . . . . . . 94
6.7 Commutative Structures . . . . . . . . . . . . . . . . . . . . . 96
6.8 The Lattice of Subgroups of a Group . . . . . . . . . . . . . . 97
6.9 Product Operator for Commutative Monoids . . . . . . . . . 99

6.9.1 Inductive Definition of a Relation for Products over Sets 99
6.9.2 Products over Finite Sets . . . . . . . . . . . . . . . . 105

7 Cosets and Quotient Groups 110
7.1 Basic Properties of Cosets . . . . . . . . . . . . . . . . . . . . 110
7.2 Normal subgroups . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 More Properties of Cosets . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Set of Inverses of an r_coset. . . . . . . . . . . . . . . 121
7.3.2 Theorems for <#> with #> or <#. . . . . . . . . . . . . . 121
7.3.3 An Equivalence Relation . . . . . . . . . . . . . . . . . 122
7.3.4 Two Distinct Right Cosets are Disjoint . . . . . . . . 123



3

7.4 Further lemmas for r_congruent . . . . . . . . . . . . . . . . . 123
7.5 Order of a Group and Lagrange’s Theorem . . . . . . . . . . 125
7.6 Quotient Groups: Factorization of a Group . . . . . . . . . . 126
7.7 The First Isomorphism Theorem . . . . . . . . . . . . . . . . 128

8 Sylow’s Theorem 131
8.1 Main Part of the Proof . . . . . . . . . . . . . . . . . . . . . . 134
8.2 Discharging the Assumptions of sylow_central . . . . . . . . 135

8.2.1 Introduction and Destruct Rules for H . . . . . . . . . 136
8.3 Equal Cardinalities of M and the Set of Cosets . . . . . . . . . 137

8.3.1 The Opposite Injection . . . . . . . . . . . . . . . . . 138
8.4 Sylow’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Bijections of a Set, Permutation and Automorphism Groups140
9.1 Bijections Form a Group . . . . . . . . . . . . . . . . . . . . . 141
9.2 Automorphisms Form a Group . . . . . . . . . . . . . . . . . 141

10 The Algebraic Hierarchy of Rings 143
10.1 Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.3 Rings: Basic Definitions . . . . . . . . . . . . . . . . . . . . . 147
10.4 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10.4.1 Normaliser for Rings . . . . . . . . . . . . . . . . . . . 149
10.4.2 Sums over Finite Sets . . . . . . . . . . . . . . . . . . 153

10.5 Integral Domains . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.6 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.7 Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11 More on groups 157

12 More on finite products 160

13 Modules over an Abelian Group 162
13.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.2 Basic Properties of Algebras . . . . . . . . . . . . . . . . . . . 164
13.3 More Lifting from Groups to Abelian Groups . . . . . . . . . 165

13.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 165
13.3.2 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.3.3 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . 169
13.3.4 Additive subgroups are normal . . . . . . . . . . . . . 169
13.3.5 Congruence Relation . . . . . . . . . . . . . . . . . . . 173
13.3.6 Factorization . . . . . . . . . . . . . . . . . . . . . . . 174
13.3.7 The First Isomorphism Theorem . . . . . . . . . . . . 176
13.3.8 Homomorphisms . . . . . . . . . . . . . . . . . . . . . 176
13.3.9 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



4

13.3.10 Addition of Subgroups . . . . . . . . . . . . . . . . . . 180

14 Ideals 181
14.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

14.1.1 General definition . . . . . . . . . . . . . . . . . . . . 181
14.1.2 Ideals Generated by a Subset of carrier R . . . . . . . 182
14.1.3 Principal Ideals . . . . . . . . . . . . . . . . . . . . . . 182
14.1.4 Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . 182
14.1.5 Prime Ideals . . . . . . . . . . . . . . . . . . . . . . . 183

14.2 Special Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
14.3 General Ideal Properies . . . . . . . . . . . . . . . . . . . . . 184
14.4 Intersection of Ideals . . . . . . . . . . . . . . . . . . . . . . . 185
14.5 Addition of Ideals . . . . . . . . . . . . . . . . . . . . . . . . 187
14.6 Ideals generated by a subset of carrier R . . . . . . . . . . . 188
14.7 Union of Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 192
14.8 Properties of Principal Ideals . . . . . . . . . . . . . . . . . . 193
14.9 Prime Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.10Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.11Derived Theorems . . . . . . . . . . . . . . . . . . . . . . . . 198

15 Homomorphisms of Non-Commutative Rings 201
15.1 The Kernel of a Ring Homomorphism . . . . . . . . . . . . . 203
15.2 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

16 Univariate Polynomials 205
16.1 The Constructor for Univariate Polynomials . . . . . . . . . . 205
16.2 Effect of Operations on Coefficients . . . . . . . . . . . . . . . 208
16.3 Polynomials Form a Ring. . . . . . . . . . . . . . . . . . . . . 209
16.4 Polynomials Form a Commutative Ring. . . . . . . . . . . . . 213
16.5 Polynomials over a commutative ring for a commutative ring 214
16.6 Polynomials Form an Algebra . . . . . . . . . . . . . . . . . . 214
16.7 Further Lemmas Involving Monomials . . . . . . . . . . . . . 215
16.8 The Degree Function . . . . . . . . . . . . . . . . . . . . . . . 220
16.9 Polynomials over Integral Domains . . . . . . . . . . . . . . . 226
16.10The Evaluation Homomorphism and Universal Property . . . 227
16.11The long division algorithm: some previous facts. . . . . . . . 235
16.12The long division proof for commutative rings . . . . . . . . . 237
16.13Sample Application of Evaluation Homomorphism . . . . . . 243

17 Simplification Rules for Polynomials 244

18 Properties of the Euler ϕ-function 246

19 Order of an Element of a Group 250



5

20 Number of Roots of a Polynomial 257

21 The Multiplicative Group of a Field 260

22 Divisibility in monoids and rings 265

23 Factorial Monoids 265
23.1 Monoids with Cancellation Law . . . . . . . . . . . . . . . . . 265
23.2 Products of Units in Monoids . . . . . . . . . . . . . . . . . . 266
23.3 Divisibility and Association . . . . . . . . . . . . . . . . . . . 268

23.3.1 Function definitions . . . . . . . . . . . . . . . . . . . 268
23.3.2 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . 268
23.3.3 Association . . . . . . . . . . . . . . . . . . . . . . . . 270
23.3.4 Division and associativity . . . . . . . . . . . . . . . . 273
23.3.5 Multiplication and associativity . . . . . . . . . . . . . 274
23.3.6 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
23.3.7 Proper factors . . . . . . . . . . . . . . . . . . . . . . 276

23.4 Irreducible Elements and Primes . . . . . . . . . . . . . . . . 279
23.4.1 Irreducible elements . . . . . . . . . . . . . . . . . . . 279
23.4.2 Prime elements . . . . . . . . . . . . . . . . . . . . . . 282

23.5 Factorization and Factorial Monoids . . . . . . . . . . . . . . 282
23.5.1 Function definitions . . . . . . . . . . . . . . . . . . . 282
23.5.2 Comparing lists of elements . . . . . . . . . . . . . . . 283
23.5.3 Properties of lists of elements . . . . . . . . . . . . . . 286
23.5.4 Factorization in irreducible elements . . . . . . . . . . 288
23.5.5 Essentially equal factorizations . . . . . . . . . . . . . 291
23.5.6 Factorial monoids and wfactors . . . . . . . . . . . . . 297

23.6 Factorizations as Multisets . . . . . . . . . . . . . . . . . . . . 298
23.6.1 Comparing multisets . . . . . . . . . . . . . . . . . . . 299
23.6.2 Interpreting multisets as factorizations . . . . . . . . . 303
23.6.3 Multiplication on multisets . . . . . . . . . . . . . . . 304
23.6.4 Divisibility on multisets . . . . . . . . . . . . . . . . . 305

23.7 Irreducible Elements are Prime . . . . . . . . . . . . . . . . . 307
23.8 Greatest Common Divisors and Lowest Common Multiples . 311

23.8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 311
23.8.2 Connections to Lattice.thy . . . . . . . . . . . . . . 312
23.8.3 Existence of gcd and lcm . . . . . . . . . . . . . . . . 313

23.9 Conditions for Factoriality . . . . . . . . . . . . . . . . . . . . 317
23.9.1 Gcd condition . . . . . . . . . . . . . . . . . . . . . . . 317
23.9.2 Divisor chain condition . . . . . . . . . . . . . . . . . 324
23.9.3 Primeness condition . . . . . . . . . . . . . . . . . . . 326
23.9.4 Application to factorial monoids . . . . . . . . . . . . 331

23.10Factoriality Theorems . . . . . . . . . . . . . . . . . . . . . . 335



6

24 Quotient Rings 336
24.1 Multiplication on Cosets . . . . . . . . . . . . . . . . . . . . . 336
24.2 Quotient Ring Definition . . . . . . . . . . . . . . . . . . . . . 337
24.3 Factorization over General Ideals . . . . . . . . . . . . . . . . 337
24.4 Factorization over Prime Ideals . . . . . . . . . . . . . . . . . 339
24.5 Factorization over Maximal Ideals . . . . . . . . . . . . . . . 340

25 The Ring of Integers 342
25.1 Some properties of int . . . . . . . . . . . . . . . . . . . . . . 342
25.2 Z: The Set of Integers as Algebraic Structure . . . . . . . . . 342
25.3 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . 343
25.4 Generated Ideals of Z . . . . . . . . . . . . . . . . . . . . . . 346
25.5 Ideals and Divisibility . . . . . . . . . . . . . . . . . . . . . . 347
25.6 Ideals and the Modulus . . . . . . . . . . . . . . . . . . . . . 348
25.7 Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

26 More on rings etc. 350



7

AbelCoset

Bij

Complete_Lattice

Congruence

Coset

Divisibility

Exponent

FiniteProduct

Galois_Connection Group

Ideal

IntRing

Lattice

Module

More_Finite_Product

More_Group More_Ring

Multiplicative_Group

Order

QuotRing

Ring

RingHom

Sylow

UnivPoly

[HOL-Computational_Algebra]

[HOL-Library]

[HOL]

[Pure]



8

theory Congruence

imports
Main

"HOL-Library.FuncSet"

begin

1 Objects

1.1 Structure with Carrier Set.

record ’a partial_object =

carrier :: "’a set"

lemma funcset_carrier:

"[[ f ∈ carrier X → carrier Y; x ∈ carrier X ]] =⇒ f x ∈ carrier Y"

by (fact funcset_mem)

lemma funcset_carrier’:

"[[ f ∈ carrier A → carrier A; x ∈ carrier A ]] =⇒ f x ∈ carrier A"

by (fact funcset_mem)

1.2 Structure with Carrier and Equivalence Relation eq

record ’a eq_object = "’a partial_object" +

eq :: "’a ⇒ ’a ⇒ bool" (infixl ".=ı " 50)

definition
elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl ".∈ı " 50)

where "x .∈S A ←→ (∃ y ∈ A. x .=S y)"

definition
set_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.=}ı " 50)

where "A {.=}S B ←→ ((∀ x ∈ A. x .∈S B) ∧ (∀ x ∈ B. x .∈S A))"

definition
eq_class_of :: "_ ⇒ ’a ⇒ ’a set" ("class’_ofı ")

where "class_ofS x = {y ∈ carrier S. x .=S y}"

definition
eq_closure_of :: "_ ⇒ ’a set ⇒ ’a set" ("closure’_ofı ")

where "closure_ofS A = {y ∈ carrier S. y .∈S A}"

definition
eq_is_closed :: "_ ⇒ ’a set ⇒ bool" ("is’_closedı ")

where "is_closedS A ←→ A ⊆ carrier S ∧ closure_ofS A = A"

abbreviation



9

not_eq :: "_ ⇒ ’a ⇒ ’a ⇒ bool" (infixl ".6=ı " 50)

where "x . 6=S y == ~(x .=S y)"

abbreviation
not_elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl "./∈ı " 50)

where "x ./∈S A == ~(x .∈S A)"

abbreviation
set_not_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.6=}ı " 50)

where "A {. 6=}S B == ~(A {.=}S B)"

locale equivalence =

fixes S (structure)
assumes refl [simp, intro]: "x ∈ carrier S =⇒ x .= x"

and sym [sym]: "[[ x .= y; x ∈ carrier S; y ∈ carrier S ]] =⇒ y .=

x"

and trans [trans]:

"[[ x .= y; y .= z; x ∈ carrier S; y ∈ carrier S; z ∈ carrier S ]]
=⇒ x .= z"

lemma elemI:

fixes R (structure)
assumes "a’ ∈ A" and "a .= a’"

shows "a .∈ A"

unfolding elem_def

using assms

by fast

lemma (in equivalence) elem_exact:

assumes "a ∈ carrier S" and "a ∈ A"

shows "a .∈ A"

using assms

by (fast intro: elemI)

lemma elemE:

fixes S (structure)
assumes "a .∈ A"

and "
∧
a’. [[a’ ∈ A; a .= a’]] =⇒ P"

shows "P"

using assms

unfolding elem_def

by fast

lemma (in equivalence) elem_cong_l [trans]:

assumes cong: "a’ .= a"

and a: "a .∈ A"

and carr: "a ∈ carrier S" "a’ ∈ carrier S"
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and Acarr: "A ⊆ carrier S"

shows "a’ .∈ A"

using a

apply (elim elemE, intro elemI)

proof assumption

fix b

assume bA: "b ∈ A"

note [simp] = carr bA[THEN subsetD[OF Acarr]]

note cong

also assume "a .= b"

finally show "a’ .= b" by simp

qed

lemma (in equivalence) elem_subsetD:

assumes "A ⊆ B"

and aA: "a .∈ A"

shows "a .∈ B"

using assms

by (fast intro: elemI elim: elemE dest: subsetD)

lemma (in equivalence) mem_imp_elem [simp, intro]:

"[| x ∈ A; x ∈ carrier S |] ==> x .∈ A"

unfolding elem_def by blast

lemma set_eqI:

fixes R (structure)
assumes ltr: "

∧
a. a ∈ A =⇒ a .∈ B"

and rtl: "
∧
b. b ∈ B =⇒ b .∈ A"

shows "A {.=} B"

unfolding set_eq_def

by (fast intro: ltr rtl)

lemma set_eqI2:

fixes R (structure)
assumes ltr: "

∧
a b. a ∈ A =⇒ ∃ b∈B. a .= b"

and rtl: "
∧
b. b ∈ B =⇒ ∃ a∈A. b .= a"

shows "A {.=} B"

by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+

lemma set_eqD1:

fixes R (structure)
assumes AA’: "A {.=} A’"

and "a ∈ A"

shows "∃ a’∈A’. a .= a’"

using assms

unfolding set_eq_def elem_def

by fast

lemma set_eqD2:
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fixes R (structure)
assumes AA’: "A {.=} A’"

and "a’ ∈ A’"

shows "∃ a∈A. a’ .= a"

using assms

unfolding set_eq_def elem_def

by fast

lemma set_eqE:

fixes R (structure)
assumes AB: "A {.=} B"

and r: "[[∀ a∈A. a .∈ B; ∀ b∈B. b .∈ A]] =⇒ P"

shows "P"

using AB

unfolding set_eq_def

by (blast dest: r)

lemma set_eqE2:

fixes R (structure)
assumes AB: "A {.=} B"

and r: "[[∀ a∈A. (∃ b∈B. a .= b); ∀ b∈B. (∃ a∈A. b .= a)]] =⇒ P"

shows "P"

using AB

unfolding set_eq_def elem_def

by (blast dest: r)

lemma set_eqE’:

fixes R (structure)
assumes AB: "A {.=} B"

and aA: "a ∈ A" and bB: "b ∈ B"

and r: "
∧
a’ b’. [[a’ ∈ A; b .= a’; b’ ∈ B; a .= b’]] =⇒ P"

shows "P"

proof -

from AB aA

have "∃ b’∈B. a .= b’" by (rule set_eqD1)

from this obtain b’

where b’: "b’ ∈ B" "a .= b’" by auto

from AB bB

have "∃ a’∈A. b .= a’" by (rule set_eqD2)

from this obtain a’

where a’: "a’ ∈ A" "b .= a’" by auto

from a’ b’

show "P" by (rule r)

qed

lemma (in equivalence) eq_elem_cong_r [trans]:

assumes a: "a .∈ A"
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and cong: "A {.=} A’"

and carr: "a ∈ carrier S"

and Carr: "A ⊆ carrier S" "A’ ⊆ carrier S"

shows "a .∈ A’"

using a cong

proof (elim elemE set_eqE)

fix b

assume bA: "b ∈ A"

and inA’: "∀ b∈A. b .∈ A’"

note [simp] = carr Carr Carr[THEN subsetD] bA

assume "a .= b"

also from bA inA’

have "b .∈ A’" by fast

finally
show "a .∈ A’" by simp

qed

lemma (in equivalence) set_eq_sym [sym]:

assumes "A {.=} B"

and "A ⊆ carrier S" "B ⊆ carrier S"

shows "B {.=} A"

using assms

unfolding set_eq_def elem_def

by fast

lemma (in equivalence) equal_set_eq_trans [trans]:

assumes AB: "A = B" and BC: "B {.=} C"

shows "A {.=} C"

using AB BC by simp

lemma (in equivalence) set_eq_equal_trans [trans]:

assumes AB: "A {.=} B" and BC: "B = C"

shows "A {.=} C"

using AB BC by simp

lemma (in equivalence) set_eq_trans [trans]:

assumes AB: "A {.=} B" and BC: "B {.=} C"

and carr: "A ⊆ carrier S" "B ⊆ carrier S" "C ⊆ carrier S"

shows "A {.=} C"

proof (intro set_eqI)

fix a

assume aA: "a ∈ A"

with carr have "a ∈ carrier S" by fast

note [simp] = carr this
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from aA

have "a .∈ A" by (simp add: elem_exact)

also note AB

also note BC

finally
show "a .∈ C" by simp

next
fix c

assume cC: "c ∈ C"

with carr have "c ∈ carrier S" by fast

note [simp] = carr this

from cC

have "c .∈ C" by (simp add: elem_exact)

also note BC[symmetric]

also note AB[symmetric]

finally
show "c .∈ A" by simp

qed

lemma (in equivalence) set_eq_pairI:

assumes xx’: "x .= x’"

and carr: "x ∈ carrier S" "x’ ∈ carrier S" "y ∈ carrier S"

shows "{x, y} {.=} {x’, y}"

unfolding set_eq_def elem_def

proof safe

have "x’ ∈ {x’, y}" by fast

with xx’ show "∃ b∈{x’, y}. x .= b" by fast

next
have "y ∈ {x’, y}" by fast

with carr show "∃ b∈{x’, y}. y .= b" by fast

next
have "x ∈ {x, y}" by fast

with xx’[symmetric] carr

show "∃ a∈{x, y}. x’ .= a" by fast

next
have "y ∈ {x, y}" by fast

with carr show "∃ a∈{x, y}. y .= a" by fast

qed

lemma (in equivalence) is_closedI:

assumes closed: "!!x y. [| x .= y; x ∈ A; y ∈ carrier S |] ==> y ∈
A"

and S: "A ⊆ carrier S"

shows "is_closed A"
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unfolding eq_is_closed_def eq_closure_of_def elem_def

using S

by (blast dest: closed sym)

lemma (in equivalence) closure_of_eq:

"[| x .= x’; A ⊆ carrier S; x ∈ closure_of A; x ∈ carrier S; x’ ∈ carrier

S |] ==> x’ ∈ closure_of A"

unfolding eq_closure_of_def elem_def

by (blast intro: trans sym)

lemma (in equivalence) is_closed_eq [dest]:

"[| x .= x’; x ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |] ==>

x’ ∈ A"

unfolding eq_is_closed_def

using closure_of_eq [where A = A]

by simp

lemma (in equivalence) is_closed_eq_rev [dest]:

"[| x .= x’; x’ ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |]

==> x ∈ A"

by (drule sym) (simp_all add: is_closed_eq)

lemma closure_of_closed [simp, intro]:

fixes S (structure)
shows "closure_of A ⊆ carrier S"

unfolding eq_closure_of_def

by fast

lemma closure_of_memI:

fixes S (structure)
assumes "a .∈ A"

and "a ∈ carrier S"

shows "a ∈ closure_of A"

unfolding eq_closure_of_def

using assms

by fast

lemma closure_ofI2:

fixes S (structure)
assumes "a .= a’"

and "a’ ∈ A"

and "a ∈ carrier S"

shows "a ∈ closure_of A"

unfolding eq_closure_of_def elem_def

using assms

by fast

lemma closure_of_memE:

fixes S (structure)
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assumes p: "a ∈ closure_of A"

and r: "[[a ∈ carrier S; a .∈ A]] =⇒ P"

shows "P"

proof -

from p

have acarr: "a ∈ carrier S"

and "a .∈ A"

by (simp add: eq_closure_of_def)+

thus "P" by (rule r)

qed

lemma closure_ofE2:

fixes S (structure)
assumes p: "a ∈ closure_of A"

and r: "
∧
a’. [[a ∈ carrier S; a’ ∈ A; a .= a’]] =⇒ P"

shows "P"

proof -

from p have acarr: "a ∈ carrier S" by (simp add: eq_closure_of_def)

from p have "∃ a’∈A. a .= a’" by (simp add: eq_closure_of_def elem_def)

from this obtain a’

where "a’ ∈ A" and "a .= a’" by auto

from acarr and this

show "P" by (rule r)

qed

lemma equivalence_subset:

assumes "equivalence L" "A ⊆ carrier L"

shows "equivalence (L(| carrier := A |))"
proof -

interpret L: equivalence L

by (simp add: assms)

show ?thesis

by (unfold_locales, simp_all add: L.sym assms rev_subsetD, meson L.trans

assms(2) contra_subsetD)

qed

end

theory Order

imports
"HOL-Library.FuncSet"

Congruence

begin
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2 Orders

2.1 Partial Orders

record ’a gorder = "’a eq_object" +

le :: "[’a, ’a] => bool" (infixl "vı " 50)

abbreviation inv_gorder :: "_ ⇒ ’a gorder" where
"inv_gorder L ≡
(| carrier = carrier L,

eq = op .=L,

le = (λ x y. y vL x) |)"

lemma inv_gorder_inv:

"inv_gorder (inv_gorder L) = L"

by simp

locale weak_partial_order = equivalence L for L (structure) +

assumes le_refl [intro, simp]:

"x ∈ carrier L ==> x v x"

and weak_le_antisym [intro]:

"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x .= y"

and le_trans [trans]:

"[| x v y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L

|] ==> x v z"

and le_cong:

"[[ x .= y; z .= w; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L;

w ∈ carrier L ]] =⇒
x v z ←→ y v w"

definition
lless :: "[_, ’a, ’a] => bool" (infixl "@ı " 50)

where "x @L y ←→ x vL y & x .6=L y"

2.1.1 The order relation

context weak_partial_order

begin

lemma le_cong_l [intro, trans]:

"[[ x .= y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L ]] =⇒
x v z"

by (auto intro: le_cong [THEN iffD2])

lemma le_cong_r [intro, trans]:

"[[ x v y; y .= z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L ]] =⇒
x v z"

by (auto intro: le_cong [THEN iffD1])

lemma weak_refl [intro, simp]: "[[ x .= y; x ∈ carrier L; y ∈ carrier
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L ]] =⇒ x v y"

by (simp add: le_cong_l)

end

lemma weak_llessI:

fixes R (structure)
assumes "x v y" and "~(x .= y)"

shows "x @ y"

using assms unfolding lless_def by simp

lemma lless_imp_le:

fixes R (structure)
assumes "x @ y"

shows "x v y"

using assms unfolding lless_def by simp

lemma weak_lless_imp_not_eq:

fixes R (structure)
assumes "x @ y"

shows "¬ (x .= y)"

using assms unfolding lless_def by simp

lemma weak_llessE:

fixes R (structure)
assumes p: "x @ y" and e: "[[x v y; ¬ (x .= y)]] =⇒ P"

shows "P"

using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)

lemma (in weak_partial_order) lless_cong_l [trans]:

assumes xx’: "x .= x’"

and xy: "x’ @ y"

and carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

shows "x @ y"

using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_cong_r [trans]:

assumes xy: "x @ y"

and yy’: "y .= y’"

and carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

shows "x @ y’"

using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_antisym:

assumes "a ∈ carrier L" "b ∈ carrier L"

and "a @ b" "b @ a"

shows "P"

using assms
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by (elim weak_llessE) auto

lemma (in weak_partial_order) lless_trans [trans]:

assumes "a @ b" "b @ c"

and carr[simp]: "a ∈ carrier L" "b ∈ carrier L" "c ∈ carrier L"

shows "a @ c"

using assms unfolding lless_def by (blast dest: le_trans intro: sym)

lemma weak_partial_order_subset:

assumes "weak_partial_order L" "A ⊆ carrier L"

shows "weak_partial_order (L(| carrier := A |))"
proof -

interpret L: weak_partial_order L

by (simp add: assms)

interpret equivalence "(L(| carrier := A |))"
by (simp add: L.equivalence_axioms assms(2) equivalence_subset)

show ?thesis

apply (unfold_locales, simp_all)

using assms(2) apply auto[1]

using assms(2) apply auto[1]

apply (meson L.le_trans assms(2) contra_subsetD)

apply (meson L.le_cong assms(2) subsetCE)

done
qed

2.1.2 Upper and lower bounds of a set

definition
Upper :: "[_, ’a set] => ’a set"

where "Upper L A = {u. (ALL x. x ∈ A ∩ carrier L --> x vL u)} ∩ carrier

L"

definition
Lower :: "[_, ’a set] => ’a set"

where "Lower L A = {l. (ALL x. x ∈ A ∩ carrier L --> l vL x)} ∩ carrier

L"

lemma Upper_closed [intro!, simp]:

"Upper L A ⊆ carrier L"

by (unfold Upper_def) clarify

lemma Upper_memD [dest]:

fixes L (structure)
shows "[| u ∈ Upper L A; x ∈ A; A ⊆ carrier L |] ==> x v u ∧ u ∈

carrier L"

by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemD [dest]:

"[| u .∈ Upper L A; u ∈ carrier L; x ∈ A; A ⊆ carrier L |] ==> x v
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u"

unfolding Upper_def elem_def

by (blast dest: sym)

lemma Upper_memI:

fixes L (structure)
shows "[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x ∈ Upper L

A"

by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemI:

"[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x .∈ Upper L A"

unfolding Upper_def by blast

lemma Upper_antimono:

"A ⊆ B ==> Upper L B ⊆ Upper L A"

by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_is_closed [simp]:

"A ⊆ carrier L ==> is_closed (Upper L A)"

by (rule is_closedI) (blast intro: Upper_memI)+

lemma (in weak_partial_order) Upper_mem_cong:

assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"

and aelem: "a ∈ Upper L A"

shows "a’ ∈ Upper L A"

proof (rule Upper_memI[OF _ a’carr])

fix y

assume yA: "y ∈ A"

hence "y v a" by (intro Upper_memD[OF aelem, THEN conjunct1] Acarr)

also note aa’

finally
show "y v a’"

by (simp add: a’carr subsetD[OF Acarr yA] subsetD[OF Upper_closed

aelem])

qed

lemma (in weak_partial_order) Upper_cong:

assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"

shows "Upper L A = Upper L A’"

unfolding Upper_def

apply rule

apply (rule, clarsimp) defer 1

apply (rule, clarsimp) defer 1

proof -

fix x a’

assume carr: "x ∈ carrier L" "a’ ∈ carrier L"
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and a’A’: "a’ ∈ A’"

assume aLxCond[rule_format]: "∀ a. a ∈ A ∧ a ∈ carrier L −→ a v x"

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)

from this obtain a

where aA: "a ∈ A"

and a’a: "a’ .= a"

by auto

note [simp] = subsetD[OF Acarr aA] carr

note a’a

also have "a v x" by (simp add: aLxCond aA)

finally show "a’ v x" by simp

next
fix x a

assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"

assume a’LxCond[rule_format]: "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ a’

v x"

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)

from this obtain a’

where a’A’: "a’ ∈ A’"

and aa’: "a .= a’"

by auto

note [simp] = subsetD[OF A’carr a’A’] carr

note aa’

also have "a’ v x" by (simp add: a’LxCond a’A’)

finally show "a v x" by simp

qed

lemma Lower_closed [intro!, simp]:

"Lower L A ⊆ carrier L"

by (unfold Lower_def) clarify

lemma Lower_memD [dest]:

fixes L (structure)
shows "[| l ∈ Lower L A; x ∈ A; A ⊆ carrier L |] ==> l v x ∧ l ∈

carrier L"

by (unfold Lower_def) blast

lemma Lower_memI:

fixes L (structure)
shows "[| !! y. y ∈ A ==> x v y; x ∈ carrier L |] ==> x ∈ Lower L

A"

by (unfold Lower_def) blast

lemma Lower_antimono:
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"A ⊆ B ==> Lower L B ⊆ Lower L A"

by (unfold Lower_def) blast

lemma (in weak_partial_order) Lower_is_closed [simp]:

"A ⊆ carrier L =⇒ is_closed (Lower L A)"

by (rule is_closedI) (blast intro: Lower_memI dest: sym)+

lemma (in weak_partial_order) Lower_mem_cong:

assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"

and aelem: "a ∈ Lower L A"

shows "a’ ∈ Lower L A"

using assms Lower_closed[of L A]

by (intro Lower_memI) (blast intro: le_cong_l[OF aa’[symmetric]])

lemma (in weak_partial_order) Lower_cong:

assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"

shows "Lower L A = Lower L A’"

unfolding Lower_def

apply rule

apply clarsimp defer 1

apply clarsimp defer 1

proof -

fix x a’

assume carr: "x ∈ carrier L" "a’ ∈ carrier L"

and a’A’: "a’ ∈ A’"

assume "∀ a. a ∈ A ∧ a ∈ carrier L −→ x v a"

hence aLxCond: "
∧
a. [[a ∈ A; a ∈ carrier L]] =⇒ x v a" by fast

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)

from this obtain a

where aA: "a ∈ A"

and a’a: "a’ .= a"

by auto

from aA and subsetD[OF Acarr aA]

have "x v a" by (rule aLxCond)

also note a’a[symmetric]

finally
show "x v a’" by (simp add: carr subsetD[OF Acarr aA])

next
fix x a

assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"

assume "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ x v a’"

hence a’LxCond: "
∧
a’. [[a’ ∈ A’; a’ ∈ carrier L]] =⇒ x v a’" by fast+

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)
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from this obtain a’

where a’A’: "a’ ∈ A’"

and aa’: "a .= a’"

by auto

from a’A’ and subsetD[OF A’carr a’A’]

have "x v a’" by (rule a’LxCond)

also note aa’[symmetric]

finally show "x v a" by (simp add: carr subsetD[OF A’carr a’A’])

qed

Jacobson: Theorem 8.1

lemma Lower_empty [simp]:

"Lower L {} = carrier L"

by (unfold Lower_def) simp

lemma Upper_empty [simp]:

"Upper L {} = carrier L"

by (unfold Upper_def) simp

2.1.3 Least and greatest, as predicate

definition
least :: "[_, ’a, ’a set] => bool"

where "least L l A ←→ A ⊆ carrier L & l ∈ A & (ALL x : A. l vL x)"

definition
greatest :: "[_, ’a, ’a set] => bool"

where "greatest L g A ←→ A ⊆ carrier L & g ∈ A & (ALL x : A. x vL
g)"

Could weaken these to l ∈ carrier L ∧ l .∈ A and g ∈ carrier L ∧ g .∈
A.

lemma least_closed [intro, simp]:

"least L l A ==> l ∈ carrier L"

by (unfold least_def) fast

lemma least_mem:

"least L l A ==> l ∈ A"

by (unfold least_def) fast

lemma (in weak_partial_order) weak_least_unique:

"[| least L x A; least L y A |] ==> x .= y"

by (unfold least_def) blast

lemma least_le:

fixes L (structure)
shows "[| least L x A; a ∈ A |] ==> x v a"

by (unfold least_def) fast
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lemma (in weak_partial_order) least_cong:

"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==> least

L x A = least L x’ A"

by (unfold least_def) (auto dest: sym)

abbreviation is_lub :: "[_, ’a, ’a set] => bool"

where "is_lub L x A ≡ least L x (Upper L A)"

least is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) least_Upper_cong_l:

assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"

and "A ⊆ carrier L"

shows "least L x (Upper L A) = least L x’ (Upper L A)"

apply (rule least_cong) using assms by auto

lemma (in weak_partial_order) least_Upper_cong_r:

assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"

shows "least L x (Upper L A) = least L x (Upper L A’)"

apply (subgoal_tac "Upper L A = Upper L A’", simp)

by (rule Upper_cong) fact+

lemma least_UpperI:

fixes L (structure)
assumes above: "!! x. x ∈ A ==> x v s"

and below: "!! y. y ∈ Upper L A ==> s v y"

and L: "A ⊆ carrier L" "s ∈ carrier L"

shows "least L s (Upper L A)"

proof -

have "Upper L A ⊆ carrier L" by simp

moreover from above L have "s ∈ Upper L A" by (simp add: Upper_def)

moreover from below have "ALL x : Upper L A. s v x" by fast

ultimately show ?thesis by (simp add: least_def)

qed

lemma least_Upper_above:

fixes L (structure)
shows "[| least L s (Upper L A); x ∈ A; A ⊆ carrier L |] ==> x v s"

by (unfold least_def) blast

lemma greatest_closed [intro, simp]:

"greatest L l A ==> l ∈ carrier L"

by (unfold greatest_def) fast

lemma greatest_mem:

"greatest L l A ==> l ∈ A"

by (unfold greatest_def) fast
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lemma (in weak_partial_order) weak_greatest_unique:

"[| greatest L x A; greatest L y A |] ==> x .= y"

by (unfold greatest_def) blast

lemma greatest_le:

fixes L (structure)
shows "[| greatest L x A; a ∈ A |] ==> a v x"

by (unfold greatest_def) fast

lemma (in weak_partial_order) greatest_cong:

"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==>

greatest L x A = greatest L x’ A"

by (unfold greatest_def) (auto dest: sym)

abbreviation is_glb :: "[_, ’a, ’a set] => bool"

where "is_glb L x A ≡ greatest L x (Lower L A)"

greatest is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) greatest_Lower_cong_l:

assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"

and "A ⊆ carrier L"

shows "greatest L x (Lower L A) = greatest L x’ (Lower L A)"

apply (rule greatest_cong) using assms by auto

lemma (in weak_partial_order) greatest_Lower_cong_r:

assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"

shows "greatest L x (Lower L A) = greatest L x (Lower L A’)"

apply (subgoal_tac "Lower L A = Lower L A’", simp)

by (rule Lower_cong) fact+

lemma greatest_LowerI:

fixes L (structure)
assumes below: "!! x. x ∈ A ==> i v x"

and above: "!! y. y ∈ Lower L A ==> y v i"

and L: "A ⊆ carrier L" "i ∈ carrier L"

shows "greatest L i (Lower L A)"

proof -

have "Lower L A ⊆ carrier L" by simp

moreover from below L have "i ∈ Lower L A" by (simp add: Lower_def)

moreover from above have "ALL x : Lower L A. x v i" by fast

ultimately show ?thesis by (simp add: greatest_def)

qed

lemma greatest_Lower_below:

fixes L (structure)
shows "[| greatest L i (Lower L A); x ∈ A; A ⊆ carrier L |] ==> i v

x"
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by (unfold greatest_def) blast

lemma Lower_dual [simp]:

"Lower (inv_gorder L) A = Upper L A"

by (simp add:Upper_def Lower_def)

lemma Upper_dual [simp]:

"Upper (inv_gorder L) A = Lower L A"

by (simp add:Upper_def Lower_def)

lemma least_dual [simp]:

"least (inv_gorder L) x A = greatest L x A"

by (simp add:least_def greatest_def)

lemma greatest_dual [simp]:

"greatest (inv_gorder L) x A = least L x A"

by (simp add:least_def greatest_def)

lemma (in weak_partial_order) dual_weak_order:

"weak_partial_order (inv_gorder L)"

apply (unfold_locales)

apply (simp_all)

apply (metis sym)

apply (metis trans)

apply (metis weak_le_antisym)

apply (metis le_trans)

apply (metis le_cong_l le_cong_r sym)

done

lemma dual_weak_order_iff:

"weak_partial_order (inv_gorder A) ←→ weak_partial_order A"

proof
assume "weak_partial_order (inv_gorder A)"

then interpret dpo: weak_partial_order "inv_gorder A"

rewrites "carrier (inv_gorder A) = carrier A"

and "le (inv_gorder A) = (λ x y. le A y x)"

and "eq (inv_gorder A) = eq A"

by (simp_all)

show "weak_partial_order A"

by (unfold_locales, auto intro: dpo.sym dpo.trans dpo.le_trans)

next
assume "weak_partial_order A"

thus "weak_partial_order (inv_gorder A)"

by (metis weak_partial_order.dual_weak_order)

qed

2.1.4 Intervals

definition
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at_least_at_most :: "(’a, ’c) gorder_scheme ⇒ ’a => ’a => ’a set" ("(1{|_.._|}ı )")
where "{|l..u|}A = {x ∈ carrier A. l vA x ∧ x vA u}"

context weak_partial_order

begin

lemma at_least_at_most_upper [dest]:

"x ∈ {|a..b|} =⇒ x v b"

by (simp add: at_least_at_most_def)

lemma at_least_at_most_lower [dest]:

"x ∈ {|a..b|} =⇒ a v x"

by (simp add: at_least_at_most_def)

lemma at_least_at_most_closed: "{|a..b|} ⊆ carrier L"

by (auto simp add: at_least_at_most_def)

lemma at_least_at_most_member [intro]:

"[[ x ∈ carrier L; a v x; x v b ]] =⇒ x ∈ {|a..b|}"
by (simp add: at_least_at_most_def)

end

2.1.5 Isotone functions

definition isotone :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool"

where
"isotone A B f ≡
weak_partial_order A ∧ weak_partial_order B ∧
(∀ x∈carrier A. ∀ y∈carrier A. x vA y −→ f x vB f y)"

lemma isotoneI [intro?]:

fixes f :: "’a ⇒ ’b"

assumes "weak_partial_order L1"

"weak_partial_order L2"

"(
∧
x y. [[ x ∈ carrier L1; y ∈ carrier L1; x vL1 y ]]

=⇒ f x vL2 f y)"

shows "isotone L1 L2 f"

using assms by (auto simp add:isotone_def)

abbreviation Monotone :: "(’a, ’b) gorder_scheme ⇒ (’a ⇒ ’a) ⇒ bool"

("Monoı ")

where "Monotone L f ≡ isotone L L f"

lemma use_iso1:

"[[isotone A A f; x ∈ carrier A; y ∈ carrier A; x vA y]] =⇒
f x vA f y"

by (simp add: isotone_def)
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lemma use_iso2:

"[[isotone A B f; x ∈ carrier A; y ∈ carrier A; x vA y]] =⇒
f x vB f y"

by (simp add: isotone_def)

lemma iso_compose:

"[[f ∈ carrier A → carrier B; isotone A B f; g ∈ carrier B → carrier

C; isotone B C g]] =⇒
isotone A C (g ◦ f)"

by (simp add: isotone_def, safe, metis Pi_iff)

lemma (in weak_partial_order) inv_isotone [simp]:

"isotone (inv_gorder A) (inv_gorder B) f = isotone A B f"

by (auto simp add:isotone_def dual_weak_order dual_weak_order_iff)

2.1.6 Idempotent functions

definition idempotent ::

"(’a, ’b) gorder_scheme ⇒ (’a ⇒ ’a) ⇒ bool" ("Idemı ") where
"idempotent L f ≡ ∀ x∈carrier L. f (f x) .=L f x"

lemma (in weak_partial_order) idempotent:

"[[ Idem f; x ∈ carrier L ]] =⇒ f (f x) .= f x"

by (auto simp add: idempotent_def)

2.1.7 Order embeddings

definition order_emb :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool"

where
"order_emb A B f ≡ weak_partial_order A

∧ weak_partial_order B

∧ (∀ x∈carrier A. ∀ y∈carrier A. f x vB f y ←→ x vA
y )"

lemma order_emb_isotone: "order_emb A B f =⇒ isotone A B f"

by (auto simp add: isotone_def order_emb_def)

2.1.8 Commuting functions

definition commuting :: "(’a, ’c) gorder_scheme ⇒ (’a ⇒ ’a) ⇒ (’a ⇒
’a) ⇒ bool" where
"commuting A f g = (∀ x∈carrier A. (f ◦ g) x .=A (g ◦ f) x)"

2.2 Partial orders where eq is the Equality

locale partial_order = weak_partial_order +

assumes eq_is_equal: "op .= = op ="

begin
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declare weak_le_antisym [rule del]

lemma le_antisym [intro]:

"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x = y"

using weak_le_antisym unfolding eq_is_equal .

lemma lless_eq:

"x @ y ←→ x v y & x 6= y"

unfolding lless_def by (simp add: eq_is_equal)

lemma set_eq_is_eq: "A {.=} B ←→ A = B"

by (auto simp add: set_eq_def elem_def eq_is_equal)

end

lemma (in partial_order) dual_order:

"partial_order (inv_gorder L)"

proof -

interpret dwo: weak_partial_order "inv_gorder L"

by (metis dual_weak_order)

show ?thesis

by (unfold_locales, simp add:eq_is_equal)

qed

lemma dual_order_iff:

"partial_order (inv_gorder A) ←→ partial_order A"

proof
assume assm:"partial_order (inv_gorder A)"

then interpret po: partial_order "inv_gorder A"

rewrites "carrier (inv_gorder A) = carrier A"

and "le (inv_gorder A) = (λ x y. le A y x)"

and "eq (inv_gorder A) = eq A"

by (simp_all)

show "partial_order A"

apply (unfold_locales, simp_all)

apply (metis po.sym, metis po.trans)

apply (metis po.weak_le_antisym, metis po.le_trans)

apply (metis (full_types) po.eq_is_equal, metis po.eq_is_equal)

done
next

assume "partial_order A"

thus "partial_order (inv_gorder A)"

by (metis partial_order.dual_order)

qed

Least and greatest, as predicate

lemma (in partial_order) least_unique:

"[| least L x A; least L y A |] ==> x = y"



29

using weak_least_unique unfolding eq_is_equal .

lemma (in partial_order) greatest_unique:

"[| greatest L x A; greatest L y A |] ==> x = y"

using weak_greatest_unique unfolding eq_is_equal .

2.3 Bounded Orders

definition
top :: "_ => ’a" (">ı ") where
">L = (SOME x. greatest L x (carrier L))"

definition
bottom :: "_ => ’a" ("⊥ı ") where
"⊥L = (SOME x. least L x (carrier L))"

locale weak_partial_order_bottom = weak_partial_order L for L (structure)
+

assumes bottom_exists: "∃ x. least L x (carrier L)"

begin

lemma bottom_least: "least L ⊥ (carrier L)"

proof -

obtain x where "least L x (carrier L)"

by (metis bottom_exists)

thus ?thesis

by (auto intro:someI2 simp add: bottom_def)

qed

lemma bottom_closed [simp, intro]:

"⊥ ∈ carrier L"

by (metis bottom_least least_mem)

lemma bottom_lower [simp, intro]:

"x ∈ carrier L =⇒ ⊥ v x"

by (metis bottom_least least_le)

end

locale weak_partial_order_top = weak_partial_order L for L (structure)
+

assumes top_exists: "∃ x. greatest L x (carrier L)"

begin

lemma top_greatest: "greatest L > (carrier L)"

proof -

obtain x where "greatest L x (carrier L)"

by (metis top_exists)
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thus ?thesis

by (auto intro:someI2 simp add: top_def)

qed

lemma top_closed [simp, intro]:

"> ∈ carrier L"

by (metis greatest_mem top_greatest)

lemma top_higher [simp, intro]:

"x ∈ carrier L =⇒ x v >"
by (metis greatest_le top_greatest)

end

2.4 Total Orders

locale weak_total_order = weak_partial_order +

assumes total: "[[ x ∈ carrier L; y ∈ carrier L ]] =⇒ x v y ∨ y v x"

Introduction rule: the usual definition of total order

lemma (in weak_partial_order) weak_total_orderI:

assumes total: "!!x y. [[ x ∈ carrier L; y ∈ carrier L ]] =⇒ x v y ∨
y v x"

shows "weak_total_order L"

by unfold_locales (rule total)

2.5 Total orders where eq is the Equality

locale total_order = partial_order +

assumes total_order_total: "[[ x ∈ carrier L; y ∈ carrier L ]] =⇒ x

v y ∨ y v x"

sublocale total_order < weak?: weak_total_order

by unfold_locales (rule total_order_total)

Introduction rule: the usual definition of total order

lemma (in partial_order) total_orderI:

assumes total: "!!x y. [[ x ∈ carrier L; y ∈ carrier L ]] =⇒ x v y ∨
y v x"

shows "total_order L"

by unfold_locales (rule total)

end

theory Lattice

imports Order

begin
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3 Lattices

3.1 Supremum and infimum

definition
sup :: "[_, ’a set] => ’a" ("

⊔
ı _" [90] 90)

where "
⊔

LA = (SOME x. least L x (Upper L A))"

definition
inf :: "[_, ’a set] => ’a" ("

d
ı _" [90] 90)

where "
d

LA = (SOME x. greatest L x (Lower L A))"

definition supr ::

"(’a, ’b) gorder_scheme ⇒ ’c set ⇒ (’c ⇒ ’a) ⇒ ’a "

where "supr L A f =
⊔

L(f ‘ A)"

definition infi ::

"(’a, ’b) gorder_scheme ⇒ ’c set ⇒ (’c ⇒ ’a) ⇒ ’a "

where "infi L A f =
d

L(f ‘ A)"

syntax
"_inf1" :: "(’a, ’b) gorder_scheme ⇒ pttrns ⇒ ’a ⇒ ’a" ("(3IINFı

_./ _)" [0, 10] 10)

"_inf" :: "(’a, ’b) gorder_scheme ⇒ pttrn ⇒ ’c set ⇒ ’a ⇒ ’a"

("(3IINFı _:_./ _)" [0, 0, 10] 10)

"_sup1" :: "(’a, ’b) gorder_scheme ⇒ pttrns ⇒ ’a ⇒ ’a" ("(3SSUPı

_./ _)" [0, 10] 10)

"_sup" :: "(’a, ’b) gorder_scheme ⇒ pttrn ⇒ ’c set ⇒ ’a ⇒ ’a"

("(3SSUPı _:_./ _)" [0, 0, 10] 10)

translations
"IINFL x. B" == "CONST infi L CONST UNIV (%x. B)"

"IINFL x:A. B" == "CONST infi L A (%x. B)"

"SSUPL x. B" == "CONST supr L CONST UNIV (%x. B)"

"SSUPL x:A. B" == "CONST supr L A (%x. B)"

definition
join :: "[_, ’a, ’a] => ’a" (infixl "tı " 65)

where "x tL y =
⊔

L{x, y}"

definition
meet :: "[_, ’a, ’a] => ’a" (infixl "uı " 70)

where "x uL y =
d

L{x, y}"

definition
LEAST_FP :: "(’a, ’b) gorder_scheme ⇒ (’a ⇒ ’a) ⇒ ’a" ("LFPı ") where
"LEAST_FP L f =

d
L {u ∈ carrier L. f u vL u}" — least fixed point

definition
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GREATEST_FP:: "(’a, ’b) gorder_scheme ⇒ (’a ⇒ ’a) ⇒ ’a" ("GFPı ")

where
"GREATEST_FP L f =

⊔
L {u ∈ carrier L. u vL f u}" — greatest fixed

point

3.2 Dual operators

lemma sup_dual [simp]:

"
⊔

inv_gorder LA =
d

LA"

by (simp add: sup_def inf_def)

lemma inf_dual [simp]:

"
d

inv_gorder LA =
⊔

LA"

by (simp add: sup_def inf_def)

lemma join_dual [simp]:

"p tinv_gorder L q = p uL q"

by (simp add:join_def meet_def)

lemma meet_dual [simp]:

"p uinv_gorder L q = p tL q"

by (simp add:join_def meet_def)

lemma top_dual [simp]:

">inv_gorder L = ⊥L"
by (simp add: top_def bottom_def)

lemma bottom_dual [simp]:

"⊥inv_gorder L = >L"
by (simp add: top_def bottom_def)

lemma LFP_dual [simp]:

"LEAST_FP (inv_gorder L) f = GREATEST_FP L f"

by (simp add:LEAST_FP_def GREATEST_FP_def)

lemma GFP_dual [simp]:

"GREATEST_FP (inv_gorder L) f = LEAST_FP L f"

by (simp add:LEAST_FP_def GREATEST_FP_def)

3.3 Lattices

locale weak_upper_semilattice = weak_partial_order +

assumes sup_of_two_exists:

"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

locale weak_lower_semilattice = weak_partial_order +

assumes inf_of_two_exists:

"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"
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locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice

lemma (in weak_lattice) dual_weak_lattice:

"weak_lattice (inv_gorder L)"

proof -

interpret dual: weak_partial_order "inv_gorder L"

by (metis dual_weak_order)

show ?thesis

apply (unfold_locales)

apply (simp_all add: inf_of_two_exists sup_of_two_exists)

done
qed

3.3.1 Supremum

lemma (in weak_upper_semilattice) joinI:

"[| !!l. least L l (Upper L {x, y}) ==> P l; x ∈ carrier L; y ∈ carrier

L |]

==> P (x t y)"

proof (unfold join_def sup_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!l. least L l (Upper L {x, y}) ==> P l"

with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast

with L show "P (SOME l. least L l (Upper L {x, y}))"

by (fast intro: someI2 P)

qed

lemma (in weak_upper_semilattice) join_closed [simp]:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x t y ∈ carrier L"

by (rule joinI) (rule least_closed)

lemma (in weak_upper_semilattice) join_cong_l:

assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"

shows "x t y .= x’ t y"

proof (rule joinI, rule joinI)

fix a b

from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume leasta: "least L a (Upper L {x, y})"

assume "least L b (Upper L {x’, y})"

with carr

have leastb: "least L b (Upper L {x, y})"

by (simp add: least_Upper_cong_r[OF _ _ seq])
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from leasta leastb

show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_upper_semilattice) join_cong_r:

assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"

shows "x t y .= x t y’"

proof (rule joinI, rule joinI)

fix a b

have "{x, y} = {y, x}" by fast

also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)

also have "{y’, x} = {x, y’}" by fast

finally
have seq: "{x, y} {.=} {x, y’}" .

assume leasta: "least L a (Upper L {x, y})"

assume "least L b (Upper L {x, y’})"

with carr

have leastb: "least L b (Upper L {x, y})"

by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb

show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_partial_order) sup_of_singletonI:

"x ∈ carrier L ==> least L x (Upper L {x})"

by (rule least_UpperI) auto

lemma (in weak_partial_order) weak_sup_of_singleton [simp]:

"x ∈ carrier L ==>
⊔
{x} .= x"

unfolding sup_def

by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)

lemma (in weak_partial_order) sup_of_singleton_closed [simp]:

"x ∈ carrier L =⇒
⊔
{x} ∈ carrier L"

unfolding sup_def

by (rule someI2) (auto intro: sup_of_singletonI)

Condition on A: supremum exists.

lemma (in weak_upper_semilattice) sup_insertI:

"[| !!s. least L s (Upper L (insert x A)) ==> P s;

least L a (Upper L A); x ∈ carrier L; A ⊆ carrier L |]

==> P (
⊔
(insert x A))"

proof (unfold sup_def)

assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
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and least_a: "least L a (Upper L A)"

from L least_a have La: "a ∈ carrier L" by simp

from L sup_of_two_exists least_a

obtain s where least_s: "least L s (Upper L {a, x})" by blast

show "P (SOME l. least L l (Upper L (insert x A)))"

proof (rule someI2)

show "least L s (Upper L (insert x A))"

proof (rule least_UpperI)

fix z

assume "z ∈ insert x A"

then show "z v s"

proof
assume "z = x" then show ?thesis

by (simp add: least_Upper_above [OF least_s] L La)

next
assume "z ∈ A"

with L least_s least_a show ?thesis

by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)

qed
next

fix y

assume y: "y ∈ Upper L (insert x A)"

show "s v y"

proof (rule least_le [OF least_s], rule Upper_memI)

fix z

assume z: "z ∈ {a, x}"

then show "z v y"

proof
have y’: "y ∈ Upper L A"

apply (rule subsetD [where A = "Upper L (insert x A)"])

apply (rule Upper_antimono)

apply blast

apply (rule y)

done
assume "z = a"

with y’ least_a show ?thesis by (fast dest: least_le)

next
assume "z ∈ {x}"

with y L show ?thesis by blast

qed
qed (rule Upper_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp

from least_s show "s ∈ carrier L" by simp

qed
qed (rule P)

qed

lemma (in weak_upper_semilattice) finite_sup_least:
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"[| finite A; A ⊆ carrier L; A ~= {} |] ==> least L (
⊔
A) (Upper L A)"

proof (induct set: finite)

case empty

then show ?case by simp

next
case (insert x A)

show ?case

proof (cases "A = {}")

case True

with insert show ?thesis

by simp (simp add: least_cong [OF weak_sup_of_singleton] sup_of_singletonI)

next
case False

with insert have "least L (
⊔
A) (Upper L A)" by simp

with _ show ?thesis

by (rule sup_insertI) (simp_all add: insert [simplified])

qed
qed

lemma (in weak_upper_semilattice) finite_sup_insertI:

assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"

shows "P (
⊔

(insert x A))"

proof (cases "A = {}")

case True with P and xA show ?thesis

by (simp add: finite_sup_least)

next
case False with P and xA show ?thesis

by (simp add: sup_insertI finite_sup_least)

qed

lemma (in weak_upper_semilattice) finite_sup_closed [simp]:

"[| finite A; A ⊆ carrier L; A ~= {} |] ==>
⊔
A ∈ carrier L"

proof (induct set: finite)

case empty then show ?case by simp

next
case insert then show ?case

by - (rule finite_sup_insertI, simp_all)

qed

lemma (in weak_upper_semilattice) join_left:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x v x t y"

by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) join_right:

"[| x ∈ carrier L; y ∈ carrier L |] ==> y v x t y"

by (rule joinI [folded join_def]) (blast dest: least_mem)
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lemma (in weak_upper_semilattice) sup_of_two_least:

"[| x ∈ carrier L; y ∈ carrier L |] ==> least L (
⊔
{x, y}) (Upper L

{x, y})"

proof (unfold sup_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"

with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast

with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L

{x, y})"

by (fast intro: someI2 weak_least_unique)

qed

lemma (in weak_upper_semilattice) join_le:

assumes sub: "x v z" "y v z"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier

L"

shows "x t y v z"

proof (rule joinI [OF _ x y])

fix s

assume "least L s (Upper L {x, y})"

with sub z show "s v z" by (fast elim: least_le intro: Upper_memI)

qed

lemma (in weak_lattice) weak_le_iff_meet:

assumes "x ∈ carrier L" "y ∈ carrier L"

shows "x v y ←→ (x t y) .= y"

by (meson assms(1) assms(2) join_closed join_le join_left join_right

le_cong_r local.le_refl weak_le_antisym)

lemma (in weak_upper_semilattice) weak_join_assoc_lemma:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "x t (y t z) .=
⊔
{x, y, z}"

proof (rule finite_sup_insertI)

— The textbook argument in Jacobson I, p 457
fix s

assume sup: "least L s (Upper L {x, y, z})"

show "x t (y t z) .= s"

proof (rule weak_le_antisym)

from sup L show "x t (y t z) v s"

by (fastforce intro!: join_le elim: least_Upper_above)

next
from sup L show "s v x t (y t z)"

by (erule_tac least_le)

(blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)

qed (simp_all add: L least_closed [OF sup])

qed (simp_all add: L)

Commutativity holds for =.

lemma join_comm:
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fixes L (structure)
shows "x t y = y t x"

by (unfold join_def) (simp add: insert_commute)

lemma (in weak_upper_semilattice) weak_join_assoc:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "(x t y) t z .= x t (y t z)"

proof -

have "(x t y) t z = z t (x t y)" by (simp only: join_comm)

also from L have "... .=
⊔
{z, x, y}" by (simp add: weak_join_assoc_lemma)

also from L have "... =
⊔
{x, y, z}" by (simp add: insert_commute)

also from L have "... .= x t (y t z)" by (simp add: weak_join_assoc_lemma

[symmetric])

finally show ?thesis by (simp add: L)

qed

3.3.2 Infimum

lemma (in weak_lower_semilattice) meetI:

"[| !!i. greatest L i (Lower L {x, y}) ==> P i;

x ∈ carrier L; y ∈ carrier L |]

==> P (x u y)"

proof (unfold meet_def inf_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"

with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})"

by fast

with L show "P (SOME g. greatest L g (Lower L {x, y}))"

by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_lower_semilattice) meet_closed [simp]:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y ∈ carrier L"

by (rule meetI) (rule greatest_closed)

lemma (in weak_lower_semilattice) meet_cong_l:

assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"

shows "x u y .= x’ u y"

proof (rule meetI, rule meetI)

fix a b

from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume greatesta: "greatest L a (Lower L {x, y})"

assume "greatest L b (Lower L {x’, y})"

with carr

have greatestb: "greatest L b (Lower L {x, y})"



39

by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb

show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_lower_semilattice) meet_cong_r:

assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"

shows "x u y .= x u y’"

proof (rule meetI, rule meetI)

fix a b

have "{x, y} = {y, x}" by fast

also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)

also have "{y’, x} = {x, y’}" by fast

finally
have seq: "{x, y} {.=} {x, y’}" .

assume greatesta: "greatest L a (Lower L {x, y})"

assume "greatest L b (Lower L {x, y’})"

with carr

have greatestb: "greatest L b (Lower L {x, y})"

by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb

show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_partial_order) inf_of_singletonI:

"x ∈ carrier L ==> greatest L x (Lower L {x})"

by (rule greatest_LowerI) auto

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:

"x ∈ carrier L ==>
d
{x} .= x"

unfolding inf_def

by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)

lemma (in weak_partial_order) inf_of_singleton_closed:

"x ∈ carrier L ==>
d
{x} ∈ carrier L"

unfolding inf_def

by (rule someI2) (auto intro: inf_of_singletonI)

Condition on A: infimum exists.

lemma (in weak_lower_semilattice) inf_insertI:

"[| !!i. greatest L i (Lower L (insert x A)) ==> P i;

greatest L a (Lower L A); x ∈ carrier L; A ⊆ carrier L |]

==> P (
d
(insert x A))"

proof (unfold inf_def)
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assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"

and greatest_a: "greatest L a (Lower L A)"

from L greatest_a have La: "a ∈ carrier L" by simp

from L inf_of_two_exists greatest_a

obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast

show "P (SOME g. greatest L g (Lower L (insert x A)))"

proof (rule someI2)

show "greatest L i (Lower L (insert x A))"

proof (rule greatest_LowerI)

fix z

assume "z ∈ insert x A"

then show "i v z"

proof
assume "z = x" then show ?thesis

by (simp add: greatest_Lower_below [OF greatest_i] L La)

next
assume "z ∈ A"

with L greatest_i greatest_a show ?thesis

by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)

qed
next

fix y

assume y: "y ∈ Lower L (insert x A)"

show "y v i"

proof (rule greatest_le [OF greatest_i], rule Lower_memI)

fix z

assume z: "z ∈ {a, x}"

then show "y v z"

proof
have y’: "y ∈ Lower L A"

apply (rule subsetD [where A = "Lower L (insert x A)"])

apply (rule Lower_antimono)

apply blast

apply (rule y)

done
assume "z = a"

with y’ greatest_a show ?thesis by (fast dest: greatest_le)

next
assume "z ∈ {x}"

with y L show ?thesis by blast

qed
qed (rule Lower_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp

from greatest_i show "i ∈ carrier L" by simp

qed
qed (rule P)

qed
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lemma (in weak_lower_semilattice) finite_inf_greatest:

"[| finite A; A ⊆ carrier L; A ~= {} |] ==> greatest L (
d
A) (Lower

L A)"

proof (induct set: finite)

case empty then show ?case by simp

next
case (insert x A)

show ?case

proof (cases "A = {}")

case True

with insert show ?thesis

by simp (simp add: greatest_cong [OF weak_inf_of_singleton]

inf_of_singleton_closed inf_of_singletonI)

next
case False

from insert show ?thesis

proof (rule_tac inf_insertI)

from False insert show "greatest L (
d
A) (Lower L A)" by simp

qed simp_all

qed
qed

lemma (in weak_lower_semilattice) finite_inf_insertI:

assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"

shows "P (
d

(insert x A))"

proof (cases "A = {}")

case True with P and xA show ?thesis

by (simp add: finite_inf_greatest)

next
case False with P and xA show ?thesis

by (simp add: inf_insertI finite_inf_greatest)

qed

lemma (in weak_lower_semilattice) finite_inf_closed [simp]:

"[| finite A; A ⊆ carrier L; A ~= {} |] ==>
d
A ∈ carrier L"

proof (induct set: finite)

case empty then show ?case by simp

next
case insert then show ?case

by (rule_tac finite_inf_insertI) (simp_all)

qed

lemma (in weak_lower_semilattice) meet_left:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v x"

by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) meet_right:
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"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v y"

by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) inf_of_two_greatest:

"[| x ∈ carrier L; y ∈ carrier L |] ==>

greatest L (
d
{x, y}) (Lower L {x, y})"

proof (unfold inf_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"

with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})"

by fast

with L

show "greatest L (SOME z. greatest L z (Lower L {x, y})) (Lower L {x,

y})"

by (fast intro: someI2 weak_greatest_unique)

qed

lemma (in weak_lower_semilattice) meet_le:

assumes sub: "z v x" "z v y"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier

L"

shows "z v x u y"

proof (rule meetI [OF _ x y])

fix i

assume "greatest L i (Lower L {x, y})"

with sub z show "z v i" by (fast elim: greatest_le intro: Lower_memI)

qed

lemma (in weak_lattice) weak_le_iff_join:

assumes "x ∈ carrier L" "y ∈ carrier L"

shows "x v y ←→ x .= (x u y)"

by (meson assms(1) assms(2) local.le_refl local.le_trans meet_closed

meet_le meet_left meet_right weak_le_antisym weak_refl)

lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "x u (y u z) .=
d
{x, y, z}"

proof (rule finite_inf_insertI)

The textbook argument in Jacobson I, p 457

fix i

assume inf: "greatest L i (Lower L {x, y, z})"

show "x u (y u z) .= i"

proof (rule weak_le_antisym)

from inf L show "i v x u (y u z)"

by (fastforce intro!: meet_le elim: greatest_Lower_below)

next
from inf L show "x u (y u z) v i"

by (erule_tac greatest_le)

(blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)
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qed (simp_all add: L greatest_closed [OF inf])

qed (simp_all add: L)

lemma meet_comm:

fixes L (structure)
shows "x u y = y u x"

by (unfold meet_def) (simp add: insert_commute)

lemma (in weak_lower_semilattice) weak_meet_assoc:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "(x u y) u z .= x u (y u z)"

proof -

have "(x u y) u z = z u (x u y)" by (simp only: meet_comm)

also from L have "... .=
d

{z, x, y}" by (simp add: weak_meet_assoc_lemma)

also from L have "... =
d

{x, y, z}" by (simp add: insert_commute)

also from L have "... .= x u (y u z)" by (simp add: weak_meet_assoc_lemma

[symmetric])

finally show ?thesis by (simp add: L)

qed

Total orders are lattices.

sublocale weak_total_order ⊆ weak?: weak_lattice

proof
fix x y

assume L: "x ∈ carrier L" "y ∈ carrier L"

show "EX s. least L s (Upper L {x, y})"

proof -

note total L

moreover
{

assume "x v y"

with L have "least L y (Upper L {x, y})"

by (rule_tac least_UpperI) auto

}
moreover
{

assume "y v x"

with L have "least L x (Upper L {x, y})"

by (rule_tac least_UpperI) auto

}
ultimately show ?thesis by blast

qed
next

fix x y

assume L: "x ∈ carrier L" "y ∈ carrier L"

show "EX i. greatest L i (Lower L {x, y})"

proof -

note total L
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moreover
{

assume "y v x"

with L have "greatest L y (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto

}
moreover
{

assume "x v y"

with L have "greatest L x (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto

}
ultimately show ?thesis by blast

qed
qed

3.4 Weak Bounded Lattices

locale weak_bounded_lattice =

weak_lattice +

weak_partial_order_bottom +

weak_partial_order_top

begin

lemma bottom_meet: "x ∈ carrier L =⇒ ⊥ u x .= ⊥"
by (metis bottom_least least_def meet_closed meet_left weak_le_antisym)

lemma bottom_join: "x ∈ carrier L =⇒ ⊥ t x .= x"

by (metis bottom_least join_closed join_le join_right le_refl least_def

weak_le_antisym)

lemma bottom_weak_eq:

"[[ b ∈ carrier L;
∧

x. x ∈ carrier L =⇒ b v x ]] =⇒ b .= ⊥"
by (metis bottom_closed bottom_lower weak_le_antisym)

lemma top_join: "x ∈ carrier L =⇒ > t x .= >"
by (metis join_closed join_left top_closed top_higher weak_le_antisym)

lemma top_meet: "x ∈ carrier L =⇒ > u x .= x"

by (metis le_refl meet_closed meet_le meet_right top_closed top_higher

weak_le_antisym)

lemma top_weak_eq: "[[ t ∈ carrier L;
∧

x. x ∈ carrier L =⇒ x v t

]] =⇒ t .= >"
by (metis top_closed top_higher weak_le_antisym)

end

sublocale weak_bounded_lattice ⊆ weak_partial_order ..
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3.5 Lattices where eq is the Equality

locale upper_semilattice = partial_order +

assumes sup_of_two_exists:

"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

sublocale upper_semilattice ⊆ weak?: weak_upper_semilattice

by unfold_locales (rule sup_of_two_exists)

locale lower_semilattice = partial_order +

assumes inf_of_two_exists:

"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"

sublocale lower_semilattice ⊆ weak?: weak_lower_semilattice

by unfold_locales (rule inf_of_two_exists)

locale lattice = upper_semilattice + lower_semilattice

sublocale lattice ⊆ weak_lattice ..

lemma (in lattice) dual_lattice:

"lattice (inv_gorder L)"

proof -

interpret dual: weak_lattice "inv_gorder L"

by (metis dual_weak_lattice)

show ?thesis

apply (unfold_locales)

apply (simp_all add: inf_of_two_exists sup_of_two_exists)

apply (simp add:eq_is_equal)

done
qed

lemma (in lattice) le_iff_join:

assumes "x ∈ carrier L" "y ∈ carrier L"

shows "x v y ←→ x = (x u y)"

by (simp add: assms(1) assms(2) eq_is_equal weak_le_iff_join)

lemma (in lattice) le_iff_meet:

assumes "x ∈ carrier L" "y ∈ carrier L"

shows "x v y ←→ (x t y) = y"

by (simp add: assms(1) assms(2) eq_is_equal weak_le_iff_meet)

Total orders are lattices.

sublocale total_order ⊆ weak?: lattice

by standard (auto intro: weak.weak.sup_of_two_exists weak.weak.inf_of_two_exists)

Functions that preserve joins and meets
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definition join_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"join_pres X Y f ≡ lattice X ∧ lattice Y ∧ (∀ x ∈ carrier X. ∀ y ∈ carrier

X. f (x tX y) = f x tY f y)"

definition meet_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"meet_pres X Y f ≡ lattice X ∧ lattice Y ∧ (∀ x ∈ carrier X. ∀ y ∈ carrier

X. f (x uX y) = f x uY f y)"

lemma join_pres_isotone:

assumes "f ∈ carrier X → carrier Y" "join_pres X Y f"

shows "isotone X Y f"

using assms

apply (rule_tac isotoneI)

apply (auto simp add: join_pres_def lattice.le_iff_meet funcset_carrier)

using lattice_def partial_order_def upper_semilattice_def apply blast

using lattice_def partial_order_def upper_semilattice_def apply blast

apply fastforce

done

lemma meet_pres_isotone:

assumes "f ∈ carrier X → carrier Y" "meet_pres X Y f"

shows "isotone X Y f"

using assms

apply (rule_tac isotoneI)

apply (auto simp add: meet_pres_def lattice.le_iff_join funcset_carrier)

using lattice_def partial_order_def upper_semilattice_def apply blast

using lattice_def partial_order_def upper_semilattice_def apply blast

apply fastforce

done

3.6 Bounded Lattices

locale bounded_lattice =

lattice +

weak_partial_order_bottom +

weak_partial_order_top

sublocale bounded_lattice ⊆ weak_bounded_lattice ..

context bounded_lattice

begin

lemma bottom_eq:

"[[ b ∈ carrier L;
∧

x. x ∈ carrier L =⇒ b v x ]] =⇒ b = ⊥"
by (metis bottom_closed bottom_lower le_antisym)

lemma top_eq: "[[ t ∈ carrier L;
∧

x. x ∈ carrier L =⇒ x v t ]] =⇒
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t = >"
by (metis le_antisym top_closed top_higher)

end

end

theory Complete_Lattice

imports Lattice

begin

4 Complete Lattices

locale weak_complete_lattice = weak_partial_order +

assumes sup_exists:

"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"

and inf_exists:

"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

sublocale weak_complete_lattice ⊆ weak_lattice

proof
fix x y

assume a: "x ∈ carrier L" "y ∈ carrier L"

thus "∃ s. is_lub L s {x, y}"

by (rule_tac sup_exists[of "{x, y}"], auto)

from a show "∃ s. is_glb L s {x, y}"

by (rule_tac inf_exists[of "{x, y}"], auto)

qed

Introduction rule: the usual definition of complete lattice

lemma (in weak_partial_order) weak_complete_latticeI:

assumes sup_exists:

"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"

and inf_exists:

"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "weak_complete_lattice L"

by standard (auto intro: sup_exists inf_exists)

lemma (in weak_complete_lattice) dual_weak_complete_lattice:

"weak_complete_lattice (inv_gorder L)"

proof -

interpret dual: weak_lattice "inv_gorder L"

by (metis dual_weak_lattice)

show ?thesis

apply (unfold_locales)

apply (simp_all add:inf_exists sup_exists)

done



48

qed

lemma (in weak_complete_lattice) supI:

"[| !!l. least L l (Upper L A) ==> P l; A ⊆ carrier L |]

==> P (
⊔
A)"

proof (unfold sup_def)

assume L: "A ⊆ carrier L"

and P: "!!l. least L l (Upper L A) ==> P l"

with sup_exists obtain s where "least L s (Upper L A)" by blast

with L show "P (SOME l. least L l (Upper L A))"

by (fast intro: someI2 weak_least_unique P)

qed

lemma (in weak_complete_lattice) sup_closed [simp]:

"A ⊆ carrier L ==>
⊔
A ∈ carrier L"

by (rule supI) simp_all

lemma (in weak_complete_lattice) sup_cong:

assumes "A ⊆ carrier L" "B ⊆ carrier L" "A {.=} B"

shows "
⊔

A .=
⊔

B"

proof -

have "
∧

x. is_lub L x A ←→ is_lub L x B"

by (rule least_Upper_cong_r, simp_all add: assms)

moreover have "
⊔

B ∈ carrier L"

by (simp add: assms(2))

ultimately show ?thesis

by (simp add: sup_def)

qed

sublocale weak_complete_lattice ⊆ weak_bounded_lattice

apply (unfold_locales)

apply (metis Upper_empty empty_subsetI sup_exists)

apply (metis Lower_empty empty_subsetI inf_exists)

done

lemma (in weak_complete_lattice) infI:

"[| !!i. greatest L i (Lower L A) ==> P i; A ⊆ carrier L |]

==> P (
d
A)"

proof (unfold inf_def)

assume L: "A ⊆ carrier L"

and P: "!!l. greatest L l (Lower L A) ==> P l"

with inf_exists obtain s where "greatest L s (Lower L A)" by blast

with L show "P (SOME l. greatest L l (Lower L A))"

by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_complete_lattice) inf_closed [simp]:

"A ⊆ carrier L ==>
d
A ∈ carrier L"

by (rule infI) simp_all
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lemma (in weak_complete_lattice) inf_cong:

assumes "A ⊆ carrier L" "B ⊆ carrier L" "A {.=} B"

shows "
d

A .=
d

B"

proof -

have "
∧

x. is_glb L x A ←→ is_glb L x B"

by (rule greatest_Lower_cong_r, simp_all add: assms)

moreover have "
d

B ∈ carrier L"

by (simp add: assms(2))

ultimately show ?thesis

by (simp add: inf_def)

qed

theorem (in weak_partial_order) weak_complete_lattice_criterion1:

assumes top_exists: "EX g. greatest L g (carrier L)"

and inf_exists:

"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"

shows "weak_complete_lattice L"

proof (rule weak_complete_latticeI)

from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A

assume L: "A ⊆ carrier L"

let ?B = "Upper L A"

from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)

then have B_non_empty: "?B ~= {}" by fast

have B_L: "?B ⊆ carrier L" by simp

from inf_exists [OF B_L B_non_empty]

obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)

apply (rule greatest_le [where A = "Lower L ?B"])

apply (rule b_inf_B)

apply (rule Lower_memI)

apply (erule Upper_memD [THEN conjunct1])

apply assumption

apply (rule L)

apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])

apply simp

apply (rule L)

apply (rule greatest_closed [OF b_inf_B])

done
then show "EX s. least L s (Upper L A)" ..

next
fix A

assume L: "A ⊆ carrier L"

show "EX i. greatest L i (Lower L A)"
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proof (cases "A = {}")

case True then show ?thesis

by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)

qed
qed

Supremum

declare (in partial_order) weak_sup_of_singleton [simp del]

lemma (in partial_order) sup_of_singleton [simp]:

"x ∈ carrier L ==>
⊔
{x} = x"

using weak_sup_of_singleton unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc_lemma:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "x t (y t z) =
⊔
{x, y, z}"

using weak_join_assoc_lemma L unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "(x t y) t z = x t (y t z)"

using weak_join_assoc L unfolding eq_is_equal .

Infimum

declare (in partial_order) weak_inf_of_singleton [simp del]

lemma (in partial_order) inf_of_singleton [simp]:

"x ∈ carrier L ==>
d
{x} = x"

using weak_inf_of_singleton unfolding eq_is_equal .

Condition on A: infimum exists.

lemma (in lower_semilattice) meet_assoc_lemma:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "x u (y u z) =
d
{x, y, z}"

using weak_meet_assoc_lemma L unfolding eq_is_equal .

lemma (in lower_semilattice) meet_assoc:

assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

shows "(x u y) u z = x u (y u z)"

using weak_meet_assoc L unfolding eq_is_equal .

4.1 Infimum Laws

context weak_complete_lattice

begin
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lemma inf_glb:

assumes "A ⊆ carrier L"

shows "greatest L (
d
A) (Lower L A)"

proof -

obtain i where "greatest L i (Lower L A)"

by (metis assms inf_exists)

thus ?thesis

apply (simp add: inf_def)

apply (rule someI2[of _ "i"])

apply (auto)

done
qed

lemma inf_lower:

assumes "A ⊆ carrier L" "x ∈ A"

shows "
d
A v x"

by (metis assms greatest_Lower_below inf_glb)

lemma inf_greatest:

assumes "A ⊆ carrier L" "z ∈ carrier L"

"(
∧
x. x ∈ A =⇒ z v x)"

shows "z v
d
A"

by (metis Lower_memI assms greatest_le inf_glb)

lemma weak_inf_empty [simp]: "
d
{} .= >"

by (metis Lower_empty empty_subsetI inf_glb top_greatest weak_greatest_unique)

lemma weak_inf_carrier [simp]: "
d
carrier L .= ⊥"

by (metis bottom_weak_eq inf_closed inf_lower subset_refl)

lemma weak_inf_insert [simp]:

"[[ a ∈ carrier L; A ⊆ carrier L ]] =⇒
d
insert a A .= a u

d
A"

apply (rule weak_le_antisym)

apply (force intro: meet_le inf_greatest inf_lower inf_closed)

apply (rule inf_greatest)

apply (force)

apply (force intro: inf_closed)

apply (auto)

apply (metis inf_closed meet_left)

apply (force intro: le_trans inf_closed meet_right meet_left inf_lower)

done

4.2 Supremum Laws

lemma sup_lub:

assumes "A ⊆ carrier L"

shows "least L (
⊔
A) (Upper L A)"

by (metis Upper_is_closed assms least_closed least_cong supI sup_closed
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sup_exists weak_least_unique)

lemma sup_upper:

assumes "A ⊆ carrier L" "x ∈ A"

shows "x v
⊔
A"

by (metis assms least_Upper_above supI)

lemma sup_least:

assumes "A ⊆ carrier L" "z ∈ carrier L"

"(
∧
x. x ∈ A =⇒ x v z)"

shows "
⊔
A v z"

by (metis Upper_memI assms least_le sup_lub)

lemma weak_sup_empty [simp]: "
⊔
{} .= ⊥"

by (metis Upper_empty bottom_least empty_subsetI sup_lub weak_least_unique)

lemma weak_sup_carrier [simp]: "
⊔
carrier L .= >"

by (metis Lower_closed Lower_empty sup_closed sup_upper top_closed top_higher

weak_le_antisym)

lemma weak_sup_insert [simp]:

"[[ a ∈ carrier L; A ⊆ carrier L ]] =⇒
⊔
insert a A .= a t

⊔
A"

apply (rule weak_le_antisym)

apply (rule sup_least)

apply (auto)

apply (metis join_left sup_closed)

apply (rule le_trans) defer
apply (rule join_right)

apply (auto)

apply (rule join_le)

apply (auto intro: sup_upper sup_least sup_closed)

done

end

4.3 Fixed points of a lattice

definition "fps L f = {x ∈ carrier L. f x .=L x}"

abbreviation "fpl L f ≡ L(|carrier := fps L f|)"

lemma (in weak_partial_order)

use_fps: "x ∈ fps L f =⇒ f x .= x"

by (simp add: fps_def)

lemma fps_carrier [simp]:

"fps L f ⊆ carrier L"

by (auto simp add: fps_def)
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lemma (in weak_complete_lattice) fps_sup_image:

assumes "f ∈ carrier L → carrier L" "A ⊆ fps L f"

shows "
⊔

(f ‘ A) .=
⊔

A"

proof -

from assms(2) have AL: "A ⊆ carrier L"

by (auto simp add: fps_def)

show ?thesis

proof (rule sup_cong, simp_all add: AL)

from assms(1) AL show "f ‘ A ⊆ carrier L"

by (auto)

from assms(2) show "f ‘ A {.=} A"

apply (auto simp add: fps_def)

apply (rule set_eqI2)

apply blast

apply (rename_tac b)

apply (rule_tac x="f b" in bexI)

apply (metis (mono_tags, lifting) Ball_Collect assms(1) Pi_iff local.sym)

apply (auto)

done
qed

qed

lemma (in weak_complete_lattice) fps_idem:

"[[ f ∈ carrier L → carrier L; Idem f ]] =⇒ fps L f {.=} f ‘ carrier

L"

apply (rule set_eqI2)

apply (auto simp add: idempotent_def fps_def)

apply (metis Pi_iff local.sym)

apply force

done

context weak_complete_lattice

begin

lemma weak_sup_pre_fixed_point:

assumes "f ∈ carrier L → carrier L" "isotone L L f" "A ⊆ fps L f"

shows "(
⊔

L A) vL f (
⊔

L A)"

proof (rule sup_least)

from assms(3) show AL: "A ⊆ carrier L"

by (auto simp add: fps_def)

thus fA: "f (
⊔
A) ∈ carrier L"

by (simp add: assms funcset_carrier[of f L L])

fix x

assume xA: "x ∈ A"

hence "x ∈ fps L f"

using assms subsetCE by blast

hence "f x .=L x"

by (auto simp add: fps_def)
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moreover have "f x vL f (
⊔

LA)"

by (meson AL assms(2) subsetCE sup_closed sup_upper use_iso1 xA)

ultimately show "x vL f (
⊔

LA)"

by (meson AL fA assms(1) funcset_carrier le_cong local.refl subsetCE

xA)

qed

lemma weak_sup_post_fixed_point:

assumes "f ∈ carrier L → carrier L" "isotone L L f" "A ⊆ fps L f"

shows "f (
d

L A) vL (
d

L A)"

proof (rule inf_greatest)

from assms(3) show AL: "A ⊆ carrier L"

by (auto simp add: fps_def)

thus fA: "f (
d
A) ∈ carrier L"

by (simp add: assms funcset_carrier[of f L L])

fix x

assume xA: "x ∈ A"

hence "x ∈ fps L f"

using assms subsetCE by blast

hence "f x .=L x"

by (auto simp add: fps_def)

moreover have "f (
d

LA) vL f x"

by (meson AL assms(2) inf_closed inf_lower subsetCE use_iso1 xA)

ultimately show "f (
d

LA) vL x"

by (meson AL assms(1) fA funcset_carrier le_cong_r subsetCE xA)

qed

4.3.1 Least fixed points

lemma LFP_closed [intro, simp]:

"LFP f ∈ carrier L"

by (metis (lifting) LEAST_FP_def inf_closed mem_Collect_eq subsetI)

lemma LFP_lowerbound:

assumes "x ∈ carrier L" "f x v x"

shows "LFP f v x"

by (auto intro:inf_lower assms simp add:LEAST_FP_def)

lemma LFP_greatest:

assumes "x ∈ carrier L"

"(
∧
u. [[ u ∈ carrier L; f u v u ]] =⇒ x v u)"

shows "x v LFP f"

by (auto simp add:LEAST_FP_def intro:inf_greatest assms)

lemma LFP_lemma2:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "f (LFP f) v LFP f"

using assms

apply (auto simp add:Pi_def)
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apply (rule LFP_greatest)

apply (metis LFP_closed)

apply (metis LFP_closed LFP_lowerbound le_trans use_iso1)

done

lemma LFP_lemma3:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "LFP f v f (LFP f)"

using assms

apply (auto simp add:Pi_def)

apply (metis LFP_closed LFP_lemma2 LFP_lowerbound assms(2) use_iso2)

done

lemma LFP_weak_unfold:

"[[ Mono f; f ∈ carrier L → carrier L ]] =⇒ LFP f .= f (LFP f)"

by (auto intro: LFP_lemma2 LFP_lemma3 funcset_mem)

lemma LFP_fixed_point [intro]:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "LFP f ∈ fps L f"

proof -

have "f (LFP f) ∈ carrier L"

using assms(2) by blast

with assms show ?thesis

by (simp add: LFP_weak_unfold fps_def local.sym)

qed

lemma LFP_least_fixed_point:

assumes "Mono f" "f ∈ carrier L → carrier L" "x ∈ fps L f"

shows "LFP f v x"

using assms by (force intro: LFP_lowerbound simp add: fps_def)

lemma LFP_idem:

assumes "f ∈ carrier L → carrier L" "Mono f" "Idem f"

shows "LFP f .= (f ⊥)"
proof (rule weak_le_antisym)

from assms(1) show fb: "f ⊥ ∈ carrier L"

by (rule funcset_mem, simp)

from assms show mf: "LFP f ∈ carrier L"

by blast

show "LFP f v f ⊥"
proof -

have "f (f ⊥) .= f ⊥"
by (auto simp add: fps_def fb assms(3) idempotent)

moreover have "f (f ⊥) ∈ carrier L"

by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)

ultimately show ?thesis

by (auto intro: LFP_lowerbound simp add: fb)

qed
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show "f ⊥ v LFP f"

proof -

have "f ⊥ v f (LFP f)"

by (auto intro: use_iso1[of _ f] simp add: assms)

moreover have "... .= LFP f"

using assms(1) assms(2) fps_def by force

moreover from assms(1) have "f (LFP f) ∈ carrier L"

by (auto)

ultimately show ?thesis

using fb by blast

qed
qed

4.3.2 Greatest fixed points

lemma GFP_closed [intro, simp]:

"GFP f ∈ carrier L"

by (auto intro:sup_closed simp add:GREATEST_FP_def)

lemma GFP_upperbound:

assumes "x ∈ carrier L" "x v f x"

shows "x v GFP f"

by (auto intro:sup_upper assms simp add:GREATEST_FP_def)

lemma GFP_least:

assumes "x ∈ carrier L"

"(
∧
u. [[ u ∈ carrier L; u v f u ]] =⇒ u v x)"

shows "GFP f v x"

by (auto simp add:GREATEST_FP_def intro:sup_least assms)

lemma GFP_lemma2:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "GFP f v f (GFP f)"

using assms

apply (auto simp add:Pi_def)

apply (rule GFP_least)

apply (metis GFP_closed)

apply (metis GFP_closed GFP_upperbound le_trans use_iso2)

done

lemma GFP_lemma3:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "f (GFP f) v GFP f"

by (metis GFP_closed GFP_lemma2 GFP_upperbound assms funcset_mem use_iso2)

lemma GFP_weak_unfold:

"[[ Mono f; f ∈ carrier L → carrier L ]] =⇒ GFP f .= f (GFP f)"

by (auto intro: GFP_lemma2 GFP_lemma3 funcset_mem)
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lemma (in weak_complete_lattice) GFP_fixed_point [intro]:

assumes "Mono f" "f ∈ carrier L → carrier L"

shows "GFP f ∈ fps L f"

using assms

proof -

have "f (GFP f) ∈ carrier L"

using assms(2) by blast

with assms show ?thesis

by (simp add: GFP_weak_unfold fps_def local.sym)

qed

lemma GFP_greatest_fixed_point:

assumes "Mono f" "f ∈ carrier L → carrier L" "x ∈ fps L f"

shows "x v GFP f"

using assms

by (rule_tac GFP_upperbound, auto simp add: fps_def, meson PiE local.sym

weak_refl)

lemma GFP_idem:

assumes "f ∈ carrier L → carrier L" "Mono f" "Idem f"

shows "GFP f .= (f >)"
proof (rule weak_le_antisym)

from assms(1) show fb: "f > ∈ carrier L"

by (rule funcset_mem, simp)

from assms show mf: "GFP f ∈ carrier L"

by blast

show "f > v GFP f"

proof -

have "f (f >) .= f >"
by (auto simp add: fps_def fb assms(3) idempotent)

moreover have "f (f >) ∈ carrier L"

by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)

ultimately show ?thesis

by (rule_tac GFP_upperbound, simp_all add: fb local.sym)

qed
show "GFP f v f >"
proof -

have "GFP f v f (GFP f)"

by (simp add: GFP_lemma2 assms(1) assms(2))

moreover have "... v f >"
by (auto intro: use_iso1[of _ f] simp add: assms)

moreover from assms(1) have "f (GFP f) ∈ carrier L"

by (auto)

ultimately show ?thesis

using fb local.le_trans by blast

qed
qed

end
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4.4 Complete lattices where eq is the Equality

locale complete_lattice = partial_order +

assumes sup_exists:

"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"

and inf_exists:

"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

sublocale complete_lattice ⊆ lattice

proof
fix x y

assume a: "x ∈ carrier L" "y ∈ carrier L"

thus "∃ s. is_lub L s {x, y}"

by (rule_tac sup_exists[of "{x, y}"], auto)

from a show "∃ s. is_glb L s {x, y}"

by (rule_tac inf_exists[of "{x, y}"], auto)

qed

sublocale complete_lattice ⊆ weak?: weak_complete_lattice

by standard (auto intro: sup_exists inf_exists)

lemma complete_lattice_lattice [simp]:

assumes "complete_lattice X"

shows "lattice X"

proof -

interpret c: complete_lattice X

by (simp add: assms)

show ?thesis

by (unfold_locales)

qed

Introduction rule: the usual definition of complete lattice

lemma (in partial_order) complete_latticeI:

assumes sup_exists:

"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"

and inf_exists:

"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "complete_lattice L"

by standard (auto intro: sup_exists inf_exists)

theorem (in partial_order) complete_lattice_criterion1:

assumes top_exists: "EX g. greatest L g (carrier L)"

and inf_exists:

"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"

shows "complete_lattice L"

proof (rule complete_latticeI)

from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A
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assume L: "A ⊆ carrier L"

let ?B = "Upper L A"

from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)

then have B_non_empty: "?B ~= {}" by fast

have B_L: "?B ⊆ carrier L" by simp

from inf_exists [OF B_L B_non_empty]

obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)

apply (rule greatest_le [where A = "Lower L ?B"])

apply (rule b_inf_B)

apply (rule Lower_memI)

apply (erule Upper_memD [THEN conjunct1])

apply assumption

apply (rule L)

apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])

apply simp

apply (rule L)

apply (rule greatest_closed [OF b_inf_B])

done
then show "EX s. least L s (Upper L A)" ..

next
fix A

assume L: "A ⊆ carrier L"

show "EX i. greatest L i (Lower L A)"

proof (cases "A = {}")

case True then show ?thesis

by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)

qed
qed

4.5 Fixed points

context complete_lattice

begin

lemma LFP_unfold:

"[[ Mono f; f ∈ carrier L → carrier L ]] =⇒ LFP f = f (LFP f)"

using eq_is_equal weak.LFP_weak_unfold by auto

lemma LFP_const:

"t ∈ carrier L =⇒ LFP (λ x. t) = t"

by (simp add: local.le_antisym weak.LFP_greatest weak.LFP_lowerbound)

lemma LFP_id:
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"LFP id = ⊥"
by (simp add: local.le_antisym weak.LFP_lowerbound)

lemma GFP_unfold:

"[[ Mono f; f ∈ carrier L → carrier L ]] =⇒ GFP f = f (GFP f)"

using eq_is_equal weak.GFP_weak_unfold by auto

lemma GFP_const:

"t ∈ carrier L =⇒ GFP (λ x. t) = t"

by (simp add: local.le_antisym weak.GFP_least weak.GFP_upperbound)

lemma GFP_id:

"GFP id = >"
using weak.GFP_upperbound by auto

end

4.6 Interval complete lattices

context weak_complete_lattice

begin

lemma at_least_at_most_Sup:

"[[ a ∈ carrier L; b ∈ carrier L; a v b ]] =⇒
⊔
{|a..b|} .= b"

apply (rule weak_le_antisym)

apply (rule sup_least)

apply (auto simp add: at_least_at_most_closed)

apply (rule sup_upper)

apply (auto simp add: at_least_at_most_closed)

done

lemma at_least_at_most_Inf:

"[[ a ∈ carrier L; b ∈ carrier L; a v b ]] =⇒
d
{|a..b|} .= a"

apply (rule weak_le_antisym)

apply (rule inf_lower)

apply (auto simp add: at_least_at_most_closed)

apply (rule inf_greatest)

apply (auto simp add: at_least_at_most_closed)

done

end

lemma weak_complete_lattice_interval:

assumes "weak_complete_lattice L" "a ∈ carrier L" "b ∈ carrier L" "a

vL b"

shows "weak_complete_lattice (L (| carrier := {|a..b|}L |))"
proof -

interpret L: weak_complete_lattice L

by (simp add: assms)
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interpret weak_partial_order "L (| carrier := {|a..b|}L |)"
proof -

have "{|a..b|}L ⊆ carrier L"

by (auto, simp add: at_least_at_most_def)

thus "weak_partial_order (L(|carrier := {|a..b|}L|))"
by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)

qed

show ?thesis

proof
fix A

assume a: "A ⊆ carrier (L(|carrier := {|a..b|}L|))"
show "∃ s. is_lub (L(|carrier := {|a..b|}L|)) s A"

proof (cases "A = {}")

case True

thus ?thesis

by (rule_tac x="a" in exI, auto simp add: least_def assms)

next
case False

show ?thesis

proof (rule_tac x="
⊔

L A" in exI, rule least_UpperI, simp_all)

show b:"
∧

x. x ∈ A =⇒ x vL
⊔

LA"

using a by (auto intro: L.sup_upper, meson L.at_least_at_most_closed

L.sup_upper subset_trans)

show "
∧
y. y ∈ Upper (L(|carrier := {|a..b|}L|)) A =⇒

⊔
LA vL y"

using a L.at_least_at_most_closed by (rule_tac L.sup_least,

auto intro: funcset_mem simp add: Upper_def)

from a show "A ⊆ {|a..b|}L"
by (auto)

from a show "
⊔

LA ∈ {|a..b|}L"
apply (rule_tac L.at_least_at_most_member)

apply (auto)

apply (meson L.at_least_at_most_closed L.sup_closed subset_trans)

apply (meson False L.at_least_at_most_closed L.at_least_at_most_lower

L.le_trans L.sup_closed b all_not_in_conv assms(2) contra_subsetD subset_trans)

apply (rule L.sup_least)

apply (auto simp add: assms)

using L.at_least_at_most_closed apply blast

done
qed

qed
show "∃ s. is_glb (L(|carrier := {|a..b|}L|)) s A"

proof (cases "A = {}")

case True

thus ?thesis

by (rule_tac x="b" in exI, auto simp add: greatest_def assms)

next
case False

show ?thesis
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proof (rule_tac x="
d

L A" in exI, rule greatest_LowerI, simp_all)

show b:"
∧
x. x ∈ A =⇒

d
LA vL x"

using a L.at_least_at_most_closed by (force intro!: L.inf_lower)

show "
∧
y. y ∈ Lower (L(|carrier := {|a..b|}L|)) A =⇒ y vL

d
LA"

using a L.at_least_at_most_closed by (rule_tac L.inf_greatest,

auto intro: funcset_carrier’ simp add: Lower_def)

from a show "A ⊆ {|a..b|}L"
by (auto)

from a show "
d

LA ∈ {|a..b|}L"
apply (rule_tac L.at_least_at_most_member)

apply (auto)

apply (meson L.at_least_at_most_closed L.inf_closed subset_trans)

apply (meson L.at_least_at_most_closed L.at_least_at_most_lower

L.inf_greatest assms(2) set_rev_mp subset_trans)

apply (meson False L.at_least_at_most_closed L.at_least_at_most_upper

L.inf_closed L.le_trans b all_not_in_conv assms(3) contra_subsetD subset_trans)

done
qed

qed
qed

qed

4.7 Knaster-Tarski theorem and variants

The set of fixed points of a complete lattice is itself a complete lattice

theorem Knaster_Tarski:

assumes "weak_complete_lattice L" "f ∈ carrier L → carrier L" "isotone

L L f"

shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice ?L’")

proof -

interpret L: weak_complete_lattice L

by (simp add: assms)

interpret weak_partial_order ?L’

proof -

have "{x ∈ carrier L. f x .=L x} ⊆ carrier L"

by (auto)

thus "weak_partial_order ?L’"

by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)

qed
show ?thesis

proof (unfold_locales, simp_all)

fix A

assume A: "A ⊆ fps L f"

show "∃ s. is_lub (fpl L f) s A"

proof
from A have AL: "A ⊆ carrier L"

by (meson fps_carrier subset_eq)
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let ?w = "
⊔

L A"

have w: "f (
⊔

LA) ∈ carrier L"

by (rule funcset_mem[of f "carrier L"], simp_all add: AL assms(2))

have pf_w: "(
⊔

L A) vL f (
⊔

L A)"

by (simp add: A L.weak_sup_pre_fixed_point assms(2) assms(3))

have f_top_chain: "f ‘ {|?w..>L|}L ⊆ {|?w..>L|}L"
proof (auto simp add: at_least_at_most_def)

fix x

assume b: "x ∈ carrier L" "
⊔

LA vL x"

from b show fx: "f x ∈ carrier L"

using assms(2) by blast

show "
⊔

LA vL f x"

proof -

have "?w vL f ?w"

proof (rule_tac L.sup_least, simp_all add: AL w)

fix y

assume c: "y ∈ A"

hence y: "y ∈ fps L f"

using A subsetCE by blast

with assms have "y .=L f y"

proof -

from y have "y ∈ carrier L"

by (simp add: fps_def)

moreover hence "f y ∈ carrier L"

by (rule_tac funcset_mem[of f "carrier L"], simp_all add:

assms)

ultimately show ?thesis using y

by (rule_tac L.sym, simp_all add: L.use_fps)

qed
moreover have "y vL

⊔
LA"

by (simp add: AL L.sup_upper c(1))

ultimately show "y vL f (
⊔

LA)"

by (meson fps_def AL funcset_mem L.refl L.weak_complete_lattice_axioms

assms(2) assms(3) c(1) isotone_def rev_subsetD weak_complete_lattice.sup_closed

weak_partial_order.le_cong)

qed
thus ?thesis

by (meson AL funcset_mem L.le_trans L.sup_closed assms(2)

assms(3) b(1) b(2) use_iso2)

qed

show "f x vL >L"
by (simp add: fx)

qed

let ?L’ = "L(| carrier := {|?w..>L|}L |)"
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interpret L’: weak_complete_lattice ?L’

by (auto intro: weak_complete_lattice_interval simp add: L.weak_complete_lattice_axioms

AL)

let ?L’’ = "L(| carrier := fps L f |)"

show "is_lub ?L’’ (LFP?L’ f) A"

proof (rule least_UpperI, simp_all)

fix x

assume "x ∈ Upper ?L’’ A"

hence "LFP?L’ f v?L’ x"

apply (rule_tac L’.LFP_lowerbound)

apply (auto simp add: Upper_def)

apply (simp add: A AL L.at_least_at_most_member L.sup_least

set_rev_mp)

apply (simp add: Pi_iff assms(2) fps_def, rule_tac L.weak_refl)

apply (auto)

apply (rule funcset_mem[of f "carrier L"], simp_all add: assms(2))

done
thus " LFP?L’ f vL x"

by (simp)

next
fix x

assume xA: "x ∈ A"

show "x vL LFP?L’ f"

proof -

have "LFP?L’ f ∈ carrier ?L’"

by blast

thus ?thesis

by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_lower

L.le_trans L.sup_closed L.sup_upper xA subsetCE)

qed
next

show "A ⊆ fps L f"

by (simp add: A)

next
show "LFP?L’ f ∈ fps L f"

proof (auto simp add: fps_def)

have "LFP?L’ f ∈ carrier ?L’"

by (rule L’.LFP_closed)

thus c:"LFP?L’ f ∈ carrier L"

by (auto simp add: at_least_at_most_def)

have "LFP?L’ f .=?L’ f (LFP?L’ f)"

proof (rule "L’.LFP_weak_unfold", simp_all)

show "f ∈ {|
⊔

LA..>L|}L → {|
⊔

LA..>L|}L"
apply (auto simp add: Pi_def at_least_at_most_def)

using assms(2) apply blast

apply (meson AL funcset_mem L.le_trans L.sup_closed assms(2)

assms(3) pf_w use_iso2)
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using assms(2) apply blast

done
from assms(3) show "MonoL(|carrier := {|

⊔
LA..>L|}L|) f"

apply (auto simp add: isotone_def)

using L’.weak_partial_order_axioms apply blast

apply (meson L.at_least_at_most_closed subsetCE)

done
qed
thus "f (LFP?L’ f) .=L LFP?L’ f"

by (simp add: L.equivalence_axioms funcset_carrier’ c assms(2)

equivalence.sym)

qed
qed

qed
show "∃ i. is_glb (L(|carrier := fps L f|)) i A"

proof
from A have AL: "A ⊆ carrier L"

by (meson fps_carrier subset_eq)

let ?w = "
d

L A"

have w: "f (
d

LA) ∈ carrier L"

by (simp add: AL funcset_carrier’ assms(2))

have pf_w: "f (
d

L A) vL (
d

L A)"

by (simp add: A L.weak_sup_post_fixed_point assms(2) assms(3))

have f_bot_chain: "f ‘ {|⊥L..?w|}L ⊆ {|⊥L..?w|}L"
proof (auto simp add: at_least_at_most_def)

fix x

assume b: "x ∈ carrier L" "x vL
d

LA"

from b show fx: "f x ∈ carrier L"

using assms(2) by blast

show "f x vL
d

LA"

proof -

have "f ?w vL ?w"

proof (rule_tac L.inf_greatest, simp_all add: AL w)

fix y

assume c: "y ∈ A"

with assms have "y .=L f y"

by (metis (no_types, lifting) A funcset_carrier’[OF assms(2)]

L.sym fps_def mem_Collect_eq subset_eq)

moreover have "
d

LA vL y"

by (simp add: AL L.inf_lower c)

ultimately show "f (
d

LA) vL y"

by (meson AL L.inf_closed L.le_trans c pf_w set_rev_mp w)

qed
thus ?thesis

by (meson AL L.inf_closed L.le_trans assms(3) b(1) b(2) fx

use_iso2 w)
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qed

show "⊥L vL f x"

by (simp add: fx)

qed

let ?L’ = "L(| carrier := {|⊥L..?w|}L |)"

interpret L’: weak_complete_lattice ?L’

by (auto intro!: weak_complete_lattice_interval simp add: L.weak_complete_lattice_axioms

AL)

let ?L’’ = "L(| carrier := fps L f |)"

show "is_glb ?L’’ (GFP?L’ f) A"

proof (rule greatest_LowerI, simp_all)

fix x

assume "x ∈ Lower ?L’’ A"

hence "x v?L’ GFP?L’ f"

apply (rule_tac L’.GFP_upperbound)

apply (auto simp add: Lower_def)

apply (meson A AL L.at_least_at_most_member L.bottom_lower L.weak_complete_lattice_axioms

fps_carrier subsetCE weak_complete_lattice.inf_greatest)

apply (simp add: funcset_carrier’ L.sym assms(2) fps_def)

done
thus "x vL GFP?L’ f"

by (simp)

next
fix x

assume xA: "x ∈ A"

show "GFP?L’ f vL x"

proof -

have "GFP?L’ f ∈ carrier ?L’"

by blast

thus ?thesis

by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_upper

L.inf_closed L.inf_lower L.le_trans subsetCE xA)

qed
next

show "A ⊆ fps L f"

by (simp add: A)

next
show "GFP?L’ f ∈ fps L f"

proof (auto simp add: fps_def)

have "GFP?L’ f ∈ carrier ?L’"

by (rule L’.GFP_closed)

thus c:"GFP?L’ f ∈ carrier L"

by (auto simp add: at_least_at_most_def)

have "GFP?L’ f .=?L’ f (GFP?L’ f)"
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proof (rule "L’.GFP_weak_unfold", simp_all)

show "f ∈ {|⊥L..?w|}L → {|⊥L..?w|}L"
apply (auto simp add: Pi_def at_least_at_most_def)

using assms(2) apply blast

apply (simp add: funcset_carrier’ assms(2))

apply (meson AL funcset_carrier L.inf_closed L.le_trans

assms(2) assms(3) pf_w use_iso2)

done
from assms(3) show "MonoL(|carrier := {|⊥L..?w|}L|) f"

apply (auto simp add: isotone_def)

using L’.weak_partial_order_axioms apply blast

using L.at_least_at_most_closed apply (blast intro: funcset_carrier’)

done
qed
thus "f (GFP?L’ f) .=L GFP?L’ f"

by (simp add: L.equivalence_axioms funcset_carrier’ c assms(2)

equivalence.sym)

qed
qed

qed
qed

qed

theorem Knaster_Tarski_top:

assumes "weak_complete_lattice L" "isotone L L f" "f ∈ carrier L →
carrier L"

shows ">fpl L f .=L GFPL f"

proof -

interpret L: weak_complete_lattice L

by (simp add: assms)

interpret L’: weak_complete_lattice "fpl L f"

by (rule Knaster_Tarski, simp_all add: assms)

show ?thesis

proof (rule L.weak_le_antisym, simp_all)

show ">fpl L f vL GFPL f"

by (rule L.GFP_greatest_fixed_point, simp_all add: assms L’.top_closed[simplified])

show "GFPL f vL >fpl L f"

proof -

have "GFPL f ∈ fps L f"

by (rule L.GFP_fixed_point, simp_all add: assms)

hence "GFPL f ∈ carrier (fpl L f)"

by simp

hence "GFPL f vfpl L f >fpl L f"

by (rule L’.top_higher)

thus ?thesis

by simp

qed
show ">fpl L f ∈ carrier L"

proof -
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have "carrier (fpl L f) ⊆ carrier L"

by (auto simp add: fps_def)

with L’.top_closed show ?thesis

by blast

qed
qed

qed

theorem Knaster_Tarski_bottom:

assumes "weak_complete_lattice L" "isotone L L f" "f ∈ carrier L →
carrier L"

shows "⊥fpl L f .=L LFPL f"

proof -

interpret L: weak_complete_lattice L

by (simp add: assms)

interpret L’: weak_complete_lattice "fpl L f"

by (rule Knaster_Tarski, simp_all add: assms)

show ?thesis

proof (rule L.weak_le_antisym, simp_all)

show "LFPL f vL ⊥fpl L f"

by (rule L.LFP_least_fixed_point, simp_all add: assms L’.bottom_closed[simplified])

show "⊥fpl L f vL LFPL f"

proof -

have "LFPL f ∈ fps L f"

by (rule L.LFP_fixed_point, simp_all add: assms)

hence "LFPL f ∈ carrier (fpl L f)"

by simp

hence "⊥fpl L f vfpl L f LFPL f"

by (rule L’.bottom_lower)

thus ?thesis

by simp

qed
show "⊥fpl L f ∈ carrier L"

proof -

have "carrier (fpl L f) ⊆ carrier L"

by (auto simp add: fps_def)

with L’.bottom_closed show ?thesis

by blast

qed
qed

qed

If a function is both idempotent and isotone then the image of the function
forms a complete lattice

theorem Knaster_Tarski_idem:

assumes "complete_lattice L" "f ∈ carrier L → carrier L" "isotone

L L f" "idempotent L f"

shows "complete_lattice (L(|carrier := f ‘ carrier L|))"
proof -
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interpret L: complete_lattice L

by (simp add: assms)

have "fps L f = f ‘ carrier L"

using L.weak.fps_idem[OF assms(2) assms(4)]

by (simp add: L.set_eq_is_eq)

then interpret L’: weak_complete_lattice "(L(|carrier := f ‘ carrier

L|))"
by (metis Knaster_Tarski L.weak.weak_complete_lattice_axioms assms(2)

assms(3))

show ?thesis

using L’.sup_exists L’.inf_exists

by (unfold_locales, auto simp add: L.eq_is_equal)

qed

theorem Knaster_Tarski_idem_extremes:

assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"

"f ∈ carrier L → carrier L"

shows ">fpl L f .=L f (>L)" "⊥fpl L f .=L f (⊥L)"
proof -

interpret L: weak_complete_lattice "L"

by (simp_all add: assms)

interpret L’: weak_complete_lattice "fpl L f"

by (rule Knaster_Tarski, simp_all add: assms)

have FA: "fps L f ⊆ carrier L"

by (auto simp add: fps_def)

show ">fpl L f .=L f (>L)"
proof -

from FA have ">fpl L f ∈ carrier L"

proof -

have ">fpl L f ∈ fps L f"

using L’.top_closed by auto

thus ?thesis

using FA by blast

qed
moreover with assms have "f >L ∈ carrier L"

by (auto)

ultimately show ?thesis

using L.trans[OF Knaster_Tarski_top[of L f] L.GFP_idem[of f]]

by (simp_all add: assms)

qed
show "⊥fpl L f .=L f (⊥L)"
proof -

from FA have "⊥fpl L f ∈ carrier L"

proof -

have "⊥fpl L f ∈ fps L f"

using L’.bottom_closed by auto

thus ?thesis

using FA by blast
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qed
moreover with assms have "f ⊥L ∈ carrier L"

by (auto)

ultimately show ?thesis

using L.trans[OF Knaster_Tarski_bottom[of L f] L.LFP_idem[of f]]

by (simp_all add: assms)

qed
qed

theorem Knaster_Tarski_idem_inf_eq:

assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"

"f ∈ carrier L → carrier L"

"A ⊆ fps L f"

shows "
d

fpl L f A .=L f (
d

L A)"

proof -

interpret L: weak_complete_lattice "L"

by (simp_all add: assms)

interpret L’: weak_complete_lattice "fpl L f"

by (rule Knaster_Tarski, simp_all add: assms)

have FA: "fps L f ⊆ carrier L"

by (auto simp add: fps_def)

have A: "A ⊆ carrier L"

using FA assms(5) by blast

have fA: "f (
d

LA) ∈ fps L f"

by (metis (no_types, lifting) A L.idempotent L.inf_closed PiE assms(3)

assms(4) fps_def mem_Collect_eq)

have infA: "
d

fpl L fA ∈ fps L f"

by (rule L’.inf_closed[simplified], simp add: assms)

show ?thesis

proof (rule L.weak_le_antisym)

show ic: "
d

fpl L fA ∈ carrier L"

using FA infA by blast

show fc: "f (
d

LA) ∈ carrier L"

using FA fA by blast

show "f (
d

LA) vL
d

fpl L fA"

proof -

have "
∧
x. x ∈ A =⇒ f (

d
LA) vL x"

by (meson A FA L.inf_closed L.inf_lower L.le_trans L.weak_sup_post_fixed_point

assms(2) assms(4) assms(5) fA subsetCE)

hence "f (
d

LA) vfpl L f
d

fpl L fA"

by (rule_tac L’.inf_greatest, simp_all add: fA assms(3,5))

thus ?thesis

by (simp)

qed
show "

d
fpl L fA vL f (

d
LA)"

proof -

have "
∧
x. x ∈ A =⇒

d
fpl L fA vfpl L f x"

by (rule L’.inf_lower, simp_all add: assms)
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hence "
d

fpl L fA vL (
d

LA)"

apply (rule_tac L.inf_greatest, simp_all add: A)

using FA infA apply blast

done
hence 1:"f(

d
fpl L fA) vL f(

d
LA)"

by (metis (no_types, lifting) A FA L.inf_closed assms(2) infA

subsetCE use_iso1)

have 2:"
d

fpl L fA vL f (
d

fpl L fA)"

by (metis (no_types, lifting) FA L.sym L.use_fps L.weak_complete_lattice_axioms

PiE assms(4) infA subsetCE weak_complete_lattice_def weak_partial_order.weak_refl)

show ?thesis

using FA fA infA by (auto intro!: L.le_trans[OF 2 1] ic fc, metis

FA PiE assms(4) subsetCE)

qed
qed

qed

4.8 Examples

4.8.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:

"complete_lattice (|carrier = Pow A, eq = op =, le = op ⊆|)"
(is "complete_lattice ?L")

proof (rule partial_order.complete_latticeI)

show "partial_order ?L"

by standard auto

next
fix B

assume "B ⊆ carrier ?L"

then have "least ?L (
⋃

B) (Upper ?L B)"

by (fastforce intro!: least_UpperI simp: Upper_def)

then show "EX s. least ?L s (Upper ?L B)" ..
next

fix B

assume "B ⊆ carrier ?L"

then have "greatest ?L (
⋂

B ∩ A) (Lower ?L B)"⋂
B is not the infimum of B:

⋂
{} = UNIV which is in general bigger than A!

by (fastforce intro!: greatest_LowerI simp: Lower_def)

then show "EX i. greatest ?L i (Lower ?L B)" ..
qed

Another example, that of the lattice of subgroups of a group, can be found
in Group theory (Section 6.8).
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4.9 Limit preserving functions

definition weak_sup_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"weak_sup_pres X Y f ≡ complete_lattice X ∧ complete_lattice Y ∧ (∀ A

⊆ carrier X. A 6= {} −→ f (
⊔

X A) = (
⊔

Y (f ‘ A)))"

definition sup_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"sup_pres X Y f ≡ complete_lattice X ∧ complete_lattice Y ∧ (∀ A ⊆ carrier

X. f (
⊔

X A) = (
⊔

Y (f ‘ A)))"

definition weak_inf_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"weak_inf_pres X Y f ≡ complete_lattice X ∧ complete_lattice Y ∧ (∀ A

⊆ carrier X. A 6= {} −→ f (
d

X A) = (
d

Y (f ‘ A)))"

definition inf_pres :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"inf_pres X Y f ≡ complete_lattice X ∧ complete_lattice Y ∧ (∀ A ⊆ carrier

X. f (
d

X A) = (
d

Y (f ‘ A)))"

lemma weak_sup_pres:

"sup_pres X Y f =⇒ weak_sup_pres X Y f"

by (simp add: sup_pres_def weak_sup_pres_def)

lemma weak_inf_pres:

"inf_pres X Y f =⇒ weak_inf_pres X Y f"

by (simp add: inf_pres_def weak_inf_pres_def)

lemma sup_pres_is_join_pres:

assumes "weak_sup_pres X Y f"

shows "join_pres X Y f"

using assms

apply (simp add: join_pres_def weak_sup_pres_def, safe)

apply (rename_tac x y)

apply (drule_tac x="{x, y}" in spec)

apply (auto simp add: join_def)

done

lemma inf_pres_is_meet_pres:

assumes "weak_inf_pres X Y f"

shows "meet_pres X Y f"

using assms

apply (simp add: meet_pres_def weak_inf_pres_def, safe)

apply (rename_tac x y)

apply (drule_tac x="{x, y}" in spec)

apply (auto simp add: meet_def)

done
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end

theory Galois_Connection

imports Complete_Lattice

begin

5 Galois connections

5.1 Definition and basic properties

record (’a, ’b, ’c, ’d) galcon =

orderA :: "(’a, ’c) gorder_scheme" ("Xı ")
orderB :: "(’b, ’d) gorder_scheme" ("Yı ")
lower :: "’a ⇒ ’b" ("π∗ı ")

upper :: "’b ⇒ ’a" ("π∗ı ")

type synonym (’a, ’b) galois = "(’a, ’b, unit, unit) galcon"

abbreviation "inv_galcon G ≡ (| orderA = inv_gorder YG, orderB = inv_gorder

X G, lower = upper G, upper = lower G |)"

definition comp_galcon :: "(’b, ’c) galois ⇒ (’a, ’b) galois ⇒ (’a, ’c)

galois" (infixr "◦g" 85)

where "G ◦g F = (| orderA = orderA F, orderB = orderB G, lower = lower

G ◦ lower F, upper = upper F ◦ upper G |)"

definition id_galcon :: "’a gorder ⇒ (’a, ’a) galois" ("Ig") where
"Ig(A) = (| orderA = A, orderB = A, lower = id, upper = id |)"

5.2 Well-typed connections

locale connection =

fixes G (structure)
assumes is_order_A: "partial_order X"
and is_order_B: "partial_order Y"
and lower_closure: "π∗ ∈ carrier X → carrier Y"
and upper_closure: "π∗ ∈ carrier Y → carrier X"

begin

lemma lower_closed: "x ∈ carrier X =⇒ π∗ x ∈ carrier Y"
using lower_closure by auto

lemma upper_closed: "y ∈ carrier Y =⇒ π∗ y ∈ carrier X"
using upper_closure by auto

end



74

5.3 Galois connections

locale galois_connection = connection +

assumes galois_property: "[[x ∈ carrier X; y ∈ carrier Y]] =⇒ π∗ x

vY y ←→ x vX π∗ y"

begin

lemma is_weak_order_A: "weak_partial_order X"
proof -

interpret po: partial_order X
by (metis is_order_A)

show ?thesis ..
qed

lemma is_weak_order_B: "weak_partial_order Y"
proof -

interpret po: partial_order Y
by (metis is_order_B)

show ?thesis ..
qed

lemma right: "[[x ∈ carrier X; y ∈ carrier Y; π∗ x vY y]] =⇒ x vX
π∗ y"

by (metis galois_property)

lemma left: "[[x ∈ carrier X; y ∈ carrier Y; x vX π∗ y]] =⇒ π∗ x

vY y"

by (metis galois_property)

lemma deflation: "y ∈ carrier Y =⇒ π∗ (π∗ y) vY y"

by (metis Pi_iff is_weak_order_A left upper_closure weak_partial_order.le_refl)

lemma inflation: "x ∈ carrier X =⇒ x vX π∗ (π∗ x)"

by (metis (no_types, lifting) PiE galois_connection.right galois_connection_axioms

is_weak_order_B lower_closure weak_partial_order.le_refl)

lemma lower_iso: "isotone X Y π∗"

proof (auto simp add:isotone_def)

show "weak_partial_order X"
by (metis is_weak_order_A)

show "weak_partial_order Y"
by (metis is_weak_order_B)

fix x y

assume a: "x ∈ carrier X" "y ∈ carrier X" "x vX y"

have b: "π∗ y ∈ carrier Y"
using a(2) lower_closure by blast

then have "π∗ (π∗ y) ∈ carrier X"
using upper_closure by blast

then have "x vX π∗ (π∗ y)"

by (meson a inflation is_weak_order_A weak_partial_order.le_trans)
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thus "π∗ x vY π∗ y"

by (meson b a(1) Pi_iff galois_property lower_closure upper_closure)

qed

lemma upper_iso: "isotone Y X π∗"

apply (auto simp add:isotone_def)

apply (metis is_weak_order_B)

apply (metis is_weak_order_A)

apply (metis (no_types, lifting) Pi_mem deflation is_weak_order_B

lower_closure right upper_closure weak_partial_order.le_trans)

done

lemma lower_comp: "x ∈ carrier X =⇒ π∗ (π∗ (π∗ x)) = π∗ x"

by (meson deflation funcset_mem inflation is_order_B lower_closure

lower_iso partial_order.le_antisym upper_closure use_iso2)

lemma lower_comp’: "x ∈ carrier X =⇒ (π∗ ◦ π∗ ◦ π∗) x = π∗ x"

by (simp add: lower_comp)

lemma upper_comp: "y ∈ carrier Y =⇒ π∗ (π∗ (π∗ y)) = π∗ y"

proof -

assume a1: "y ∈ carrier Y"
hence f1: "π∗ y ∈ carrier X" using upper_closure by blast

have f2: "π∗ (π∗ y) vY y" using a1 deflation by blast

have f3: "π∗ (π∗ (π∗ y)) ∈ carrier X"
using f1 lower_closure upper_closure by auto

have "π∗ (π∗ y) ∈ carrier Y" using f1 lower_closure by blast

thus "π∗ (π∗ (π∗ y)) = π∗ y"

by (meson a1 f1 f2 f3 inflation is_order_A partial_order.le_antisym

upper_iso use_iso2)

qed

lemma upper_comp’: "y ∈ carrier Y =⇒ (π∗ ◦ π∗ ◦ π∗) y = π∗ y"

by (simp add: upper_comp)

lemma adjoint_idem1: "idempotent Y (π∗ ◦ π∗)"

by (simp add: idempotent_def is_order_B partial_order.eq_is_equal

upper_comp)

lemma adjoint_idem2: "idempotent X (π∗ ◦ π∗)"

by (simp add: idempotent_def is_order_A partial_order.eq_is_equal

lower_comp)

lemma fg_iso: "isotone Y Y (π∗ ◦ π∗)"

by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)

lemma gf_iso: "isotone X X (π∗ ◦ π∗)"

by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
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lemma semi_inverse1: "x ∈ carrier X =⇒ π∗ x = π∗ (π∗ (π∗ x))"

by (metis lower_comp)

lemma semi_inverse2: "x ∈ carrier Y =⇒ π∗ x = π∗ (π∗ (π∗ x))"

by (metis upper_comp)

theorem lower_by_complete_lattice:

assumes "complete_lattice Y" "x ∈ carrier X"
shows "π∗(x) =

d
Y { y ∈ carrier Y. x vX π∗(y) }"

proof -

interpret Y: complete_lattice Y
by (simp add: assms)

show ?thesis

proof (rule Y.le_antisym)

show x: "π∗ x ∈ carrier Y"
using assms(2) lower_closure by blast

show "π∗ x vY
d
Y{y ∈ carrier Y. x vX π∗ y}"

proof (rule Y.weak.inf_greatest)

show "{y ∈ carrier Y. x vX π∗ y} ⊆ carrier Y"
by auto

show "π∗ x ∈ carrier Y" by (fact x)

fix z

assume "z ∈ {y ∈ carrier Y. x vX π∗ y}"

thus "π∗ x vY z"

using assms(2) left by auto

qed
show "

d
Y{y ∈ carrier Y. x vX π∗ y} vY π∗ x"

proof (rule Y.weak.inf_lower)

show "{y ∈ carrier Y. x vX π∗ y} ⊆ carrier Y"
by auto

show "π∗ x ∈ {y ∈ carrier Y. x vX π∗ y}"

proof (auto)

show "π∗ x ∈ carrier Y" by (fact x)

show "x vX π∗ (π∗ x)"

using assms(2) inflation by blast

qed
qed
show "

d
Y{y ∈ carrier Y. x vX π∗ y} ∈ carrier Y"

by (auto intro: Y.weak.inf_closed)

qed
qed

theorem upper_by_complete_lattice:

assumes "complete_lattice X" "y ∈ carrier Y"
shows "π∗(y) =

⊔
X { x ∈ carrier X. π∗(x) vY y }"

proof -

interpret X: complete_lattice X
by (simp add: assms)
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show ?thesis

proof (rule X.le_antisym)

show y: "π∗ y ∈ carrier X"
using assms(2) upper_closure by blast

show "π∗ y vX
⊔
X {x ∈ carrier X. π∗ x vY y}"

proof (rule X.weak.sup_upper)

show "{x ∈ carrier X. π∗ x vY y} ⊆ carrier X"
by auto

show "π∗ y ∈ {x ∈ carrier X. π∗ x vY y}"

proof (auto)

show "π∗ y ∈ carrier X" by (fact y)

show "π∗ (π∗ y) vY y"

by (simp add: assms(2) deflation)

qed
qed
show "

⊔
X {x ∈ carrier X. π∗ x vY y} vX π∗ y"

proof (rule X.weak.sup_least)

show "{x ∈ carrier X. π∗ x vY y} ⊆ carrier X"
by auto

show "π∗ y ∈ carrier X" by (fact y)

fix z

assume "z ∈ {x ∈ carrier X. π∗ x vY y}"

thus "z vX π∗ y"

by (simp add: assms(2) right)

qed
show "

⊔
X {x ∈ carrier X. π∗ x vY y} ∈ carrier X"

by (auto intro: X.weak.sup_closed)

qed
qed

end

lemma dual_galois [simp]: " galois_connection (| orderA = inv_gorder B,

orderB = inv_gorder A, lower = f, upper = g |)
= galois_connection (| orderA = A, orderB = B,

lower = g, upper = f |)"
by (auto simp add: galois_connection_def galois_connection_axioms_def

connection_def dual_order_iff)

definition lower_adjoint :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’a ⇒ ’b) ⇒ bool" where
"lower_adjoint A B f ≡ ∃ g. galois_connection (| orderA = A, orderB =

B, lower = f, upper = g |)"

definition upper_adjoint :: "(’a, ’c) gorder_scheme ⇒ (’b, ’d) gorder_scheme

⇒ (’b ⇒ ’a) ⇒ bool" where
"upper_adjoint A B g ≡ ∃ f. galois_connection (| orderA = A, orderB =

B, lower = f, upper = g |)"
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lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder

B) f = upper_adjoint B A f"

by (simp add: lower_adjoint_def upper_adjoint_def)

lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder

B) f = lower_adjoint B A f"

by (simp add: lower_adjoint_def upper_adjoint_def)

lemma lower_type: "lower_adjoint A B f =⇒ f ∈ carrier A → carrier B"

by (auto simp add:lower_adjoint_def galois_connection_def galois_connection_axioms_def

connection_def)

lemma upper_type: "upper_adjoint A B g =⇒ g ∈ carrier B → carrier A"

by (auto simp add:upper_adjoint_def galois_connection_def galois_connection_axioms_def

connection_def)

5.4 Composition of Galois connections

lemma id_galois: "partial_order A =⇒ galois_connection (Ig(A))"

by (simp add: id_galcon_def galois_connection_def galois_connection_axioms_def

connection_def)

lemma comp_galcon_closed:

assumes "galois_connection G" "galois_connection F" "YF = X G"

shows "galois_connection (G ◦g F)"

proof -

interpret F: galois_connection F

by (simp add: assms)

interpret G: galois_connection G

by (simp add: assms)

have "partial_order X G ◦g F"

by (simp add: F.is_order_A comp_galcon_def)

moreover have "partial_order YG ◦g F"

by (simp add: G.is_order_B comp_galcon_def)

moreover have "π∗
G ◦ π∗

F ∈ carrier X F → carrier YG"
using F.lower_closure G.lower_closure assms(3) by auto

moreover have "π∗F ◦ π∗G ∈ carrier YG → carrier X F"

using F.upper_closure G.upper_closure assms(3) by auto

moreover
have "

∧
x y. [[x ∈ carrier X F; y ∈ carrier YG ]] =⇒

(π∗
G (π∗

F x) vYG y) = (x vXF π∗F (π∗G y))"

by (metis F.galois_property F.lower_closure G.galois_property G.upper_closure

assms(3) Pi_iff)

ultimately show ?thesis

by (simp add: comp_galcon_def galois_connection_def galois_connection_axioms_def

connection_def)

qed
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lemma comp_galcon_right_unit [simp]: "F ◦g Ig(X F) = F"

by (simp add: comp_galcon_def id_galcon_def)

lemma comp_galcon_left_unit [simp]: "Ig(YF) ◦g F = F"

by (simp add: comp_galcon_def id_galcon_def)

lemma galois_connectionI:

assumes
"partial_order A" "partial_order B"

"L ∈ carrier A → carrier B" "R ∈ carrier B → carrier A"

"isotone A B L" "isotone B A R"

"
∧

x y. [[ x ∈ carrier A; y ∈ carrier B ]] =⇒ L x vB y ←→ x vA R

y"

shows "galois_connection (| orderA = A, orderB = B, lower = L, upper

= R |)"
using assms by (simp add: galois_connection_def connection_def galois_connection_axioms_def)

lemma galois_connectionI’:

assumes
"partial_order A" "partial_order B"

"L ∈ carrier A → carrier B" "R ∈ carrier B → carrier A"

"isotone A B L" "isotone B A R"

"
∧

X. X ∈ carrier(B) =⇒ L(R(X)) vB X"

"
∧

X. X ∈ carrier(A) =⇒ X vA R(L(X))"

shows "galois_connection (| orderA = A, orderB = B, lower = L, upper

= R |)"
using assms

by (auto simp add: galois_connection_def connection_def galois_connection_axioms_def,

(meson PiE isotone_def weak_partial_order.le_trans)+)

5.5 Retracts

locale retract = galois_connection +

assumes retract_property: "x ∈ carrier X =⇒ π∗ (π∗ x) vX x"

begin
lemma retract_inverse: "x ∈ carrier X =⇒ π∗ (π∗ x) = x"

by (meson funcset_mem inflation is_order_A lower_closure partial_order.le_antisym

retract_axioms retract_axioms_def retract_def upper_closure)

lemma retract_injective: "inj_on π∗ (carrier X)"
by (metis inj_onI retract_inverse)

end

theorem comp_retract_closed:

assumes "retract G" "retract F" "YF = X G"

shows "retract (G ◦g F)"

proof -

interpret f: retract F

by (simp add: assms)
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interpret g: retract G

by (simp add: assms)

interpret gf: galois_connection "(G ◦g F)"

by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed retract.axioms(1))

show ?thesis

proof
fix x

assume "x ∈ carrier X G ◦g F"

thus "le X G ◦g F (π∗G ◦g F (π∗
G ◦g F x)) x"

using assms(3) f.inflation f.lower_closed f.retract_inverse g.retract_inverse

by (auto simp add: comp_galcon_def)

qed
qed

5.6 Coretracts

locale coretract = galois_connection +

assumes coretract_property: "y ∈ carrier Y =⇒ y vY π∗ (π∗ y)"

begin
lemma coretract_inverse: "y ∈ carrier Y =⇒ π∗ (π∗ y) = y"

by (meson coretract_axioms coretract_axioms_def coretract_def deflation

funcset_mem is_order_B lower_closure partial_order.le_antisym upper_closure)

lemma retract_injective: "inj_on π∗ (carrier Y)"
by (metis coretract_inverse inj_onI)

end

theorem comp_coretract_closed:

assumes "coretract G" "coretract F" "YF = X G"

shows "coretract (G ◦g F)"

proof -

interpret f: coretract F

by (simp add: assms)

interpret g: coretract G

by (simp add: assms)

interpret gf: galois_connection "(G ◦g F)"

by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed coretract.axioms(1))

show ?thesis

proof
fix y

assume "y ∈ carrier YG ◦g F"

thus "le YG ◦g F y (π∗
G ◦g F (π∗G ◦g F y))"

by (simp add: comp_galcon_def assms(3) f.coretract_inverse g.coretract_property

g.upper_closed)

qed
qed

5.7 Galois Bijections

locale galois_bijection = connection +
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assumes lower_iso: "isotone X Y π∗"

and upper_iso: "isotone Y X π∗"

and lower_inv_eq: "x ∈ carrier X =⇒ π∗ (π∗ x) = x"

and upper_inv_eq: "y ∈ carrier Y =⇒ π∗ (π∗ y) = y"

begin

lemma lower_bij: "bij_betw π∗ (carrier X) (carrier Y)"
by (rule bij_betwI[where g="π∗"], auto intro: upper_inv_eq lower_inv_eq

upper_closed lower_closed)

lemma upper_bij: "bij_betw π∗ (carrier Y) (carrier X)"
by (rule bij_betwI[where g="π∗"], auto intro: upper_inv_eq lower_inv_eq

upper_closed lower_closed)

sublocale gal_bij_conn: galois_connection

apply (unfold_locales, auto)

using lower_closed lower_inv_eq upper_iso use_iso2 apply fastforce

using lower_iso upper_closed upper_inv_eq use_iso2 apply fastforce

done

sublocale gal_bij_ret: retract

by (unfold_locales, simp add: gal_bij_conn.is_weak_order_A lower_inv_eq

weak_partial_order.le_refl)

sublocale gal_bij_coret: coretract

by (unfold_locales, simp add: gal_bij_conn.is_weak_order_B upper_inv_eq

weak_partial_order.le_refl)

end

theorem comp_galois_bijection_closed:

assumes "galois_bijection G" "galois_bijection F" "YF = X G"

shows "galois_bijection (G ◦g F)"

proof -

interpret f: galois_bijection F

by (simp add: assms)

interpret g: galois_bijection G

by (simp add: assms)

interpret gf: galois_connection "(G ◦g F)"

by (simp add: assms(3) comp_galcon_closed f.gal_bij_conn.galois_connection_axioms

g.gal_bij_conn.galois_connection_axioms galois_connection.axioms(1))

show ?thesis

proof
show "isotone X G ◦g F YG ◦g F π∗

G ◦g F"

by (simp add: comp_galcon_def, metis comp_galcon_def galcon.select_convs(1)

galcon.select_convs(2) galcon.select_convs(3) gf.lower_iso)

show "isotone YG ◦g F X G ◦g F π∗G ◦g F"

by (simp add: gf.upper_iso)

fix x
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assume "x ∈ carrier X G ◦g F"

thus "π∗G ◦g F (π∗
G ◦g F x) = x"

using assms(3) f.lower_closed f.lower_inv_eq g.lower_inv_eq by (auto

simp add: comp_galcon_def)

next
fix y

assume "y ∈ carrier YG ◦g F"

thus "π∗
G ◦g F (π∗G ◦g F y) = y"

by (simp add: comp_galcon_def assms(3) f.upper_inv_eq g.upper_closed

g.upper_inv_eq)

qed
qed

end

theory Group

imports Complete_Lattice "HOL-Library.FuncSet"

begin

6 Monoids and Groups

6.1 Definitions

Definitions follow [2].

record ’a monoid = "’a partial_object" +

mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı " 70)

one :: ’a ("1ı ")

definition
m_inv :: "(’a, ’b) monoid_scheme => ’a => ’a" ("invı _" [81] 80)

where "invG x = (THE y. y ∈ carrier G & x ⊗G y = 1G & y ⊗G x = 1G)"

definition
Units :: "_ => ’a set"

— The set of invertible elements
where "Units G = {y. y ∈ carrier G & (∃ x ∈ carrier G. x ⊗G y = 1G

& y ⊗G x = 1G)}"

consts
pow :: "[(’a, ’m) monoid_scheme, ’a, ’b::semiring_1] => ’a" (infixr

"’(^’)ı " 75)

overloading nat_pow == "pow :: [_, ’a, nat] => ’a"

begin
definition "nat_pow G a n = rec_nat 1G (%u b. b ⊗G a) n"

end
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overloading int_pow == "pow :: [_, ’a, int] => ’a"

begin
definition "int_pow G a z =

(let p = rec_nat 1G (%u b. b ⊗G a)

in if z < 0 then invG (p (nat (-z))) else p (nat z))"

end

lemma int_pow_int: "x (^)G (int n) = x (^)G n"

by(simp add: int_pow_def nat_pow_def)

locale monoid =

fixes G (structure)
assumes m_closed [intro, simp]:

"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"

and m_assoc:

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"

and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"

and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

lemma monoidI:

fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier

G"

and one_closed: "1 ∈ carrier G"

and m_assoc:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"

and r_one: "!!x. x ∈ carrier G ==> x ⊗ 1 = x"

shows "monoid G"

by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:

"x ∈ Units G ==> x ∈ carrier G"

by (unfold Units_def) fast

lemma (in monoid) inv_unique:

assumes eq: "y ⊗ x = 1" "x ⊗ y’ = 1"
and G: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "y = y’"

proof -

from G eq have "y = y ⊗ (x ⊗ y’)" by simp

also from G have "... = (y ⊗ x) ⊗ y’" by (simp add: m_assoc)

also from G eq have "... = y’" by simp

finally show ?thesis .
qed
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lemma (in monoid) Units_m_closed [intro, simp]:

assumes x: "x ∈ Units G" and y: "y ∈ Units G"

shows "x ⊗ y ∈ Units G"

proof -

from x obtain x’ where x: "x ∈ carrier G" "x’ ∈ carrier G" and xinv:

"x ⊗ x’ = 1" "x’ ⊗ x = 1"
unfolding Units_def by fast

from y obtain y’ where y: "y ∈ carrier G" "y’ ∈ carrier G" and yinv:

"y ⊗ y’ = 1" "y’ ⊗ y = 1"
unfolding Units_def by fast

from x y xinv yinv have "y’ ⊗ (x’ ⊗ x) ⊗ y = 1" by simp

moreover from x y xinv yinv have "x ⊗ (y ⊗ y’) ⊗ x’ = 1" by simp

moreover note x y

ultimately show ?thesis unfolding Units_def

— Must avoid premature use of hyp_subst_tac.
apply (rule_tac CollectI)

apply (rule)

apply (fast)

apply (rule bexI [where x = "y’ ⊗ x’"])

apply (auto simp: m_assoc)

done
qed

lemma (in monoid) Units_one_closed [intro, simp]:

"1 ∈ Units G"

by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:

"x ∈ Units G ==> inv x ∈ carrier G"

apply (unfold Units_def m_inv_def, auto)

apply (rule theI2, fast)

apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_l_inv_ex:

"x ∈ Units G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:

"x ∈ Units G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:

"x ∈ Units G ==> inv x ⊗ x = 1"
apply (unfold Units_def m_inv_def, auto)

apply (rule theI2, fast)

apply (fast intro: inv_unique, fast)

done
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lemma (in monoid) Units_r_inv [simp]:

"x ∈ Units G ==> x ⊗ inv x = 1"
apply (unfold Units_def m_inv_def, auto)

apply (rule theI2, fast)

apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_inv_Units [intro, simp]:

"x ∈ Units G ==> inv x ∈ Units G"

proof -

assume x: "x ∈ Units G"

show "inv x ∈ Units G"

by (auto simp add: Units_def

intro: Units_l_inv Units_r_inv x Units_closed [OF x])

qed

lemma (in monoid) Units_l_cancel [simp]:

"[| x ∈ Units G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y = x ⊗ z) = (y = z)"

proof
assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"

then have "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"

by (simp add: m_assoc Units_closed del: Units_l_inv)

with G show "y = z" by simp

next
assume eq: "y = z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"

then show "x ⊗ y = x ⊗ z" by simp

qed

lemma (in monoid) Units_inv_inv [simp]:

"x ∈ Units G ==> inv (inv x) = x"

proof -

assume x: "x ∈ Units G"

then have "inv x ⊗ inv (inv x) = inv x ⊗ x" by simp

with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)

qed

lemma (in monoid) inv_inj_on_Units:

"inj_on (m_inv G) (Units G)"

proof (rule inj_onI)

fix x y

assume G: "x ∈ Units G" "y ∈ Units G" and eq: "inv x = inv y"

then have "inv (inv x) = inv (inv y)" by simp

with G show "x = y" by simp

qed
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lemma (in monoid) Units_inv_comm:

assumes inv: "x ⊗ y = 1"
and G: "x ∈ Units G" "y ∈ Units G"

shows "y ⊗ x = 1"
proof -

from G have "x ⊗ y ⊗ x = x ⊗ 1" by (auto simp add: inv Units_closed)

with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)

qed

lemma (in monoid) carrier_not_empty: "carrier G 6= {}"

by auto

Power

lemma (in monoid) nat_pow_closed [intro, simp]:

"x ∈ carrier G ==> x (^) (n::nat) ∈ carrier G"

by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:

"x (^) (0::nat) = 1"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_Suc [simp]:

"x (^) (Suc n) = x (^) n ⊗ x"

by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_one [simp]:

"1 (^) (n::nat) = 1"
by (induct n) simp_all

lemma (in monoid) nat_pow_mult:

"x ∈ carrier G ==> x (^) (n::nat) ⊗ x (^) m = x (^) (n + m)"

by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_pow:

"x ∈ carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"

by (induct m) (simp, simp add: nat_pow_mult add.commute)

6.2 Groups

A group is a monoid all of whose elements are invertible.

locale group = monoid +

assumes Units: "carrier G <= Units G"

lemma (in group) is_group: "group G" by (rule group_axioms)

theorem groupI:

fixes G (structure)
assumes m_closed [simp]:
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"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier

G"

and one_closed [simp]: "1 ∈ carrier G"

and m_assoc:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one [simp]: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"

and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
shows "group G"

proof -

have l_cancel [simp]:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y = x ⊗ z) = (y = z)"

proof
fix x y z

assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast

from G eq xG have "(x_inv ⊗ x) ⊗ y = (x_inv ⊗ x) ⊗ z"

by (simp add: m_assoc)

with G show "y = z" by (simp add: l_inv)

next
fix x y z

assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

then show "x ⊗ y = x ⊗ z" by simp

qed
have r_one:

"!!x. x ∈ carrier G ==> x ⊗ 1 = x"

proof -

fix x

assume x: "x ∈ carrier G"

with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast

from x xG have "x_inv ⊗ (x ⊗ 1) = x_inv ⊗ x"

by (simp add: m_assoc [symmetric] l_inv)

with x xG show "x ⊗ 1 = x" by simp

qed
have inv_ex:

"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"
proof -

fix x

assume x: "x ∈ carrier G"

with l_inv_ex obtain y where y: "y ∈ carrier G"

and l_inv: "y ⊗ x = 1" by fast

from x y have "y ⊗ (x ⊗ y) = y ⊗ 1"
by (simp add: m_assoc [symmetric] l_inv r_one)

with x y have r_inv: "x ⊗ y = 1"
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by simp

from x y show "∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"
by (fast intro: l_inv r_inv)

qed
then have carrier_subset_Units: "carrier G <= Units G"

by (unfold Units_def) fast

show ?thesis

by standard (auto simp: r_one m_assoc carrier_subset_Units)

qed

lemma (in monoid) group_l_invI:

assumes l_inv_ex:

"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
shows "group G"

by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:

"Units G = carrier G"

proof
show "Units G <= carrier G" by fast

next
show "carrier G <= Units G" by (rule Units)

qed

lemma (in group) inv_closed [intro, simp]:

"x ∈ carrier G ==> inv x ∈ carrier G"

using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:

"x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:

"x ∈ carrier G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:

"x ∈ carrier G ==> inv x ⊗ x = 1"
using Units_l_inv by simp

6.3 Cancellation Laws and Basic Properties

lemma (in group) l_cancel [simp]:

"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y = x ⊗ z) = (y = z)"

using Units_l_inv by simp

lemma (in group) r_inv [simp]:

"x ∈ carrier G ==> x ⊗ inv x = 1"
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proof -

assume x: "x ∈ carrier G"

then have "inv x ⊗ (x ⊗ inv x) = inv x ⊗ 1"
by (simp add: m_assoc [symmetric])

with x show ?thesis by (simp del: r_one)

qed

lemma (in group) r_cancel [simp]:

"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(y ⊗ x = z ⊗ x) = (y = z)"

proof
assume eq: "y ⊗ x = z ⊗ x"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

then have "y ⊗ (x ⊗ inv x) = z ⊗ (x ⊗ inv x)"

by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)

with G show "y = z" by simp

next
assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

then show "y ⊗ x = z ⊗ x" by simp

qed

lemma (in group) inv_one [simp]:

"inv 1 = 1"
proof -

have "inv 1 = 1 ⊗ (inv 1)" by (simp del: r_inv Units_r_inv)

moreover have "... = 1" by simp

finally show ?thesis .
qed

lemma (in group) inv_inv [simp]:

"x ∈ carrier G ==> inv (inv x) = x"

using Units_inv_inv by simp

lemma (in group) inv_inj:

"inj_on (m_inv G) (carrier G)"

using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:

"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv y ⊗ inv x"

proof -

assume G: "x ∈ carrier G" "y ∈ carrier G"

then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"

by (simp add: m_assoc) (simp add: m_assoc [symmetric])

with G show ?thesis by (simp del: l_inv Units_l_inv)

qed

lemma (in group) inv_comm:

"[| x ⊗ y = 1; x ∈ carrier G; y ∈ carrier G |] ==> y ⊗ x = 1"
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by (rule Units_inv_comm) auto

lemma (in group) inv_equality:

"[|y ⊗ x = 1; x ∈ carrier G; y ∈ carrier G|] ==> inv x = y"

apply (simp add: m_inv_def)

apply (rule the_equality)

apply (simp add: inv_comm [of y x])

apply (rule r_cancel [THEN iffD1], auto)

done

lemma (in group) inv_solve_left:

"[[ a ∈ carrier G; b ∈ carrier G; c ∈ carrier G ]] =⇒ a = inv b ⊗ c

←→ c = b ⊗ a"

by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right:

"[[ a ∈ carrier G; b ∈ carrier G; c ∈ carrier G ]] =⇒ a = b ⊗ inv c

←→ b = a ⊗ c"

by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

Power

lemma (in group) int_pow_def2:

"a (^) (z::int) = (if z < 0 then inv (a (^) (nat (-z))) else a (^) (nat

z))"

by (simp add: int_pow_def nat_pow_def Let_def)

lemma (in group) int_pow_0 [simp]:

"x (^) (0::int) = 1"
by (simp add: int_pow_def2)

lemma (in group) int_pow_one [simp]:

"1 (^) (z::int) = 1"
by (simp add: int_pow_def2)

lemma (in group) int_pow_closed [intro, simp]:

"x ∈ carrier G ==> x (^) (i::int) ∈ carrier G"

by (simp add: int_pow_def2)

lemma (in group) int_pow_1 [simp]:

"x ∈ carrier G =⇒ x (^) (1::int) = x"

by (simp add: int_pow_def2)

lemma (in group) int_pow_neg:

"x ∈ carrier G =⇒ x (^) (-i::int) = inv (x (^) i)"

by (simp add: int_pow_def2)

lemma (in group) int_pow_mult:
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"x ∈ carrier G =⇒ x (^) (i + j::int) = x (^) i ⊗ x (^) j"

proof -

have [simp]: "-i - j = -j - i" by simp

assume "x : carrier G" then
show ?thesis

by (auto simp add: int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib

[symmetric] nat_pow_mult )

qed

lemma (in group) int_pow_diff:

"x ∈ carrier G =⇒ x (^) (n - m :: int) = x (^) n ⊗ inv (x (^) m)"

by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)

lemma (in group) inj_on_multc: "c ∈ carrier G =⇒ inj_on (λx. x ⊗ c)

(carrier G)"

by(simp add: inj_on_def)

lemma (in group) inj_on_cmult: "c ∈ carrier G =⇒ inj_on (λx. c ⊗ x)

(carrier G)"

by(simp add: inj_on_def)

6.4 Subgroups

locale subgroup =

fixes H and G (structure)
assumes subset: "H ⊆ carrier G"

and m_closed [intro, simp]: "[[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"

and one_closed [simp]: "1 ∈ H"

and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

lemma (in subgroup) is_subgroup:

"subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:

"x ∈ H =⇒ x ∈ carrier G"

using subset by blast

lemma subgroup_imp_subset:

"subgroup H G =⇒ H ⊆ carrier G"

by (rule subgroup.subset)

lemma (in subgroup) subgroup_is_group [intro]:

assumes "group G"

shows "group (G(|carrier := H|))"
proof -

interpret group G by fact

show ?thesis
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apply (rule monoid.group_l_invI)

apply (unfold_locales) [1]

apply (auto intro: m_assoc l_inv mem_carrier)

done
qed

Since H is nonempty, it contains some element x. Since it is closed under
inverse, it contains inv x. Since it is closed under product, it contains x ⊗
inv x = 1.

lemma (in group) one_in_subset:

"[| H ⊆ carrier G; H 6= {}; ∀ a ∈ H. inv a ∈ H; ∀ a∈H. ∀ b∈H. a ⊗ b

∈ H |]

==> 1 ∈ H"

by force

A characterization of subgroups: closed, non-empty subset.

lemma (in group) subgroupI:

assumes subset: "H ⊆ carrier G" and non_empty: "H 6= {}"

and inv: "!!a. a ∈ H =⇒ inv a ∈ H"

and mult: "!!a b. [[a ∈ H; b ∈ H]] =⇒ a ⊗ b ∈ H"

shows "subgroup H G"

proof (simp add: subgroup_def assms)

show "1 ∈ H" by (rule one_in_subset) (auto simp only: assms)

qed

declare monoid.one_closed [iff] group.inv_closed [simp]

monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:

"~ subgroup {} G"

by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive:

"finite (carrier G) ==> 0 < card H"

proof (rule classical)

assume "finite (carrier G)" and a: "~ 0 < card H"

then have "finite H" by (blast intro: finite_subset [OF subset])

with is_subgroup a have "subgroup {} G" by simp

with subgroup_nonempty show ?thesis by contradiction

qed

6.5 Direct Products

definition
DirProd :: "_ ⇒ _ ⇒ (’a × ’b) monoid" (infixr "××" 80) where
"G ×× H =

(|carrier = carrier G × carrier H,

mult = (λ(g, h) (g’, h’). (g ⊗G g’, h ⊗H h’)),

one = (1G, 1H)|)"
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lemma DirProd_monoid:

assumes "monoid G" and "monoid H"

shows "monoid (G ×× H)"

proof -

interpret G: monoid G by fact

interpret H: monoid H by fact

from assms

show ?thesis by (unfold monoid_def DirProd_def, auto)

qed

Does not use the previous result because it’s easier just to use auto.

lemma DirProd_group:

assumes "group G" and "group H"

shows "group (G ×× H)"

proof -

interpret G: group G by fact

interpret H: group H by fact

show ?thesis by (rule groupI)

(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv

simp add: DirProd_def)

qed

lemma carrier_DirProd [simp]:

"carrier (G ×× H) = carrier G × carrier H"

by (simp add: DirProd_def)

lemma one_DirProd [simp]:

"1G ×× H = (1G, 1H)"
by (simp add: DirProd_def)

lemma mult_DirProd [simp]:

"(g, h) ⊗(G ×× H) (g’, h’) = (g ⊗G g’, h ⊗H h’)"

by (simp add: DirProd_def)

lemma inv_DirProd [simp]:

assumes "group G" and "group H"

assumes g: "g ∈ carrier G"

and h: "h ∈ carrier H"

shows "m_inv (G ×× H) (g, h) = (invG g, invH h)"

proof -

interpret G: group G by fact

interpret H: group H by fact

interpret Prod: group "G ×× H"

by (auto intro: DirProd_group group.intro group.axioms assms)

show ?thesis by (simp add: Prod.inv_equality g h)

qed
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6.6 Homomorphisms and Isomorphisms

definition
hom :: "_ => _ => (’a => ’b) set" where
"hom G H =

{h. h ∈ carrier G → carrier H &

(∀ x ∈ carrier G. ∀ y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

lemma (in group) hom_compose:

"[|h ∈ hom G H; i ∈ hom H I|] ==> compose (carrier G) i h ∈ hom G I"

by (fastforce simp add: hom_def compose_def)

definition
iso :: "_ => _ => (’a => ’b) set" (infixr "∼=" 60)

where "G ∼= H = {h. h ∈ hom G H & bij_betw h (carrier G) (carrier H)}"

lemma iso_refl: "(%x. x) ∈ G ∼= G"

by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma (in group) iso_sym:

"h ∈ G ∼= H =⇒ inv_into (carrier G) h ∈ H ∼= G"

apply (simp add: iso_def bij_betw_inv_into)

apply (subgoal_tac "inv_into (carrier G) h ∈ carrier H → carrier G")

prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])

apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)

done

lemma (in group) iso_trans:

"[|h ∈ G ∼= H; i ∈ H ∼= I|] ==> (compose (carrier G) i h) ∈ G ∼= I"

by (auto simp add: iso_def hom_compose bij_betw_compose)

lemma DirProd_commute_iso:

shows "(λ(x,y). (y,x)) ∈ (G ×× H) ∼= (H ×× G)"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

lemma DirProd_assoc_iso:

shows "(λ(x,y,z). (x,(y,z))) ∈ (G ×× H ×× I) ∼= (G ×× (H ×× I))"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

Basis for homomorphism proofs: we assume two groups G and H, with a
homomorphism h between them

locale group_hom = G?: group G + H?: group H for G (structure) and H (struc-
ture) +

fixes h

assumes homh: "h ∈ hom G H"

lemma (in group_hom) hom_mult [simp]:

"[| x ∈ carrier G; y ∈ carrier G |] ==> h (x ⊗G y) = h x ⊗H h y"
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proof -

assume "x ∈ carrier G" "y ∈ carrier G"

with homh [unfolded hom_def] show ?thesis by simp

qed

lemma (in group_hom) hom_closed [simp]:

"x ∈ carrier G ==> h x ∈ carrier H"

proof -

assume "x ∈ carrier G"

with homh [unfolded hom_def] show ?thesis by auto

qed

lemma (in group_hom) one_closed [simp]:

"h 1 ∈ carrier H"

by simp

lemma (in group_hom) hom_one [simp]:

"h 1 = 1H"
proof -

have "h 1 ⊗H 1H = h 1 ⊗H h 1"
by (simp add: hom_mult [symmetric] del: hom_mult)

then show ?thesis by (simp del: r_one)

qed

lemma (in group_hom) inv_closed [simp]:

"x ∈ carrier G ==> h (inv x) ∈ carrier H"

by simp

lemma (in group_hom) hom_inv [simp]:

"x ∈ carrier G ==> h (inv x) = invH (h x)"

proof -

assume x: "x ∈ carrier G"

then have "h x ⊗H h (inv x) = 1H"
by (simp add: hom_mult [symmetric] del: hom_mult)

also from x have "... = h x ⊗H invH (h x)"

by (simp add: hom_mult [symmetric] del: hom_mult)

finally have "h x ⊗H h (inv x) = h x ⊗H invH (h x)" .
with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)

qed

lemma (in group) int_pow_is_hom:

"x ∈ carrier G =⇒ (op(^) x) ∈ hom (| carrier = UNIV, mult = op +, one

= 0::int |) G "

unfolding hom_def by (simp add: int_pow_mult)
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6.7 Commutative Structures

Naming convention: multiplicative structures that are commutative are called
commutative, additive structures are called Abelian.

locale comm_monoid = monoid +

assumes m_comm: "[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y = y ⊗ x"

lemma (in comm_monoid) m_lcomm:

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)"

proof -

assume xyz: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

from xyz have "x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z" by (simp add: m_assoc)

also from xyz have "... = (y ⊗ x) ⊗ z" by (simp add: m_comm)

also from xyz have "... = y ⊗ (x ⊗ z)" by (simp add: m_assoc)

finally show ?thesis .
qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:

fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier

G"

and one_closed: "1 ∈ carrier G"

and m_assoc:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"

and m_comm:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

shows "comm_monoid G"

using l_one

by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro

intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:

assumes m_comm:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

shows "comm_monoid G"

by (rule comm_monoidI) (auto intro: m_assoc m_comm)

lemma (in comm_monoid) nat_pow_distr:

"[| x ∈ carrier G; y ∈ carrier G |] ==>

(x ⊗ y) (^) (n::nat) = x (^) n ⊗ y (^) n"
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by (induct n) (simp, simp add: m_ac)

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupI:

assumes m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==>

x ⊗ y = y ⊗ x"

shows "comm_group G"

by standard (simp_all add: m_comm)

lemma comm_groupI:

fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier

G"

and one_closed: "1 ∈ carrier G"

and m_assoc:

"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and m_comm:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"

and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
shows "comm_group G"

by (fast intro: group.group_comm_groupI groupI assms)

lemma (in comm_group) inv_mult:

"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv x ⊗ inv y"

by (simp add: m_ac inv_mult_group)

6.8 The Lattice of Subgroups of a Group

theorem (in group) subgroups_partial_order:

"partial_order (|carrier = {H. subgroup H G}, eq = op =, le = op ⊆|)"
by standard simp_all

lemma (in group) subgroup_self:

"subgroup (carrier G) G"

by (rule subgroupI) auto

lemma (in group) subgroup_imp_group:

"subgroup H G ==> group (G(|carrier := H|))"
by (erule subgroup.subgroup_is_group) (rule group_axioms)

lemma (in group) is_monoid [intro, simp]:

"monoid G"

by (auto intro: monoid.intro m_assoc)

lemma (in group) subgroup_inv_equality:



98

"[| subgroup H G; x ∈ H |] ==> m_inv (G (|carrier := H|)) x = inv x"

apply (rule_tac inv_equality [THEN sym])

apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)

apply (rule subsetD [OF subgroup.subset], assumption+)

apply (rule subsetD [OF subgroup.subset], assumption)

apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified],

assumption+)

done

theorem (in group) subgroups_Inter:

assumes subgr: "(!!H. H ∈ A ==> subgroup H G)"

and not_empty: "A ~= {}"

shows "subgroup (
⋂
A) G"

proof (rule subgroupI)

from subgr [THEN subgroup.subset] and not_empty

show "
⋂
A ⊆ carrier G" by blast

next
from subgr [THEN subgroup.one_closed]

show "
⋂
A ~= {}" by blast

next
fix x assume "x ∈

⋂
A"

with subgr [THEN subgroup.m_inv_closed]

show "inv x ∈
⋂
A" by blast

next
fix x y assume "x ∈

⋂
A" "y ∈

⋂
A"

with subgr [THEN subgroup.m_closed]

show "x ⊗ y ∈
⋂
A" by blast

qed

theorem (in group) subgroups_complete_lattice:

"complete_lattice (|carrier = {H. subgroup H G}, eq = op =, le = op ⊆|)"
(is "complete_lattice ?L")

proof (rule partial_order.complete_lattice_criterion1)

show "partial_order ?L" by (rule subgroups_partial_order)

next
have "greatest ?L (carrier G) (carrier ?L)"

by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)

then show "∃ G. greatest ?L G (carrier ?L)" ..
next

fix A

assume L: "A ⊆ carrier ?L" and non_empty: "A ~= {}"

then have Int_subgroup: "subgroup (
⋂
A) G"

by (fastforce intro: subgroups_Inter)

have "greatest ?L (
⋂
A) (Lower ?L A)" (is "greatest _ ?Int _")

proof (rule greatest_LowerI)

fix H

assume H: "H ∈ A"

with L have subgroupH: "subgroup H G" by auto

from subgroupH have groupH: "group (G (|carrier := H|))" (is "group
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?H")

by (rule subgroup_imp_group)

from groupH have monoidH: "monoid ?H"

by (rule group.is_monoid)

from H have Int_subset: "?Int ⊆ H" by fastforce

then show "le ?L ?Int H" by simp

next
fix H

assume H: "H ∈ Lower ?L A"

with L Int_subgroup show "le ?L H ?Int"

by (fastforce simp: Lower_def intro: Inter_greatest)

next
show "A ⊆ carrier ?L" by (rule L)

next
show "?Int ∈ carrier ?L" by simp (rule Int_subgroup)

qed
then show "∃ I. greatest ?L I (Lower ?L A)" ..

qed

end

theory FiniteProduct

imports Group

begin

6.9 Product Operator for Commutative Monoids

6.9.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here
we have explicit typing rules like x ∈ carrier G. We introduce an explicit
argument for the domain D.

inductive set
foldSetD :: "[’a set, ’b => ’a => ’a, ’a] => (’b set * ’a) set"

for D :: "’a set" and f :: "’b => ’a => ’a" and e :: ’a

where
emptyI [intro]: "e ∈ D ==> ({}, e) ∈ foldSetD D f e"

| insertI [intro]: "[| x ~: A; f x y ∈ D; (A, y) ∈ foldSetD D f e |]

==>

(insert x A, f x y) ∈ foldSetD D f e"

inductive cases empty_foldSetDE [elim!]: "({}, x) ∈ foldSetD D f e"

definition
foldD :: "[’a set, ’b => ’a => ’a, ’a, ’b set] => ’a"

where "foldD D f e A = (THE x. (A, x) ∈ foldSetD D f e)"

lemma foldSetD_closed:
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"[| (A, z) ∈ foldSetD D f e ; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==>

f x y ∈ D

|] ==> z ∈ D"

by (erule foldSetD.cases) auto

lemma Diff1_foldSetD:

"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; f x y ∈ D |] ==>

(A, f x y) ∈ foldSetD D f e"

apply (erule insert_Diff [THEN subst], rule foldSetD.intros)

apply auto

done

lemma foldSetD_imp_finite [simp]: "(A, x) ∈ foldSetD D f e ==> finite

A"

by (induct set: foldSetD) auto

lemma finite_imp_foldSetD:

"[| finite A; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==> f x y ∈ D |] ==>

EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)

case empty then show ?case by auto

next
case (insert x F)

then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto

with insert have "y ∈ D" by (auto dest: foldSetD_closed)

with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto

then show ?case ..
qed

Left-Commutative Operations

locale LCD =

fixes B :: "’b set"

and D :: "’a set"

and f :: "’b => ’a => ’a" (infixl "·" 70)

assumes left_commute:

"[| x ∈ B; y ∈ B; z ∈ D |] ==> x · (y · z) = y · (x · z)"
and f_closed [simp, intro!]: "!!x y. [| x ∈ B; y ∈ D |] ==> f x y ∈

D"

lemma (in LCD) foldSetD_closed [dest]:

"(A, z) ∈ foldSetD D f e ==> z ∈ D"

by (erule foldSetD.cases) auto

lemma (in LCD) Diff1_foldSetD:

"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; A ⊆ B |] ==>

(A, f x y) ∈ foldSetD D f e"

apply (subgoal_tac "x ∈ B")

prefer 2 apply fast
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apply (erule insert_Diff [THEN subst], rule foldSetD.intros)

apply auto

done

lemma (in LCD) foldSetD_imp_finite [simp]:

"(A, x) ∈ foldSetD D f e ==> finite A"

by (induct set: foldSetD) auto

lemma (in LCD) finite_imp_foldSetD:

"[| finite A; A ⊆ B; e ∈ D |] ==> EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)

case empty then show ?case by auto

next
case (insert x F)

then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto

with insert have "y ∈ D" by auto

with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto

then show ?case ..
qed

lemma (in LCD) foldSetD_determ_aux:

"e ∈ D ==> ∀ A x. A ⊆ B & card A < n --> (A, x) ∈ foldSetD D f e -->

(∀ y. (A, y) ∈ foldSetD D f e --> y = x)"

apply (induct n)

apply (auto simp add: less_Suc_eq)

apply (erule foldSetD.cases)

apply blast

apply (erule foldSetD.cases)

apply blast

apply clarify

force simplification of card A < card (insert ...).

apply (erule rev_mp)

apply (simp add: less_Suc_eq_le)

apply (rule impI)

apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb")

apply (subgoal_tac "Aa = Ab")

prefer 2 apply (blast elim!: equalityE)

apply blast

case xa /∈ xb.

apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb ∈ Aa & xa ∈ Ab")

prefer 2 apply (blast elim!: equalityE)

apply clarify

apply (subgoal_tac "Aa = insert xb Ab - {xa}")

prefer 2 apply blast

apply (subgoal_tac "card Aa ≤ card Ab")

prefer 2



102

apply (rule Suc_le_mono [THEN subst])

apply (simp add: card_Suc_Diff1)

apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])

apply (blast intro: foldSetD_imp_finite)

apply best

apply assumption

apply (frule (1) Diff1_foldSetD)

apply best

apply (subgoal_tac "ya = f xb x")

prefer 2

apply (subgoal_tac "Aa ⊆ B")

prefer 2 apply best

apply (blast del: equalityCE)

apply (subgoal_tac "(Ab - {xa}, x) ∈ foldSetD D f e")

prefer 2 apply simp

apply (subgoal_tac "yb = f xa x")

prefer 2

apply (blast del: equalityCE dest: Diff1_foldSetD)

apply (simp (no_asm_simp))

apply (rule left_commute)

apply assumption

apply best

apply best

done

lemma (in LCD) foldSetD_determ:

"[| (A, x) ∈ foldSetD D f e; (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B

|]

==> y = x"

by (blast intro: foldSetD_determ_aux [rule_format])

lemma (in LCD) foldD_equality:

"[| (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B |] ==> foldD D f e A = y"

by (unfold foldD_def) (blast intro: foldSetD_determ)

lemma foldD_empty [simp]:

"e ∈ D ==> foldD D f e {} = e"

by (unfold foldD_def) blast

lemma (in LCD) foldD_insert_aux:

"[| x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>

((insert x A, v) ∈ foldSetD D f e) =

(EX y. (A, y) ∈ foldSetD D f e & v = f x y)"

apply auto

apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])

apply (fastforce dest: foldSetD_imp_finite)

apply assumption

apply assumption

apply (blast intro: foldSetD_determ)
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done

lemma (in LCD) foldD_insert:

"[| finite A; x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>

foldD D f e (insert x A) = f x (foldD D f e A)"

apply (unfold foldD_def)

apply (simp add: foldD_insert_aux)

apply (rule the_equality)

apply (auto intro: finite_imp_foldSetD

cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)

done

lemma (in LCD) foldD_closed [simp]:

"[| finite A; e ∈ D; A ⊆ B |] ==> foldD D f e A ∈ D"

proof (induct set: finite)

case empty then show ?case by simp

next
case insert then show ?case by (simp add: foldD_insert)

qed

lemma (in LCD) foldD_commute:

"[| finite A; x ∈ B; e ∈ D; A ⊆ B |] ==>

f x (foldD D f e A) = foldD D f (f x e) A"

apply (induct set: finite)

apply simp

apply (auto simp add: left_commute foldD_insert)

done

lemma Int_mono2:

"[| A ⊆ C; B ⊆ C |] ==> A Int B ⊆ C"

by blast

lemma (in LCD) foldD_nest_Un_Int:

"[| finite A; finite C; e ∈ D; A ⊆ B; C ⊆ B |] ==>

foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A

Un C)"

apply (induct set: finite)

apply simp

apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb

Int_mono2)

done

lemma (in LCD) foldD_nest_Un_disjoint:

"[| finite A; finite B; A Int B = {}; e ∈ D; A ⊆ B; C ⊆ B |]

==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"

by (simp add: foldD_nest_Un_Int)

— Delete rules to do with foldSetD relation.
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declare foldSetD_imp_finite [simp del]

empty_foldSetDE [rule del]

foldSetD.intros [rule del]

declare (in LCD)

foldSetD_closed [rule del]

Commutative Monoids

We enter a more restrictive context, with f :: ’a => ’a => ’a instead of ’b
=> ’a => ’a.

locale ACeD =

fixes D :: "’a set"

and f :: "’a => ’a => ’a" (infixl "·" 70)

and e :: ’a

assumes ident [simp]: "x ∈ D ==> x · e = x"

and commute: "[| x ∈ D; y ∈ D |] ==> x · y = y · x"
and assoc: "[| x ∈ D; y ∈ D; z ∈ D |] ==> (x · y) · z = x · (y · z)"
and e_closed [simp]: "e ∈ D"

and f_closed [simp]: "[| x ∈ D; y ∈ D |] ==> x · y ∈ D"

lemma (in ACeD) left_commute:

"[| x ∈ D; y ∈ D; z ∈ D |] ==> x · (y · z) = y · (x · z)"
proof -

assume D: "x ∈ D" "y ∈ D" "z ∈ D"

then have "x · (y · z) = (y · z) · x" by (simp add: commute)

also from D have "... = y · (z · x)" by (simp add: assoc)

also from D have "z · x = x · z" by (simp add: commute)

finally show ?thesis .
qed

lemmas (in ACeD) AC = assoc commute left_commute

lemma (in ACeD) left_ident [simp]: "x ∈ D ==> e · x = x"

proof -

assume "x ∈ D"

then have "x · e = x" by (rule ident)

with 〈x ∈ D〉 show ?thesis by (simp add: commute)

qed

lemma (in ACeD) foldD_Un_Int:

"[| finite A; finite B; A ⊆ D; B ⊆ D |] ==>

foldD D f e A · foldD D f e B =

foldD D f e (A Un B) · foldD D f e (A Int B)"

apply (induct set: finite)

apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])

apply (simp add: AC insert_absorb Int_insert_left

LCD.foldD_insert [OF LCD.intro [of D]]

LCD.foldD_closed [OF LCD.intro [of D]]

Int_mono2)
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done

lemma (in ACeD) foldD_Un_disjoint:

"[| finite A; finite B; A Int B = {}; A ⊆ D; B ⊆ D |] ==>

foldD D f e (A Un B) = foldD D f e A · foldD D f e B"

by (simp add: foldD_Un_Int

left_commute LCD.foldD_closed [OF LCD.intro [of D]])

6.9.2 Products over Finite Sets

definition
finprod :: "[(’b, ’m) monoid_scheme, ’a => ’b, ’a set] => ’b"

where "finprod G f A =

(if finite A

then foldD (carrier G) (mult G o f) 1G A

else 1G)"

syntax
"_finprod" :: "index => idt => ’a set => ’b => ’b"

("(3
⊗

__∈_. _)" [1000, 0, 51, 10] 10)

translations
"
⊗

Gi∈A. b" 
 "CONST finprod G (%i. b) A"

— Beware of argument permutation!

lemma (in comm_monoid) finprod_empty [simp]:

"finprod G f {} = 1"
by (simp add: finprod_def)

lemma (in comm_monoid) finprod_infinite[simp]:

"¬ finite A =⇒ finprod G f A = 1"
by (simp add: finprod_def)

declare funcsetI [intro]

funcset_mem [dest]

context comm_monoid begin

lemma finprod_insert [simp]:

"[| finite F; a /∈ F; f ∈ F → carrier G; f a ∈ carrier G |] ==>

finprod G f (insert a F) = f a ⊗ finprod G f F"

apply (rule trans)

apply (simp add: finprod_def)

apply (rule trans)

apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])

apply simp

apply (rule m_lcomm)

apply fast

apply fast

apply assumption
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apply fastforce

apply simp+

apply fast

apply (auto simp add: finprod_def)

done

lemma finprod_one [simp]: "(
⊗

i∈A. 1) = 1"
proof (induct A rule: infinite_finite_induct)

case empty show ?case by simp

next
case (insert a A)

have "(%i. 1) ∈ A → carrier G" by auto

with insert show ?case by simp

qed simp

lemma finprod_closed [simp]:

fixes A

assumes f: "f ∈ A → carrier G"

shows "finprod G f A ∈ carrier G"

using f

proof (induct A rule: infinite_finite_induct)

case empty show ?case by simp

next
case (insert a A)

then have a: "f a ∈ carrier G" by fast

from insert have A: "f ∈ A → carrier G" by fast

from insert A a show ?case by simp

qed simp

lemma funcset_Int_left [simp, intro]:

"[| f ∈ A → C; f ∈ B → C |] ==> f ∈ A Int B → C"

by fast

lemma funcset_Un_left [iff]:

"(f ∈ A Un B → C) = (f ∈ A → C & f ∈ B → C)"

by fast

lemma finprod_Un_Int:

"[| finite A; finite B; g ∈ A → carrier G; g ∈ B → carrier G |] ==>

finprod G g (A Un B) ⊗ finprod G g (A Int B) =

finprod G g A ⊗ finprod G g B"

— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)

case empty then show ?case by simp

next
case (insert a A)

then have a: "g a ∈ carrier G" by fast

from insert have A: "g ∈ A → carrier G" by fast

from insert A a show ?case
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by (simp add: m_ac Int_insert_left insert_absorb Int_mono2)

qed

lemma finprod_Un_disjoint:

"[| finite A; finite B; A Int B = {};

g ∈ A → carrier G; g ∈ B → carrier G |]

==> finprod G g (A Un B) = finprod G g A ⊗ finprod G g B"

apply (subst finprod_Un_Int [symmetric])

apply auto

done

lemma finprod_multf:

"[| f ∈ A → carrier G; g ∈ A → carrier G |] ==>

finprod G (%x. f x ⊗ g x) A = (finprod G f A ⊗ finprod G g A)"

proof (induct A rule: infinite_finite_induct)

case empty show ?case by simp

next
case (insert a A) then
have fA: "f ∈ A → carrier G" by fast

from insert have fa: "f a ∈ carrier G" by fast

from insert have gA: "g ∈ A → carrier G" by fast

from insert have ga: "g a ∈ carrier G" by fast

from insert have fgA: "(%x. f x ⊗ g x) ∈ A → carrier G"

by (simp add: Pi_def)

show ?case

by (simp add: insert fA fa gA ga fgA m_ac)

qed simp

lemma finprod_cong’:

"[| A = B; g ∈ B → carrier G;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

proof -

assume prems: "A = B" "g ∈ B → carrier G"

"!!i. i ∈ B ==> f i = g i"

show ?thesis

proof (cases "finite B")

case True

then have "!!A. [| A = B; g ∈ B → carrier G;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

proof induct

case empty thus ?case by simp

next
case (insert x B)

then have "finprod G f A = finprod G f (insert x B)" by simp

also from insert have "... = f x ⊗ finprod G f B"

proof (intro finprod_insert)

show "finite B" by fact

next
show "x ~: B" by fact
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next
assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"

"g ∈ insert x B → carrier G"

thus "f ∈ B → carrier G" by fastforce

next
assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"

"g ∈ insert x B → carrier G"

thus "f x ∈ carrier G" by fastforce

qed
also from insert have "... = g x ⊗ finprod G g B" by fastforce

also from insert have "... = finprod G g (insert x B)"

by (intro finprod_insert [THEN sym]) auto

finally show ?case .
qed
with prems show ?thesis by simp

next
case False with prems show ?thesis by simp

qed
qed

lemma finprod_cong:

"[| A = B; f ∈ B → carrier G = True;

!!i. i ∈ B =simp=> f i = g i |] ==> finprod G f A = finprod G g

B"

by (rule finprod_cong’) (auto simp add: simp_implies_def)

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g ∈ B → carrier G cannot be shown. Adding Pi_def to the
simpset is often useful. For this reason, finprod_cong is not added to the
simpset by default.

end

declare funcsetI [rule del]

funcset_mem [rule del]

context comm_monoid begin

lemma finprod_0 [simp]:

"f ∈ {0::nat} → carrier G ==> finprod G f {..0} = f 0"

by (simp add: Pi_def)

lemma finprod_Suc [simp]:

"f ∈ {..Suc n} → carrier G ==>

finprod G f {..Suc n} = (f (Suc n) ⊗ finprod G f {..n})"

by (simp add: Pi_def atMost_Suc)

lemma finprod_Suc2:

"f ∈ {..Suc n} → carrier G ==>
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finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} ⊗ f 0)"

proof (induct n)

case 0 thus ?case by (simp add: Pi_def)

next
case Suc thus ?case by (simp add: m_assoc Pi_def)

qed

lemma finprod_mult [simp]:

"[| f ∈ {..n} → carrier G; g ∈ {..n} → carrier G |] ==>

finprod G (%i. f i ⊗ g i) {..n::nat} =

finprod G f {..n} ⊗ finprod G g {..n}"

by (induct n) (simp_all add: m_ac Pi_def)

lemma finprod_reindex:

"f : (h ‘ A) → carrier G =⇒
inj_on h A ==> finprod G f (h ‘ A) = finprod G (%x. f (h x)) A"

proof (induct A rule: infinite_finite_induct)

case (infinite A)

hence "¬ finite (h ‘ A)"

using finite_imageD by blast

with 〈¬ finite A〉 show ?case by simp

qed (auto simp add: Pi_def)

lemma finprod_const:

assumes a [simp]: "a : carrier G"

shows "finprod G (%x. a) A = a (^) card A"

proof (induct A rule: infinite_finite_induct)

case (insert b A)

show ?case

proof (subst finprod_insert[OF insert(1-2)])

show "a ⊗ (
⊗

x∈A. a) = a (^) card (insert b A)"

by (insert insert, auto, subst m_comm, auto)

qed auto

qed auto

lemma finprod_singleton:

assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A →
carrier G"

shows "(
⊗

j∈A. if i = j then f j else 1) = f i"

using i_in_A finprod_insert [of "A - {i}" i "(λj. if i = j then f j

else 1)"]
fin_A f_Pi finprod_one [of "A - {i}"]

finprod_cong [of "A - {i}" "A - {i}" "(λj. if i = j then f j else

1)" "(λi. 1)"]
unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)
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end

end

theory Coset

imports Group

begin

7 Cosets and Quotient Groups

definition
r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "#>ı " 60)

where "H #>G a = (
⋃
h∈H. {h ⊗G a})"

definition
l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<#ı " 60)

where "a <#G H = (
⋃
h∈H. {a ⊗G h})"

definition
RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("rcosetsı _" [81] 80)

where "rcosetsG H = (
⋃
a∈carrier G. {H #>G a})"

definition
set_mult :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<#>ı " 60)

where "H <#>G K = (
⋃
h∈H.

⋃
k∈K. {h ⊗G k})"

definition
SET_INV :: "[_,’a set] ⇒ ’a set" ("set’_invı _" [81] 80)

where "set_invG H = (
⋃
h∈H. {invG h})"

locale normal = subgroup + group +

assumes coset_eq: "(∀ x ∈ carrier G. H #> x = x <# H)"

abbreviation
normal_rel :: "[’a set, (’a, ’b) monoid_scheme] ⇒ bool" (infixl "C"

60) where
"H C G ≡ normal H G"

7.1 Basic Properties of Cosets

lemma (in group) coset_mult_assoc:

"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]

==> (M #> g) #> h = M #> (g ⊗ h)"

by (force simp add: r_coset_def m_assoc)

lemma (in group) coset_mult_one [simp]: "M ⊆ carrier G ==> M #> 1 =
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M"

by (force simp add: r_coset_def)

lemma (in group) coset_mult_inv1:

"[| M #> (x ⊗ (inv y)) = M; x ∈ carrier G ; y ∈ carrier G;

M ⊆ carrier G |] ==> M #> x = M #> y"

apply (erule subst [of concl: "%z. M #> x = z #> y"])

apply (simp add: coset_mult_assoc m_assoc)

done

lemma (in group) coset_mult_inv2:

"[| M #> x = M #> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]

==> M #> (x ⊗ (inv y)) = M "

apply (simp add: coset_mult_assoc [symmetric])

apply (simp add: coset_mult_assoc)

done

lemma (in group) coset_join1:

"[| H #> x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H"

apply (erule subst)

apply (simp add: r_coset_def)

apply (blast intro: l_one subgroup.one_closed sym)

done

lemma (in group) solve_equation:

"[[subgroup H G; x ∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊗ x"

apply (rule bexI [of _ "y ⊗ (inv x)"])

apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc

subgroup.subset [THEN subsetD])

done

lemma (in group) repr_independence:

"[[y ∈ H #> x; x ∈ carrier G; subgroup H G]] =⇒ H #> x = H #> y"

by (auto simp add: r_coset_def m_assoc [symmetric]

subgroup.subset [THEN subsetD]

subgroup.m_closed solve_equation)

lemma (in group) coset_join2:

"[[x ∈ carrier G; subgroup H G; x∈H]] =⇒ H #> x = H"

— Alternative proof is to put x = 1 in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)

lemma (in monoid) r_coset_subset_G:

"[| H ⊆ carrier G; x ∈ carrier G |] ==> H #> x ⊆ carrier G"

by (auto simp add: r_coset_def)

lemma (in group) rcosI:

"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊗ x ∈ H #> x"
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by (auto simp add: r_coset_def)

lemma (in group) rcosetsI:

"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H #> x ∈ rcosets H"

by (auto simp add: RCOSETS_def)

Really needed?

lemma (in group) transpose_inv:

"[| x ⊗ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]

==> (inv x) ⊗ z = y"

by (force simp add: m_assoc [symmetric])

lemma (in group) rcos_self: "[| x ∈ carrier G; subgroup H G |] ==> x

∈ H #> x"

apply (simp add: r_coset_def)

apply (blast intro: sym l_one subgroup.subset [THEN subsetD]

subgroup.one_closed)

done

Opposite of "repr_independence"

lemma (in group) repr_independenceD:

assumes "subgroup H G"

assumes ycarr: "y ∈ carrier G"

and repr: "H #> x = H #> y"

shows "y ∈ H #> x"

proof -

interpret subgroup H G by fact

show ?thesis apply (subst repr)

apply (intro rcos_self)

apply (rule ycarr)

apply (rule is_subgroup)

done
qed

Elements of a right coset are in the carrier

lemma (in subgroup) elemrcos_carrier:

assumes "group G"

assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H #> a"

shows "a’ ∈ carrier G"

proof -

interpret group G by fact

from subset and acarr

have "H #> a ⊆ carrier G" by (rule r_coset_subset_G)

from this and a’

show "a’ ∈ carrier G"

by fast

qed
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lemma (in subgroup) rcos_const:

assumes "group G"

assumes hH: "h ∈ H"

shows "H #> h = H"

proof -

interpret group G by fact

show ?thesis apply (unfold r_coset_def)

apply rule

apply rule

apply clarsimp

apply (intro subgroup.m_closed)

apply (rule is_subgroup)

apply assumption

apply (rule hH)

apply rule

apply simp

proof -

fix h’

assume h’H: "h’ ∈ H"

note carr = hH[THEN mem_carrier] h’H[THEN mem_carrier]

from carr

have a: "h’ = (h’ ⊗ inv h) ⊗ h" by (simp add: m_assoc)

from h’H hH

have "h’ ⊗ inv h ∈ H" by simp

from this and a

show "∃ x∈H. h’ = x ⊗ h" by fast

qed
qed

Step one for lemma rcos_module

lemma (in subgroup) rcos_module_imp:

assumes "group G"

assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H #> x"

shows "(x’ ⊗ inv x) ∈ H"

proof -

interpret group G by fact

from xcarr x’cos

have x’carr: "x’ ∈ carrier G"

by (rule elemrcos_carrier[OF is_group])

from xcarr

have ixcarr: "inv x ∈ carrier G"

by simp

from x’cos

have "∃ h∈H. x’ = h ⊗ x"

unfolding r_coset_def

by fast

from this

obtain h



114

where hH: "h ∈ H"

and x’: "x’ = h ⊗ x"

by auto

from hH and subset

have hcarr: "h ∈ carrier G" by fast

note carr = xcarr x’carr hcarr

from x’ and carr

have "x’ ⊗ (inv x) = (h ⊗ x) ⊗ (inv x)" by fast

also from carr

have ". . . = h ⊗ (x ⊗ inv x)" by (simp add: m_assoc)

also from carr

have ". . . = h ⊗ 1" by simp

also from carr

have ". . . = h" by simp

finally
have "x’ ⊗ (inv x) = h" by simp

from hH this

show "x’ ⊗ (inv x) ∈ H" by simp

qed

Step two for lemma rcos_module

lemma (in subgroup) rcos_module_rev:

assumes "group G"

assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(x’ ⊗ inv x) ∈ H"

shows "x’ ∈ H #> x"

proof -

interpret group G by fact

from xixH

have "∃ h∈H. x’ ⊗ (inv x) = h" by fast

from this

obtain h

where hH: "h ∈ H"

and hsym: "x’ ⊗ (inv x) = h"

by fast

from hH subset have hcarr: "h ∈ carrier G" by simp

note carr = carr hcarr

from hsym[symmetric] have "h ⊗ x = x’ ⊗ (inv x) ⊗ x" by fast

also from carr

have ". . . = x’ ⊗ ((inv x) ⊗ x)" by (simp add: m_assoc)

also from carr

have ". . . = x’ ⊗ 1" by simp

also from carr

have ". . . = x’" by simp

finally
have "h ⊗ x = x’" by simp

from this[symmetric] and hH

show "x’ ∈ H #> x"

unfolding r_coset_def
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by fast

qed

Module property of right cosets

lemma (in subgroup) rcos_module:

assumes "group G"

assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

shows "(x’ ∈ H #> x) = (x’ ⊗ inv x ∈ H)"

proof -

interpret group G by fact

show ?thesis proof assume "x’ ∈ H #> x"

from this and carr

show "x’ ⊗ inv x ∈ H"

by (intro rcos_module_imp[OF is_group])

next
assume "x’ ⊗ inv x ∈ H"

from this and carr

show "x’ ∈ H #> x"

by (intro rcos_module_rev[OF is_group])

qed
qed

Right cosets are subsets of the carrier.

lemma (in subgroup) rcosets_carrier:

assumes "group G"

assumes XH: "X ∈ rcosets H"

shows "X ⊆ carrier G"

proof -

interpret group G by fact

from XH have "∃ x∈ carrier G. X = H #> x"

unfolding RCOSETS_def

by fast

from this

obtain x

where xcarr: "x∈ carrier G"

and X: "X = H #> x"

by fast

from subset and xcarr

show "X ⊆ carrier G"

unfolding X

by (rule r_coset_subset_G)

qed

Multiplication of general subsets

lemma (in monoid) set_mult_closed:

assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"

shows "A <#> B ⊆ carrier G"

apply rule apply (simp add: set_mult_def, clarsimp)
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proof -

fix a b

assume "a ∈ A"

from this and Acarr

have acarr: "a ∈ carrier G" by fast

assume "b ∈ B"

from this and Bcarr

have bcarr: "b ∈ carrier G" by fast

from acarr bcarr

show "a ⊗ b ∈ carrier G" by (rule m_closed)

qed

lemma (in comm_group) mult_subgroups:

assumes subH: "subgroup H G"

and subK: "subgroup K G"

shows "subgroup (H <#> K) G"

apply (rule subgroup.intro)

apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF

subK])

apply (simp add: set_mult_def) apply clarsimp defer 1

apply (simp add: set_mult_def) defer 1

apply (simp add: set_mult_def, clarsimp) defer 1

proof -

fix ha hb ka kb

assume haH: "ha ∈ H" and hbH: "hb ∈ H" and kaK: "ka ∈ K" and kbK:

"kb ∈ K"

note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF

subH]]

kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF

subK]]

from carr

have "(ha ⊗ ka) ⊗ (hb ⊗ kb) = ha ⊗ (ka ⊗ hb) ⊗ kb" by (simp add:

m_assoc)

also from carr

have ". . . = ha ⊗ (hb ⊗ ka) ⊗ kb" by (simp add: m_comm)

also from carr

have ". . . = (ha ⊗ hb) ⊗ (ka ⊗ kb)" by (simp add: m_assoc)

finally
have eq: "(ha ⊗ ka) ⊗ (hb ⊗ kb) = (ha ⊗ hb) ⊗ (ka ⊗ kb)" .

from haH hbH have hH: "ha ⊗ hb ∈ H" by (simp add: subgroup.m_closed[OF

subH])

from kaK kbK have kK: "ka ⊗ kb ∈ K" by (simp add: subgroup.m_closed[OF

subK])

from hH and kK and eq

show "∃ h’∈H. ∃ k’∈K. (ha ⊗ ka) ⊗ (hb ⊗ kb) = h’ ⊗ k’" by fast
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next
have "1 = 1 ⊗ 1" by simp

from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this

show "∃ h∈H. ∃ k∈K. 1 = h ⊗ k" by fast

next
fix h k

assume hH: "h ∈ H"

and kK: "k ∈ K"

from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF

subK]]

have "inv (h ⊗ k) = inv h ⊗ inv k" by (simp add: inv_mult_group

m_comm)

from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF

subK kK] and this

show "∃ ha∈H. ∃ ka∈K. inv (h ⊗ k) = ha ⊗ ka" by fast

qed

lemma (in subgroup) lcos_module_rev:

assumes "group G"

assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(inv x ⊗ x’) ∈ H"

shows "x’ ∈ x <# H"

proof -

interpret group G by fact

from xixH

have "∃ h∈H. (inv x) ⊗ x’ = h" by fast

from this

obtain h

where hH: "h ∈ H"

and hsym: "(inv x) ⊗ x’ = h"

by fast

from hH subset have hcarr: "h ∈ carrier G" by simp

note carr = carr hcarr

from hsym[symmetric] have "x ⊗ h = x ⊗ ((inv x) ⊗ x’)" by fast

also from carr

have ". . . = (x ⊗ (inv x)) ⊗ x’" by (simp add: m_assoc[symmetric])

also from carr

have ". . . = 1 ⊗ x’" by simp

also from carr

have ". . . = x’" by simp

finally
have "x ⊗ h = x’" by simp

from this[symmetric] and hH

show "x’ ∈ x <# H"

unfolding l_coset_def
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by fast

qed

7.2 Normal subgroups

lemma normal_imp_subgroup: "H C G =⇒ subgroup H G"

by (simp add: normal_def subgroup_def)

lemma (in group) normalI:

"subgroup H G =⇒ (∀ x ∈ carrier G. H #> x = x <# H) =⇒ H C G"

by (simp add: normal_def normal_axioms_def is_group)

lemma (in normal) inv_op_closed1:

"[[x ∈ carrier G; h ∈ H]] =⇒ (inv x) ⊗ h ⊗ x ∈ H"

apply (insert coset_eq)

apply (auto simp add: l_coset_def r_coset_def)

apply (drule bspec, assumption)

apply (drule equalityD1 [THEN subsetD], blast, clarify)

apply (simp add: m_assoc)

apply (simp add: m_assoc [symmetric])

done

lemma (in normal) inv_op_closed2:

"[[x ∈ carrier G; h ∈ H]] =⇒ x ⊗ h ⊗ (inv x) ∈ H"

apply (subgoal_tac "inv (inv x) ⊗ h ⊗ (inv x) ∈ H")

apply (simp add: )

apply (blast intro: inv_op_closed1)

done

Alternative characterization of normal subgroups

lemma (in group) normal_inv_iff:

"(N C G) =

(subgroup N G & (∀ x ∈ carrier G. ∀ h ∈ N. x ⊗ h ⊗ (inv x) ∈ N))"

(is "_ = ?rhs")

proof
assume N: "N C G"

show ?rhs

by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)

next
assume ?rhs

hence sg: "subgroup N G"

and closed: "
∧
x. x∈carrier G =⇒ ∀ h∈N. x ⊗ h ⊗ inv x ∈ N" by auto

hence sb: "N ⊆ carrier G" by (simp add: subgroup.subset)

show "N C G"

proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)

fix x

assume x: "x ∈ carrier G"

show "(
⋃
h∈N. {h ⊗ x}) = (

⋃
h∈N. {x ⊗ h})"

proof
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show "(
⋃
h∈N. {h ⊗ x}) ⊆ (

⋃
h∈N. {x ⊗ h})"

proof clarify

fix n

assume n: "n ∈ N"

show "n ⊗ x ∈ (
⋃
h∈N. {x ⊗ h})"

proof
from closed [of "inv x"]

show "inv x ⊗ n ⊗ x ∈ N" by (simp add: x n)

show "n ⊗ x ∈ {x ⊗ (inv x ⊗ n ⊗ x)}"

by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])

qed
qed

next
show "(

⋃
h∈N. {x ⊗ h}) ⊆ (

⋃
h∈N. {h ⊗ x})"

proof clarify

fix n

assume n: "n ∈ N"

show "x ⊗ n ∈ (
⋃
h∈N. {h ⊗ x})"

proof
show "x ⊗ n ⊗ inv x ∈ N" by (simp add: x n closed)

show "x ⊗ n ∈ {x ⊗ n ⊗ inv x ⊗ x}"

by (simp add: x n m_assoc sb [THEN subsetD])

qed
qed

qed
qed

qed

7.3 More Properties of Cosets

lemma (in group) lcos_m_assoc:

"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]

==> g <# (h <# M) = (g ⊗ h) <# M"

by (force simp add: l_coset_def m_assoc)

lemma (in group) lcos_mult_one: "M ⊆ carrier G ==> 1 <# M = M"

by (force simp add: l_coset_def)

lemma (in group) l_coset_subset_G:

"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <# H ⊆ carrier G"

by (auto simp add: l_coset_def subsetD)

lemma (in group) l_coset_swap:

"[[y ∈ x <# H; x ∈ carrier G; subgroup H G]] =⇒ x ∈ y <# H"

proof (simp add: l_coset_def)

assume "∃ h∈H. y = x ⊗ h"

and x: "x ∈ carrier G"

and sb: "subgroup H G"

then obtain h’ where h’: "h’ ∈ H & x ⊗ h’ = y" by blast
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show "∃ h∈H. x = y ⊗ h"

proof
show "x = y ⊗ inv h’" using h’ x sb

by (auto simp add: m_assoc subgroup.subset [THEN subsetD])

show "inv h’ ∈ H" using h’ sb

by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)

qed
qed

lemma (in group) l_coset_carrier:

"[| y ∈ x <# H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier

G"

by (auto simp add: l_coset_def m_assoc

subgroup.subset [THEN subsetD] subgroup.m_closed)

lemma (in group) l_repr_imp_subset:

assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"

shows "y <# H ⊆ x <# H"

proof -

from y

obtain h’ where "h’ ∈ H" "x ⊗ h’ = y" by (auto simp add: l_coset_def)

thus ?thesis using x sb

by (auto simp add: l_coset_def m_assoc

subgroup.subset [THEN subsetD] subgroup.m_closed)

qed

lemma (in group) l_repr_independence:

assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"

shows "x <# H = y <# H"

proof
show "x <# H ⊆ y <# H"

by (rule l_repr_imp_subset,

(blast intro: l_coset_swap l_coset_carrier y x sb)+)

show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])

qed

lemma (in group) setmult_subset_G:

"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <#> K ⊆ carrier G"

by (auto simp add: set_mult_def subsetD)

lemma (in group) subgroup_mult_id: "subgroup H G =⇒ H <#> H = H"

apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def)

apply (rule_tac x = x in bexI)

apply (rule bexI [of _ "1"])
apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])

done
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7.3.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:

assumes x: "x ∈ carrier G"

shows "set_inv (H #> x) = H #> (inv x)"

proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)

fix h

assume h: "h ∈ H"

show "inv x ⊗ inv h ∈ (
⋃
j∈H. {j ⊗ inv x})"

proof
show "inv x ⊗ inv h ⊗ x ∈ H"

by (simp add: inv_op_closed1 h x)

show "inv x ⊗ inv h ∈ {inv x ⊗ inv h ⊗ x ⊗ inv x}"

by (simp add: h x m_assoc)

qed
show "h ⊗ inv x ∈ (

⋃
j∈H. {inv x ⊗ inv j})"

proof
show "x ⊗ inv h ⊗ inv x ∈ H"

by (simp add: inv_op_closed2 h x)

show "h ⊗ inv x ∈ {inv x ⊗ inv (x ⊗ inv h ⊗ inv x)}"

by (simp add: h x m_assoc [symmetric] inv_mult_group)

qed
qed

7.3.2 Theorems for <#> with #> or <#.

lemma (in group) setmult_rcos_assoc:

"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <#> (K #> x) = (H <#> K) #> x"

by (force simp add: r_coset_def set_mult_def m_assoc)

lemma (in group) rcos_assoc_lcos:

"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H #> x) <#> K = H <#> (x <# K)"

by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)

lemma (in normal) rcos_mult_step1:

"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"

by (simp add: setmult_rcos_assoc subset

r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)

lemma (in normal) rcos_mult_step2:

"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"

by (insert coset_eq, simp add: normal_def)

lemma (in normal) rcos_mult_step3:

"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H <#> (H #> x)) #> y = H #> (x ⊗ y)"
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by (simp add: setmult_rcos_assoc coset_mult_assoc

subgroup_mult_id normal.axioms subset normal_axioms)

lemma (in normal) rcos_sum:

"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = H #> (x ⊗ y)"

by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)

lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H =⇒ H <#> M = M"

— generalizes subgroup_mult_id

by (auto simp add: RCOSETS_def subset

setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms)

7.3.3 An Equivalence Relation

definition
r_congruent :: "[(’a,’b)monoid_scheme, ’a set] ⇒ (’a*’a)set" ("rcongı

_")

where "rcongG H = {(x,y). x ∈ carrier G & y ∈ carrier G & invG x ⊗G
y ∈ H}"

lemma (in subgroup) equiv_rcong:

assumes "group G"

shows "equiv (carrier G) (rcong H)"

proof -

interpret group G by fact

show ?thesis

proof (intro equivI)

show "refl_on (carrier G) (rcong H)"

by (auto simp add: r_congruent_def refl_on_def)

next
show "sym (rcong H)"

proof (simp add: r_congruent_def sym_def, clarify)

fix x y

assume [simp]: "x ∈ carrier G" "y ∈ carrier G"

and "inv x ⊗ y ∈ H"

hence "inv (inv x ⊗ y) ∈ H" by simp

thus "inv y ⊗ x ∈ H" by (simp add: inv_mult_group)

qed
next

show "trans (rcong H)"

proof (simp add: r_congruent_def trans_def, clarify)

fix x y z

assume [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

and "inv x ⊗ y ∈ H" and "inv y ⊗ z ∈ H"

hence "(inv x ⊗ y) ⊗ (inv y ⊗ z) ∈ H" by simp

hence "inv x ⊗ (y ⊗ inv y) ⊗ z ∈ H"

by (simp add: m_assoc del: r_inv Units_r_inv)
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thus "inv x ⊗ z ∈ H" by simp

qed
qed

qed

Equivalence classes of rcong correspond to left cosets. Was there a mistake
in the definitions? I’d have expected them to correspond to right cosets.

lemma (in subgroup) l_coset_eq_rcong:

assumes "group G"

assumes a: "a ∈ carrier G"

shows "a <# H = rcong H ‘‘ {a}"

proof -

interpret group G by fact

show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc

[symmetric] a )

qed

7.3.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:

assumes "subgroup H G"

assumes p: "ha ⊗ a = h ⊗ b" "a ∈ carrier G" "b ∈ carrier G" "h ∈ H"

"ha ∈ H" "hb ∈ H"

shows "hb ⊗ a ∈ (
⋃
h∈H. {h ⊗ b})"

proof -

interpret subgroup H G by fact

from p show ?thesis apply (rule_tac UN_I [of "hb ⊗ ((inv ha) ⊗ h)"])

apply (simp add: )

apply (simp add: m_assoc transpose_inv)

done
qed

lemma (in group) rcos_disjoint:

assumes "subgroup H G"

assumes p: "a ∈ rcosets H" "b ∈ rcosets H" "a 6=b"

shows "a ∩ b = {}"

proof -

interpret subgroup H G by fact

from p show ?thesis

apply (simp add: RCOSETS_def r_coset_def)

apply (blast intro: rcos_equation assms sym)

done
qed

7.4 Further lemmas for r_congruent

The relation is a congruence

lemma (in normal) congruent_rcong:

shows "congruent2 (rcong H) (rcong H) (λa b. a ⊗ b <# H)"



124

proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)

fix a b c

assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from abrcong

have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and abH: "inv a ⊗ b ∈ H"

unfolding r_congruent_def

by fast+

note carr = acarr bcarr ccarr

from ccarr and abH

have "inv c ⊗ (inv a ⊗ b) ⊗ c ∈ H" by (rule inv_op_closed1)

moreover
from carr and inv_closed

have "inv c ⊗ (inv a ⊗ b) ⊗ c = (inv c ⊗ inv a) ⊗ (b ⊗ c)"

by (force cong: m_assoc)

moreover
from carr and inv_closed

have ". . . = (inv (a ⊗ c)) ⊗ (b ⊗ c)"

by (simp add: inv_mult_group)

ultimately
have "(inv (a ⊗ c)) ⊗ (b ⊗ c) ∈ H" by simp

from carr and this

have "(b ⊗ c) ∈ (a ⊗ c) <# H"

by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup

show "(a ⊗ c) <# H = (b ⊗ c) <# H" by (intro l_repr_independence,

simp+)

next
fix a b c

assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from ccarr have "c ∈ Units G" by simp

hence cinvc_one: "inv c ⊗ c = 1" by (rule Units_l_inv)

from abrcong

have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and abH: "inv a ⊗ b ∈ H"

by (unfold r_congruent_def, fast+)

note carr = acarr bcarr ccarr

from carr and inv_closed
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have "inv a ⊗ b = inv a ⊗ (1 ⊗ b)" by simp

also from carr and inv_closed

have ". . . = inv a ⊗ (inv c ⊗ c) ⊗ b" by simp

also from carr and inv_closed

have ". . . = (inv a ⊗ inv c) ⊗ (c ⊗ b)" by (force cong: m_assoc)

also from carr and inv_closed

have ". . . = inv (c ⊗ a) ⊗ (c ⊗ b)" by (simp add: inv_mult_group)

finally
have "inv a ⊗ b = inv (c ⊗ a) ⊗ (c ⊗ b)" .

from abH and this

have "inv (c ⊗ a) ⊗ (c ⊗ b) ∈ H" by simp

from carr and this

have "(c ⊗ b) ∈ (c ⊗ a) <# H"

by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup

show "(c ⊗ a) <# H = (c ⊗ b) <# H" by (intro l_repr_independence,

simp+)

qed

7.5 Order of a Group and Lagrange’s Theorem

definition
order :: "(’a, ’b) monoid_scheme ⇒ nat"

where "order S = card (carrier S)"

lemma (in monoid) order_gt_0_iff_finite: "0 < order G ←→ finite (carrier

G)"

by(auto simp add: order_def card_gt_0_iff)

lemma (in group) rcosets_part_G:

assumes "subgroup H G"

shows "
⋃
(rcosets H) = carrier G"

proof -

interpret subgroup H G by fact

show ?thesis

apply (rule equalityI)

apply (force simp add: RCOSETS_def r_coset_def)

apply (auto simp add: RCOSETS_def intro: rcos_self assms)

done
qed

lemma (in group) cosets_finite:

"[[c ∈ rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"

apply (auto simp add: RCOSETS_def)

apply (simp add: r_coset_subset_G [THEN finite_subset])

done

The next two lemmas support the proof of card_cosets_equal.
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lemma (in group) inj_on_f:

"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ inv a) (H #>

a)"

apply (rule inj_onI)

apply (subgoal_tac "x ∈ carrier G & y ∈ carrier G")

prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])

apply (simp add: subsetD)

done

lemma (in group) inj_on_g:

"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ a) H"

by (force simp add: inj_on_def subsetD)

lemma (in group) card_cosets_equal:

"[[c ∈ rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

apply (auto simp add: RCOSETS_def)

apply (rule card_bij_eq)

apply (rule inj_on_f, assumption+)

apply (force simp add: m_assoc subsetD r_coset_def)

apply (rule inj_on_g, assumption+)

apply (force simp add: m_assoc subsetD r_coset_def)

The sets H #> a and H are finite.

apply (simp add: r_coset_subset_G [THEN finite_subset])

apply (blast intro: finite_subset)

done

lemma (in group) rcosets_subset_PowG:

"subgroup H G =⇒ rcosets H ⊆ Pow(carrier G)"

apply (simp add: RCOSETS_def)

apply (blast dest: r_coset_subset_G subgroup.subset)

done

theorem (in group) lagrange:

"[[finite(carrier G); subgroup H G]]
=⇒ card(rcosets H) * card(H) = order(G)"

apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])

apply (subst mult.commute)

apply (rule card_partition)

apply (simp add: rcosets_subset_PowG [THEN finite_subset])

apply (simp add: rcosets_part_G)

apply (simp add: card_cosets_equal subgroup.subset)

apply (simp add: rcos_disjoint)

done

7.6 Quotient Groups: Factorization of a Group

definition
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FactGroup :: "[(’a,’b) monoid_scheme, ’a set] ⇒ (’a set) monoid" (in-
fixl "Mod" 65)

— Actually defined for groups rather than monoids
where "FactGroup G H = (|carrier = rcosetsG H, mult = set_mult G, one

= H|)"

lemma (in normal) setmult_closed:

"[[K1 ∈ rcosets H; K2 ∈ rcosets H]] =⇒ K1 <#> K2 ∈ rcosets H"

by (auto simp add: rcos_sum RCOSETS_def)

lemma (in normal) setinv_closed:

"K ∈ rcosets H =⇒ set_inv K ∈ rcosets H"

by (auto simp add: rcos_inv RCOSETS_def)

lemma (in normal) rcosets_assoc:

"[[M1 ∈ rcosets H; M2 ∈ rcosets H; M3 ∈ rcosets H]]
=⇒ M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"

by (auto simp add: RCOSETS_def rcos_sum m_assoc)

lemma (in subgroup) subgroup_in_rcosets:

assumes "group G"

shows "H ∈ rcosets H"

proof -

interpret group G by fact

from _ subgroup_axioms have "H #> 1 = H"

by (rule coset_join2) auto

then show ?thesis

by (auto simp add: RCOSETS_def)

qed

lemma (in normal) rcosets_inv_mult_group_eq:

"M ∈ rcosets H =⇒ set_inv M <#> M = H"

by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms

normal_axioms)

theorem (in normal) factorgroup_is_group:

"group (G Mod H)"

apply (simp add: FactGroup_def)

apply (rule groupI)

apply (simp add: setmult_closed)

apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])

apply (simp add: restrictI setmult_closed rcosets_assoc)

apply (simp add: normal_imp_subgroup

subgroup_in_rcosets rcosets_mult_eq)

apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)

done

lemma mult_FactGroup [simp]: "X ⊗(G Mod H) X’ = X <#>G X’"

by (simp add: FactGroup_def)
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lemma (in normal) inv_FactGroup:

"X ∈ carrier (G Mod H) =⇒ invG Mod H X = set_inv X"

apply (rule group.inv_equality [OF factorgroup_is_group])

apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)

done

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in normal) r_coset_hom_Mod:

"(λa. H #> a) ∈ hom G (G Mod H)"

by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)

7.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

definition
kernel :: "(’a, ’m) monoid_scheme ⇒ (’b, ’n) monoid_scheme ⇒ (’a

⇒ ’b) ⇒ ’a set"

— the kernel of a homomorphism
where "kernel G H h = {x. x ∈ carrier G & h x = 1H}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"

apply (rule subgroup.intro)

apply (auto simp add: kernel_def group.intro is_group)

done

The kernel of a homomorphism is a normal subgroup

lemma (in group_hom) normal_kernel: "(kernel G H h) C G"

apply (simp add: G.normal_inv_iff subgroup_kernel)

apply (simp add: kernel_def)

done

lemma (in group_hom) FactGroup_nonempty:

assumes X: "X ∈ carrier (G Mod kernel G H h)"

shows "X 6= {}"

proof -

from X

obtain g where "g ∈ carrier G"

and "X = kernel G H h #> g"

by (auto simp add: FactGroup_def RCOSETS_def)

thus ?thesis

by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)

qed

lemma (in group_hom) FactGroup_the_elem_mem:

assumes X: "X ∈ carrier (G Mod (kernel G H h))"
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shows "the_elem (h‘X) ∈ carrier H"

proof -

from X

obtain g where g: "g ∈ carrier G"

and "X = kernel G H h #> g"

by (auto simp add: FactGroup_def RCOSETS_def)

hence "h ‘ X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!:

imageI)

thus ?thesis by (auto simp add: g)

qed

lemma (in group_hom) FactGroup_hom:

"(λX. the_elem (h‘X)) ∈ hom (G Mod (kernel G H h)) H"

apply (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group

[OF normal_kernel] group.axioms monoid.m_closed)

proof (intro ballI)

fix X and X’

assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"

then
obtain g and g’

where "g ∈ carrier G" and "g’ ∈ carrier G"

and "X = kernel G H h #> g" and "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)

hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

and Xsub: "X ⊆ carrier G" and X’sub: "X’ ⊆ carrier G"

by (force simp add: kernel_def r_coset_def image_def)+

hence "h ‘ (X <#> X’) = {h g ⊗H h g’}" using X X’

by (auto dest!: FactGroup_nonempty intro!: image_eqI

simp add: set_mult_def

subsetD [OF Xsub] subsetD [OF X’sub])

then show "the_elem (h ‘ (X <#> X’)) = the_elem (h ‘ X) ⊗H the_elem

(h ‘ X’)"

by (auto simp add: all FactGroup_nonempty X X’ the_elem_image_unique)

qed

Lemma for the following injectivity result

lemma (in group_hom) FactGroup_subset:

"[[g ∈ carrier G; g’ ∈ carrier G; h g = h g’]]
=⇒ kernel G H h #> g ⊆ kernel G H h #> g’"

apply (clarsimp simp add: kernel_def r_coset_def)

apply (rename_tac y)

apply (rule_tac x="y ⊗ g ⊗ inv g’" in exI)

apply (simp add: G.m_assoc)

done

lemma (in group_hom) FactGroup_inj_on:

"inj_on (λX. the_elem (h ‘ X)) (carrier (G Mod kernel G H h))"

proof (simp add: inj_on_def, clarify)
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fix X and X’

assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"

then
obtain g and g’

where gX: "g ∈ carrier G" "g’ ∈ carrier G"

"X = kernel G H h #> g" "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)

hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

by (force simp add: kernel_def r_coset_def image_def)+

assume "the_elem (h ‘ X) = the_elem (h ‘ X’)"

hence h: "h g = h g’"

by (simp add: all FactGroup_nonempty X X’ the_elem_image_unique)

show "X=X’" by (rule equalityI) (simp_all add: FactGroup_subset h gX)

qed

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in group_hom) FactGroup_onto:

assumes h: "h ‘ carrier G = carrier H"

shows "(λX. the_elem (h ‘ X)) ‘ carrier (G Mod kernel G H h) = carrier

H"

proof
show "(λX. the_elem (h ‘ X)) ‘ carrier (G Mod kernel G H h) ⊆ carrier

H"

by (auto simp add: FactGroup_the_elem_mem)

show "carrier H ⊆ (λX. the_elem (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"

proof
fix y

assume y: "y ∈ carrier H"

with h obtain g where g: "g ∈ carrier G" "h g = y"

by (blast elim: equalityE)

hence "(
⋃
x∈kernel G H h #> g. {h x}) = {y}"

by (auto simp add: y kernel_def r_coset_def)

with g show "y ∈ (λX. the_elem (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"

apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def)

apply (subst the_elem_image_unique)

apply auto

done
qed

qed

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in group_hom) FactGroup_iso:

"h ‘ carrier G = carrier H
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=⇒ (λX. the_elem (h‘X)) ∈ (G Mod (kernel G H h)) ∼= H"

by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def

FactGroup_onto)

end

theory Exponent

imports Main "HOL-Computational_Algebra.Primes"

begin

8 Sylow’s Theorem

The Combinatorial Argument Underlying the First Sylow Theorem

needed in this form to prove Sylow’s theorem

corollary (in algebraic_semidom) div_combine:

"[[prime_elem p; ¬ p ^ Suc r dvd n; p ^ (a + r) dvd n * k]] =⇒ p ^ a

dvd k"

by (metis add_Suc_right mult.commute prime_elem_power_dvd_cases)

lemma exponent_p_a_m_k_equation:

fixes p :: nat

assumes "0 < m" "0 < k" "p 6= 0" "k < p^a"

shows "multiplicity p (p^a * m - k) = multiplicity p (p^a - k)"

proof (rule multiplicity_cong [OF iffI])

fix r

assume *: "p ^ r dvd p ^ a * m - k"

show "p ^ r dvd p ^ a - k"

proof -

have "k ≤ p ^ a * m" using assms

by (meson nat_dvd_not_less dvd_triv_left leI mult_pos_pos order.strict_trans)

then have "r ≤ a"

by (meson "*" 〈0 < k〉 〈k < p^a〉 dvd_diffD1 dvd_triv_left leI less_imp_le_nat

nat_dvd_not_less power_le_dvd)

then have "p^r dvd p^a * m" by (simp add: le_imp_power_dvd)

thus ?thesis

by (meson 〈k ≤ p ^ a * m〉 〈r ≤ a〉 * dvd_diffD1 dvd_diff_nat le_imp_power_dvd)

qed
next

fix r

assume *: "p ^ r dvd p ^ a - k"

with assms have "r ≤ a"

by (metis diff_diff_cancel less_imp_le_nat nat_dvd_not_less nat_le_linear

power_le_dvd zero_less_diff)

show "p ^ r dvd p ^ a * m - k"

proof -

have "p^r dvd p^a*m"
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by (simp add: 〈r ≤ a〉 le_imp_power_dvd)

then show ?thesis

by (meson assms * dvd_diffD1 dvd_diff_nat le_imp_power_dvd less_imp_le_nat
〈r ≤ a〉)

qed
qed

lemma p_not_div_choose_lemma:

fixes p :: nat

assumes eeq: "
∧
i. Suc i < K =⇒ multiplicity p (Suc i) = multiplicity

p (Suc (j + i))"

and "k < K" and p: "prime p"

shows "multiplicity p (j + k choose k) = 0"

using 〈k < K〉

proof (induction k)

case 0 then show ?case by simp

next
case (Suc k)

then have *: "(Suc (j+k) choose Suc k) > 0" by simp

then have "multiplicity p ((Suc (j+k) choose Suc k) * Suc k) = multiplicity

p (Suc k)"

by (subst Suc_times_binomial_eq [symmetric], subst prime_elem_multiplicity_mult_distrib)

(insert p Suc.prems, simp_all add: eeq [symmetric] Suc.IH)

with p * show ?case

by (subst (asm) prime_elem_multiplicity_mult_distrib) simp_all

qed

The lemma above, with two changes of variables

lemma p_not_div_choose:

assumes "k < K" and "k ≤ n"

and eeq: "
∧
j. [[0<j; j<K]] =⇒ multiplicity p (n - k + (K - j)) =

multiplicity p (K - j)" "prime p"

shows "multiplicity p (n choose k) = 0"

apply (rule p_not_div_choose_lemma [of K p "n-k" k, simplified assms nat_minus_add_max

max_absorb1])

apply (metis add_Suc_right eeq diff_diff_cancel order_less_imp_le zero_less_Suc

zero_less_diff)

apply (rule TrueI)+

done

proposition const_p_fac:

assumes "m>0" and prime: "prime p"

shows "multiplicity p (p^a * m choose p^a) = multiplicity p m"

proof-
from assms have p: "0 < p ^ a" "0 < p^a * m" "p^a ≤ p^a * m"

by (auto simp: prime_gt_0_nat)

have *: "multiplicity p ((p^a * m - 1) choose (p^a - 1)) = 0"

apply (rule p_not_div_choose [where K = "p^a"])

using p exponent_p_a_m_k_equation by (auto simp: diff_le_mono prime)
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have "multiplicity p ((p ^ a * m choose p ^ a) * p ^ a) = a + multiplicity

p m"

proof -

have "(p ^ a * m choose p ^ a) * p ^ a = p ^ a * m * (p ^ a * m -

1 choose (p ^ a - 1))"

(is "_ = ?rhs") using prime

by (subst times_binomial_minus1_eq [symmetric]) (auto simp: prime_gt_0_nat)

also from p have "p ^ a - Suc 0 ≤ p ^ a * m - Suc 0" by linarith

with prime * p have "multiplicity p ?rhs = multiplicity p (p ^ a

* m)"

by (subst prime_elem_multiplicity_mult_distrib) auto

also have ". . . = a + multiplicity p m"

using prime p by (subst prime_elem_multiplicity_mult_distrib) simp_all

finally show ?thesis .
qed
then show ?thesis

using prime p by (subst (asm) prime_elem_multiplicity_mult_distrib)

simp_all

qed

end

theory Sylow

imports Coset Exponent

begin

See also [3].

The combinatorial argument is in theory Exponent.

lemma le_extend_mult: "[[0 < c; a ≤ b]] =⇒ a ≤ b * c"

for c :: nat

by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less

zero_less_iff_neq_zero)

locale sylow = group +

fixes p and a and m and calM and RelM

assumes prime_p: "prime p"

and order_G: "order G = (p^a) * m"

and finite_G[iff]: "finite (carrier G)"

defines "calM ≡ {s. s ⊆ carrier G ∧ card s = p^a}"

and "RelM ≡ {(N1, N2). N1 ∈ calM ∧ N2 ∈ calM ∧ (∃ g ∈ carrier G.

N1 = N2 #> g)}"

begin

lemma RelM_refl_on: "refl_on calM RelM"

by (auto simp: refl_on_def RelM_def calM_def) (blast intro!: coset_mult_one

[symmetric])

lemma RelM_sym: "sym RelM"
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proof (unfold sym_def RelM_def, clarify)

fix y g

assume "y ∈ calM"

and g: "g ∈ carrier G"

then have "y = y #> g #> (inv g)"

by (simp add: coset_mult_assoc calM_def)

then show "∃ g’∈carrier G. y = y #> g #> g’"

by (blast intro: g)

qed

lemma RelM_trans: "trans RelM"

by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)

lemma RelM_equiv: "equiv calM RelM"

unfolding equiv_def by (blast intro: RelM_refl_on RelM_sym RelM_trans)

lemma M_subset_calM_prep: "M’ ∈ calM // RelM =⇒ M’ ⊆ calM"

unfolding RelM_def by (blast elim!: quotientE)

end

8.1 Main Part of the Proof

locale sylow_central = sylow +

fixes H and M1 and M

assumes M_in_quot: "M ∈ calM // RelM"

and not_dvd_M: "¬ (p ^ Suc (multiplicity p m) dvd card M)"

and M1_in_M: "M1 ∈ M"

defines "H ≡ {g. g ∈ carrier G ∧ M1 #> g = M1}"

begin

lemma M_subset_calM: "M ⊆ calM"

by (rule M_in_quot [THEN M_subset_calM_prep])

lemma card_M1: "card M1 = p^a"

using M1_in_M M_subset_calM calM_def by blast

lemma exists_x_in_M1: "∃ x. x ∈ M1"

using prime_p [THEN prime_gt_Suc_0_nat] card_M1

by (metis Suc_lessD card_eq_0_iff empty_subsetI equalityI gr_implies_not0

nat_zero_less_power_iff subsetI)

lemma M1_subset_G [simp]: "M1 ⊆ carrier G"

using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast

lemma M1_inj_H: "∃ f ∈ H→M1. inj_on f H"

proof -

from exists_x_in_M1 obtain m1 where m1M: "m1 ∈ M1"..
have m1: "m1 ∈ carrier G"
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by (simp add: m1M M1_subset_G [THEN subsetD])

show ?thesis

proof
show "inj_on (λz∈H. m1 ⊗ z) H"

by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def

m1)

show "restrict (op ⊗ m1) H ∈ H → M1"

proof (rule restrictI)

fix z

assume zH: "z ∈ H"

show "m1 ⊗ z ∈ M1"

proof -

from zH

have zG: "z ∈ carrier G" and M1zeq: "M1 #> z = M1"

by (auto simp add: H_def)

show ?thesis

by (rule subst [OF M1zeq]) (simp add: m1M zG rcosI)

qed
qed

qed
qed

end

8.2 Discharging the Assumptions of sylow_central

context sylow

begin

lemma EmptyNotInEquivSet: "{} /∈ calM // RelM"

by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])

lemma existsM1inM: "M ∈ calM // RelM =⇒ ∃ M1. M1 ∈ M"

using RelM_equiv equiv_Eps_in by blast

lemma zero_less_o_G: "0 < order G"

by (simp add: order_def card_gt_0_iff carrier_not_empty)

lemma zero_less_m: "m > 0"

using zero_less_o_G by (simp add: order_G)

lemma card_calM: "card calM = (p^a) * m choose p^a"

by (simp add: calM_def n_subsets order_G [symmetric] order_def)

lemma zero_less_card_calM: "card calM > 0"

by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)

lemma max_p_div_calM: "¬ (p ^ Suc (multiplicity p m) dvd card calM)"

proof
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assume "p ^ Suc (multiplicity p m) dvd card calM"

with zero_less_card_calM prime_p

have "Suc (multiplicity p m) ≤ multiplicity p (card calM)"

by (intro multiplicity_geI) auto

then have "multiplicity p m < multiplicity p (card calM)" by simp

also have "multiplicity p m = multiplicity p (card calM)"

by (simp add: const_p_fac prime_p zero_less_m card_calM)

finally show False by simp

qed

lemma finite_calM: "finite calM"

unfolding calM_def by (rule finite_subset [where B = "Pow (carrier

G)"]) auto

lemma lemma_A1: "∃ M ∈ calM // RelM. ¬ (p ^ Suc (multiplicity p m) dvd

card M)"

using RelM_equiv equiv_imp_dvd_card finite_calM max_p_div_calM by blast

end

8.2.1 Introduction and Destruct Rules for H

context sylow_central

begin

lemma H_I: "[[g ∈ carrier G; M1 #> g = M1]] =⇒ g ∈ H"

by (simp add: H_def)

lemma H_into_carrier_G: "x ∈ H =⇒ x ∈ carrier G"

by (simp add: H_def)

lemma in_H_imp_eq: "g ∈ H =⇒ M1 #> g = M1"

by (simp add: H_def)

lemma H_m_closed: "[[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"

by (simp add: H_def coset_mult_assoc [symmetric])

lemma H_not_empty: "H 6= {}"

apply (simp add: H_def)

apply (rule exI [of _ 1])
apply simp

done

lemma H_is_subgroup: "subgroup H G"

apply (rule subgroupI)

apply (rule subsetI)

apply (erule H_into_carrier_G)

apply (rule H_not_empty)

apply (simp add: H_def)



137

apply clarify

apply (erule_tac P = "λz. lhs z = M1" for lhs in subst)

apply (simp add: coset_mult_assoc )

apply (blast intro: H_m_closed)

done

lemma rcosetGM1g_subset_G: "[[g ∈ carrier G; x ∈ M1 #> g]] =⇒ x ∈ carrier

G"

by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])

lemma finite_M1: "finite M1"

by (rule finite_subset [OF M1_subset_G finite_G])

lemma finite_rcosetGM1g: "g ∈ carrier G =⇒ finite (M1 #> g)"

using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI

by blast

lemma M1_cardeq_rcosetGM1g: "g ∈ carrier G =⇒ card (M1 #> g) = card

M1"

by (simp add: card_cosets_equal rcosetsI)

lemma M1_RelM_rcosetGM1g: "g ∈ carrier G =⇒ (M1, M1 #> g) ∈ RelM"

apply (simp add: RelM_def calM_def card_M1)

apply (rule conjI)

apply (blast intro: rcosetGM1g_subset_G)

apply (simp add: card_M1 M1_cardeq_rcosetGM1g)

apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)

done

end

8.3 Equal Cardinalities of M and the Set of Cosets

Injections between M and rcosetsG H show that their cardinalities are equal.

lemma ElemClassEquiv: "[[equiv A r; C ∈ A // r]] =⇒ ∀ x ∈ C. ∀ y ∈ C. (x,

y) ∈ r"

unfolding equiv_def quotient_def sym_def trans_def by blast

context sylow_central

begin

lemma M_elem_map: "M2 ∈ M =⇒ ∃ g. g ∈ carrier G ∧ M1 #> g = M2"

using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]

by (simp add: RelM_def) (blast dest!: bspec)

lemmas M_elem_map_carrier = M_elem_map [THEN someI_ex, THEN conjunct1]

lemmas M_elem_map_eq = M_elem_map [THEN someI_ex, THEN conjunct2]
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lemma M_funcset_rcosets_H:

"(λx∈M. H #> (SOME g. g ∈ carrier G ∧ M1 #> g = x)) ∈ M → rcosets

H"

by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI

subgroup_imp_subset)

lemma inj_M_GmodH: "∃ f ∈ M → rcosets H. inj_on f M"

apply (rule bexI)

apply (rule_tac [2] M_funcset_rcosets_H)

apply (rule inj_onI, simp)

apply (rule trans [OF _ M_elem_map_eq])

prefer 2 apply assumption

apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)

apply (rule coset_mult_inv1)

apply (erule_tac [2] M_elem_map_carrier)+

apply (rule_tac [2] M1_subset_G)

apply (rule coset_join1 [THEN in_H_imp_eq])

apply (rule_tac [3] H_is_subgroup)

prefer 2 apply (blast intro: M_elem_map_carrier)

apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)

done

end

8.3.1 The Opposite Injection

context sylow_central

begin

lemma H_elem_map: "H1 ∈ rcosets H =⇒ ∃ g. g ∈ carrier G ∧ H #> g =

H1"

by (auto simp: RCOSETS_def)

lemmas H_elem_map_carrier = H_elem_map [THEN someI_ex, THEN conjunct1]

lemmas H_elem_map_eq = H_elem_map [THEN someI_ex, THEN conjunct2]

lemma rcosets_H_funcset_M:

"(λC ∈ rcosets H. M1 #> (@g. g ∈ carrier G ∧ H #> g = C)) ∈ rcosets

H → M"

apply (simp add: RCOSETS_def)

apply (fast intro: someI2

intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot

_ M1_RelM_rcosetGM1g])

done

Close to a duplicate of inj_M_GmodH.

lemma inj_GmodH_M: "∃ g ∈ rcosets H→M. inj_on g (rcosets H)"
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apply (rule bexI)

apply (rule_tac [2] rcosets_H_funcset_M)

apply (rule inj_onI)

apply (simp)

apply (rule trans [OF _ H_elem_map_eq])

prefer 2 apply assumption

apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)

apply (rule coset_mult_inv1)

apply (erule_tac [2] H_elem_map_carrier)+

apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])

apply (rule coset_join2)

apply (blast intro: H_elem_map_carrier)

apply (rule H_is_subgroup)

apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)

done

lemma calM_subset_PowG: "calM ⊆ Pow (carrier G)"

by (auto simp: calM_def)

lemma finite_M: "finite M"

by (metis M_subset_calM finite_calM rev_finite_subset)

lemma cardMeqIndexH: "card M = card (rcosets H)"

apply (insert inj_M_GmodH inj_GmodH_M)

apply (blast intro: card_bij finite_M H_is_subgroup

rcosets_subset_PowG [THEN finite_subset]

finite_Pow_iff [THEN iffD2])

done

lemma index_lem: "card M * card H = order G"

by (simp add: cardMeqIndexH lagrange H_is_subgroup)

lemma lemma_leq1: "p^a ≤ card H"

apply (rule dvd_imp_le)

apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])

prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)

apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd

zero_less_m)

done

lemma lemma_leq2: "card H ≤ p^a"

apply (subst card_M1 [symmetric])

apply (cut_tac M1_inj_H)

apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset

[OF _ finite_G])

done

lemma card_H_eq: "card H = p^a"
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by (blast intro: le_antisym lemma_leq1 lemma_leq2)

end

lemma (in sylow) sylow_thm: "∃ H. subgroup H G ∧ card H = p^a"

using lemma_A1

apply clarify

apply (frule existsM1inM, clarify)

apply (subgoal_tac "sylow_central G p a m M1 M")

apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)

apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms

calM_def RelM_def)

done

Needed because the locale’s automatic definition refers to semigroup G and
Group.group_axioms G rather than simply to Group.group G.

lemma sylow_eq: "sylow G p a m ←→ group G ∧ sylow_axioms G p a m"

by (simp add: sylow_def group_def)

8.4 Sylow’s Theorem

theorem sylow_thm:

"[[prime p; group G; order G = (p^a) * m; finite (carrier G)]]
=⇒ ∃ H. subgroup H G ∧ card H = p^a"

by (rule sylow.sylow_thm [of G p a m]) (simp add: sylow_eq sylow_axioms_def)

end

theory Bij

imports Group

begin

9 Bijections of a Set, Permutation and Automor-
phism Groups

definition
Bij :: "’a set ⇒ (’a ⇒ ’a) set"

— Only extensional functions, since otherwise we get too many.
where "Bij S = extensional S ∩ {f. bij_betw f S S}"

definition
BijGroup :: "’a set ⇒ (’a ⇒ ’a) monoid"

where "BijGroup S =

(|carrier = Bij S,

mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,

one = λx ∈ S. x|)"
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declare Id_compose [simp] compose_Id [simp]

lemma Bij_imp_extensional: "f ∈ Bij S =⇒ f ∈ extensional S"

by (simp add: Bij_def)

lemma Bij_imp_funcset: "f ∈ Bij S =⇒ f ∈ S → S"

by (auto simp add: Bij_def bij_betw_imp_funcset)

9.1 Bijections Form a Group

lemma restrict_inv_into_Bij: "f ∈ Bij S =⇒ (λx ∈ S. (inv_into S f)

x) ∈ Bij S"

by (simp add: Bij_def bij_betw_inv_into)

lemma id_Bij: "(λx∈S. x) ∈ Bij S "

by (auto simp add: Bij_def bij_betw_def inj_on_def)

lemma compose_Bij: "[[x ∈ Bij S; y ∈ Bij S]] =⇒ compose S x y ∈ Bij S"

by (auto simp add: Bij_def bij_betw_compose)

lemma Bij_compose_restrict_eq:

"f ∈ Bij S =⇒ compose S (restrict (inv_into S f) S) f = (λx∈S.
x)"

by (simp add: Bij_def compose_inv_into_id)

theorem group_BijGroup: "group (BijGroup S)"

apply (simp add: BijGroup_def)

apply (rule groupI)

apply (simp add: compose_Bij)

apply (simp add: id_Bij)

apply (simp add: compose_Bij)

apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)

apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)

apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)

done

9.2 Automorphisms Form a Group

lemma Bij_inv_into_mem: "[[ f ∈ Bij S; x ∈ S]] =⇒ inv_into S f x ∈ S"

by (simp add: Bij_def bij_betw_def inv_into_into)

lemma Bij_inv_into_lemma:

assumes eq: "
∧
x y. [[x ∈ S; y ∈ S]] =⇒ h(g x y) = g (h x) (h y)"

shows "[[h ∈ Bij S; g ∈ S → S → S; x ∈ S; y ∈ S]]
=⇒ inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"

apply (simp add: Bij_def bij_betw_def)

apply (subgoal_tac "∃ x’∈S. ∃ y’∈S. x = h x’ & y = h y’", clarify)

apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem],

blast)
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done

definition
auto :: "(’a, ’b) monoid_scheme ⇒ (’a ⇒ ’a) set"

where "auto G = hom G G ∩ Bij (carrier G)"

definition
AutoGroup :: "(’a, ’c) monoid_scheme ⇒ (’a ⇒ ’a) monoid"

where "AutoGroup G = BijGroup (carrier G) (|carrier := auto G|)"

lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"

by (simp add: auto_def hom_def restrictI group.axioms id_Bij)

lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier

G"

by (simp add: Pi_I group.axioms)

lemma (in group) restrict_inv_into_hom:

"[[h ∈ hom G G; h ∈ Bij (carrier G)]]
=⇒ restrict (inv_into (carrier G) h) (carrier G) ∈ hom G G"

by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset

group.axioms Bij_inv_into_lemma)

lemma inv_BijGroup:

"f ∈ Bij S =⇒ m_inv (BijGroup S) f = (λx ∈ S. (inv_into S f) x)"

apply (rule group.inv_equality)

apply (rule group_BijGroup)

apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)

done

lemma (in group) subgroup_auto:

"subgroup (auto G) (BijGroup (carrier G))"

proof (rule subgroup.intro)

show "auto G ⊆ carrier (BijGroup (carrier G))"

by (force simp add: auto_def BijGroup_def)

next
fix x y

assume "x ∈ auto G" "y ∈ auto G"

thus "x ⊗BijGroup (carrier G) y ∈ auto G"

by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset

group.hom_compose compose_Bij)

next
show "1BijGroup (carrier G) ∈ auto G" by (simp add: BijGroup_def id_in_auto)

next
fix x

assume "x ∈ auto G"

thus "invBijGroup (carrier G) x ∈ auto G"
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by (simp del: restrict_apply

add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)

qed

theorem (in group) AutoGroup: "group (AutoGroup G)"

by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto

group_BijGroup)

end

theory Ring

imports FiniteProduct

begin

10 The Algebraic Hierarchy of Rings

10.1 Abelian Groups

record ’a ring = "’a monoid" +

zero :: ’a ("0ı ")
add :: "[’a, ’a] => ’a" (infixl "⊕ı " 65)

Derived operations.

definition
a_inv :: "[(’a, ’m) ring_scheme, ’a ] => ’a" ("	ı _" [81] 80)

where "a_inv R = m_inv (|carrier = carrier R, mult = add R, one = zero

R|)"

definition
a_minus :: "[(’a, ’m) ring_scheme, ’a, ’a] => ’a" (infixl "	ı " 65)

where "[| x ∈ carrier R; y ∈ carrier R |] ==> x 	R y = x ⊕R (	R y)"

locale abelian_monoid =

fixes G (structure)
assumes a_comm_monoid:

"comm_monoid (|carrier = carrier G, mult = add G, one = zero G|)"

definition
finsum :: "[(’b, ’m) ring_scheme, ’a => ’b, ’a set] => ’b" where
"finsum G = finprod (|carrier = carrier G, mult = add G, one = zero G|)"

syntax
"_finsum" :: "index => idt => ’a set => ’b => ’b"

("(3
⊕

__∈_. _)" [1000, 0, 51, 10] 10)

translations
"
⊕

Gi∈A. b" 
 "CONST finsum G (%i. b) A"

— Beware of argument permutation!
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locale abelian_group = abelian_monoid +

assumes a_comm_group:

"comm_group (|carrier = carrier G, mult = add G, one = zero G|)"

10.2 Basic Properties

lemma abelian_monoidI:

fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier

R"

and zero_closed: "0 ∈ carrier R"

and a_assoc:

"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"

and a_comm:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

shows "abelian_monoid R"

by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)

lemma abelian_groupI:

fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier

R"

and zero_closed: "zero R ∈ carrier R"

and a_assoc:

"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and a_comm:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"

and l_inv_ex: "!!x. x ∈ carrier R ==> EX y : carrier R. y ⊕ x = 0"
shows "abelian_group R"

by (auto intro!: abelian_group.intro abelian_monoidI

abelian_group_axioms.intro comm_monoidI comm_groupI

intro: assms)

lemma (in abelian_monoid) a_monoid:

"monoid (|carrier = carrier G, mult = add G, one = zero G|)"
by (rule comm_monoid.axioms, rule a_comm_monoid)

lemma (in abelian_group) a_group:

"group (|carrier = carrier G, mult = add G, one = zero G|)"
by (simp add: group_def a_monoid)

(simp add: comm_group.axioms group.axioms a_comm_group)
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lemmas monoid_record_simps = partial_object.simps monoid.simps

Transfer facts from multiplicative structures via interpretation.

sublocale abelian_monoid <

add: monoid "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (|carrier = carrier G, mult = add G, one = zero G|)

= carrier G"

and "mult (|carrier = carrier G, mult = add G, one = zero G|) = add

G"

and "one (|carrier = carrier G, mult = add G, one = zero G|) = zero

G"

by (rule a_monoid) auto

context abelian_monoid begin

lemmas a_closed = add.m_closed

lemmas zero_closed = add.one_closed

lemmas a_assoc = add.m_assoc

lemmas l_zero = add.l_one

lemmas r_zero = add.r_one

lemmas minus_unique = add.inv_unique

end

sublocale abelian_monoid <

add: comm_monoid "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (|carrier = carrier G, mult = add G, one = zero G|)

= carrier G"

and "mult (|carrier = carrier G, mult = add G, one = zero G|) = add

G"

and "one (|carrier = carrier G, mult = add G, one = zero G|) = zero

G"

and "finprod (|carrier = carrier G, mult = add G, one = zero G|) = finsum

G"

by (rule a_comm_monoid) (auto simp: finsum_def)

context abelian_monoid begin

lemmas a_comm = add.m_comm

lemmas a_lcomm = add.m_lcomm

lemmas a_ac = a_assoc a_comm a_lcomm

lemmas finsum_empty = add.finprod_empty

lemmas finsum_insert = add.finprod_insert

lemmas finsum_zero = add.finprod_one

lemmas finsum_closed = add.finprod_closed

lemmas finsum_Un_Int = add.finprod_Un_Int

lemmas finsum_Un_disjoint = add.finprod_Un_disjoint

lemmas finsum_addf = add.finprod_multf



146

lemmas finsum_cong’ = add.finprod_cong’

lemmas finsum_0 = add.finprod_0

lemmas finsum_Suc = add.finprod_Suc

lemmas finsum_Suc2 = add.finprod_Suc2

lemmas finsum_add = add.finprod_mult

lemmas finsum_infinite = add.finprod_infinite

lemmas finsum_cong = add.finprod_cong

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g ∈ B → carrier G cannot be shown. Adding Pi_def to the
simpset is often useful.

lemmas finsum_reindex = add.finprod_reindex

lemmas finsum_singleton = add.finprod_singleton

end

sublocale abelian_group <

add: group "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (|carrier = carrier G, mult = add G, one = zero G|)

= carrier G"

and "mult (|carrier = carrier G, mult = add G, one = zero G|) = add

G"

and "one (|carrier = carrier G, mult = add G, one = zero G|) = zero

G"

and "m_inv (|carrier = carrier G, mult = add G, one = zero G|) = a_inv

G"

by (rule a_group) (auto simp: m_inv_def a_inv_def)

context abelian_group

begin

lemmas a_inv_closed = add.inv_closed

lemma minus_closed [intro, simp]:

"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y ∈ carrier G"

by (simp add: a_minus_def)

lemmas a_l_cancel = add.l_cancel

lemmas a_r_cancel = add.r_cancel

lemmas l_neg = add.l_inv [simp del]

lemmas r_neg = add.r_inv [simp del]

lemmas minus_zero = add.inv_one

lemmas minus_minus = add.inv_inv

lemmas a_inv_inj = add.inv_inj

lemmas minus_equality = add.inv_equality
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end

sublocale abelian_group <

add: comm_group "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (|carrier = carrier G, mult = add G, one = zero G|)

= carrier G"

and "mult (|carrier = carrier G, mult = add G, one = zero G|) = add

G"

and "one (|carrier = carrier G, mult = add G, one = zero G|) = zero

G"

and "m_inv (|carrier = carrier G, mult = add G, one = zero G|) = a_inv

G"

and "finprod (|carrier = carrier G, mult = add G, one = zero G|) = finsum

G"

by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def)

lemmas (in abelian_group) minus_add = add.inv_mult

Derive an abelian_group from a comm_group

lemma comm_group_abelian_groupI:

fixes G (structure)
assumes cg: "comm_group (|carrier = carrier G, mult = add G, one = zero

G|)"
shows "abelian_group G"

proof -

interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule cg)

show "abelian_group G" ..
qed

10.3 Rings: Basic Definitions

locale semiring = abelian_monoid R + monoid R for R (structure) +

assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

and l_null[simp]: "x ∈ carrier R ==> 0 ⊗ x = 0"
and r_null[simp]: "x ∈ carrier R ==> x ⊗ 0 = 0"

locale ring = abelian_group R + monoid R for R (structure) +

assumes "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

locale cring = ring + comm_monoid R
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locale "domain" = cring +

assumes one_not_zero [simp]: "1 ~= 0"
and integral: "[| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==>

a = 0 | b = 0"

locale field = "domain" +

assumes field_Units: "Units R = carrier R - {0}"

10.4 Rings

lemma ringI:

fixes R (structure)
assumes abelian_group: "abelian_group R"

and monoid: "monoid R"

and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]

==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

shows "ring R"

by (auto intro: ring.intro

abelian_group.axioms ring_axioms.intro assms)

context ring begin

lemma is_abelian_group: "abelian_group R" ..

lemma is_monoid: "monoid R"

by (auto intro!: monoidI m_assoc)

lemma is_ring: "ring R"

by (rule ring_axioms)

end

lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringI:

fixes R (structure)
assumes abelian_group: "abelian_group R"

and comm_monoid: "comm_monoid R"

and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

shows "cring R"

proof (intro cring.intro ring.intro)

show "ring_axioms R"
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— Right-distributivity follows from left-distributivity and commutativity.
proof (rule ring_axioms.intro)

fix x y z

assume R: "x ∈ carrier R" "y ∈ carrier R" "z ∈ carrier R"

note [simp] = comm_monoid.axioms [OF comm_monoid]

abelian_group.axioms [OF abelian_group]

abelian_monoid.a_closed

from R have "z ⊗ (x ⊕ y) = (x ⊕ y) ⊗ z"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

also from R have "... = x ⊗ z ⊕ y ⊗ z" by (simp add: l_distr)

also from R have "... = z ⊗ x ⊕ z ⊗ y"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

finally show "z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y" .
qed (rule l_distr)

qed (auto intro: cring.intro

abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)

lemma (in cring) is_cring:

"cring R" by (rule cring_axioms)

10.4.1 Normaliser for Rings

lemma (in abelian_group) r_neg2:

"[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ (	 x ⊕ y) = y"

proof -

assume G: "x ∈ carrier G" "y ∈ carrier G"

then have "(x ⊕ 	 x) ⊕ y = y"

by (simp only: r_neg l_zero)

with G show ?thesis

by (simp add: a_ac)

qed

lemma (in abelian_group) r_neg1:

"[| x ∈ carrier G; y ∈ carrier G |] ==> 	 x ⊕ (x ⊕ y) = y"

proof -

assume G: "x ∈ carrier G" "y ∈ carrier G"

then have "(	 x ⊕ x) ⊕ y = y"

by (simp only: l_neg l_zero)

with G show ?thesis by (simp add: a_ac)

qed

context ring begin

The following proofs are from Jacobson, Basic Algebra I, pp. 88–89.

sublocale semiring

proof -
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note [simp] = ring_axioms[unfolded ring_def ring_axioms_def]

show "semiring R"

proof (unfold_locales)

fix x

assume R: "x ∈ carrier R"

then have "0 ⊗ x ⊕ 0 ⊗ x = (0 ⊕ 0) ⊗ x"

by (simp del: l_zero r_zero)

also from R have "... = 0 ⊗ x ⊕ 0" by simp

finally have "0 ⊗ x ⊕ 0 ⊗ x = 0 ⊗ x ⊕ 0" .
with R show "0 ⊗ x = 0" by (simp del: r_zero)

from R have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ (0 ⊕ 0)"
by (simp del: l_zero r_zero)

also from R have "... = x ⊗ 0 ⊕ 0" by simp

finally have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ 0 ⊕ 0" .
with R show "x ⊗ 0 = 0" by (simp del: r_zero)

qed auto

qed

lemma l_minus:

"[| x ∈ carrier R; y ∈ carrier R |] ==> 	 x ⊗ y = 	 (x ⊗ y)"

proof -

assume R: "x ∈ carrier R" "y ∈ carrier R"

then have "(	 x) ⊗ y ⊕ x ⊗ y = (	 x ⊕ x) ⊗ y" by (simp add: l_distr)

also from R have "... = 0" by (simp add: l_neg)

finally have "(	 x) ⊗ y ⊕ x ⊗ y = 0" .
with R have "(	 x) ⊗ y ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp

with R show ?thesis by (simp add: a_assoc r_neg)

qed

lemma r_minus:

"[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ 	 y = 	 (x ⊗ y)"

proof -

assume R: "x ∈ carrier R" "y ∈ carrier R"

then have "x ⊗ (	 y) ⊕ x ⊗ y = x ⊗ (	 y ⊕ y)" by (simp add: r_distr)

also from R have "... = 0" by (simp add: l_neg)

finally have "x ⊗ (	 y) ⊕ x ⊗ y = 0" .
with R have "x ⊗ (	 y) ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp

with R show ?thesis by (simp add: a_assoc r_neg )

qed

end

lemma (in abelian_group) minus_eq:

"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y = x ⊕ 	 y"

by (simp only: a_minus_def)

Setup algebra method: compute distributive normal form in locale contexts
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ML file "ringsimp.ML"

attribute setup algebra = 〈

Scan.lift ((Args.add >> K true || Args.del >> K false) --| Args.colon

|| Scan.succeed true)

-- Scan.lift Args.name -- Scan.repeat Args.term

>> (fn ((b, n), ts) => if b then Ringsimp.add_struct (n, ts) else

Ringsimp.del_struct (n, ts))
〉 "theorems controlling algebra method"

method setup algebra = 〈

Scan.succeed (SIMPLE_METHOD’ o Ringsimp.algebra_tac)
〉 "normalisation of algebraic structure"

lemmas (in semiring) semiring_simprules

[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

=

a_closed zero_closed m_closed one_closed

a_assoc l_zero a_comm m_assoc l_one l_distr r_zero

a_lcomm r_distr l_null r_null

lemmas (in ring) ring_simprules

[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

=

a_closed zero_closed a_inv_closed minus_closed m_closed one_closed

a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq

r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero

a_lcomm r_distr l_null r_null l_minus r_minus

lemmas (in cring)

[algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =

_

lemmas (in cring) cring_simprules

[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =

a_closed zero_closed a_inv_closed minus_closed m_closed one_closed

a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq

r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero

a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus

lemma (in semiring) nat_pow_zero:

"(n::nat) ~= 0 ==> 0 (^) n = 0"
by (induct n) simp_all

context semiring begin

lemma one_zeroD:
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assumes onezero: "1 = 0"
shows "carrier R = {0}"

proof (rule, rule)

fix x

assume xcarr: "x ∈ carrier R"

from xcarr have "x = x ⊗ 1" by simp

with onezero have "x = x ⊗ 0" by simp

with xcarr have "x = 0" by simp

then show "x ∈ {0}" by fast

qed fast

lemma one_zeroI:

assumes carrzero: "carrier R = {0}"
shows "1 = 0"

proof -

from one_closed and carrzero

show "1 = 0" by simp

qed

lemma carrier_one_zero: "(carrier R = {0}) = (1 = 0)"
apply rule

apply (erule one_zeroI)

apply (erule one_zeroD)

done

lemma carrier_one_not_zero: "(carrier R 6= {0}) = (1 6= 0)"
by (simp add: carrier_one_zero)

end

Two examples for use of method algebra

lemma
fixes R (structure) and S (structure)
assumes "ring R" "cring S"

assumes RS: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier S" "d ∈ carrier

S"

shows "a ⊕ 	 (a ⊕ 	 b) = b & c ⊗S d = d ⊗S c"

proof -

interpret ring R by fact

interpret cring S by fact

from RS show ?thesis by algebra

qed

lemma
fixes R (structure)
assumes "ring R"

assumes R: "a ∈ carrier R" "b ∈ carrier R"

shows "a 	 (a 	 b) = b"

proof -
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interpret ring R by fact

from R show ?thesis by algebra

qed

10.4.2 Sums over Finite Sets

lemma (in semiring) finsum_ldistr:

"[| finite A; a ∈ carrier R; f ∈ A → carrier R |] ==>

finsum R f A ⊗ a = finsum R (%i. f i ⊗ a) A"

proof (induct set: finite)

case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)

qed

lemma (in semiring) finsum_rdistr:

"[| finite A; a ∈ carrier R; f ∈ A → carrier R |] ==>

a ⊗ finsum R f A = finsum R (%i. a ⊗ f i) A"

proof (induct set: finite)

case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def r_distr)

qed

10.5 Integral Domains

context "domain" begin

lemma zero_not_one [simp]:

"0 ~= 1"
by (rule not_sym) simp

lemma integral_iff:

"[| a ∈ carrier R; b ∈ carrier R |] ==> (a ⊗ b = 0) = (a = 0 | b =

0)"
proof

assume "a ∈ carrier R" "b ∈ carrier R" "a ⊗ b = 0"
then show "a = 0 | b = 0" by (simp add: integral)

next
assume "a ∈ carrier R" "b ∈ carrier R" "a = 0 | b = 0"
then show "a ⊗ b = 0" by auto

qed

lemma m_lcancel:

assumes prem: "a ~= 0"
and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"

shows "(a ⊗ b = a ⊗ c) = (b = c)"

proof
assume eq: "a ⊗ b = a ⊗ c"

with R have "a ⊗ (b 	 c) = 0" by algebra
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with R have "a = 0 | (b 	 c) = 0" by (simp add: integral_iff)

with prem and R have "b 	 c = 0" by auto

with R have "b = b 	 (b 	 c)" by algebra

also from R have "b 	 (b 	 c) = c" by algebra

finally show "b = c" .
next

assume "b = c" then show "a ⊗ b = a ⊗ c" by simp

qed

lemma m_rcancel:

assumes prem: "a ~= 0"
and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"

shows conc: "(b ⊗ a = c ⊗ a) = (b = c)"

proof -

from prem and R have "(a ⊗ b = a ⊗ c) = (b = c)" by (rule m_lcancel)

with R show ?thesis by algebra

qed

end

10.6 Fields

Field would not need to be derived from domain, the properties for domain
follow from the assumptions of field

lemma (in cring) cring_fieldI:

assumes field_Units: "Units R = carrier R - {0}"
shows "field R"

proof
from field_Units have "0 /∈ Units R" by fast

moreover have "1 ∈ Units R" by fast

ultimately show "1 6= 0" by force

next
fix a b

assume acarr: "a ∈ carrier R"

and bcarr: "b ∈ carrier R"

and ab: "a ⊗ b = 0"
show "a = 0 ∨ b = 0"
proof (cases "a = 0", simp)

assume "a 6= 0"
with field_Units and acarr have aUnit: "a ∈ Units R" by fast

from bcarr have "b = 1 ⊗ b" by algebra

also from aUnit acarr have "... = (inv a ⊗ a) ⊗ b" by simp

also from acarr bcarr aUnit[THEN Units_inv_closed]

have "... = (inv a) ⊗ (a ⊗ b)" by algebra

also from ab and acarr bcarr aUnit have "... = (inv a) ⊗ 0" by simp

also from aUnit[THEN Units_inv_closed] have "... = 0" by algebra

finally have "b = 0" .
then show "a = 0 ∨ b = 0" by simp

qed
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qed (rule field_Units)

Another variant to show that something is a field

lemma (in cring) cring_fieldI2:

assumes notzero: "0 6= 1"
and invex: "

∧
a. [[a ∈ carrier R; a 6= 0]] =⇒ ∃ b∈carrier R. a ⊗ b =

1"
shows "field R"

apply (rule cring_fieldI, simp add: Units_def)

apply (rule, clarsimp)

apply (simp add: notzero)

proof (clarsimp)

fix x

assume xcarr: "x ∈ carrier R"

and "x 6= 0"
then have "∃ y∈carrier R. x ⊗ y = 1" by (rule invex)

then obtain y where ycarr: "y ∈ carrier R" and xy: "x ⊗ y = 1" by
fast

from xy xcarr ycarr have "y ⊗ x = 1" by (simp add: m_comm)

with ycarr and xy show "∃ y∈carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by
fast

qed

10.7 Morphisms

definition
ring_hom :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme] => (’a =>

’b) set"

where "ring_hom R S =

{h. h ∈ carrier R → carrier S &

(ALL x y. x ∈ carrier R & y ∈ carrier R -->

h (x ⊗R y) = h x ⊗S h y & h (x ⊕R y) = h x ⊕S h y) &

h 1R = 1S}"

lemma ring_hom_memI:

fixes R (structure) and S (structure)
assumes hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"

and hom_mult: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>

h (x ⊗ y) = h x ⊗S h y"

and hom_add: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>

h (x ⊕ y) = h x ⊕S h y"

and hom_one: "h 1 = 1S"
shows "h ∈ ring_hom R S"

by (auto simp add: ring_hom_def assms Pi_def)

lemma ring_hom_closed:

"[| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S"

by (auto simp add: ring_hom_def funcset_mem)
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lemma ring_hom_mult:

fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>

h (x ⊗ y) = h x ⊗S h y"

by (simp add: ring_hom_def)

lemma ring_hom_add:

fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>

h (x ⊕ y) = h x ⊕S h y"

by (simp add: ring_hom_def)

lemma ring_hom_one:

fixes R (structure) and S (structure)
shows "h ∈ ring_hom R S ==> h 1 = 1S"
by (simp add: ring_hom_def)

locale ring_hom_cring = R?: cring R + S?: cring S

for R (structure) and S (structure) +

fixes h

assumes homh [simp, intro]: "h ∈ ring_hom R S"

notes hom_closed [simp, intro] = ring_hom_closed [OF homh]

and hom_mult [simp] = ring_hom_mult [OF homh]

and hom_add [simp] = ring_hom_add [OF homh]

and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]:

"h 0 = 0S"
proof -

have "h 0 ⊕S h 0 = h 0 ⊕S 0S"
by (simp add: hom_add [symmetric] del: hom_add)

then show ?thesis by (simp del: S.r_zero)

qed

lemma (in ring_hom_cring) hom_a_inv [simp]:

"x ∈ carrier R ==> h (	 x) = 	S h x"

proof -

assume R: "x ∈ carrier R"

then have "h x ⊕S h (	 x) = h x ⊕S (	S h x)"

by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)

with R show ?thesis by simp

qed

lemma (in ring_hom_cring) hom_finsum [simp]:

"f ∈ A → carrier R ==>

h (finsum R f A) = finsum S (h o f) A"

by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
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lemma (in ring_hom_cring) hom_finprod:

"f ∈ A → carrier R ==>

h (finprod R f A) = finprod S (h o f) A"

by (induct A rule: infinite_finite_induct, auto simp: Pi_def)

declare ring_hom_cring.hom_finprod [simp]

lemma id_ring_hom [simp]:

"id ∈ ring_hom R R"

by (auto intro!: ring_hom_memI)

end

11 More on groups

theory More_Group

imports
Ring

begin

Show that the units in any monoid give rise to a group.

The file Residues.thy provides some infrastructure to use facts about the
unit group within the ring locale.

definition units_of :: "(’a, ’b) monoid_scheme => ’a monoid" where
"units_of G == (| carrier = Units G,

Group.monoid.mult = Group.monoid.mult G,

one = one G |)"

lemma (in monoid) units_group: "group(units_of G)"

apply (unfold units_of_def)

apply (rule groupI)

apply auto

apply (subst m_assoc)

apply auto

apply (rule_tac x = "inv x" in bexI)

apply auto

done

lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"

apply (rule group.group_comm_groupI)

apply (rule units_group)

apply (insert comm_monoid_axioms)

apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)

apply auto

done

lemma units_of_carrier: "carrier (units_of G) = Units G"
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unfolding units_of_def by auto

lemma units_of_mult: "mult(units_of G) = mult G"

unfolding units_of_def by auto

lemma units_of_one: "one(units_of G) = one G"

unfolding units_of_def by auto

lemma (in monoid) units_of_inv: "x : Units G ==> m_inv (units_of G) x

= m_inv G x"

apply (rule sym)

apply (subst m_inv_def)

apply (rule the1_equality)

apply (rule ex_ex1I)

apply (subst (asm) Units_def)

apply auto

apply (erule inv_unique)

apply auto

apply (rule Units_closed)

apply (simp_all only: units_of_carrier [symmetric])

apply (insert units_group)

apply auto

apply (subst units_of_mult [symmetric])

apply (subst units_of_one [symmetric])

apply (erule group.r_inv, assumption)

apply (subst units_of_mult [symmetric])

apply (subst units_of_one [symmetric])

apply (erule group.l_inv, assumption)

done

lemma (in group) inj_on_const_mult: "a: (carrier G) ==> inj_on (%x. a

⊗ x) (carrier G)"

unfolding inj_on_def by auto

lemma (in group) surj_const_mult: "a : (carrier G) ==> (%x. a ⊗ x) ‘

(carrier G) = (carrier G)"

apply (auto simp add: image_def)

apply (rule_tac x = "(m_inv G a) ⊗ x" in bexI)

apply auto

apply (subst m_assoc [symmetric])

apply auto

done

lemma (in group) l_cancel_one [simp]:

"x : carrier G =⇒ a : carrier G =⇒ (x ⊗ a = x) = (a = one G)"

apply auto

apply (subst l_cancel [symmetric])

prefer 4
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apply (erule ssubst)

apply auto

done

lemma (in group) r_cancel_one [simp]: "x : carrier G =⇒ a : carrier

G =⇒
(a ⊗ x = x) = (a = one G)"

apply auto

apply (subst r_cancel [symmetric])

prefer 4

apply (erule ssubst)

apply auto

done

lemma (in group) l_cancel_one’ [simp]: "x : carrier G =⇒ a : carrier

G =⇒
(x = x ⊗ a) = (a = one G)"

apply (subst eq_commute)

apply simp

done

lemma (in group) r_cancel_one’ [simp]: "x : carrier G =⇒ a : carrier

G =⇒
(x = a ⊗ x) = (a = one G)"

apply (subst eq_commute)

apply simp

done

lemma (in comm_group) power_order_eq_one:

assumes fin [simp]: "finite (carrier G)"

and a [simp]: "a : carrier G"

shows "a (^) card(carrier G) = one G"

proof -

have "(
⊗

x∈carrier G. x) = (
⊗

x∈carrier G. a ⊗ x)"

by (subst (2) finprod_reindex [symmetric],

auto simp add: Pi_def inj_on_const_mult surj_const_mult)

also have ". . . = (
⊗

x∈carrier G. a) ⊗ (
⊗

x∈carrier G. x)"

by (auto simp add: finprod_multf Pi_def)

also have "(
⊗

x∈carrier G. a) = a (^) card(carrier G)"

by (auto simp add: finprod_const)

finally show ?thesis

by auto

qed

end
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12 More on finite products

theory More_Finite_Product

imports
More_Group

begin

lemma (in comm_monoid) finprod_UN_disjoint:

"finite I =⇒ (ALL i:I. finite (A i)) −→ (ALL i:I. ALL j:I. i ~= j

−→
(A i) Int (A j) = {}) −→
(ALL i:I. ALL x: (A i). g x : carrier G) −→
finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"

apply (induct set: finite)

apply force

apply clarsimp

apply (subst finprod_Un_disjoint)

apply blast

apply (erule finite_UN_I)

apply blast

apply (fastforce)

apply (auto intro!: funcsetI finprod_closed)

done

lemma (in comm_monoid) finprod_Union_disjoint:

"[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));

(ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |]

==> finprod G f (
⋃
C) = finprod G (finprod G f) C"

apply (frule finprod_UN_disjoint [of C id f])

apply auto

done

lemma (in comm_monoid) finprod_one:

"finite A =⇒ (
∧
x. x:A =⇒ f x = 1) =⇒ finprod G f A = 1"

by (induct set: finite) auto

lemma (in cring) sum_zero_eq_neg: "x : carrier R =⇒ y : carrier R =⇒
x ⊕ y = 0 =⇒ x = 	 y"

by (metis minus_equality)

lemma (in domain) square_eq_one:

fixes x

assumes [simp]: "x : carrier R"

and "x ⊗ x = 1"
shows "x = 1 | x = 	1"
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proof -

have "(x ⊕ 1) ⊗ (x ⊕ 	 1) = x ⊗ x ⊕ 	 1"
by (simp add: ring_simprules)

also from 〈x ⊗ x = 1〉 have ". . . = 0"
by (simp add: ring_simprules)

finally have "(x ⊕ 1) ⊗ (x ⊕ 	 1) = 0" .
then have "(x ⊕ 1) = 0 | (x ⊕ 	 1) = 0"

by (intro integral, auto)

then show ?thesis

apply auto

apply (erule notE)

apply (rule sum_zero_eq_neg)

apply auto

apply (subgoal_tac "x = 	 (	 1)")
apply (simp add: ring_simprules)

apply (rule sum_zero_eq_neg)

apply auto

done
qed

lemma (in Ring.domain) inv_eq_self: "x : Units R =⇒ x = inv x =⇒ x

= 1 ∨ x = 	1"
by (metis Units_closed Units_l_inv square_eq_one)

The following translates theorems about groups to the facts about the units
of a ring. (The list should be expanded as more things are needed.)

lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R)

=⇒ finite (Units R)"

by (rule finite_subset) auto

lemma (in monoid) units_of_pow:

fixes n :: nat

shows "x ∈ Units G =⇒ x (^)units_of G n = x (^)G n"

apply (induct n)

apply (auto simp add: units_group group.is_monoid

monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)

done

lemma (in cring) units_power_order_eq_one: "finite (Units R) =⇒ a :

Units R

=⇒ a (^) card(Units R) = 1"
apply (subst units_of_carrier [symmetric])

apply (subst units_of_one [symmetric])

apply (subst units_of_pow [symmetric])

apply assumption

apply (rule comm_group.power_order_eq_one)

apply (rule units_comm_group)

apply (unfold units_of_def, auto)

done
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end

theory Module

imports Ring

begin

13 Modules over an Abelian Group

13.1 Definitions

record (’a, ’b) module = "’b ring" +

smult :: "[’a, ’b] => ’b" (infixl "�ı " 70)

locale module = R?: cring + M?: abelian_group M for M (structure) +

assumes smult_closed [simp, intro]:

"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier M"

and smult_l_distr:

"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊕ b) �M x = a �M x ⊕M b �M x"

and smult_r_distr:

"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>

a �M (x ⊕M y) = a �M x ⊕M a �M y"

and smult_assoc1:

"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊗ b) �M x = a �M (b �M x)"

and smult_one [simp]:

"x ∈ carrier M ==> 1 �M x = x"

locale algebra = module + cring M +

assumes smult_assoc2:

"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>

(a �M x) ⊗M y = a �M (x ⊗M y)"

lemma moduleI:

fixes R (structure) and M (structure)
assumes cring: "cring R"

and abelian_group: "abelian_group M"

and smult_closed:

"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"

and smult_l_distr:

"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:

"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>

a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:
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"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:

"!!x. x ∈ carrier M ==> 1 �M x = x"

shows "module R M"

by (auto intro: module.intro cring.axioms abelian_group.axioms

module_axioms.intro assms)

lemma algebraI:

fixes R (structure) and M (structure)
assumes R_cring: "cring R"

and M_cring: "cring M"

and smult_closed:

"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"

and smult_l_distr:

"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:

"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>

a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:

"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:

"!!x. x ∈ carrier M ==> (one R) �M x = x"

and smult_assoc2:

"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>

(a �M x) ⊗M y = a �M (x ⊗M y)"

shows "algebra R M"

apply intro_locales

apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms

assms)+

apply (rule module_axioms.intro)

apply (simp add: smult_closed)

apply (simp add: smult_l_distr)

apply (simp add: smult_r_distr)

apply (simp add: smult_assoc1)

apply (simp add: smult_one)

apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms

assms)+

apply (rule algebra_axioms.intro)

apply (simp add: smult_assoc2)

done

lemma (in algebra) R_cring:

"cring R"

..
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lemma (in algebra) M_cring:

"cring M"

..

lemma (in algebra) module:

"module R M"

by (auto intro: moduleI R_cring is_abelian_group

smult_l_distr smult_r_distr smult_assoc1)

13.2 Basic Properties of Algebras

lemma (in algebra) smult_l_null [simp]:

"x ∈ carrier M ==> 0 �M x = 0M"
proof -

assume M: "x ∈ carrier M"

note facts = M smult_closed [OF R.zero_closed]

from facts have "0 �M x = (0 �M x ⊕M 0 �M x) ⊕M 	M (0 �M x)" by
algebra

also from M have "... = (0 ⊕ 0) �M x ⊕M 	M (0 �M x)"

by (simp add: smult_l_distr del: R.l_zero R.r_zero)

also from facts have "... = 0M" apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_null [simp]:

"a ∈ carrier R ==> a �M 0M = 0M"
proof -

assume R: "a ∈ carrier R"

note facts = R smult_closed

from facts have "a �M 0M = (a �M 0M ⊕M a �M 0M) ⊕M 	M (a �M 0M)"
by algebra

also from R have "... = a �M (0M ⊕M 0M) ⊕M 	M (a �M 0M)"
by (simp add: smult_r_distr del: M.l_zero M.r_zero)

also from facts have "... = 0M" by algebra

finally show ?thesis .
qed

lemma (in algebra) smult_l_minus:

"[| a ∈ carrier R; x ∈ carrier M |] ==> (	a) �M x = 	M (a �M x)"

proof -

assume RM: "a ∈ carrier R" "x ∈ carrier M"

from RM have a_smult: "a �M x ∈ carrier M" by simp

from RM have ma_smult: "	a �M x ∈ carrier M" by simp

note facts = RM a_smult ma_smult

from facts have "(	a) �M x = (	a �M x ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra

also from RM have "... = (	a ⊕ a) �M x ⊕M 	M(a �M x)"

by (simp add: smult_l_distr)

also from facts smult_l_null have "... = 	M(a �M x)"
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apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_minus:

"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M (	Mx) = 	M (a �M x)"

proof -

assume RM: "a ∈ carrier R" "x ∈ carrier M"

note facts = RM smult_closed

from facts have "a �M (	Mx) = (a �M 	Mx ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra

also from RM have "... = a �M (	Mx ⊕M x) ⊕M 	M(a �M x)"

by (simp add: smult_r_distr)

also from facts smult_r_null have "... = 	M(a �M x)" by algebra

finally show ?thesis .
qed

end

theory AbelCoset

imports Coset Ring

begin

13.3 More Lifting from Groups to Abelian Groups

13.3.1 Definitions

Hiding <+> from Sum_Type until I come up with better syntax here

no notation Sum_Type.Plus (infixr "<+>" 65)

definition
a_r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "+>ı " 60)

where "a_r_coset G = r_coset (|carrier = carrier G, mult = add G, one

= zero G|)"

definition
a_l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<+ı " 60)

where "a_l_coset G = l_coset (|carrier = carrier G, mult = add G, one

= zero G|)"

definition
A_RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("a’_rcosetsı _" [81] 80)

where "A_RCOSETS G H = RCOSETS (|carrier = carrier G, mult = add G,

one = zero G|) H"

definition
set_add :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<+>ı " 60)

where "set_add G = set_mult (|carrier = carrier G, mult = add G, one
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= zero G|)"

definition
A_SET_INV :: "[_,’a set] ⇒ ’a set" ("a’_set’_invı _" [81] 80)

where "A_SET_INV G H = SET_INV (|carrier = carrier G, mult = add G,

one = zero G|) H"

definition
a_r_congruent :: "[(’a,’b)ring_scheme, ’a set] ⇒ (’a*’a)set" ("racongı ")

where "a_r_congruent G = r_congruent (|carrier = carrier G, mult = add

G, one = zero G|)"

definition
A_FactGroup :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) monoid" (in-

fixl "A’_Mod" 65)

— Actually defined for groups rather than monoids
where "A_FactGroup G H = FactGroup (|carrier = carrier G, mult = add

G, one = zero G|) H"

definition
a_kernel :: "(’a, ’m) ring_scheme ⇒ (’b, ’n) ring_scheme ⇒ (’a ⇒

’b) ⇒ ’a set"

— the kernel of a homomorphism (additive)
where "a_kernel G H h =

kernel (|carrier = carrier G, mult = add G, one = zero G|)
(|carrier = carrier H, mult = add H, one = zero H|) h"

locale abelian_group_hom = G?: abelian_group G + H?: abelian_group H

for G (structure) and H (structure) +

fixes h

assumes a_group_hom: "group_hom (|carrier = carrier G, mult = add G,

one = zero G|)
(|carrier = carrier H, mult = add H,

one = zero H|) h"

lemmas a_r_coset_defs =

a_r_coset_def r_coset_def

lemma a_r_coset_def’:

fixes G (structure)
shows "H +> a ≡

⋃
h∈H. {h ⊕ a}"

unfolding a_r_coset_defs

by simp

lemmas a_l_coset_defs =

a_l_coset_def l_coset_def

lemma a_l_coset_def’:

fixes G (structure)
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shows "a <+ H ≡
⋃
h∈H. {a ⊕ h}"

unfolding a_l_coset_defs

by simp

lemmas A_RCOSETS_defs =

A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def’:

fixes G (structure)
shows "a_rcosets H ≡

⋃
a∈carrier G. {H +> a}"

unfolding A_RCOSETS_defs

by (fold a_r_coset_def, simp)

lemmas set_add_defs =

set_add_def set_mult_def

lemma set_add_def’:

fixes G (structure)
shows "H <+> K ≡

⋃
h∈H.

⋃
k∈K. {h ⊕ k}"

unfolding set_add_defs

by simp

lemmas A_SET_INV_defs =

A_SET_INV_def SET_INV_def

lemma A_SET_INV_def’:

fixes G (structure)
shows "a_set_inv H ≡

⋃
h∈H. {	 h}"

unfolding A_SET_INV_defs

by (fold a_inv_def)

13.3.2 Cosets

lemma (in abelian_group) a_coset_add_assoc:

"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]

==> (M +> g) +> h = M +> (g ⊕ h)"

by (rule group.coset_mult_assoc [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_zero [simp]:

"M ⊆ carrier G ==> M +> 0 = M"

by (rule group.coset_mult_one [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv1:

"[| M +> (x ⊕ (	 y)) = M; x ∈ carrier G ; y ∈ carrier G;

M ⊆ carrier G |] ==> M +> x = M +> y"

by (rule group.coset_mult_inv1 [OF a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
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lemma (in abelian_group) a_coset_add_inv2:

"[| M +> x = M +> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]

==> M +> (x ⊕ (	 y)) = M"

by (rule group.coset_mult_inv2 [OF a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join1:

"[| H +> x = H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> x ∈ H"

by (rule group.coset_join1 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_solve_equation:

"[[subgroup H (|carrier = carrier G, mult = add G, one = zero G|); x

∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊕ x"

by (rule group.solve_equation [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_repr_independence:

"[[y ∈ H +> x; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|) ]] =⇒ H +> x = H +> y"

by (rule group.repr_independence [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join2:

"[[x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G,

one = zero G|); x∈H]] =⇒ H +> x = H"

by (rule group.coset_join2 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_monoid) a_r_coset_subset_G:

"[| H ⊆ carrier G; x ∈ carrier G |] ==> H +> x ⊆ carrier G"

by (rule monoid.r_coset_subset_G [OF a_monoid,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosI:

"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊕ x ∈ H +> x"

by (rule group.rcosI [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosetsI:

"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H +> x ∈ a_rcosets H"

by (rule group.rcosetsI [OF a_group,

folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

Really needed?

lemma (in abelian_group) a_transpose_inv:
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"[| x ⊕ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]

==> (	 x) ⊕ z = y"

by (rule group.transpose_inv [OF a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

13.3.3 Subgroups

locale additive_subgroup =

fixes H and G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"

lemma (in additive_subgroup) is_additive_subgroup:

shows "additive_subgroup H G"

by (rule additive_subgroup_axioms)

lemma additive_subgroupI:

fixes G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "additive_subgroup H G"

by (rule additive_subgroup.intro) (rule a_subgroup)

lemma (in additive_subgroup) a_subset:

"H ⊆ carrier G"

by (rule subgroup.subset[OF a_subgroup,

simplified monoid_record_simps])

lemma (in additive_subgroup) a_closed [intro, simp]:

"[[x ∈ H; y ∈ H]] =⇒ x ⊕ y ∈ H"

by (rule subgroup.m_closed[OF a_subgroup,

simplified monoid_record_simps])

lemma (in additive_subgroup) zero_closed [simp]:

"0 ∈ H"

by (rule subgroup.one_closed[OF a_subgroup,

simplified monoid_record_simps])

lemma (in additive_subgroup) a_inv_closed [intro,simp]:

"x ∈ H =⇒ 	 x ∈ H"

by (rule subgroup.m_inv_closed[OF a_subgroup,

folded a_inv_def, simplified monoid_record_simps])

13.3.4 Additive subgroups are normal

Every subgroup of an abelian_group is normal

locale abelian_subgroup = additive_subgroup + abelian_group G +

assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"
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lemma (in abelian_subgroup) is_abelian_subgroup:

shows "abelian_subgroup H G"

by (rule abelian_subgroup_axioms)

lemma abelian_subgroupI:

assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"
and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕G

y = y ⊕G x"

shows "abelian_subgroup H G"

proof -

interpret normal "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_normal)

show "abelian_subgroup H G"

by standard (simp add: a_comm)

qed

lemma abelian_subgroupI2:

fixes G (structure)
assumes a_comm_group: "comm_group (|carrier = carrier G, mult = add

G, one = zero G|)"
and a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "abelian_subgroup H G"

proof -

interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_comm_group)

interpret subgroup "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_subgroup)

show "abelian_subgroup H G"

apply unfold_locales

proof (simp add: r_coset_def l_coset_def, clarsimp)

fix x

assume xcarr: "x ∈ carrier G"

from a_subgroup have Hcarr: "H ⊆ carrier G"

unfolding subgroup_def by simp

from xcarr Hcarr show "(
⋃
h∈H. {h ⊕G x}) = (

⋃
h∈H. {x ⊕G h})"

using m_comm [simplified] by fastforce

qed
qed

lemma abelian_subgroupI3:

fixes G (structure)
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assumes asg: "additive_subgroup H G"

and ag: "abelian_group G"

shows "abelian_subgroup H G"

apply (rule abelian_subgroupI2)

apply (rule abelian_group.a_comm_group[OF ag])

apply (rule additive_subgroup.a_subgroup[OF asg])

done

lemma (in abelian_subgroup) a_coset_eq:

"(∀ x ∈ carrier G. H +> x = x <+ H)"

by (rule normal.coset_eq[OF a_normal,

folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed1:

shows "[[x ∈ carrier G; h ∈ H]] =⇒ (	 x) ⊕ h ⊕ x ∈ H"

by (rule normal.inv_op_closed1 [OF a_normal,

folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed2:

shows "[[x ∈ carrier G; h ∈ H]] =⇒ x ⊕ h ⊕ (	 x) ∈ H"

by (rule normal.inv_op_closed2 [OF a_normal,

folded a_inv_def, simplified monoid_record_simps])

Alternative characterization of normal subgroups

lemma (in abelian_group) a_normal_inv_iff:

"(N C (|carrier = carrier G, mult = add G, one = zero G|)) =

(subgroup N (|carrier = carrier G, mult = add G, one = zero G|) &

(∀ x ∈ carrier G. ∀ h ∈ N. x ⊕ h ⊕ (	 x) ∈ N))"

(is "_ = ?rhs")

by (rule group.normal_inv_iff [OF a_group,

folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_m_assoc:

"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]

==> g <+ (h <+ M) = (g ⊕ h) <+ M"

by (rule group.lcos_m_assoc [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_mult_one:

"M ⊆ carrier G ==> 0 <+ M = M"

by (rule group.lcos_mult_one [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_subset_G:

"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <+ H ⊆ carrier G"

by (rule group.l_coset_subset_G [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])
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lemma (in abelian_group) a_l_coset_swap:

"[[y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|)]] =⇒ x ∈ y <+ H"

by (rule group.l_coset_swap [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_carrier:

"[| y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> y ∈ carrier G"

by (rule group.l_coset_carrier [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_repr_imp_subset:

assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "y <+ H ⊆ x <+ H"

apply (rule group.l_repr_imp_subset [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)

apply (rule x)

apply (rule sb)

done

lemma (in abelian_group) a_l_repr_independence:

assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "x <+ H = y <+ H"

apply (rule group.l_repr_independence [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)

apply (rule x)

apply (rule sb)

done

lemma (in abelian_group) setadd_subset_G:

"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <+> K ⊆ carrier G"

by (rule group.setmult_subset_G [OF a_group,

folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_group) subgroup_add_id: "subgroup H (|carrier = carrier

G, mult = add G, one = zero G|) =⇒ H <+> H = H"

by (rule group.subgroup_mult_id [OF a_group,

folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_inv:

assumes x: "x ∈ carrier G"

shows "a_set_inv (H +> x) = H +> (	 x)"

by (rule normal.rcos_inv [OF a_normal,
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folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps])

(rule x)

lemma (in abelian_group) a_setmult_rcos_assoc:

"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <+> (K +> x) = (H <+> K) +> x"

by (rule group.setmult_rcos_assoc [OF a_group,

folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcos_assoc_lcos:

"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H +> x) <+> K = H <+> (x <+ K)"

by (rule group.rcos_assoc_lcos [OF a_group,

folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_sum:

"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H +> x) <+> (H +> y) = H +> (x ⊕ y)"

by (rule normal.rcos_sum [OF a_normal,

folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) rcosets_add_eq:

"M ∈ a_rcosets H =⇒ H <+> M = M"

— generalizes subgroup_mult_id

by (rule normal.rcosets_mult_eq [OF a_normal,

folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

13.3.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:

shows "equiv (carrier G) (racong H)"

by (rule subgroup.equiv_rcong [OF a_subgroup a_group,

folded a_r_congruent_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_l_coset_eq_rcong:

assumes a: "a ∈ carrier G"

shows "a <+ H = racong H ‘‘ {a}"

by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,

folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

(rule a)

lemma (in abelian_subgroup) a_rcos_equation:

shows
"[[ha ⊕ a = h ⊕ b; a ∈ carrier G; b ∈ carrier G;

h ∈ H; ha ∈ H; hb ∈ H]]
=⇒ hb ⊕ a ∈ (

⋃
h∈H. {h ⊕ b})"

by (rule group.rcos_equation [OF a_group a_subgroup,

folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])



174

lemma (in abelian_subgroup) a_rcos_disjoint:

shows "[[a ∈ a_rcosets H; b ∈ a_rcosets H; a6=b]] =⇒ a ∩ b = {}"

by (rule group.rcos_disjoint [OF a_group a_subgroup,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_self:

shows "x ∈ carrier G =⇒ x ∈ H +> x"

by (rule group.rcos_self [OF a_group _ a_subgroup,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_part_G:

shows "
⋃
(a_rcosets H) = carrier G"

by (rule group.rcosets_part_G [OF a_group a_subgroup,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_cosets_finite:

"[[c ∈ a_rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"

by (rule group.cosets_finite [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) a_card_cosets_equal:

"[[c ∈ a_rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

by (rule group.card_cosets_equal [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) rcosets_subset_PowG:

"additive_subgroup H G =⇒ a_rcosets H ⊆ Pow(carrier G)"

by (rule group.rcosets_subset_PowG [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps],

rule additive_subgroup.a_subgroup)

theorem (in abelian_group) a_lagrange:

"[[finite(carrier G); additive_subgroup H G]]
=⇒ card(a_rcosets H) * card(H) = order(G)"

by (rule group.lagrange [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded

order_def])

(fast intro!: additive_subgroup.a_subgroup)+

13.3.6 Factorization

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def’:

fixes G (structure)
shows "G A_Mod H ≡ (|carrier = a_rcosetsG H, mult = set_add G, one =

H|)"
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unfolding A_FactGroup_defs

by (fold A_RCOSETS_def set_add_def)

lemma (in abelian_subgroup) a_setmult_closed:

"[[K1 ∈ a_rcosets H; K2 ∈ a_rcosets H]] =⇒ K1 <+> K2 ∈ a_rcosets H"

by (rule normal.setmult_closed [OF a_normal,

folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_setinv_closed:

"K ∈ a_rcosets H =⇒ a_set_inv K ∈ a_rcosets H"

by (rule normal.setinv_closed [OF a_normal,

folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_assoc:

"[[M1 ∈ a_rcosets H; M2 ∈ a_rcosets H; M3 ∈ a_rcosets H]]
=⇒ M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"

by (rule normal.rcosets_assoc [OF a_normal,

folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_subgroup_in_rcosets:

"H ∈ a_rcosets H"

by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:

"M ∈ a_rcosets H =⇒ a_set_inv M <+> M = H"

by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,

folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])

theorem (in abelian_subgroup) a_factorgroup_is_group:

"group (G A_Mod H)"

by (rule normal.factorgroup_is_group [OF a_normal,

folded A_FactGroup_def, simplified monoid_record_simps])

Since the Factorization is based on an abelian subgroup, is results in a
commutative group

theorem (in abelian_subgroup) a_factorgroup_is_comm_group:

"comm_group (G A_Mod H)"

apply (intro comm_group.intro comm_monoid.intro) prefer 3

apply (rule a_factorgroup_is_group)

apply (rule group.axioms[OF a_factorgroup_is_group])

apply (rule comm_monoid_axioms.intro)

apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def

a_r_coset_def, clarsimp)

apply (simp add: a_rcos_sum a_comm)

done

lemma add_A_FactGroup [simp]: "X ⊗(G A_Mod H) X’ = X <+>G X’"
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by (simp add: A_FactGroup_def set_add_def)

lemma (in abelian_subgroup) a_inv_FactGroup:

"X ∈ carrier (G A_Mod H) =⇒ invG A_Mod H X = a_set_inv X"

by (rule normal.inv_FactGroup [OF a_normal,

folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:

"(λa. H +> a) ∈ hom (|carrier = carrier G, mult = add G, one = zero G|)
(G A_Mod H)"

by (rule normal.r_coset_hom_Mod [OF a_normal,

folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])

The isomorphism theorems have been omitted from lifting, at least for now

13.3.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

lemmas a_kernel_defs =

a_kernel_def kernel_def

lemma a_kernel_def’:

"a_kernel R S h = {x ∈ carrier R. h x = 0S}"
by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])

13.3.8 Homomorphisms

lemma abelian_group_homI:

assumes "abelian_group G"

assumes "abelian_group H"

assumes a_group_hom: "group_hom (|carrier = carrier G, mult = add G,

one = zero G|)
(|carrier = carrier H, mult = add H,

one = zero H|) h"

shows "abelian_group_hom G H h"

proof -

interpret G: abelian_group G by fact

interpret H: abelian_group H by fact

show ?thesis

apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)

apply fact

apply fact

apply (rule a_group_hom)

done
qed
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lemma (in abelian_group_hom) is_abelian_group_hom:

"abelian_group_hom G H h"

..

lemma (in abelian_group_hom) hom_add [simp]:

"[| x : carrier G; y : carrier G |]

==> h (x ⊕G y) = h x ⊕H h y"

by (rule group_hom.hom_mult[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) hom_closed [simp]:

"x ∈ carrier G =⇒ h x ∈ carrier H"

by (rule group_hom.hom_closed[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) zero_closed [simp]:

"h 0 ∈ carrier H"

by (rule group_hom.one_closed[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) hom_zero [simp]:

"h 0 = 0H"
by (rule group_hom.hom_one[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) a_inv_closed [simp]:

"x ∈ carrier G ==> h (	x) ∈ carrier H"

by (rule group_hom.inv_closed[OF a_group_hom,

folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_a_inv [simp]:

"x ∈ carrier G ==> h (	x) = 	H (h x)"

by (rule group_hom.hom_inv[OF a_group_hom,

folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) additive_subgroup_a_kernel:

"additive_subgroup (a_kernel G H h) G"

apply (rule additive_subgroup.intro)

apply (rule group_hom.subgroup_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])

done

The kernel of a homomorphism is an abelian subgroup

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:

"abelian_subgroup (a_kernel G H h) G"

apply (rule abelian_subgroupI)

apply (rule group_hom.normal_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])

apply (simp add: G.a_comm)
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done

lemma (in abelian_group_hom) A_FactGroup_nonempty:

assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"

shows "X 6= {}"

by (rule group_hom.FactGroup_nonempty[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) FactGroup_the_elem_mem:

assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"

shows "the_elem (h‘X) ∈ carrier H"

by (rule group_hom.FactGroup_the_elem_mem[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) A_FactGroup_hom:

"(λX. the_elem (h‘X)) ∈ hom (G A_Mod (a_kernel G H h))

(|carrier = carrier H, mult = add H, one = zero H|)"
by (rule group_hom.FactGroup_hom[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

lemma (in abelian_group_hom) A_FactGroup_inj_on:

"inj_on (λX. the_elem (h ‘ X)) (carrier (G A_Mod a_kernel G H h))"

by (rule group_hom.FactGroup_inj_on[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in abelian_group_hom) A_FactGroup_onto:

assumes h: "h ‘ carrier G = carrier H"

shows "(λX. the_elem (h ‘ X)) ‘ carrier (G A_Mod a_kernel G H h) =

carrier H"

by (rule group_hom.FactGroup_onto[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule h)

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in abelian_group_hom) A_FactGroup_iso:

"h ‘ carrier G = carrier H

=⇒ (λX. the_elem (h‘X)) ∈ (G A_Mod (a_kernel G H h)) ∼=
(|carrier = carrier H, mult = add H, one = zero H|)"

by (rule group_hom.FactGroup_iso[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

13.3.9 Cosets

Not eveything from CosetExt.thy is lifted here.
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lemma (in additive_subgroup) a_Hcarr [simp]:

assumes hH: "h ∈ H"

shows "h ∈ carrier G"

by (rule subgroup.mem_carrier [OF a_subgroup,

simplified monoid_record_simps]) (rule hH)

lemma (in abelian_subgroup) a_elemrcos_carrier:

assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H +> a"

shows "a’ ∈ carrier G"

by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,

folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,

rule a’)

lemma (in abelian_subgroup) a_rcos_const:

assumes hH: "h ∈ H"

shows "H +> h = H"

by (rule subgroup.rcos_const [OF a_subgroup a_group,

folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)

lemma (in abelian_subgroup) a_rcos_module_imp:

assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H +> x"

shows "(x’ ⊕ 	x) ∈ H"

by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule

xcarr, rule x’cos)

lemma (in abelian_subgroup) a_rcos_module_rev:

assumes "x ∈ carrier G" "x’ ∈ carrier G"

and "(x’ ⊕ 	x) ∈ H"

shows "x’ ∈ H +> x"

using assms

by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_module:

assumes "x ∈ carrier G" "x’ ∈ carrier G"

shows "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)"

using assms

by (rule subgroup.rcos_module [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

— variant
lemma (in abelian_subgroup) a_rcos_module_minus:

assumes "ring G"

assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

shows "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"
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proof -

interpret G: ring G by fact

from carr

have "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)" by (rule a_rcos_module)

with carr

show "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"

by (simp add: minus_eq)

qed

lemma (in abelian_subgroup) a_repr_independence’:

assumes y: "y ∈ H +> x"

and xcarr: "x ∈ carrier G"

shows "H +> x = H +> y"

apply (rule a_repr_independence)

apply (rule y)

apply (rule xcarr)

apply (rule a_subgroup)

done

lemma (in abelian_subgroup) a_repr_independenceD:

assumes ycarr: "y ∈ carrier G"

and repr: "H +> x = H +> y"

shows "y ∈ H +> x"

by (rule group.repr_independenceD [OF a_group a_subgroup,

folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr,

rule repr)

lemma (in abelian_subgroup) a_rcosets_carrier:

"X ∈ a_rcosets H =⇒ X ⊆ carrier G"

by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

13.3.10 Addition of Subgroups

lemma (in abelian_monoid) set_add_closed:

assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"

shows "A <+> B ⊆ carrier G"

by (rule monoid.set_mult_closed [OF a_monoid,

folded set_add_def, simplified monoid_record_simps]) (rule Acarr,

rule Bcarr)

lemma (in abelian_group) add_additive_subgroups:

assumes subH: "additive_subgroup H G"

and subK: "additive_subgroup K G"

shows "additive_subgroup (H <+> K) G"

apply (rule additive_subgroup.intro)

apply (unfold set_add_def)
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apply (intro comm_group.mult_subgroups)

apply (rule a_comm_group)

apply (rule additive_subgroup.a_subgroup[OF subH])

apply (rule additive_subgroup.a_subgroup[OF subK])

done

end

theory Ideal

imports Ring AbelCoset

begin

14 Ideals

14.1 Definitions

14.1.1 General definition

locale ideal = additive_subgroup I R + ring R for I and R (structure) +

assumes I_l_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

sublocale ideal ⊆ abelian_subgroup I R

apply (intro abelian_subgroupI3 abelian_group.intro)

apply (rule ideal.axioms, rule ideal_axioms)

apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,

rule ideal_axioms)

apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,

rule ideal_axioms)

done

lemma (in ideal) is_ideal: "ideal I R"

by (rule ideal_axioms)

lemma idealI:

fixes R (structure)
assumes "ring R"

assumes a_subgroup: "subgroup I (|carrier = carrier R, mult = add R,

one = zero R|)"
and I_l_closed: "

∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

shows "ideal I R"

proof -

interpret ring R by fact

show ?thesis apply (intro ideal.intro ideal_axioms.intro additive_subgroupI)

apply (rule a_subgroup)

apply (rule is_ring)

apply (erule (1) I_l_closed)
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apply (erule (1) I_r_closed)

done
qed

14.1.2 Ideals Generated by a Subset of carrier R

definition genideal :: "_ ⇒ ’a set ⇒ ’a set" ("Idlı _" [80] 79)

where "genideal R S =
⋂
{I. ideal I R ∧ S ⊆ I}"

14.1.3 Principal Ideals

locale principalideal = ideal +

assumes generate: "∃ i ∈ carrier R. I = Idl {i}"

lemma (in principalideal) is_principalideal: "principalideal I R"

by (rule principalideal_axioms)

lemma principalidealI:

fixes R (structure)
assumes "ideal I R"

and generate: "∃ i ∈ carrier R. I = Idl {i}"

shows "principalideal I R"

proof -

interpret ideal I R by fact

show ?thesis

by (intro principalideal.intro principalideal_axioms.intro)

(rule is_ideal, rule generate)

qed

14.1.4 Maximal Ideals

locale maximalideal = ideal +

assumes I_notcarr: "carrier R 6= I"

and I_maximal: "[[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I ∨ J =

carrier R"

lemma (in maximalideal) is_maximalideal: "maximalideal I R"

by (rule maximalideal_axioms)

lemma maximalidealI:

fixes R

assumes "ideal I R"

and I_notcarr: "carrier R 6= I"

and I_maximal: "
∧
J. [[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I

∨ J = carrier R"

shows "maximalideal I R"

proof -

interpret ideal I R by fact

show ?thesis

by (intro maximalideal.intro maximalideal_axioms.intro)
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(rule is_ideal, rule I_notcarr, rule I_maximal)

qed

14.1.5 Prime Ideals

locale primeideal = ideal + cring +

assumes I_notcarr: "carrier R 6= I"

and I_prime: "[[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒ a ∈
I ∨ b ∈ I"

lemma (in primeideal) primeideal: "primeideal I R"

by (rule primeideal_axioms)

lemma primeidealI:

fixes R (structure)
assumes "ideal I R"

and "cring R"

and I_notcarr: "carrier R 6= I"

and I_prime: "
∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒

a ∈ I ∨ b ∈ I"

shows "primeideal I R"

proof -

interpret ideal I R by fact

interpret cring R by fact

show ?thesis

by (intro primeideal.intro primeideal_axioms.intro)

(rule is_ideal, rule is_cring, rule I_notcarr, rule I_prime)

qed

lemma primeidealI2:

fixes R (structure)
assumes "additive_subgroup I R"

and "cring R"

and I_l_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

and I_notcarr: "carrier R 6= I"

and I_prime: "
∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒

a ∈ I ∨ b ∈ I"

shows "primeideal I R"

proof -

interpret additive_subgroup I R by fact

interpret cring R by fact

show ?thesis apply (intro_locales)

apply (intro ideal_axioms.intro)

apply (erule (1) I_l_closed)

apply (erule (1) I_r_closed)

apply (intro primeideal_axioms.intro)

apply (rule I_notcarr)

apply (erule (2) I_prime)
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done
qed

14.2 Special Ideals

lemma (in ring) zeroideal: "ideal {0} R"

apply (intro idealI subgroup.intro)

apply (rule is_ring)

apply simp+

apply (fold a_inv_def, simp)

apply simp+

done

lemma (in ring) oneideal: "ideal (carrier R) R"

by (rule idealI) (auto intro: is_ring add.subgroupI)

lemma (in "domain") zeroprimeideal: "primeideal {0} R"

apply (intro primeidealI)

apply (rule zeroideal)

apply (rule domain.axioms, rule domain_axioms)

defer 1

apply (simp add: integral)

proof (rule ccontr, simp)

assume "carrier R = {0}"
then have "1 = 0" by (rule one_zeroI)

with one_not_zero show False by simp

qed

14.3 General Ideal Properies

lemma (in ideal) one_imp_carrier:

assumes I_one_closed: "1 ∈ I"

shows "I = carrier R"

apply (rule)

apply (rule)

apply (rule a_Hcarr, simp)

proof
fix x

assume xcarr: "x ∈ carrier R"

with I_one_closed have "x ⊗ 1 ∈ I" by (intro I_l_closed)

with xcarr show "x ∈ I" by simp

qed

lemma (in ideal) Icarr:

assumes iI: "i ∈ I"

shows "i ∈ carrier R"

using iI by (rule a_Hcarr)
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14.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again
an ideal in R

lemma (in ring) i_intersect:

assumes "ideal I R"

assumes "ideal J R"

shows "ideal (I ∩ J) R"

proof -

interpret ideal I R by fact

interpret ideal J R by fact

show ?thesis

apply (intro idealI subgroup.intro)

apply (rule is_ring)

apply (force simp add: a_subset)

apply (simp add: a_inv_def[symmetric])

apply simp

apply (simp add: a_inv_def[symmetric])

apply (clarsimp, rule)

apply (fast intro: ideal.I_l_closed ideal.intro assms)+

apply (clarsimp, rule)

apply (fast intro: ideal.I_r_closed ideal.intro assms)+

done
qed

The intersection of any Number of Ideals is again an Ideal in R

lemma (in ring) i_Intersect:

assumes Sideals: "
∧
I. I ∈ S =⇒ ideal I R"

and notempty: "S 6= {}"

shows "ideal (
⋂
S) R"

apply (unfold_locales)

apply (simp_all add: Inter_eq)

apply rule unfolding mem_Collect_eq defer 1

apply rule defer 1

apply rule defer 1

apply (fold a_inv_def, rule) defer 1

apply rule defer 1

apply rule defer 1

proof -

fix x y

assume "∀ I∈S. x ∈ I"

then have xI: "
∧
I. I ∈ S =⇒ x ∈ I" by simp

assume "∀ I∈S. y ∈ I"

then have yI: "
∧
I. I ∈ S =⇒ y ∈ I" by simp

fix J

assume JS: "J ∈ S"

interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and yI[OF JS] show "x ⊕ y ∈ J" by (rule a_closed)
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next
fix J

assume JS: "J ∈ S"

interpret ideal J R by (rule Sideals[OF JS])

show "0 ∈ J" by simp

next
fix x

assume "∀ I∈S. x ∈ I"

then have xI: "
∧
I. I ∈ S =⇒ x ∈ I" by simp

fix J

assume JS: "J ∈ S"

interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] show "	 x ∈ J" by (rule a_inv_closed)

next
fix x y

assume "∀ I∈S. x ∈ I"

then have xI: "
∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J

assume JS: "J ∈ S"

interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr show "y ⊗ x ∈ J" by (rule I_l_closed)

next
fix x y

assume "∀ I∈S. x ∈ I"

then have xI: "
∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J

assume JS: "J ∈ S"

interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr show "x ⊗ y ∈ J" by (rule I_r_closed)

next
fix x

assume "∀ I∈S. x ∈ I"

then have xI: "
∧
I. I ∈ S =⇒ x ∈ I" by simp

from notempty have "∃ I0. I0 ∈ S" by blast

then obtain I0 where I0S: "I0 ∈ S" by auto

interpret ideal I0 R by (rule Sideals[OF I0S])

from xI[OF I0S] have "x ∈ I0" .
with a_subset show "x ∈ carrier R" by fast
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next

qed

14.5 Addition of Ideals

lemma (in ring) add_ideals:

assumes idealI: "ideal I R"

and idealJ: "ideal J R"

shows "ideal (I <+> J) R"

apply (rule ideal.intro)

apply (rule add_additive_subgroups)

apply (intro ideal.axioms[OF idealI])

apply (intro ideal.axioms[OF idealJ])

apply (rule is_ring)

apply (rule ideal_axioms.intro)

apply (simp add: set_add_defs, clarsimp) defer 1

apply (simp add: set_add_defs, clarsimp) defer 1

proof -

fix x i j

assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"

and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]

have c: "(i ⊕ j) ⊗ x = (i ⊗ x) ⊕ (j ⊗ x)"

by algebra

from xcarr and iI have a: "i ⊗ x ∈ I"

by (simp add: ideal.I_r_closed[OF idealI])

from xcarr and jJ have b: "j ⊗ x ∈ J"

by (simp add: ideal.I_r_closed[OF idealJ])

from a b c show "∃ ha∈I. ∃ ka∈J. (i ⊕ j) ⊗ x = ha ⊕ ka"

by fast

next
fix x i j

assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"

and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]

have c: "x ⊗ (i ⊕ j) = (x ⊗ i) ⊕ (x ⊗ j)" by algebra

from xcarr and iI have a: "x ⊗ i ∈ I"

by (simp add: ideal.I_l_closed[OF idealI])

from xcarr and jJ have b: "x ⊗ j ∈ J"

by (simp add: ideal.I_l_closed[OF idealJ])

from a b c show "∃ ha∈I. ∃ ka∈J. x ⊗ (i ⊕ j) = ha ⊕ ka"

by fast

qed
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14.6 Ideals generated by a subset of carrier R

genideal generates an ideal

lemma (in ring) genideal_ideal:

assumes Scarr: "S ⊆ carrier R"

shows "ideal (Idl S) R"

unfolding genideal_def

proof (rule i_Intersect, fast, simp)

from oneideal and Scarr

show "∃ I. ideal I R ∧ S ≤ I" by fast

qed

lemma (in ring) genideal_self:

assumes "S ⊆ carrier R"

shows "S ⊆ Idl S"

unfolding genideal_def by fast

lemma (in ring) genideal_self’:

assumes carr: "i ∈ carrier R"

shows "i ∈ Idl {i}"

proof -

from carr have "{i} ⊆ Idl {i}" by (fast intro!: genideal_self)

then show "i ∈ Idl {i}" by fast

qed

genideal generates the minimal ideal

lemma (in ring) genideal_minimal:

assumes a: "ideal I R"

and b: "S ⊆ I"

shows "Idl S ⊆ I"

unfolding genideal_def by rule (elim InterD, simp add: a b)

Generated ideals and subsets

lemma (in ring) Idl_subset_ideal:

assumes Iideal: "ideal I R"

and Hcarr: "H ⊆ carrier R"

shows "(Idl H ⊆ I) = (H ⊆ I)"

proof
assume a: "Idl H ⊆ I"

from Hcarr have "H ⊆ Idl H" by (rule genideal_self)

with a show "H ⊆ I" by simp

next
fix x

assume "H ⊆ I"

with Iideal have "I ∈ {I. ideal I R ∧ H ⊆ I}" by fast

then show "Idl H ⊆ I" unfolding genideal_def by fast

qed

lemma (in ring) subset_Idl_subset:
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assumes Icarr: "I ⊆ carrier R"

and HI: "H ⊆ I"

shows "Idl H ⊆ Idl I"

proof -

from HI and genideal_self[OF Icarr] have HIdlI: "H ⊆ Idl I"

by fast

from Icarr have Iideal: "ideal (Idl I) R"

by (rule genideal_ideal)

from HI and Icarr have "H ⊆ carrier R"

by fast

with Iideal have "(H ⊆ Idl I) = (Idl H ⊆ Idl I)"

by (rule Idl_subset_ideal[symmetric])

with HIdlI show "Idl H ⊆ Idl I" by simp

qed

lemma (in ring) Idl_subset_ideal’:

assumes acarr: "a ∈ carrier R" and bcarr: "b ∈ carrier R"

shows "(Idl {a} ⊆ Idl {b}) = (a ∈ Idl {b})"

apply (subst Idl_subset_ideal[OF genideal_ideal[of "{b}"], of "{a}"])

apply (fast intro: bcarr, fast intro: acarr)

apply fast

done

lemma (in ring) genideal_zero: "Idl {0} = {0}"
apply rule

apply (rule genideal_minimal[OF zeroideal], simp)

apply (simp add: genideal_self’)

done

lemma (in ring) genideal_one: "Idl {1} = carrier R"

proof -

interpret ideal "Idl {1}" "R" by (rule genideal_ideal) fast

show "Idl {1} = carrier R"

apply (rule, rule a_subset)

apply (simp add: one_imp_carrier genideal_self’)

done
qed

Generation of Principal Ideals in Commutative Rings

definition cgenideal :: "_ ⇒ ’a ⇒ ’a set" ("PIdlı _" [80] 79)

where "cgenideal R a = {x ⊗R a | x. x ∈ carrier R}"

genhideal (?) really generates an ideal

lemma (in cring) cgenideal_ideal:

assumes acarr: "a ∈ carrier R"

shows "ideal (PIdl a) R"

apply (unfold cgenideal_def)
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apply (rule idealI[OF is_ring])

apply (rule subgroup.intro)

apply simp_all

apply (blast intro: acarr)

apply clarsimp defer 1

defer 1

apply (fold a_inv_def, clarsimp) defer 1

apply clarsimp defer 1

apply clarsimp defer 1

proof -

fix x y

assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"

note carr = acarr xcarr ycarr

from carr have "x ⊗ a ⊕ y ⊗ a = (x ⊕ y) ⊗ a"

by (simp add: l_distr)

with carr show "∃ z. x ⊗ a ⊕ y ⊗ a = z ⊗ a ∧ z ∈ carrier R"

by fast

next
from l_null[OF acarr, symmetric] and zero_closed

show "∃ x. 0 = x ⊗ a ∧ x ∈ carrier R" by fast

next
fix x

assume xcarr: "x ∈ carrier R"

note carr = acarr xcarr

from carr have "	 (x ⊗ a) = (	 x) ⊗ a"

by (simp add: l_minus)

with carr show "∃ z. 	 (x ⊗ a) = z ⊗ a ∧ z ∈ carrier R"

by fast

next
fix x y

assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"

note carr = acarr xcarr ycarr

from carr have "y ⊗ a ⊗ x = (y ⊗ x) ⊗ a"

by (simp add: m_assoc) (simp add: m_comm)

with carr show "∃ z. y ⊗ a ⊗ x = z ⊗ a ∧ z ∈ carrier R"

by fast

next
fix x y

assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"

note carr = acarr xcarr ycarr

from carr have "x ⊗ (y ⊗ a) = (x ⊗ y) ⊗ a"

by (simp add: m_assoc)
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with carr show "∃ z. x ⊗ (y ⊗ a) = z ⊗ a ∧ z ∈ carrier R"

by fast

qed

lemma (in ring) cgenideal_self:

assumes icarr: "i ∈ carrier R"

shows "i ∈ PIdl i"

unfolding cgenideal_def

proof simp

from icarr have "i = 1 ⊗ i"

by simp

with icarr show "∃ x. i = x ⊗ i ∧ x ∈ carrier R"

by fast

qed

cgenideal is minimal

lemma (in ring) cgenideal_minimal:

assumes "ideal J R"

assumes aJ: "a ∈ J"

shows "PIdl a ⊆ J"

proof -

interpret ideal J R by fact

show ?thesis

unfolding cgenideal_def

apply rule

apply clarify

using aJ

apply (erule I_l_closed)

done
qed

lemma (in cring) cgenideal_eq_genideal:

assumes icarr: "i ∈ carrier R"

shows "PIdl i = Idl {i}"

apply rule

apply (intro cgenideal_minimal)

apply (rule genideal_ideal, fast intro: icarr)

apply (rule genideal_self’, fast intro: icarr)

apply (intro genideal_minimal)

apply (rule cgenideal_ideal [OF icarr])

apply (simp, rule cgenideal_self [OF icarr])

done

lemma (in cring) cgenideal_eq_rcos: "PIdl i = carrier R #> i"

unfolding cgenideal_def r_coset_def by fast

lemma (in cring) cgenideal_is_principalideal:

assumes icarr: "i ∈ carrier R"

shows "principalideal (PIdl i) R"
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apply (rule principalidealI)

apply (rule cgenideal_ideal [OF icarr])

proof -

from icarr have "PIdl i = Idl {i}"

by (rule cgenideal_eq_genideal)

with icarr show "∃ i’∈carrier R. PIdl i = Idl {i’}"

by fast

qed

14.7 Union of Ideals

lemma (in ring) union_genideal:

assumes idealI: "ideal I R"

and idealJ: "ideal J R"

shows "Idl (I ∪ J) = I <+> J"

apply rule

apply (rule ring.genideal_minimal)

apply (rule is_ring)

apply (rule add_ideals[OF idealI idealJ])

apply (rule)

apply (simp add: set_add_defs) apply (elim disjE) defer 1 defer 1

apply (rule) apply (simp add: set_add_defs genideal_def) apply clarsimp

defer 1

proof -

fix x

assume xI: "x ∈ I"

have ZJ: "0 ∈ J"

by (intro additive_subgroup.zero_closed) (rule ideal.axioms[OF idealJ])

from ideal.Icarr[OF idealI xI] have "x = x ⊕ 0"
by algebra

with xI and ZJ show "∃ h∈I. ∃ k∈J. x = h ⊕ k"

by fast

next
fix x

assume xJ: "x ∈ J"

have ZI: "0 ∈ I"

by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealI])

from ideal.Icarr[OF idealJ xJ] have "x = 0 ⊕ x"

by algebra

with ZI and xJ show "∃ h∈I. ∃ k∈J. x = h ⊕ k"

by fast

next
fix i j K

assume iI: "i ∈ I"

and jJ: "j ∈ J"

and idealK: "ideal K R"

and IK: "I ⊆ K"

and JK: "J ⊆ K"

from iI and IK have iK: "i ∈ K" by fast
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from jJ and JK have jK: "j ∈ K" by fast

from iK and jK show "i ⊕ j ∈ K"

by (intro additive_subgroup.a_closed) (rule ideal.axioms[OF idealK])

qed

14.8 Properties of Principal Ideals

0 generates the zero ideal

lemma (in ring) zero_genideal: "Idl {0} = {0}"
apply rule

apply (simp add: genideal_minimal zeroideal)

apply (fast intro!: genideal_self)

done

1 generates the unit ideal

lemma (in ring) one_genideal: "Idl {1} = carrier R"

proof -

have "1 ∈ Idl {1}"
by (simp add: genideal_self’)

then show "Idl {1} = carrier R"

by (intro ideal.one_imp_carrier) (fast intro: genideal_ideal)

qed

The zero ideal is a principal ideal

corollary (in ring) zeropideal: "principalideal {0} R"

apply (rule principalidealI)

apply (rule zeroideal)

apply (blast intro!: zero_genideal[symmetric])

done

The unit ideal is a principal ideal

corollary (in ring) onepideal: "principalideal (carrier R) R"

apply (rule principalidealI)

apply (rule oneideal)

apply (blast intro!: one_genideal[symmetric])

done

Every principal ideal is a right coset of the carrier

lemma (in principalideal) rcos_generate:

assumes "cring R"

shows "∃ x∈I. I = carrier R #> x"

proof -

interpret cring R by fact

from generate obtain i where icarr: "i ∈ carrier R" and I1: "I = Idl

{i}"

by fast+

from icarr and genideal_self[of "{i}"] have "i ∈ Idl {i}"
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by fast

then have iI: "i ∈ I" by (simp add: I1)

from I1 icarr have I2: "I = PIdl i"

by (simp add: cgenideal_eq_genideal)

have "PIdl i = carrier R #> i"

unfolding cgenideal_def r_coset_def by fast

with I2 have "I = carrier R #> i"

by simp

with iI show "∃ x∈I. I = carrier R #> x"

by fast

qed

14.9 Prime Ideals

lemma (in ideal) primeidealCD:

assumes "cring R"

assumes notprime: "¬ primeideal I R"

shows "carrier R = I ∨ (∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗
b ∈ I ∧ a /∈ I ∧ b /∈ I)"

proof (rule ccontr, clarsimp)

interpret cring R by fact

assume InR: "carrier R 6= I"

and "∀ a. a ∈ carrier R −→ (∀ b. a ⊗ b ∈ I −→ b ∈ carrier R −→
a ∈ I ∨ b ∈ I)"

then have I_prime: "
∧

a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈
I]] =⇒ a ∈ I ∨ b ∈ I"

by simp

have "primeideal I R"

apply (rule primeideal.intro [OF is_ideal is_cring])

apply (rule primeideal_axioms.intro)

apply (rule InR)

apply (erule (2) I_prime)

done
with notprime show False by simp

qed

lemma (in ideal) primeidealCE:

assumes "cring R"

assumes notprime: "¬ primeideal I R"

obtains "carrier R = I"

| "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b

/∈ I"

proof -

interpret R: cring R by fact

assume "carrier R = I ==> thesis"
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and "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧
b /∈ I =⇒ thesis"

then show thesis using primeidealCD [OF R.is_cring notprime] by blast

qed

If {0} is a prime ideal of a commutative ring, the ring is a domain

lemma (in cring) zeroprimeideal_domainI:

assumes pi: "primeideal {0} R"

shows "domain R"

apply (rule domain.intro, rule is_cring)

apply (rule domain_axioms.intro)

proof (rule ccontr, simp)

interpret primeideal "{0}" "R" by (rule pi)

assume "1 = 0"
then have "carrier R = {0}" by (rule one_zeroD)

from this[symmetric] and I_notcarr show False

by simp

next
interpret primeideal "{0}" "R" by (rule pi)

fix a b

assume ab: "a ⊗ b = 0" and carr: "a ∈ carrier R" "b ∈ carrier R"

from ab have abI: "a ⊗ b ∈ {0}"
by fast

with carr have "a ∈ {0} ∨ b ∈ {0}"
by (rule I_prime)

then show "a = 0 ∨ b = 0" by simp

qed

corollary (in cring) domain_eq_zeroprimeideal: "domain R = primeideal {0}
R"

apply rule

apply (erule domain.zeroprimeideal)

apply (erule zeroprimeideal_domainI)

done

14.10 Maximal Ideals

lemma (in ideal) helper_I_closed:

assumes carr: "a ∈ carrier R" "x ∈ carrier R" "y ∈ carrier R"

and axI: "a ⊗ x ∈ I"

shows "a ⊗ (x ⊗ y) ∈ I"

proof -

from axI and carr have "(a ⊗ x) ⊗ y ∈ I"

by (simp add: I_r_closed)

also from carr have "(a ⊗ x) ⊗ y = a ⊗ (x ⊗ y)"

by (simp add: m_assoc)

finally show "a ⊗ (x ⊗ y) ∈ I" .
qed
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lemma (in ideal) helper_max_prime:

assumes "cring R"

assumes acarr: "a ∈ carrier R"

shows "ideal {x∈carrier R. a ⊗ x ∈ I} R"

proof -

interpret cring R by fact

show ?thesis apply (rule idealI)

apply (rule cring.axioms[OF is_cring])

apply (rule subgroup.intro)

apply (simp, fast)

apply clarsimp apply (simp add: r_distr acarr)

apply (simp add: acarr)

apply (simp add: a_inv_def[symmetric], clarify) defer 1

apply clarsimp defer 1

apply (fast intro!: helper_I_closed acarr)

proof -

fix x

assume xcarr: "x ∈ carrier R"

and ax: "a ⊗ x ∈ I"

from ax and acarr xcarr

have "	(a ⊗ x) ∈ I" by simp

also from acarr xcarr

have "	(a ⊗ x) = a ⊗ (	x)" by algebra

finally show "a ⊗ (	x) ∈ I" .
from acarr have "a ⊗ 0 = 0" by simp

next
fix x y

assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"

and ayI: "a ⊗ y ∈ I"

from ayI and acarr xcarr ycarr have "a ⊗ (y ⊗ x) ∈ I"

by (simp add: helper_I_closed)

moreover
from xcarr ycarr have "y ⊗ x = x ⊗ y"

by (simp add: m_comm)

ultimately
show "a ⊗ (x ⊗ y) ∈ I" by simp

qed
qed

In a cring every maximal ideal is prime

lemma (in cring) maximalideal_prime:

assumes "maximalideal I R"

shows "primeideal I R"

proof -

interpret maximalideal I R by fact

show ?thesis apply (rule ccontr)

apply (rule primeidealCE)

apply (rule is_cring)
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apply assumption

apply (simp add: I_notcarr)

proof -

assume "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈
I ∧ b /∈ I"

then obtain a b where
acarr: "a ∈ carrier R" and
bcarr: "b ∈ carrier R" and
abI: "a ⊗ b ∈ I" and
anI: "a /∈ I" and
bnI: "b /∈ I" by fast

define J where "J = {x∈carrier R. a ⊗ x ∈ I}"

from is_cring and acarr have idealJ: "ideal J R"

unfolding J_def by (rule helper_max_prime)

have IsubJ: "I ⊆ J"

proof
fix x

assume xI: "x ∈ I"

with acarr have "a ⊗ x ∈ I"

by (intro I_l_closed)

with xI[THEN a_Hcarr] show "x ∈ J"

unfolding J_def by fast

qed

from abI and acarr bcarr have "b ∈ J"

unfolding J_def by fast

with bnI have JnI: "J 6= I" by fast

from acarr

have "a = a ⊗ 1" by algebra

with anI have "a ⊗ 1 /∈ I" by simp

with one_closed have "1 /∈ J"

unfolding J_def by fast

then have Jncarr: "J 6= carrier R" by fast

interpret ideal J R by (rule idealJ)

have "J = I ∨ J = carrier R"

apply (intro I_maximal)

apply (rule idealJ)

apply (rule IsubJ)

apply (rule a_subset)

done

with JnI and Jncarr show False by simp

qed
qed
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14.11 Derived Theorems

— A non-zero cring that has only the two trivial ideals is a field
lemma (in cring) trivialideals_fieldI:

assumes carrnzero: "carrier R 6= {0}"
and haveideals: "{I. ideal I R} = {{0}, carrier R}"

shows "field R"

apply (rule cring_fieldI)

apply (rule, rule, rule)

apply (erule Units_closed)

defer 1

apply rule

defer 1

proof (rule ccontr, simp)

assume zUnit: "0 ∈ Units R"

then have a: "0 ⊗ inv 0 = 1" by (rule Units_r_inv)

from zUnit have "0 ⊗ inv 0 = 0"
by (intro l_null) (rule Units_inv_closed)

with a[symmetric] have "1 = 0" by simp

then have "carrier R = {0}" by (rule one_zeroD)

with carrnzero show False by simp

next
fix x

assume xcarr’: "x ∈ carrier R - {0}"
then have xcarr: "x ∈ carrier R" by fast

from xcarr’ have xnZ: "x 6= 0" by fast

from xcarr have xIdl: "ideal (PIdl x) R"

by (intro cgenideal_ideal) fast

from xcarr have "x ∈ PIdl x"

by (intro cgenideal_self) fast

with xnZ have "PIdl x 6= {0}" by fast

with haveideals have "PIdl x = carrier R"

by (blast intro!: xIdl)

then have "1 ∈ PIdl x" by simp

then have "∃ y. 1 = y ⊗ x ∧ y ∈ carrier R"

unfolding cgenideal_def by blast

then obtain y where ycarr: " y ∈ carrier R" and ylinv: "1 = y ⊗ x"

by fast+

from ylinv and xcarr ycarr have yrinv: "1 = x ⊗ y"

by (simp add: m_comm)

from ycarr and ylinv[symmetric] and yrinv[symmetric]

have "∃ y ∈ carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast

with xcarr show "x ∈ Units R"

unfolding Units_def by fast

qed

lemma (in field) all_ideals: "{I. ideal I R} = {{0}, carrier R}"

apply (rule, rule)

proof -
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fix I

assume a: "I ∈ {I. ideal I R}"

then interpret ideal I R by simp

show "I ∈ {{0}, carrier R}"

proof (cases "∃ a. a ∈ I - {0}")
case True

then obtain a where aI: "a ∈ I" and anZ: "a 6= 0"
by fast+

from aI[THEN a_Hcarr] anZ have aUnit: "a ∈ Units R"

by (simp add: field_Units)

then have a: "a ⊗ inv a = 1" by (rule Units_r_inv)

from aI and aUnit have "a ⊗ inv a ∈ I"

by (simp add: I_r_closed del: Units_r_inv)

then have oneI: "1 ∈ I" by (simp add: a[symmetric])

have "carrier R ⊆ I"

proof
fix x

assume xcarr: "x ∈ carrier R"

with oneI have "1 ⊗ x ∈ I" by (rule I_r_closed)

with xcarr show "x ∈ I" by simp

qed
with a_subset have "I = carrier R" by fast

then show "I ∈ {{0}, carrier R}" by fast

next
case False

then have IZ: "
∧
a. a ∈ I =⇒ a = 0" by simp

have a: "I ⊆ {0}"
proof

fix x

assume "x ∈ I"

then have "x = 0" by (rule IZ)

then show "x ∈ {0}" by fast

qed

have "0 ∈ I" by simp

then have "{0} ⊆ I" by fast

with a have "I = {0}" by fast

then show "I ∈ {{0}, carrier R}" by fast

qed
qed (simp add: zeroideal oneideal)

— Jacobson Theorem 2.2
lemma (in cring) trivialideals_eq_field:

assumes carrnzero: "carrier R 6= {0}"
shows "({I. ideal I R} = {{0}, carrier R}) = field R"
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by (fast intro!: trivialideals_fieldI[OF carrnzero] field.all_ideals)

Like zeroprimeideal for domains

lemma (in field) zeromaximalideal: "maximalideal {0} R"

apply (rule maximalidealI)

apply (rule zeroideal)

proof-
from one_not_zero have "1 /∈ {0}" by simp

with one_closed show "carrier R 6= {0}" by fast

next
fix J

assume Jideal: "ideal J R"

then have "J ∈ {I. ideal I R}" by fast

with all_ideals show "J = {0} ∨ J = carrier R"

by simp

qed

lemma (in cring) zeromaximalideal_fieldI:

assumes zeromax: "maximalideal {0} R"

shows "field R"

apply (rule trivialideals_fieldI, rule maximalideal.I_notcarr[OF zeromax])

apply rule apply clarsimp defer 1

apply (simp add: zeroideal oneideal)

proof -

fix J

assume Jn0: "J 6= {0}"
and idealJ: "ideal J R"

interpret ideal J R by (rule idealJ)

have "{0} ⊆ J" by (rule ccontr) simp

from zeromax and idealJ and this and a_subset

have "J = {0} ∨ J = carrier R"

by (rule maximalideal.I_maximal)

with Jn0 show "J = carrier R"

by simp

qed

lemma (in cring) zeromaximalideal_eq_field: "maximalideal {0} R = field

R"

apply rule

apply (erule zeromaximalideal_fieldI)

apply (erule field.zeromaximalideal)

done

end

theory RingHom

imports Ideal

begin
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15 Homomorphisms of Non-Commutative Rings

Lifting existing lemmas in a ring_hom_ring locale

locale ring_hom_ring = R?: ring R + S?: ring S

for R (structure) and S (structure) +

fixes h

assumes homh: "h ∈ ring_hom R S"

notes hom_mult [simp] = ring_hom_mult [OF homh]

and hom_one [simp] = ring_hom_one [OF homh]

sublocale ring_hom_cring ⊆ ring: ring_hom_ring

by standard (rule homh)

sublocale ring_hom_ring ⊆ abelian_group?: abelian_group_hom R S

apply (rule abelian_group_homI)

apply (rule R.is_abelian_group)

apply (rule S.is_abelian_group)

apply (intro group_hom.intro group_hom_axioms.intro)

apply (rule R.a_group)

apply (rule S.a_group)

apply (insert homh, unfold hom_def ring_hom_def)

apply simp

done

lemma (in ring_hom_ring) is_ring_hom_ring:

"ring_hom_ring R S h"

by (rule ring_hom_ring_axioms)

lemma ring_hom_ringI:

fixes R (structure) and S (structure)
assumes "ring R" "ring S"

assumes
hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"

and compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"

and compatible_add: "!!x y. [| x : carrier R; y : carrier R |] ==>

h (x ⊕ y) = h x ⊕S h y"

and compatible_one: "h 1 = 1S"
shows "ring_hom_ring R S h"

proof -

interpret ring R by fact

interpret ring S by fact

show ?thesis apply unfold_locales

apply (unfold ring_hom_def, safe)

apply (simp add: hom_closed Pi_def)

apply (erule (1) compatible_mult)

apply (erule (1) compatible_add)

apply (rule compatible_one)

done
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qed

lemma ring_hom_ringI2:

assumes "ring R" "ring S"

assumes h: "h ∈ ring_hom R S"

shows "ring_hom_ring R S h"

proof -

interpret R: ring R by fact

interpret S: ring S by fact

show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)

apply (rule R.is_ring)

apply (rule S.is_ring)

apply (rule h)

done
qed

lemma ring_hom_ringI3:

fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"

assumes compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"

and compatible_one: "h 1 = 1S"
shows "ring_hom_ring R S h"

proof -

interpret abelian_group_hom R S h by fact

interpret R: ring R by fact

interpret S: ring S by fact

show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro,

rule R.is_ring, rule S.is_ring)

apply (insert group_hom.homh[OF a_group_hom])

apply (unfold hom_def ring_hom_def, simp)

apply safe

apply (erule (1) compatible_mult)

apply (rule compatible_one)

done
qed

lemma ring_hom_cringI:

assumes "ring_hom_ring R S h" "cring R" "cring S"

shows "ring_hom_cring R S h"

proof -

interpret ring_hom_ring R S h by fact

interpret R: cring R by fact

interpret S: cring S by fact

show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)

(rule R.is_cring, rule S.is_cring, rule homh)

qed



203

15.1 The Kernel of a Ring Homomorphism

— the kernel of a ring homomorphism is an ideal
lemma (in ring_hom_ring) kernel_is_ideal:

shows "ideal (a_kernel R S h) R"

apply (rule idealI)

apply (rule R.is_ring)

apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])

apply (unfold a_kernel_def’, simp+)

done

Elements of the kernel are mapped to zero

lemma (in abelian_group_hom) kernel_zero [simp]:

"i ∈ a_kernel R S h =⇒ h i = 0S"
by (simp add: a_kernel_defs)

15.2 Cosets

Cosets of the kernel correspond to the elements of the image of the homo-
morphism

lemma (in ring_hom_ring) rcos_imp_homeq:

assumes acarr: "a ∈ carrier R"

and xrcos: "x ∈ a_kernel R S h +> a"

shows "h x = h a"

proof -

interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

from xrcos

have "∃ i ∈ a_kernel R S h. x = i ⊕ a" by (simp add: a_r_coset_defs)

from this obtain i

where iker: "i ∈ a_kernel R S h"

and x: "x = i ⊕ a"

by fast+

note carr = acarr iker[THEN a_Hcarr]

from x

have "h x = h (i ⊕ a)" by simp

also from carr

have ". . . = h i ⊕S h a" by simp

also from iker

have ". . . = 0S ⊕S h a" by simp

also from carr

have ". . . = h a" by simp

finally
show "h x = h a" .

qed

lemma (in ring_hom_ring) homeq_imp_rcos:

assumes acarr: "a ∈ carrier R"
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and xcarr: "x ∈ carrier R"

and hx: "h x = h a"

shows "x ∈ a_kernel R S h +> a"

proof -

interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

note carr = acarr xcarr

note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]

from hx and hcarr

have a: "h x ⊕S 	Sh a = 0S" by algebra

from carr

have "h x ⊕S 	Sh a = h (x ⊕ 	a)" by simp

from a and this

have b: "h (x ⊕ 	a) = 0S" by simp

from carr have "x ⊕ 	a ∈ carrier R" by simp

from this and b

have "x ⊕ 	a ∈ a_kernel R S h"

unfolding a_kernel_def’

by fast

from this and carr

show "x ∈ a_kernel R S h +> a" by (simp add: a_rcos_module_rev)

qed

corollary (in ring_hom_ring) rcos_eq_homeq:

assumes acarr: "a ∈ carrier R"

shows "(a_kernel R S h) +> a = {x ∈ carrier R. h x = h a}"

apply rule defer 1

apply clarsimp defer 1

proof
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x

assume xrcos: "x ∈ a_kernel R S h +> a"

from acarr and this

have xcarr: "x ∈ carrier R"

by (rule a_elemrcos_carrier)

from xrcos

have "h x = h a" by (rule rcos_imp_homeq[OF acarr])

from xcarr and this

show "x ∈ {x ∈ carrier R. h x = h a}" by fast

next
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x

assume xcarr: "x ∈ carrier R"
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and hx: "h x = h a"

from acarr xcarr hx

show "x ∈ a_kernel R S h +> a" by (rule homeq_imp_rcos)

qed

end

theory UnivPoly

imports Module RingHom

begin

16 Univariate Polynomials

Polynomials are formalised as modules with additional operations for ex-
tracting coefficients from polynomials and for obtaining monomials from co-
efficients and exponents (record up_ring). The carrier set is a set of bounded
functions from Nat to the coefficient domain. Bounded means that these
functions return zero above a certain bound (the degree). There is a chap-
ter on the formalisation of polynomials in the PhD thesis [1], which was
implemented with axiomatic type classes. This was later ported to Locales.

16.1 The Constructor for Univariate Polynomials

Functions with finite support.

locale bound =

fixes z :: ’a

and n :: nat

and f :: "nat => ’a"

assumes bound: "!!m. n < m =⇒ f m = z"

declare bound.intro [intro!]

and bound.bound [dest]

lemma bound_below:

assumes bound: "bound z m f" and nonzero: "f n 6= z" shows "n ≤ m"

proof (rule classical)

assume "~ ?thesis"

then have "m < n" by arith

with bound have "f n = z" ..
with nonzero show ?thesis by contradiction

qed

record (’a, ’p) up_ring = "(’a, ’p) module" +

monom :: "[’a, nat] => ’p"

coeff :: "[’p, nat] => ’a"
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definition
up :: "(’a, ’m) ring_scheme => (nat => ’a) set"

where "up R = {f. f ∈ UNIV → carrier R & (EX n. bound 0R n f)}"

definition UP :: "(’a, ’m) ring_scheme => (’a, nat => ’a) up_ring"

where "UP R = (|
carrier = up R,

mult = (λp∈up R. λq∈up R. λn.
⊕

Ri ∈ {..n}. p i ⊗R q (n-i)),

one = (λi. if i=0 then 1R else 0R),
zero = (λi. 0R),
add = (λp∈up R. λq∈up R. λi. p i ⊕R q i),

smult = (λa∈carrier R. λp∈up R. λi. a ⊗R p i),

monom = (λa∈carrier R. λn i. if i=n then a else 0R),
coeff = (λp∈up R. λn. p n)|)"

Properties of the set of polynomials up.

lemma mem_upI [intro]:

"[| !!n. f n ∈ carrier R; EX n. bound (zero R) n f |] ==> f ∈ up R"

by (simp add: up_def Pi_def)

lemma mem_upD [dest]:

"f ∈ up R ==> f n ∈ carrier R"

by (simp add: up_def Pi_def)

context ring

begin

lemma bound_upD [dest]: "f ∈ up R ==> EX n. bound 0 n f" by (simp add:

up_def)

lemma up_one_closed: "(λn. if n = 0 then 1 else 0) ∈ up R" using up_def

by force

lemma up_smult_closed: "[| a ∈ carrier R; p ∈ up R |] ==> (λi. a ⊗ p

i) ∈ up R" by force

lemma up_add_closed:

"[| p ∈ up R; q ∈ up R |] ==> (λi. p i ⊕ q i) ∈ up R"

proof
fix n

assume "p ∈ up R" and "q ∈ up R"

then show "p n ⊕ q n ∈ carrier R"

by auto

next
assume UP: "p ∈ up R" "q ∈ up R"

show "EX n. bound 0 n (λi. p i ⊕ q i)"

proof -

from UP obtain n where boundn: "bound 0 n p" by fast

from UP obtain m where boundm: "bound 0 m q" by fast
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have "bound 0 (max n m) (λi. p i ⊕ q i)"

proof
fix i

assume "max n m < i"

with boundn and boundm and UP show "p i ⊕ q i = 0" by fastforce

qed
then show ?thesis ..

qed
qed

lemma up_a_inv_closed:

"p ∈ up R ==> (λi. 	 (p i)) ∈ up R"

proof
assume R: "p ∈ up R"

then obtain n where "bound 0 n p" by auto

then have "bound 0 n (λi. 	 p i)" by auto

then show "EX n. bound 0 n (λi. 	 p i)" by auto

qed auto

lemma up_minus_closed:

"[| p ∈ up R; q ∈ up R |] ==> (λi. p i 	 q i) ∈ up R"

using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed

a_minus_def [of _ R]

by auto

lemma up_mult_closed:

"[| p ∈ up R; q ∈ up R |] ==>

(λn.
⊕

i ∈ {..n}. p i ⊗ q (n-i)) ∈ up R"

proof
fix n

assume "p ∈ up R" "q ∈ up R"

then show "(
⊕

i ∈ {..n}. p i ⊗ q (n-i)) ∈ carrier R"

by (simp add: mem_upD funcsetI)

next
assume UP: "p ∈ up R" "q ∈ up R"

show "EX n. bound 0 n (λn.
⊕

i ∈ {..n}. p i ⊗ q (n-i))"

proof -

from UP obtain n where boundn: "bound 0 n p" by fast

from UP obtain m where boundm: "bound 0 m q" by fast

have "bound 0 (n + m) (λn.
⊕

i ∈ {..n}. p i ⊗ q (n - i))"

proof
fix k assume bound: "n + m < k"

{
fix i

have "p i ⊗ q (k-i) = 0"
proof (cases "n < i")

case True

with boundn have "p i = 0" by auto

moreover from UP have "q (k-i) ∈ carrier R" by auto
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ultimately show ?thesis by simp

next
case False

with bound have "m < k-i" by arith

with boundm have "q (k-i) = 0" by auto

moreover from UP have "p i ∈ carrier R" by auto

ultimately show ?thesis by simp

qed
}
then show "(

⊕
i ∈ {..k}. p i ⊗ q (k-i)) = 0"

by (simp add: Pi_def)

qed
then show ?thesis by fast

qed
qed

end

16.2 Effect of Operations on Coefficients

locale UP =

fixes R (structure) and P (structure)
defines P_def: "P == UP R"

locale UP_ring = UP + R?: ring R

locale UP_cring = UP + R?: cring R

sublocale UP_cring < UP_ring

by intro_locales [1] (rule P_def)

locale UP_domain = UP + R?: "domain" R

sublocale UP_domain < UP_cring

by intro_locales [1] (rule P_def)

context UP

begin

Temporarily declare P ≡ UP R as simp rule.

declare P_def [simp]

lemma up_eqI:

assumes prem: "!!n. coeff P p n = coeff P q n" and R: "p ∈ carrier

P" "q ∈ carrier P"

shows "p = q"

proof
fix x

from prem and R show "p x = q x" by (simp add: UP_def)
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qed

lemma coeff_closed [simp]:

"p ∈ carrier P ==> coeff P p n ∈ carrier R" by (auto simp add: UP_def)

end

context UP_ring

begin

lemma coeff_monom [simp]:

"a ∈ carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"
proof -

assume R: "a ∈ carrier R"

then have "(λn. if n = m then a else 0) ∈ up R"

using up_def by force

with R show ?thesis by (simp add: UP_def)

qed

lemma coeff_zero [simp]: "coeff P 0P n = 0" by (auto simp add: UP_def)

lemma coeff_one [simp]: "coeff P 1P n = (if n=0 then 1 else 0)"
using up_one_closed by (simp add: UP_def)

lemma coeff_smult [simp]:

"[| a ∈ carrier R; p ∈ carrier P |] ==> coeff P (a �P p) n = a ⊗ coeff

P p n"

by (simp add: UP_def up_smult_closed)

lemma coeff_add [simp]:

"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊕P q) n = coeff

P p n ⊕ coeff P q n"

by (simp add: UP_def up_add_closed)

lemma coeff_mult [simp]:

"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊗P q) n = (
⊕

i ∈
{..n}. coeff P p i ⊗ coeff P q (n-i))"

by (simp add: UP_def up_mult_closed)

end

16.3 Polynomials Form a Ring.

context UP_ring

begin

Operations are closed over P.
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lemma UP_mult_closed [simp]:

"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊗P q ∈ carrier P" by (simp

add: UP_def up_mult_closed)

lemma UP_one_closed [simp]:

"1P ∈ carrier P" by (simp add: UP_def up_one_closed)

lemma UP_zero_closed [intro, simp]:

"0P ∈ carrier P" by (auto simp add: UP_def)

lemma UP_a_closed [intro, simp]:

"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊕P q ∈ carrier P" by (simp

add: UP_def up_add_closed)

lemma monom_closed [simp]:

"a ∈ carrier R ==> monom P a n ∈ carrier P" by (auto simp add: UP_def

up_def Pi_def)

lemma UP_smult_closed [simp]:

"[| a ∈ carrier R; p ∈ carrier P |] ==> a �P p ∈ carrier P" by (simp

add: UP_def up_smult_closed)

end

declare (in UP) P_def [simp del]

Algebraic ring properties

context UP_ring

begin

lemma UP_a_assoc:

assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"

shows "(p ⊕P q) ⊕P r = p ⊕P (q ⊕P r)" by (rule up_eqI, simp add:

a_assoc R, simp_all add: R)

lemma UP_l_zero [simp]:

assumes R: "p ∈ carrier P"

shows "0P ⊕P p = p" by (rule up_eqI, simp_all add: R)

lemma UP_l_neg_ex:

assumes R: "p ∈ carrier P"

shows "EX q : carrier P. q ⊕P p = 0P"
proof -

let ?q = "λi. 	 (p i)"

from R have closed: "?q ∈ carrier P"

by (simp add: UP_def P_def up_a_inv_closed)

from R have coeff: "!!n. coeff P ?q n = 	 (coeff P p n)"

by (simp add: UP_def P_def up_a_inv_closed)

show ?thesis
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proof
show "?q ⊕P p = 0P"

by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)

qed (rule closed)

qed

lemma UP_a_comm:

assumes R: "p ∈ carrier P" "q ∈ carrier P"

shows "p ⊕P q = q ⊕P p" by (rule up_eqI, simp add: a_comm R, simp_all

add: R)

lemma UP_m_assoc:

assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"

shows "(p ⊗P q) ⊗P r = p ⊗P (q ⊗P r)"

proof (rule up_eqI)

fix n

{
fix k and a b c :: "nat=>’a"

assume R: "a ∈ UNIV → carrier R" "b ∈ UNIV → carrier R"

"c ∈ UNIV → carrier R"

then have "k <= n ==>

(
⊕

j ∈ {..k}. (
⊕

i ∈ {..j}. a i ⊗ b (j-i)) ⊗ c (n-j)) =

(
⊕

j ∈ {..k}. a j ⊗ (
⊕

i ∈ {..k-j}. b i ⊗ c (n-j-i)))"

(is "_ =⇒ ?eq k")

proof (induct k)

case 0 then show ?case by (simp add: Pi_def m_assoc)

next
case (Suc k)

then have "k <= n" by arith

from this R have "?eq k" by (rule Suc)

with R show ?case

by (simp cong: finsum_cong

add: Suc_diff_le Pi_def l_distr r_distr m_assoc)

(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc)

qed
}
with R show "coeff P ((p ⊗P q) ⊗P r) n = coeff P (p ⊗P (q ⊗P r))

n"

by (simp add: Pi_def)

qed (simp_all add: R)

lemma UP_r_one [simp]:

assumes R: "p ∈ carrier P" shows "p ⊗P 1P = p"

proof (rule up_eqI)

fix n

show "coeff P (p ⊗P 1P) n = coeff P p n"

proof (cases n)

case 0

{
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with R show ?thesis by simp

}
next

case Suc

{

fix nn assume Succ: "n = Suc nn"

have "coeff P (p ⊗P 1P) (Suc nn) = coeff P p (Suc nn)"

proof -

have "coeff P (p ⊗P 1P) (Suc nn) = (
⊕

i∈{..Suc nn}. coeff P

p i ⊗ (if Suc nn ≤ i then 1 else 0))" using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then

1 else 0) ⊕ (
⊕

i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))"
using finsum_Suc [of "(λi::nat. coeff P p i ⊗ (if Suc nn ≤

i then 1 else 0))" "nn"] unfolding Pi_def using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then

1 else 0)"
proof -

have "(
⊕

i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else

0)) = (
⊕

i∈{..nn}. 0)"
using finsum_cong [of "{..nn}" "{..nn}" "(λi::nat. coeff P

p i ⊗ (if Suc nn ≤ i then 1 else 0))" "(λi::nat. 0)"] using R

unfolding Pi_def by simp

also have ". . . = 0" by simp

finally show ?thesis using r_zero R by simp

qed
also have ". . . = coeff P p (Suc nn)" using R by simp

finally show ?thesis by simp

qed
then show ?thesis using Succ by simp

}
qed

qed (simp_all add: R)

lemma UP_l_one [simp]:

assumes R: "p ∈ carrier P"

shows "1P ⊗P p = p"

proof (rule up_eqI)

fix n

show "coeff P (1P ⊗P p) n = coeff P p n"

proof (cases n)

case 0 with R show ?thesis by simp

next
case Suc with R show ?thesis

by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)

qed
qed (simp_all add: R)

lemma UP_l_distr:
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assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"

shows "(p ⊕P q) ⊗P r = (p ⊗P r) ⊕P (q ⊗P r)"

by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)

lemma UP_r_distr:

assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"

shows "r ⊗P (p ⊕P q) = (r ⊗P p) ⊕P (r ⊗P q)"

by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)

theorem UP_ring: "ring P"

by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)

(auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)

end

16.4 Polynomials Form a Commutative Ring.

context UP_cring

begin

lemma UP_m_comm:

assumes R1: "p ∈ carrier P" and R2: "q ∈ carrier P" shows "p ⊗P q

= q ⊗P p"

proof (rule up_eqI)

fix n

{
fix k and a b :: "nat=>’a"

assume R: "a ∈ UNIV → carrier R" "b ∈ UNIV → carrier R"

then have "k <= n ==>

(
⊕

i ∈ {..k}. a i ⊗ b (n-i)) = (
⊕

i ∈ {..k}. a (k-i) ⊗ b (i+n-k))"

(is "_ =⇒ ?eq k")

proof (induct k)

case 0 then show ?case by (simp add: Pi_def)

next
case (Suc k) then show ?case

by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+

qed
}
note l = this

from R1 R2 show "coeff P (p ⊗P q) n = coeff P (q ⊗P p) n"

unfolding coeff_mult [OF R1 R2, of n]

unfolding coeff_mult [OF R2 R1, of n]

using l [of "(λi. coeff P p i)" "(λi. coeff P q i)" "n"] by (simp

add: Pi_def m_comm)

qed (simp_all add: R1 R2)
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16.5 Polynomials over a commutative ring for a commutative
ring

theorem UP_cring:

"cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI

UP_m_assoc UP_m_comm)

end

context UP_ring

begin

lemma UP_a_inv_closed [intro, simp]:

"p ∈ carrier P ==> 	P p ∈ carrier P"

by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]])

lemma coeff_a_inv [simp]:

assumes R: "p ∈ carrier P"

shows "coeff P (	P p) n = 	 (coeff P p n)"

proof -

from R coeff_closed UP_a_inv_closed have
"coeff P (	P p) n = 	 coeff P p n ⊕ (coeff P p n ⊕ coeff P (	P p)

n)"

by algebra

also from R have "... = 	 (coeff P p n)"

by (simp del: coeff_add add: coeff_add [THEN sym]

abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]])

finally show ?thesis .
qed

end

sublocale UP_ring < P?: ring P using UP_ring .
sublocale UP_cring < P?: cring P using UP_cring .

16.6 Polynomials Form an Algebra

context UP_ring

begin

lemma UP_smult_l_distr:

"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>

(a ⊕ b) �P p = a �P p ⊕P b �P p"

by (rule up_eqI) (simp_all add: R.l_distr)

lemma UP_smult_r_distr:

"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>

a �P (p ⊕P q) = a �P p ⊕P a �P q"

by (rule up_eqI) (simp_all add: R.r_distr)
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lemma UP_smult_assoc1:

"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>

(a ⊗ b) �P p = a �P (b �P p)"

by (rule up_eqI) (simp_all add: R.m_assoc)

lemma UP_smult_zero [simp]:

"p ∈ carrier P ==> 0 �P p = 0P"
by (rule up_eqI) simp_all

lemma UP_smult_one [simp]:

"p ∈ carrier P ==> 1 �P p = p"

by (rule up_eqI) simp_all

lemma UP_smult_assoc2:

"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>

(a �P p) ⊗P q = a �P (p ⊗P q)"

by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)

end

Interpretation of lemmas from algebra.

lemma (in cring) cring:

"cring R" ..

lemma (in UP_cring) UP_algebra:

"algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr

UP_smult_r_distr

UP_smult_assoc1 UP_smult_assoc2)

sublocale UP_cring < algebra R P using UP_algebra .

16.7 Further Lemmas Involving Monomials

context UP_ring

begin

lemma monom_zero [simp]:

"monom P 0 n = 0P" by (simp add: UP_def P_def)

lemma monom_mult_is_smult:

assumes R: "a ∈ carrier R" "p ∈ carrier P"

shows "monom P a 0 ⊗P p = a �P p"

proof (rule up_eqI)

fix n

show "coeff P (monom P a 0 ⊗P p) n = coeff P (a �P p) n"

proof (cases n)

case 0 with R show ?thesis by simp

next
case Suc with R show ?thesis
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using R.finsum_Suc2 by (simp del: R.finsum_Suc add: Pi_def)

qed
qed (simp_all add: R)

lemma monom_one [simp]:

"monom P 1 0 = 1P"
by (rule up_eqI) simp_all

lemma monom_add [simp]:

"[| a ∈ carrier R; b ∈ carrier R |] ==>

monom P (a ⊕ b) n = monom P a n ⊕P monom P b n"

by (rule up_eqI) simp_all

lemma monom_one_Suc:

"monom P 1 (Suc n) = monom P 1 n ⊗P monom P 1 1"

proof (rule up_eqI)

fix k

show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n ⊗P monom

P 1 1) k"

proof (cases "k = Suc n")

case True show ?thesis

proof -

fix m

from True have less_add_diff:

"!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith

from True have "coeff P (monom P 1 (Suc n)) k = 1" by simp

also from True

have "... = (
⊕

i ∈ {..<n} ∪ {n}. coeff P (monom P 1 n) i ⊗
coeff P (monom P 1 1) (k - i))"

by (simp cong: R.finsum_cong add: Pi_def)

also have "... = (
⊕

i ∈ {..n}. coeff P (monom P 1 n) i ⊗
coeff P (monom P 1 1) (k - i))"

by (simp only: ivl_disj_un_singleton)

also from True

have "... = (
⊕

i ∈ {..n} ∪ {n<..k}. coeff P (monom P 1 n) i ⊗
coeff P (monom P 1 1) (k - i))"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one

order_less_imp_not_eq Pi_def)

also from True have "... = coeff P (monom P 1 n ⊗P monom P 1 1)

k"

by (simp add: ivl_disj_un_one)

finally show ?thesis .
qed

next
case False

note neq = False

let ?s =

"λi. (if n = i then 1 else 0) ⊗ (if Suc 0 = k - i then 1 else 0)"
from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp
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also have "... = (
⊕

i ∈ {..k}. ?s i)"

proof -

have f1: "(
⊕

i ∈ {..<n}. ?s i) = 0"
by (simp cong: R.finsum_cong add: Pi_def)

from neq have f2: "(
⊕

i ∈ {n}. ?s i) = 0"
by (simp cong: R.finsum_cong add: Pi_def) arith

have f3: "n < k ==> (
⊕

i ∈ {n<..k}. ?s i) = 0"
by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)

show ?thesis

proof (cases "k < n")

case True then show ?thesis by (simp cong: R.finsum_cong add:

Pi_def)

next
case False then have n_le_k: "n <= k" by arith

show ?thesis

proof (cases "n = k")

case True

then have "0 = (
⊕

i ∈ {..<n} ∪ {n}. ?s i)"

by (simp cong: R.finsum_cong add: Pi_def)

also from True have "... = (
⊕

i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_singleton)

finally show ?thesis .
next

case False with n_le_k have n_less_k: "n < k" by arith

with neq have "0 = (
⊕

i ∈ {..<n} ∪ {n}. ?s i)"

by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right)

also have "... = (
⊕

i ∈ {..n}. ?s i)"

by (simp only: ivl_disj_un_singleton)

also from n_less_k neq have "... = (
⊕

i ∈ {..n} ∪ {n<..k}.

?s i)"

by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)

also from n_less_k have "... = (
⊕

i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_one)

finally show ?thesis .
qed

qed
qed
also have "... = coeff P (monom P 1 n ⊗P monom P 1 1) k" by simp

finally show ?thesis .
qed

qed (simp_all)

lemma monom_one_Suc2:

"monom P 1 (Suc n) = monom P 1 1 ⊗P monom P 1 n"

proof (induct n)

case 0 show ?case by simp

next
case Suc

{
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fix k:: nat

assume hypo: "monom P 1 (Suc k) = monom P 1 1 ⊗P monom P 1 k"

then show "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 (Suc

k)"

proof -

have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 k

⊗P monom P 1 1"

unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
note cl = monom_closed [OF R.one_closed, of 1]

note clk = monom_closed [OF R.one_closed, of k]

have rhs: "monom P 1 1 ⊗P monom P 1 (Suc k) = monom P 1 1 ⊗P monom

P 1 k ⊗P monom P 1 1"

unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF

cl clk cl]] ..
from lhs rhs show ?thesis by simp

qed
}

qed

The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P

1 ?n ⊗P monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 ⊗P monom P

1 ?n, and is trivial in UP_cring

corollary monom_one_comm: shows "monom P 1 k ⊗P monom P 1 1 = monom P

1 1 ⊗P monom P 1 k"

unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..

lemma monom_mult_smult:

"[| a ∈ carrier R; b ∈ carrier R |] ==> monom P (a ⊗ b) n = a �P monom

P b n"

by (rule up_eqI) simp_all

lemma monom_one_mult:

"monom P 1 (n + m) = monom P 1 n ⊗P monom P 1 m"

proof (induct n)

case 0 show ?case by simp

next
case Suc then show ?case

unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps

using m_assoc monom_one_comm [of m] by simp

qed

lemma monom_one_mult_comm: "monom P 1 n ⊗P monom P 1 m = monom P 1 m

⊗P monom P 1 n"

unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all

lemma monom_mult [simp]:

assumes a_in_R: "a ∈ carrier R" and b_in_R: "b ∈ carrier R"

shows "monom P (a ⊗ b) (n + m) = monom P a n ⊗P monom P b m"

proof (rule up_eqI)
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fix k

show "coeff P (monom P (a ⊗ b) (n + m)) k = coeff P (monom P a n ⊗P
monom P b m) k"

proof (cases "n + m = k")

case True

{
show ?thesis

unfolding True [symmetric]

coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF

b_in_R, of m], of "n + m"]

coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m]

using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(λi. (if n

= i then a else 0) ⊗ (if m = n + m - i then b else 0))"
"(λi. if n = i then a ⊗ b else 0)"]
a_in_R b_in_R

unfolding simp_implies_def

using R.finsum_singleton [of n "{.. n + m}" "(λi. a ⊗ b)"]

unfolding Pi_def by auto

}
next

case False

{
show ?thesis

unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n

+ m" k] apply (simp add: False)

unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed

[OF b_in_R, of m], of k]

unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom

[OF b_in_R, of m] using False

using R.finsum_cong [of "{..k}" "{..k}" "(λi. (if n = i then a

else 0) ⊗ (if m = k - i then b else 0))" "(λi. 0)"]
unfolding Pi_def simp_implies_def using a_in_R b_in_R by force

}
qed

qed (simp_all add: a_in_R b_in_R)

lemma monom_a_inv [simp]:

"a ∈ carrier R ==> monom P (	 a) n = 	P monom P a n"

by (rule up_eqI) simp_all

lemma monom_inj:

"inj_on (λa. monom P a n) (carrier R)"

proof (rule inj_onI)

fix x y

assume R: "x ∈ carrier R" "y ∈ carrier R" and eq: "monom P x n = monom

P y n"

then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp

with R show "x = y" by simp

qed
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end

16.8 The Degree Function

definition
deg :: "[(’a, ’m) ring_scheme, nat => ’a] => nat"

where "deg R p = (LEAST n. bound 0R n (coeff (UP R) p))"

context UP_ring

begin

lemma deg_aboveI:

"[| (!!m. n < m ==> coeff P p m = 0); p ∈ carrier P |] ==> deg R p <=

n"

by (unfold deg_def P_def) (fast intro: Least_le)

lemma deg_aboveD:

assumes "deg R p < m" and "p ∈ carrier P"

shows "coeff P p m = 0"
proof -

from 〈p ∈ carrier P〉 obtain n where "bound 0 n (coeff P p)"

by (auto simp add: UP_def P_def)

then have "bound 0 (deg R p) (coeff P p)"

by (auto simp: deg_def P_def dest: LeastI)

from this and 〈deg R p < m〉 show ?thesis ..
qed

lemma deg_belowI:

assumes non_zero: "n ~= 0 ==> coeff P p n ~= 0"
and R: "p ∈ carrier P"

shows "n <= deg R p"

— Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")

case True then show ?thesis by simp

next
case False then have "coeff P p n ~= 0" by (rule non_zero)

then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R)

then show ?thesis by arith

qed

lemma lcoeff_nonzero_deg:

assumes deg: "deg R p ~= 0" and R: "p ∈ carrier P"

shows "coeff P p (deg R p) ~= 0"
proof -

from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~=

0"
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proof -

have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)"

by arith

from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"

by (unfold deg_def P_def) simp

then have "~ bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_Least)

then have "EX m. deg R p - 1 < m & coeff P p m ~= 0"
by (unfold bound_def) fast

then have "EX m. deg R p <= m & coeff P p m ~= 0" by (simp add: deg

minus)

then show ?thesis by (auto intro: that)

qed
with deg_belowI R have "deg R p = m" by fastforce

with m_coeff show ?thesis by simp

qed

lemma lcoeff_nonzero_nonzero:

assumes deg: "deg R p = 0" and nonzero: "p ~= 0P" and R: "p ∈ carrier

P"

shows "coeff P p 0 ~= 0"
proof -

have "EX m. coeff P p m ~= 0"
proof (rule classical)

assume "~ ?thesis"

with R have "p = 0P" by (auto intro: up_eqI)

with nonzero show ?thesis by contradiction

qed
then obtain m where coeff: "coeff P p m ~= 0" ..
from this and R have "m <= deg R p" by (rule deg_belowI)

then have "m = 0" by (simp add: deg)

with coeff show ?thesis by simp

qed

lemma lcoeff_nonzero:

assumes neq: "p ~= 0P" and R: "p ∈ carrier P"

shows "coeff P p (deg R p) ~= 0"
proof (cases "deg R p = 0")

case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)

next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)

qed

lemma deg_eqI:

"[| !!m. n < m ==> coeff P p m = 0;
!!n. n ~= 0 ==> coeff P p n ~= 0; p ∈ carrier P |] ==> deg R p =

n"

by (fast intro: le_antisym deg_aboveI deg_belowI)

Degree and polynomial operations
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lemma deg_add [simp]:

"p ∈ carrier P =⇒ q ∈ carrier P =⇒
deg R (p ⊕P q) <= max (deg R p) (deg R q)"

by(rule deg_aboveI)(simp_all add: deg_aboveD)

lemma deg_monom_le:

"a ∈ carrier R ==> deg R (monom P a n) <= n"

by (intro deg_aboveI) simp_all

lemma deg_monom [simp]:

"[| a ~= 0; a ∈ carrier R |] ==> deg R (monom P a n) = n"

by (fastforce intro: le_antisym deg_aboveI deg_belowI)

lemma deg_const [simp]:

assumes R: "a ∈ carrier R" shows "deg R (monom P a 0) = 0"

proof (rule le_antisym)

show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add:

R)

next
show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add:

R)

qed

lemma deg_zero [simp]:

"deg R 0P = 0"

proof (rule le_antisym)

show "deg R 0P <= 0" by (rule deg_aboveI) simp_all

next
show "0 <= deg R 0P" by (rule deg_belowI) simp_all

qed

lemma deg_one [simp]:

"deg R 1P = 0"

proof (rule le_antisym)

show "deg R 1P <= 0" by (rule deg_aboveI) simp_all

next
show "0 <= deg R 1P" by (rule deg_belowI) simp_all

qed

lemma deg_uminus [simp]:

assumes R: "p ∈ carrier P" shows "deg R (	P p) = deg R p"

proof (rule le_antisym)

show "deg R (	P p) <= deg R p" by (simp add: deg_aboveI deg_aboveD

R)

next
show "deg R p <= deg R (	P p)"

by (simp add: deg_belowI lcoeff_nonzero_deg

inj_on_eq_iff [OF R.a_inv_inj, of _ "0", simplified] R)

qed
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The following lemma is later overwritten by the most specific one for do-
mains, deg_smult.

lemma deg_smult_ring [simp]:

"[| a ∈ carrier R; p ∈ carrier P |] ==>

deg R (a �P p) <= (if a = 0 then 0 else deg R p)"

by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+

end

context UP_domain

begin

lemma deg_smult [simp]:

assumes R: "a ∈ carrier R" "p ∈ carrier P"

shows "deg R (a �P p) = (if a = 0 then 0 else deg R p)"

proof (rule le_antisym)

show "deg R (a �P p) <= (if a = 0 then 0 else deg R p)"

using R by (rule deg_smult_ring)

next
show "(if a = 0 then 0 else deg R p) <= deg R (a �P p)"

proof (cases "a = 0")
qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)

qed

end

context UP_ring

begin

lemma deg_mult_ring:

assumes R: "p ∈ carrier P" "q ∈ carrier P"

shows "deg R (p ⊗P q) <= deg R p + deg R q"

proof (rule deg_aboveI)

fix m

assume boundm: "deg R p + deg R q < m"

{
fix k i

assume boundk: "deg R p + deg R q < k"

then have "coeff P p i ⊗ coeff P q (k - i) = 0"
proof (cases "deg R p < i")

case True then show ?thesis by (simp add: deg_aboveD R)

next
case False with boundk have "deg R q < k - i" by arith

then show ?thesis by (simp add: deg_aboveD R)

qed
}
with boundm R show "coeff P (p ⊗P q) m = 0" by simp

qed (simp add: R)



224

end

context UP_domain

begin

lemma deg_mult [simp]:

"[| p ~= 0P; q ~= 0P; p ∈ carrier P; q ∈ carrier P |] ==>

deg R (p ⊗P q) = deg R p + deg R q"

proof (rule le_antisym)

assume "p ∈ carrier P" " q ∈ carrier P"

then show "deg R (p ⊗P q) <= deg R p + deg R q" by (rule deg_mult_ring)

next
let ?s = "(λi. coeff P p i ⊗ coeff P q (deg R p + deg R q - i))"

assume R: "p ∈ carrier P" "q ∈ carrier P" and nz: "p ~= 0P" "q ~=

0P"
have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith

show "deg R p + deg R q <= deg R (p ⊗P q)"

proof (rule deg_belowI, simp add: R)

have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)

= (
⊕

i ∈ {..< deg R p} ∪ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp only: ivl_disj_un_one)

also have "... = (
⊕

i ∈ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one

deg_aboveD less_add_diff R Pi_def)

also have "...= (
⊕

i ∈ {deg R p} ∪ {deg R p <.. deg R p + deg R q}.

?s i)"

by (simp only: ivl_disj_un_singleton)

also have "... = coeff P p (deg R p) ⊗ coeff P q (deg R q)"

by (simp cong: R.finsum_cong add: deg_aboveD R Pi_def)

finally have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)

= coeff P p (deg R p) ⊗ coeff P q (deg R q)" .
with nz show "(

⊕
i ∈ {.. deg R p + deg R q}. ?s i) ~= 0"

by (simp add: integral_iff lcoeff_nonzero R)

qed (simp add: R)

qed

end

The following lemmas also can be lifted to UP_ring.

context UP_ring

begin

lemma coeff_finsum:

assumes fin: "finite A"

shows "p ∈ A → carrier P ==>

coeff P (finsum P p A) k = (
⊕

i ∈ A. coeff P (p i) k)"

using fin by induct (auto simp: Pi_def)

lemma up_repr:
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assumes R: "p ∈ carrier P"

shows "(
⊕

P i ∈ {..deg R p}. monom P (coeff P p i) i) = p"

proof (rule up_eqI)

let ?s = "(λi. monom P (coeff P p i) i)"

fix k

from R have RR: "!!i. (if i = k then coeff P p i else 0) ∈ carrier

R"

by simp

show "coeff P (
⊕

P i ∈ {..deg R p}. ?s i) k = coeff P p k"

proof (cases "k <= deg R p")

case True

hence "coeff P (
⊕

P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..k} ∪ {k<..deg R p}. ?s i) k"

by (simp only: ivl_disj_un_one)

also from True

have "... = coeff P (
⊕

P i ∈ {..k}. ?s i) k"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint

ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def)

also
have "... = coeff P (

⊕
P i ∈ {..<k} ∪ {k}. ?s i) k"

by (simp only: ivl_disj_un_singleton)

also have "... = coeff P p k"

by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R RR Pi_def)

finally show ?thesis .
next

case False

hence "coeff P (
⊕

P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..<deg R p} ∪ {deg R p}. ?s i) k"

by (simp only: ivl_disj_un_singleton)

also from False have "... = coeff P p k"

by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R Pi_def)

finally show ?thesis .
qed

qed (simp_all add: R Pi_def)

lemma up_repr_le:

"[| deg R p <= n; p ∈ carrier P |] ==>

(
⊕

P i ∈ {..n}. monom P (coeff P p i) i) = p"

proof -

let ?s = "(λi. monom P (coeff P p i) i)"

assume R: "p ∈ carrier P" and "deg R p <= n"

then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} ∪ {deg R p<..n})"

by (simp only: ivl_disj_un_one)

also have "... = finsum P ?s {..deg R p}"

by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one

deg_aboveD R Pi_def)

also have "... = p" using R by (rule up_repr)

finally show ?thesis .
qed
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end

16.9 Polynomials over Integral Domains

lemma domainI:

assumes cring: "cring R"

and one_not_zero: "one R ~= zero R"

and integral: "!!a b. [| mult R a b = zero R; a ∈ carrier R;

b ∈ carrier R |] ==> a = zero R | b = zero R"

shows "domain R"

by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms

del: disjCI)

context UP_domain

begin

lemma UP_one_not_zero:

"1P ~= 0P"
proof

assume "1P = 0P"
hence "coeff P 1P 0 = (coeff P 0P 0)" by simp

hence "1 = 0" by simp

with R.one_not_zero show "False" by contradiction

qed

lemma UP_integral:

"[| p ⊗P q = 0P; p ∈ carrier P; q ∈ carrier P |] ==> p = 0P | q = 0P"
proof -

fix p q

assume pq: "p ⊗P q = 0P" and R: "p ∈ carrier P" "q ∈ carrier P"

show "p = 0P | q = 0P"
proof (rule classical)

assume c: "~ (p = 0P | q = 0P)"
with R have "deg R p + deg R q = deg R (p ⊗P q)" by simp

also from pq have "... = 0" by simp

finally have "deg R p + deg R q = 0" .
then have f1: "deg R p = 0 & deg R q = 0" by simp

from f1 R have "p = (
⊕

P i ∈ {..0}. monom P (coeff P p i) i)"

by (simp only: up_repr_le)

also from R have "... = monom P (coeff P p 0) 0" by simp

finally have p: "p = monom P (coeff P p 0) 0" .
from f1 R have "q = (

⊕
P i ∈ {..0}. monom P (coeff P q i) i)"

by (simp only: up_repr_le)

also from R have "... = monom P (coeff P q 0) 0" by simp

finally have q: "q = monom P (coeff P q 0) 0" .
from R have "coeff P p 0 ⊗ coeff P q 0 = coeff P (p ⊗P q) 0" by

simp

also from pq have "... = 0" by simp
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finally have "coeff P p 0 ⊗ coeff P q 0 = 0" .
with R have "coeff P p 0 = 0 | coeff P q 0 = 0"

by (simp add: R.integral_iff)

with p q show "p = 0P | q = 0P" by fastforce

qed
qed

theorem UP_domain:

"domain P"

by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)

end

Interpretation of theorems from domain.

sublocale UP_domain < "domain" P

by intro_locales (rule domain.axioms UP_domain)+

16.10 The Evaluation Homomorphism and Universal Prop-
erty

lemma (in abelian_monoid) boundD_carrier:

"[| bound 0 n f; n < m |] ==> f m ∈ carrier G"

by auto

context ring

begin

theorem diagonal_sum:

"[| f ∈ {..n + m::nat} → carrier R; g ∈ {..n + m} → carrier R |] ==>

(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"

proof -

assume Rf: "f ∈ {..n + m} → carrier R" and Rg: "g ∈ {..n + m} →
carrier R"

{
fix j

have "j <= n + m ==>

(
⊕

k ∈ {..j}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

k ∈ {..j}.
⊕

i ∈ {..j - k}. f k ⊗ g i)"

proof (induct j)

case 0 from Rf Rg show ?case by (simp add: Pi_def)

next
case (Suc j)

have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i ∈ carrier

R"

using Suc by (auto intro!: funcset_mem [OF Rg])

have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) ∈ carrier

R"

using Suc by (auto intro!: funcset_mem [OF Rg])
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have R9: "!!i k. [| k <= Suc j |] ==> f k ∈ carrier R"

using Suc by (auto intro!: funcset_mem [OF Rf])

have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i ∈ carrier

R"

using Suc by (auto intro!: funcset_mem [OF Rg])

have R11: "g 0 ∈ carrier R"

using Suc by (auto intro!: funcset_mem [OF Rg])

from Suc show ?case

by (simp cong: finsum_cong add: Suc_diff_le a_ac

Pi_def R6 R8 R9 R10 R11)

qed
}
then show ?thesis by fast

qed

theorem cauchy_product:

assumes bf: "bound 0 n f" and bg: "bound 0 m g"

and Rf: "f ∈ {..n} → carrier R" and Rg: "g ∈ {..m} → carrier R"

shows "(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"

proof -

have f: "!!x. f x ∈ carrier R"

proof -

fix x

show "f x ∈ carrier R"

using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)

qed
have g: "!!x. g x ∈ carrier R"

proof -

fix x

show "g x ∈ carrier R"

using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)

qed
from f g have "(

⊕
k ∈ {..n + m}.

⊕
i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"

by (simp add: diagonal_sum Pi_def)

also have "... = (
⊕

k ∈ {..n} ∪ {n<..n + m}.
⊕

i ∈ {..n + m - k}.

f k ⊗ g i)"

by (simp only: ivl_disj_un_one)

also from f g have "... = (
⊕

k ∈ {..n}.
⊕

i ∈ {..n + m - k}. f k ⊗
g i)"

by (simp cong: finsum_cong

add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)

also from f g

have "... = (
⊕

k ∈ {..n}.
⊕

i ∈ {..m} ∪ {m<..n + m - k}. f k ⊗ g i)"

by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def)

also from f g have "... = (
⊕

k ∈ {..n}.
⊕

i ∈ {..m}. f k ⊗ g i)"

by (simp cong: finsum_cong

add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)
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also from f g have "... = (
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"

by (simp add: finsum_ldistr diagonal_sum Pi_def,

simp cong: finsum_cong add: finsum_rdistr Pi_def)

finally show ?thesis .
qed

end

lemma (in UP_ring) const_ring_hom:

"(λa. monom P a 0) ∈ ring_hom R P"

by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)

definition
eval :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme,

’a => ’b, ’b, nat => ’a] => ’b"

where "eval R S phi s = (λp ∈ carrier (UP R).⊕
Si ∈ {..deg R p}. phi (coeff (UP R) p i) ⊗S s (^)S i)"

context UP

begin

lemma eval_on_carrier:

fixes S (structure)
shows "p ∈ carrier P ==>

eval R S phi s p = (
⊕

S i ∈ {..deg R p}. phi (coeff P p i) ⊗S s (^)S
i)"

by (unfold eval_def, fold P_def) simp

lemma eval_extensional:

"eval R S phi p ∈ extensional (carrier P)"

by (unfold eval_def, fold P_def) simp

end

The universal property of the polynomial ring

locale UP_pre_univ_prop = ring_hom_cring + UP_cring

locale UP_univ_prop = UP_pre_univ_prop +

fixes s and Eval

assumes indet_img_carrier [simp, intro]: "s ∈ carrier S"

defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the
locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not
hold for non commutative rings, so maybe it is not that necessary.

lemma (in ring_hom_ring) hom_finsum [simp]:

"f ∈ A → carrier R ==>
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h (finsum R f A) = finsum S (h o f) A"

by (induct A rule: infinite_finite_induct, auto simp: Pi_def)

context UP_pre_univ_prop

begin

theorem eval_ring_hom:

assumes S: "s ∈ carrier S"

shows "eval R S h s ∈ ring_hom P S"

proof (rule ring_hom_memI)

fix p

assume R: "p ∈ carrier P"

then show "eval R S h s p ∈ carrier S"

by (simp only: eval_on_carrier) (simp add: S Pi_def)

next
fix p q

assume R: "p ∈ carrier P" "q ∈ carrier P"

then show "eval R S h s (p ⊕P q) = eval R S h s p ⊕S eval R S h s

q"

proof (simp only: eval_on_carrier P.a_closed)

from S R have
"(

⊕
S i∈{..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S i)

=

(
⊕

S i∈{..deg R (p ⊕P q)} ∪ {deg R (p ⊕P q)<..max (deg R p) (deg

R q)}.

h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"

by (simp cong: S.finsum_cong

add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del:

coeff_add)

also from R have "... =

(
⊕

S i ∈ {..max (deg R p) (deg R q)}.

h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"

by (simp add: ivl_disj_un_one)

also from R S have "... =

(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P p i) ⊗S s (^)S i)

⊕S
(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P q i) ⊗S s (^)S i)"

by (simp cong: S.finsum_cong

add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def)

also have "... =

(
⊕

S i ∈ {..deg R p} ∪ {deg R p<..max (deg R p) (deg R q)}.

h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

S i ∈ {..deg R q} ∪ {deg R q<..max (deg R p) (deg R q)}.

h (coeff P q i) ⊗S s (^)S i)"

by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2)

also from R S have "... =

(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)"

by (simp cong: S.finsum_cong
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add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

finally show
"(

⊕
Si ∈ {..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S

i) =

(
⊕

Si ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

Si ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

next
show "eval R S h s 1P = 1S"

by (simp only: eval_on_carrier UP_one_closed) simp

next
fix p q

assume R: "p ∈ carrier P" "q ∈ carrier P"

then show "eval R S h s (p ⊗P q) = eval R S h s p ⊗S eval R S h s

q"

proof (simp only: eval_on_carrier UP_mult_closed)

from R S have
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =

(
⊕

S i ∈ {..deg R (p ⊗P q)} ∪ {deg R (p ⊗P q)<..deg R p + deg

R q}.

h (coeff P (p ⊗P q) i) ⊗S s (^)S i)"

by (simp cong: S.finsum_cong

add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def

del: coeff_mult)

also from R have "... =

(
⊕

S i ∈ {..deg R p + deg R q}. h (coeff P (p ⊗P q) i) ⊗S s (^)S
i)"

by (simp only: ivl_disj_un_one deg_mult_ring)

also from R S have "... =

(
⊕

S i ∈ {..deg R p + deg R q}.⊕
S k ∈ {..i}.

h (coeff P p k) ⊗S h (coeff P q (i - k)) ⊗S
(s (^)S k ⊗S s (^)S (i - k)))"

by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def

S.m_ac S.finsum_rdistr)

also from R S have "... =

(
⊕

S i∈{..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i∈{..deg R q}. h (coeff P q i) ⊗S s (^)S i)"

by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD

S.m_ac

Pi_def)

finally show
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =

(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

qed



232

The following lemma could be proved in UP_cring with the additional as-
sumption that h is closed.

lemma (in UP_pre_univ_prop) eval_const:

"[| s ∈ carrier S; r ∈ carrier R |] ==> eval R S h s (monom P r 0) =

h r"

by (simp only: eval_on_carrier monom_closed) simp

Further properties of the evaluation homomorphism.

The following proof is complicated by the fact that in arbitrary rings one
might have 1 = 0.

lemma (in UP_pre_univ_prop) eval_monom1:

assumes S: "s ∈ carrier S"

shows "eval R S h s (monom P 1 1) = s"

proof (simp only: eval_on_carrier monom_closed R.one_closed)

from S have
"(

⊕
S i∈{..deg R (monom P 1 1)}. h (coeff P (monom P 1 1) i) ⊗S s

(^)S i) =

(
⊕

S i∈{..deg R (monom P 1 1)} ∪ {deg R (monom P 1 1)<..1}.

h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"

by (simp cong: S.finsum_cong del: coeff_monom

add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

also have "... =

(
⊕

S i ∈ {..1}. h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"

by (simp only: ivl_disj_un_one deg_monom_le R.one_closed)

also have "... = s"

proof (cases "s = 0S")
case True then show ?thesis by (simp add: Pi_def)

next
case False then show ?thesis by (simp add: S Pi_def)

qed
finally show "(

⊕
S i ∈ {..deg R (monom P 1 1)}.

h (coeff P (monom P 1 1) i) ⊗S s (^)S i) = s" .
qed

end

Interpretation of ring homomorphism lemmas.

sublocale UP_univ_prop < ring_hom_cring P S Eval

unfolding Eval_def

by unfold_locales (fast intro: eval_ring_hom)

lemma (in UP_cring) monom_pow:

assumes R: "a ∈ carrier R"

shows "(monom P a n) (^)P m = monom P (a (^) m) (n * m)"

proof (induct m)

case 0 from R show ?case by simp

next



233

case Suc with R show ?case

by (simp del: monom_mult add: monom_mult [THEN sym] add.commute)

qed

lemma (in ring_hom_cring) hom_pow [simp]:

"x ∈ carrier R ==> h (x (^) n) = h x (^)S (n::nat)"

by (induct n) simp_all

lemma (in UP_univ_prop) Eval_monom:

"r ∈ carrier R ==> Eval (monom P r n) = h r ⊗S s (^)S n"

proof -

assume R: "r ∈ carrier R"

from R have "Eval (monom P r n) = Eval (monom P r 0 ⊗P (monom P 1 1)

(^)P n)"

by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)

also
from R eval_monom1 [where s = s, folded Eval_def]

have "... = h r ⊗S s (^)S n"

by (simp add: eval_const [where s = s, folded Eval_def])

finally show ?thesis .
qed

lemma (in UP_pre_univ_prop) eval_monom:

assumes R: "r ∈ carrier R" and S: "s ∈ carrier S"

shows "eval R S h s (monom P r n) = h r ⊗S s (^)S n"

proof -

interpret UP_univ_prop R S h P s "eval R S h s"

using UP_pre_univ_prop_axioms P_def R S

by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)

from R

show ?thesis by (rule Eval_monom)

qed

lemma (in UP_univ_prop) Eval_smult:

"[| r ∈ carrier R; p ∈ carrier P |] ==> Eval (r �P p) = h r ⊗S Eval

p"

proof -

assume R: "r ∈ carrier R" and P: "p ∈ carrier P"

then show ?thesis

by (simp add: monom_mult_is_smult [THEN sym]

eval_const [where s = s, folded Eval_def])

qed

lemma ring_hom_cringI:

assumes "cring R"

and "cring S"

and "h ∈ ring_hom R S"

shows "ring_hom_cring R S h"

by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro
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cring.axioms assms)

context UP_pre_univ_prop

begin

lemma UP_hom_unique:

assumes "ring_hom_cring P S Phi"

assumes Phi: "Phi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Phi (monom P r 0) = h r"

assumes "ring_hom_cring P S Psi"

assumes Psi: "Psi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Psi (monom P r 0) = h r"

and P: "p ∈ carrier P" and S: "s ∈ carrier S"

shows "Phi p = Psi p"

proof -

interpret ring_hom_cring P S Phi by fact

interpret ring_hom_cring P S Psi by fact

have "Phi p =

Phi (
⊕

P i ∈ {..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1
1 (^)P i)"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)

also
have "... =

Psi (
⊕

P i∈{..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1 1

(^)P i)"

by (simp add: Phi Psi P Pi_def comp_def)

also have "... = Psi p"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)

finally show ?thesis .
qed

lemma ring_homD:

assumes Phi: "Phi ∈ ring_hom P S"

shows "ring_hom_cring P S Phi"

by unfold_locales (rule Phi)

theorem UP_universal_property:

assumes S: "s ∈ carrier S"

shows "∃ !Phi. Phi ∈ ring_hom P S ∩ extensional (carrier P) &

Phi (monom P 1 1) = s &

(ALL r : carrier R. Phi (monom P r 0) = h r)"

using S eval_monom1

apply (auto intro: eval_ring_hom eval_const eval_extensional)

apply (rule extensionalityI)

apply (auto intro: UP_hom_unique ring_homD)

done

end

JE: The following lemma was added by me; it might be even lifted to a
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simpler locale

context monoid

begin

lemma nat_pow_eone[simp]: assumes x_in_G: "x ∈ carrier G" shows "x

(^) (1::nat) = x"

using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one

[OF x_in_G] by simp

end

context UP_ring

begin

abbreviation lcoeff :: "(nat =>’a) => ’a" where "lcoeff p == coeff P

p (deg R p)"

lemma lcoeff_nonzero2: assumes p_in_R: "p ∈ carrier P" and p_not_zero:

"p 6= 0P" shows "lcoeff p 6= 0"
using lcoeff_nonzero [OF p_not_zero p_in_R] .

16.11 The long division algorithm: some previous facts.

lemma coeff_minus [simp]:

assumes p: "p ∈ carrier P" and q: "q ∈ carrier P" shows "coeff P (p

	P q) n = coeff P p n 	 coeff P q n"

unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed

[OF q]] unfolding coeff_a_inv [OF q]

using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra

lemma lcoeff_closed [simp]: assumes p: "p ∈ carrier P" shows "lcoeff

p ∈ carrier R"

using coeff_closed [OF p, of "deg R p"] by simp

lemma deg_smult_decr: assumes a_in_R: "a ∈ carrier R" and f_in_P: "f

∈ carrier P" shows "deg R (a �P f) ≤ deg R f"

using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)

lemma coeff_monom_mult: assumes R: "c ∈ carrier R" and P: "p ∈ carrier

P"

shows "coeff P (monom P c n ⊗P p) (m + n) = c ⊗ (coeff P p m)"

proof -

have "coeff P (monom P c n ⊗P p) (m + n) = (
⊕

i∈{..m + n}. (if n =

i then c else 0) ⊗ coeff P p (m + n - i))"

unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"]

unfolding coeff_monom [OF R, of n] by simp

also have "(
⊕

i∈{..m + n}. (if n = i then c else 0) ⊗ coeff P p (m

+ n - i)) =

(
⊕

i∈{..m + n}. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"
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using R.finsum_cong [of "{..m + n}" "{..m + n}" "(λi::nat. (if n

= i then c else 0) ⊗ coeff P p (m + n - i))"

"(λi::nat. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"]
using coeff_closed [OF P] unfolding Pi_def simp_implies_def using

R by auto

also have ". . . = c ⊗ coeff P p m" using R.finsum_singleton [of n "{..m

+ n}" "(λi. c ⊗ coeff P p (m + n - i))"]

unfolding Pi_def using coeff_closed [OF P] using P R by auto

finally show ?thesis by simp

qed

lemma deg_lcoeff_cancel:

assumes p_in_P: "p ∈ carrier P" and q_in_P: "q ∈ carrier P" and r_in_P:

"r ∈ carrier P"

and deg_r_nonzero: "deg R r 6= 0"

and deg_R_p: "deg R p ≤ deg R r" and deg_R_q: "deg R q ≤ deg R r"

and coeff_R_p_eq_q: "coeff P p (deg R r) = 	R (coeff P q (deg R r))"

shows "deg R (p ⊕P q) < deg R r"

proof -

have deg_le: "deg R (p ⊕P q) ≤ deg R r"

proof (rule deg_aboveI)

fix m

assume deg_r_le: "deg R r < m"

show "coeff P (p ⊕P q) m = 0"
proof -

have slp: "deg R p < m" and "deg R q < m" using deg_R_p deg_R_q

using deg_r_le by auto

then have max_sl: "max (deg R p) (deg R q) < m" by simp

then have "deg R (p ⊕P q) < m" using deg_add [OF p_in_P q_in_P]

by arith

with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P,

of m]

using deg_aboveD [of "p ⊕P q" m] using p_in_P q_in_P by simp

qed
qed (simp add: p_in_P q_in_P)

moreover have deg_ne: "deg R (p ⊕P q) 6= deg R r"

proof (rule ccontr)

assume nz: "¬ deg R (p ⊕P q) 6= deg R r" then have deg_eq: "deg

R (p ⊕P q) = deg R r" by simp

from deg_r_nonzero have r_nonzero: "r 6= 0P" by (cases "r = 0P",
simp_all)

have "coeff P (p ⊕P q) (deg R r) = 0R" using coeff_add [OF p_in_P

q_in_P, of "deg R r"] using coeff_R_p_eq_q

using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P,

of "deg R r"] by algebra

with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False

using lcoeff_nonzero [of "p ⊕P q"] using p_in_P q_in_P

using deg_r_nonzero by (cases "p ⊕P q 6= 0P", auto)

qed
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ultimately show ?thesis by simp

qed

lemma monom_deg_mult:

assumes f_in_P: "f ∈ carrier P" and g_in_P: "g ∈ carrier P" and deg_le:

"deg R g ≤ deg R f"

and a_in_R: "a ∈ carrier R"

shows "deg R (g ⊗P monom P a (deg R f - deg R g)) ≤ deg R f"

using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f

- deg R g"]]

apply (cases "a = 0") using g_in_P apply simp

using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by
simp

lemma deg_zero_impl_monom:

assumes f_in_P: "f ∈ carrier P" and deg_f: "deg R f = 0"

shows "f = monom P (coeff P f 0) 0"

apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P],

of 0 0]

using f_in_P deg_f using deg_aboveD [of f _] by auto

end

16.12 The long division proof for commutative rings

context UP_cring

begin

lemma exI3: assumes exist: "Pred x y z"

shows "∃ x y z. Pred x y z"

using exist by blast

Jacobson’s Theorem 2.14

lemma long_div_theorem:

assumes g_in_P [simp]: "g ∈ carrier P" and f_in_P [simp]: "f ∈ carrier

P"

and g_not_zero: "g 6= 0P"
shows "∃ q r (k::nat). (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff

g)(^)Rk �P f = g ⊗P q ⊕P r ∧ (r = 0P | deg R r < deg R g)"

using f_in_P

proof (induct "deg R f" arbitrary: "f" rule: nat_less_induct)

case (1 f)

note f_in_P [simp] = "1.prems"

let ?pred = "(λ q r (k::nat).

(q ∈ carrier P) ∧ (r ∈ carrier P)

∧ (lcoeff g)(^)Rk �P f = g ⊗P q ⊕P r ∧ (r = 0P | deg R r < deg R

g))"

let ?lg = "lcoeff g" and ?lf = "lcoeff f"

show ?case



238

proof (cases "deg R f < deg R g")

case True

have "?pred 0P f 0" using True by force

then show ?thesis by blast

next
case False then have deg_g_le_deg_f: "deg R g ≤ deg R f" by simp

{
let ?k = "1::nat"

let ?f1 = "(g ⊗P (monom P (?lf) (deg R f - deg R g))) ⊕P 	P (?lg

�P f)"

let ?q = "monom P (?lf) (deg R f - deg R g)"

have f1_in_carrier: "?f1 ∈ carrier P" and q_in_carrier: "?q ∈ carrier

P" by simp_all

show ?thesis

proof (cases "deg R f = 0")

case True

{
have deg_g: "deg R g = 0" using True using deg_g_le_deg_f by

simp

have "?pred f 0P 1"

using deg_zero_impl_monom [OF g_in_P deg_g]

using sym [OF monom_mult_is_smult [OF coeff_closed [OF g_in_P,

of 0] f_in_P]]

using deg_g by simp

then show ?thesis by blast

}
next

case False note deg_f_nzero = False

{
have exist: "lcoeff g (^) ?k �P f = g ⊗P ?q ⊕P 	P ?f1"

by (simp add: minus_add r_neg sym [

OF a_assoc [of "g ⊗P ?q" "	P (g ⊗P ?q)" "lcoeff g �P f"]])

have deg_remainder_l_f: "deg R (	P ?f1) < deg R f"

proof (unfold deg_uminus [OF f1_in_carrier])

show "deg R ?f1 < deg R f"

proof (rule deg_lcoeff_cancel)

show "deg R (	P (?lg �P f)) ≤ deg R f"

using deg_smult_ring [of ?lg f]

using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp

show "deg R (g ⊗P ?q) ≤ deg R f"

by (simp add: monom_deg_mult [OF f_in_P g_in_P deg_g_le_deg_f,

of ?lf])

show "coeff P (g ⊗P ?q) (deg R f) = 	 coeff P (	P (?lg

�P f)) (deg R f)"

unfolding coeff_mult [OF g_in_P monom_closed

[OF lcoeff_closed [OF f_in_P],

of "deg R f - deg R g"], of "deg R f"]

unfolding coeff_monom [OF lcoeff_closed

[OF f_in_P], of "(deg R f - deg R g)"]
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using R.finsum_cong’ [of "{..deg R f}" "{..deg R f}"

"(λi. coeff P g i ⊗ (if deg R f - deg R g = deg R f

- i then ?lf else 0))"
"(λi. if deg R g = i then coeff P g i ⊗ ?lf else 0)"]

using R.finsum_singleton [of "deg R g" "{.. deg R f}"

"(λi. coeff P g i ⊗ ?lf)"]

unfolding Pi_def using deg_g_le_deg_f by force

qed (simp_all add: deg_f_nzero)

qed
then obtain q’ r’ k’

where rem_desc: "?lg (^) (k’::nat) �P (	P ?f1) = g ⊗P q’

⊕P r’"

and rem_deg: "(r’ = 0P ∨ deg R r’ < deg R g)"

and q’_in_carrier: "q’ ∈ carrier P" and r’_in_carrier: "r’

∈ carrier P"

using "1.hyps" using f1_in_carrier by blast

show ?thesis

proof (rule exI3 [of _ "((?lg (^) k’) �P ?q ⊕P q’)" r’ "Suc

k’"], intro conjI)

show "(?lg (^) (Suc k’)) �P f = g ⊗P ((?lg (^) k’) �P ?q

⊕P q’) ⊕P r’"

proof -

have "(?lg (^) (Suc k’)) �P f = (?lg (^) k’) �P (g ⊗P
?q ⊕P 	P ?f1)"

using smult_assoc1 [OF _ _ f_in_P] using exist by simp

also have ". . . = (?lg (^) k’) �P (g ⊗P ?q) ⊕P ((?lg (^)

k’) �P ( 	P ?f1))"

using UP_smult_r_distr by simp

also have ". . . = (?lg (^) k’) �P (g ⊗P ?q) ⊕P (g ⊗P q’

⊕P r’)"

unfolding rem_desc ..
also have ". . . = (?lg (^) k’) �P (g ⊗P ?q) ⊕P g ⊗P q’ ⊕P

r’"

using sym [OF a_assoc [of "?lg (^) k’ �P (g ⊗P ?q)" "g

⊗P q’" "r’"]]

using r’_in_carrier q’_in_carrier by simp

also have ". . . = (?lg (^) k’) �P (?q ⊗P g) ⊕P q’ ⊗P g ⊕P
r’"

using q’_in_carrier by (auto simp add: m_comm)

also have ". . . = (((?lg (^) k’) �P ?q) ⊗P g) ⊕P q’ ⊗P g

⊕P r’"

using smult_assoc2 q’_in_carrier "1.prems" by auto

also have ". . . = ((?lg (^) k’) �P ?q ⊕P q’) ⊗P g ⊕P r’"

using sym [OF l_distr] and q’_in_carrier by auto

finally show ?thesis using m_comm q’_in_carrier by auto

qed
qed (simp_all add: rem_deg q’_in_carrier r’_in_carrier)

}
qed
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}
qed

qed

end

The remainder theorem as corollary of the long division theorem.

context UP_cring

begin

lemma deg_minus_monom:

assumes a: "a ∈ carrier R"

and R_not_trivial: "(carrier R 6= {0})"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"

(is "deg R ?g = 1")

proof -

have "deg R ?g ≤ 1"

proof (rule deg_aboveI)

fix m

assume "(1::nat) < m"

then show "coeff P ?g m = 0"
using coeff_minus using a by auto algebra

qed (simp add: a)

moreover have "deg R ?g ≥ 1"

proof (rule deg_belowI)

show "coeff P ?g 1 6= 0"
using a using R.carrier_one_not_zero R_not_trivial by simp algebra

qed (simp add: a)

ultimately show ?thesis by simp

qed

lemma lcoeff_monom:

assumes a: "a ∈ carrier R" and R_not_trivial: "(carrier R 6= {0})"
shows "lcoeff (monom P 1R 1 	P monom P a 0) = 1"
using deg_minus_monom [OF a R_not_trivial]

using coeff_minus a by auto algebra

lemma deg_nzero_nzero:

assumes deg_p_nzero: "deg R p 6= 0"

shows "p 6= 0P"
using deg_zero deg_p_nzero by auto

lemma deg_monom_minus:

assumes a: "a ∈ carrier R"

and R_not_trivial: "carrier R 6= {0}"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"

(is "deg R ?g = 1")

proof -

have "deg R ?g ≤ 1"
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proof (rule deg_aboveI)

fix m::nat assume "1 < m" then show "coeff P ?g m = 0"
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed

[OF a, of 0], of m]

using coeff_monom [OF R.one_closed, of 1 m] using coeff_monom [OF

a, of 0 m] by auto algebra

qed (simp add: a)

moreover have "1 ≤ deg R ?g"

proof (rule deg_belowI)

show "coeff P ?g 1 6= 0"
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed

[OF a, of 0], of 1]

using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF

a, of 0 1]

using R_not_trivial using R.carrier_one_not_zero

by auto algebra

qed (simp add: a)

ultimately show ?thesis by simp

qed

lemma eval_monom_expr:

assumes a: "a ∈ carrier R"

shows "eval R R id a (monom P 1R 1 	P monom P a 0) = 0"
(is "eval R R id a ?g = _")

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

have eval_ring_hom: "eval R R id a ∈ ring_hom P R" using eval_ring_hom

[OF a] by simp

interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule

eval_ring_hom)

have mon1_closed: "monom P 1R 1 ∈ carrier P"

and mon0_closed: "monom P a 0 ∈ carrier P"

and min_mon0_closed: "	P monom P a 0 ∈ carrier P"

using a R.a_inv_closed by auto

have "eval R R id a ?g = eval R R id a (monom P 1 1) 	 eval R R id

a (monom P a 0)"

unfolding P.minus_eq [OF mon1_closed mon0_closed]

unfolding hom_add [OF mon1_closed min_mon0_closed]

unfolding hom_a_inv [OF mon0_closed]

using R.minus_eq [symmetric] mon1_closed mon0_closed by auto

also have ". . . = a 	 a"

using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a

a, of 0] using a by simp

also have ". . . = 0"
using a by algebra

finally show ?thesis by simp

qed

lemma remainder_theorem_exist:
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assumes f: "f ∈ carrier P" and a: "a ∈ carrier R"

and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = (monom P 1R

1 	P monom P a 0) ⊗P q ⊕P r ∧ (deg R r = 0)"

(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P r ∧
(deg R r = 0)")

proof -

let ?g = "monom P 1R 1 	P monom P a 0"

from deg_minus_monom [OF a R_not_trivial]

have deg_g_nzero: "deg R ?g 6= 0" by simp

have "∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧
lcoeff ?g (^) k �P f = ?g ⊗P q ⊕P r ∧ (r = 0P ∨ deg R r < deg R

?g)"

using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a

by auto

then show ?thesis

unfolding lcoeff_monom [OF a R_not_trivial]

unfolding deg_monom_minus [OF a R_not_trivial]

using smult_one [OF f] using deg_zero by force

qed

lemma remainder_theorem_expression:

assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"

and q [simp]: "q ∈ carrier P" and r [simp]: "r ∈ carrier P"

and R_not_trivial: "carrier R 6= {0}"
and f_expr: "f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P r"

(is "f = ?g ⊗P q ⊕P r" is "f = ?gq ⊕P r")

and deg_r_0: "deg R r = 0"

shows "r = monom P (eval R R id a f) 0"

proof -

interpret UP_pre_univ_prop R R id P by standard simp

have eval_ring_hom: "eval R R id a ∈ ring_hom P R"

using eval_ring_hom [OF a] by simp

have "eval R R id a f = eval R R id a ?gq ⊕R eval R R id a r"

unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto

also have ". . . = ((eval R R id a ?g) ⊗ (eval R R id a q)) ⊕R eval R

R id a r"

using ring_hom_mult [OF eval_ring_hom] by auto

also have ". . . = 0 ⊕ eval R R id a r"

unfolding eval_monom_expr [OF a] using eval_ring_hom

unfolding ring_hom_def using q unfolding Pi_def by simp

also have ". . . = eval R R id a r"

using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def

by simp

finally have eval_eq: "eval R R id a f = eval R R id a r" by simp

from deg_zero_impl_monom [OF r deg_r_0]

have "r = monom P (coeff P r 0) 0" by simp

with eval_const [OF a, of "coeff P r 0"] eval_eq

show ?thesis by auto
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qed

corollary remainder_theorem:

assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"

and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧

f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P monom P (eval R R id a

f) 0"

(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P monom

P (eval R R id a f) 0")

proof -

from remainder_theorem_exist [OF f a R_not_trivial]

obtain q r

where q_r: "q ∈ carrier P ∧ r ∈ carrier P ∧ f = ?g ⊗P q ⊕P r"

and deg_r: "deg R r = 0" by force

with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]

show ?thesis by auto

qed

end

16.13 Sample Application of Evaluation Homomorphism

lemma UP_pre_univ_propI:

assumes "cring R"

and "cring S"

and "h ∈ ring_hom R S"

shows "UP_pre_univ_prop R S h"

using assms

by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro

ring_hom_cring_axioms.intro UP_cring.intro)

definition
INTEG :: "int ring"

where "INTEG = (|carrier = UNIV, mult = op *, one = 1, zero = 0, add

= op +|)"

lemma INTEG_cring: "cring INTEG"

by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI

left_minus distrib_right)

lemma INTEG_id_eval:

"UP_pre_univ_prop INTEG INTEG id"

by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

Interpretation now enables to import all theorems and lemmas valid in the
context of homomorphisms between INTEG and UP INTEG globally.

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"

using INTEG_id_eval by simp_all
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lemma INTEG_closed [intro, simp]:

"z ∈ carrier INTEG"

by (unfold INTEG_def) simp

lemma INTEG_mult [simp]:

"mult INTEG z w = z * w"

by (unfold INTEG_def) simp

lemma INTEG_pow [simp]:

"pow INTEG z n = z ^ n"

by (induct n) (simp_all add: INTEG_def nat_pow_def)

lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"

by (simp add: INTEG.eval_monom)

end

theory Multiplicative_Group

imports
Complex_Main

Group

More_Group

More_Finite_Product

Coset

UnivPoly

begin

17 Simplification Rules for Polynomials

lemma (in ring_hom_cring) hom_sub[simp]:

assumes "x ∈ carrier R" "y ∈ carrier R"

shows "h (x 	 y) = h x 	S h y"

using assms by (simp add: R.minus_eq S.minus_eq)

context UP_ring begin

lemma deg_nzero_nzero:

assumes deg_p_nzero: "deg R p 6= 0"

shows "p 6= 0P"
using deg_zero deg_p_nzero by auto

lemma deg_add_eq:

assumes c: "p ∈ carrier P" "q ∈ carrier P"

assumes "deg R q 6= deg R p"

shows "deg R (p ⊕P q) = max (deg R p) (deg R q)"

proof -

let ?m = "max (deg R p) (deg R q)"
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from assms have "coeff P p ?m = 0 ←→ coeff P q ?m 6= 0"
by (metis deg_belowI lcoeff_nonzero[OF deg_nzero_nzero] linear max.absorb_iff2

max.absorb1)

then have "coeff P (p ⊕P q) ?m 6= 0"
using assms by auto

then have "deg R (p ⊕P q) ≥ ?m"

using assms by (blast intro: deg_belowI)

with deg_add[OF c] show ?thesis by arith

qed

lemma deg_minus_eq:

assumes "p ∈ carrier P" "q ∈ carrier P" "deg R q 6= deg R p"

shows "deg R (p 	P q) = max (deg R p) (deg R q)"

using assms by (simp add: deg_add_eq a_minus_def)

end

context UP_cring begin

lemma evalRR_add:

assumes "p ∈ carrier P" "q ∈ carrier P"

assumes x:"x ∈ carrier R"

shows "eval R R id x (p ⊕P q) = eval R R id x p ⊕ eval R R id x q"

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule

eval_ring_hom[OF x])

show ?thesis using assms by simp

qed

lemma evalRR_sub:

assumes "p ∈ carrier P" "q ∈ carrier P"

assumes x:"x ∈ carrier R"

shows "eval R R id x (p 	P q) = eval R R id x p 	 eval R R id x q"

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule

eval_ring_hom[OF x])

show ?thesis using assms by simp

qed

lemma evalRR_mult:

assumes "p ∈ carrier P" "q ∈ carrier P"

assumes x:"x ∈ carrier R"

shows "eval R R id x (p ⊗P q) = eval R R id x p ⊗ eval R R id x q"

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule

eval_ring_hom[OF x])
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show ?thesis using assms by simp

qed

lemma evalRR_monom:

assumes a: "a ∈ carrier R" and x: "x ∈ carrier R"

shows "eval R R id x (monom P a d) = a ⊗ x (^) d"

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

show ?thesis using assms by (simp add: eval_monom)

qed

lemma evalRR_one:

assumes x: "x ∈ carrier R"

shows "eval R R id x 1P = 1"
proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule

eval_ring_hom[OF x])

show ?thesis using assms by simp

qed

lemma carrier_evalRR:

assumes x: "x ∈ carrier R" and "p ∈ carrier P"

shows "eval R R id x p ∈ carrier R"

proof -

interpret UP_pre_univ_prop R R id by unfold_locales simp

interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule

eval_ring_hom[OF x])

show ?thesis using assms by simp

qed

lemmas evalRR_simps = evalRR_add evalRR_sub evalRR_mult evalRR_monom

evalRR_one carrier_evalRR

end

18 Properties of the Euler ϕ-function

In this section we prove that for every positive natural number the equation∑n
d|n ϕ(d) = n holds.

lemma dvd_div_ge_1 :

fixes a b :: nat

assumes "a ≥ 1" "b dvd a"

shows "a div b ≥ 1"

proof -

from 〈b dvd a〉 obtain c where "a = b * c" ..
with 〈a ≥ 1〉 show ?thesis by simp

qed
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lemma dvd_nat_bounds :

fixes n p :: nat

assumes "p > 0" "n dvd p"

shows "n > 0 ∧ n ≤ p"

using assms by (simp add: dvd_pos_nat dvd_imp_le)

definition phi’ :: "nat => nat"

where "phi’ m = card {x. 1 ≤ x ∧ x ≤ m ∧ gcd x m = 1}"

notation (latex output)
phi’ ("ϕ _")

lemma phi’_nonzero :

assumes "m > 0"

shows "phi’ m > 0"

proof -

have "1 ∈ {x. 1 ≤ x ∧ x ≤ m ∧ gcd x m = 1}" using assms by simp

hence "card {x. 1 ≤ x ∧ x ≤ m ∧ gcd x m = 1} > 0" by (auto simp: card_gt_0_iff)

thus ?thesis unfolding phi’_def by simp

qed

lemma dvd_div_eq_1:

fixes a b c :: nat

assumes "c dvd a" "c dvd b" "a div c = b div c"

shows "a = b" using assms dvd_mult_div_cancel[OF ‘c dvd a‘] dvd_mult_div_cancel[OF

‘c dvd b‘]

by presburger

lemma dvd_div_eq_2:

fixes a b c :: nat

assumes "c>0" "a dvd c" "b dvd c" "c div a = c div b"

shows "a = b"

proof -

have "a > 0" "a ≤ c" using dvd_nat_bounds[OF assms(1-2)] by auto

have "a*(c div a) = c" using assms dvd_mult_div_cancel by fastforce

also have ". . . = b*(c div a)" using assms dvd_mult_div_cancel by fastforce

finally show "a = b" using ‘c>0‘ dvd_div_ge_1[OF _ ‘a dvd c‘] by fastforce

qed

lemma div_mult_mono:

fixes a b c :: nat

assumes "a > 0" "a≤d"
shows "a * b div d ≤ b"

proof -

have "a*b div d ≤ b*a div a" using assms div_le_mono2 mult.commute[of

a b] by presburger

thus ?thesis using assms by force
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qed

We arrive at the main result of this section: For every positive natural num-
ber the equation

∑n
d|n ϕ(d) = n holds.

The outline of the proof for this lemma is as follows: We count the n fractions
1/n, . . ., (n− 1)/n, n/n. We analyze the reduced form a/d = m/n for any
of those fractions. We want to know how many fractions m/n have the
reduced form denominator d. The condition 1 ≤ m ≤ n is equivalent to
the condition 1 ≤ a ≤ d. Therefore we want to know how many a with
1 ≤ a ≤ d exist, s.t. coprime a d. This number is exactly ϕ d.

Finally, by counting the fractions m/n according to their reduced form de-
nominator, we get:

(
∑

d | d dvd n. ϕ d) = n

. To formalize this proof in Isabelle, we analyze for an arbitrary divisor d of
n

• the set of reduced form numerators {a. 1 ≤ a ∧ a ≤ d ∧ coprime a

d}

• the set of numerators m, for which m/n has the reduced form denom-
inator d, i.e. the set {m ∈ {1..n}. n div gcd m n = d}

We show that λa. a * n div d with the inverse λa. a div gcd a n is a bi-
jection between theses sets, thus yielding the equality

ϕ d = card {m ∈ {1..n}. n div gcd m n = d}

This gives us

(
∑

d | d dvd n. ϕ d) = card (
⋃

d∈{d. d dvd n} {m ∈ {1..n}. n div gcd m

n = d})

and by showing {1..n} ⊆ (
⋃

d∈{d. d dvd n} {m ∈ {1..n}. n div gcd m n

= d}) (this is our counting argument) the thesis follows.

lemma sum_phi’_factors :

fixes n :: nat

assumes "n > 0"

shows "(
∑

d | d dvd n. phi’ d) = n"

proof -

{ fix d assume "d dvd n" then obtain q where q: "n = d * q" ..
have "card {a. 1 ≤ a ∧ a ≤ d ∧ coprime a d} = card {m ∈ {1 .. n}.

n div gcd m n = d}"

(is "card ?RF = card ?F")

proof (rule card_bij_eq)

{ fix a b assume "a * n div d = b * n div d"
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hence "a * (n div d) = b * (n div d)"

using dvd_div_mult[OF ‘d dvd n‘] by (fastforce simp add: mult.commute)

hence "a = b" using dvd_div_ge_1[OF _ ‘d dvd n‘] ‘n>0‘

by (simp add: mult.commute nat_mult_eq_cancel1)

} thus "inj_on (λa. a*n div d) ?RF" unfolding inj_on_def by blast

{ fix a assume a:"a∈?RF"
hence "a * (n div d) ≥ 1" using ‘n>0‘ dvd_div_ge_1[OF _ ‘d dvd

n‘] by simp

hence ge_1:"a * n div d ≥ 1" by (simp add: ‘d dvd n‘ div_mult_swap)

have le_n:"a * n div d ≤ n" using div_mult_mono a by simp

have "gcd (a * n div d) n = n div d * gcd a d"

by (simp add: gcd_mult_distrib_nat q ac_simps)

hence "n div gcd (a * n div d) n = d*n div (d*(n div d))" us-
ing a by simp

hence "a * n div d ∈ ?F"

using ge_1 le_n by (fastforce simp add: ‘d dvd n‘ dvd_mult_div_cancel)

} thus "(λa. a*n div d) ‘ ?RF ⊆ ?F" by blast

{ fix m l assume A: "m ∈ ?F" "l ∈ ?F" "m div gcd m n = l div gcd

l n"

hence "gcd m n = gcd l n" using dvd_div_eq_2[OF assms] by fastforce

hence "m = l" using dvd_div_eq_1[of "gcd m n" m l] A(3) by fastforce

} thus "inj_on (λa. a div gcd a n) ?F" unfolding inj_on_def by
blast

{ fix m assume "m ∈ ?F"

hence "m div gcd m n ∈ ?RF" using dvd_div_ge_1

by (fastforce simp add: div_le_mono div_gcd_coprime)

} thus "(λa. a div gcd a n) ‘ ?F ⊆ ?RF" by blast

qed force+

} hence phi’_eq:"
∧
d. d dvd n =⇒ phi’ d = card {m ∈ {1 .. n}. n div

gcd m n = d}"

unfolding phi’_def by presburger

have fin:"finite {d. d dvd n}" using dvd_nat_bounds[OF ‘n>0‘] by force

have "(
∑

d | d dvd n. phi’ d)

= card (
⋃
d ∈ {d. d dvd n}. {m ∈ {1 .. n}. n div gcd

m n = d})"

using card_UN_disjoint[OF fin, of "(λd. {m ∈ {1 .. n}. n div gcd m

n = d})"] phi’_eq

by fastforce

also have "(
⋃
d ∈ {d. d dvd n}. {m ∈ {1 .. n}. n div gcd m n = d}) =

{1 .. n}" (is "?L = ?R")

proof
show "?L ⊇ ?R"

proof
fix m assume m: "m ∈ ?R"

thus "m ∈ ?L" using dvd_triv_right[of "n div gcd m n" "gcd m n"]

by (simp add: dvd_mult_div_cancel)

qed
qed fastforce

finally show ?thesis by force
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qed

19 Order of an Element of a Group

context group begin

lemma pow_eq_div2 :

fixes m n :: nat

assumes x_car: "x ∈ carrier G"

assumes pow_eq: "x (^) m = x (^) n"

shows "x (^) (m - n) = 1"
proof (cases "m < n")

case False

have "1 ⊗ x (^) m = x (^) m" by (simp add: x_car)

also have ". . . = x (^) (m - n) ⊗ x (^) n"

using False by (simp add: nat_pow_mult x_car)

also have ". . . = x (^) (m - n) ⊗ x (^) m"

by (simp add: pow_eq)

finally show ?thesis by (simp add: x_car)

qed simp

definition ord where "ord a = Min {d ∈ {1 .. order G} . a (^) d = 1}"

lemma
assumes finite:"finite (carrier G)"

assumes a:"a ∈ carrier G"

shows ord_ge_1: "1 ≤ ord a" and ord_le_group_order: "ord a ≤ order

G"

and pow_ord_eq_1: "a (^) ord a = 1"
proof -

have "¬inj_on (λx. a (^) x) {0 .. order G}"

proof (rule notI)

assume A: "inj_on (λx. a (^) x) {0 .. order G}"

have "order G + 1 = card {0 .. order G}" by simp

also have ". . . = card ((λx. a (^) x) ‘ {0 .. order G})" (is "_ = card

?S")

using A by (simp add: card_image)

also have "?S = {a (^) x | x. x ∈ {0 .. order G}}" by blast

also have ". . . ⊆ carrier G" (is "?S ⊆ _") using a by blast

then have "card ?S ≤ order G" unfolding order_def

by (rule card_mono[OF finite])

finally show False by arith

qed

then obtain x y where x_y:"x 6= y" "x ∈ {0 .. order G}" "y ∈ {0 ..

order G}"

"a (^) x = a (^) y" unfolding inj_on_def by blast

obtain d where "1 ≤ d" "a (^) d = 1" "d ≤ order G"

proof cases
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assume "y < x" with x_y show ?thesis

by (intro that[where d="x - y"]) (auto simp add: pow_eq_div2[OF

a])

next
assume "¬y < x" with x_y show ?thesis

by (intro that[where d="y - x"]) (auto simp add: pow_eq_div2[OF

a])

qed
hence "ord a ∈ {d ∈ {1 .. order G} . a (^) d = 1}"

unfolding ord_def using Min_in[of "{d ∈ {1 .. order G} . a (^) d =

1}"]
by fastforce

then show "1 ≤ ord a" and "ord a ≤ order G" and "a (^) ord a = 1"
by (auto simp: order_def)

qed

lemma finite_group_elem_finite_ord :

assumes "finite (carrier G)" "x ∈ carrier G"

shows "∃ d::nat. d ≥ 1 ∧ x (^) d = 1"
using assms ord_ge_1 pow_ord_eq_1 by auto

lemma ord_min:

assumes "finite (carrier G)" "1 ≤ d" "a ∈ carrier G" "a (^) d = 1"
shows "ord a ≤ d"

proof -

def Ord ≡ "{d ∈ {1..order G}. a (^) d = 1}"
have fin: "finite Ord" by (auto simp: Ord_def)

have in_ord: "ord a ∈ Ord"

using assms pow_ord_eq_1 ord_ge_1 ord_le_group_order by (auto simp:

Ord_def)

then have "Ord 6= {}" by auto

show ?thesis

proof (cases "d ≤ order G")

case True

then have "d ∈ Ord" using assms by (auto simp: Ord_def)

with fin in_ord show ?thesis

unfolding ord_def Ord_def[symmetric] by simp

next
case False

then show ?thesis using in_ord by (simp add: Ord_def)

qed
qed

lemma ord_inj :

assumes finite: "finite (carrier G)"

assumes a: "a ∈ carrier G"

shows "inj_on (λ x . a (^) x) {0 .. ord a - 1}"

proof (rule inj_onI, rule ccontr)
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fix x y assume A: "x ∈ {0 .. ord a - 1}" "y ∈ {0 .. ord a - 1}" "a

(^) x= a (^) y" "x 6= y"

have "finite {d ∈ {1..order G}. a (^) d = 1}" by auto

{ fix x y assume A: "x < y" "x ∈ {0 .. ord a - 1}" "y ∈ {0 .. ord a

- 1}"

"a (^) x = a (^) y"

hence "y - x < ord a" by auto

also have ". . . ≤ order G" using assms by (simp add: ord_le_group_order)

finally have y_x_range:"y - x ∈ {1 .. order G}" using A by force

have "a (^) (y-x) = 1" using a A by (simp add: pow_eq_div2)

hence y_x:"y - x ∈ {d ∈ {1.. order G}. a (^) d = 1}" using y_x_range

by blast

have "min (y - x) (ord a) = ord a"

using Min.in_idem[OF ‘finite {d ∈ {1 .. order G} . a (^) d = 1}‘
y_x] ord_def by auto

with ‘y - x < ord a‘ have False by linarith

}
note X = this

{ assume "x < y" with A X have False by blast }
moreover
{ assume "x > y" with A X have False by metis }
moreover
{ assume "x = y" then have False using A by auto}
ultimately
show False by fastforce

qed

lemma ord_inj’ :

assumes finite: "finite (carrier G)"

assumes a: "a ∈ carrier G"

shows "inj_on (λ x . a (^) x) {1 .. ord a}"

proof (rule inj_onI, rule ccontr)

fix x y :: nat

assume A:"x ∈ {1 .. ord a}" "y ∈ {1 .. ord a}" "a (^) x = a (^) y"

"x 6=y"

{ assume "x < ord a" "y < ord a"

hence False using ord_inj[OF assms] A unfolding inj_on_def by fastforce

}
moreover
{ assume "x = ord a" "y < ord a"

hence "a (^) y = a (^) (0::nat)" using pow_ord_eq_1[OF assms] A by
auto

hence "y=0" using ord_inj[OF assms] ‘y < ord a‘ unfolding inj_on_def

by force

hence False using A by fastforce
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}
moreover
{ assume "y = ord a" "x < ord a"

hence "a (^) x = a (^) (0::nat)" using pow_ord_eq_1[OF assms] A by
auto

hence "x=0" using ord_inj[OF assms] ‘x < ord a‘ unfolding inj_on_def

by force

hence False using A by fastforce

}
ultimately show False using A by force

qed

lemma ord_elems :

assumes "finite (carrier G)" "a ∈ carrier G"

shows "{a(^)x | x. x ∈ (UNIV :: nat set)} = {a(^)x | x. x ∈ {0 .. ord

a - 1}}" (is "?L = ?R")

proof
show "?R ⊆ ?L" by blast

{ fix y assume "y ∈ ?L"

then obtain x::nat where x:"y = a(^)x" by auto

def r ≡ "x mod ord a"

then obtain q where q:"x = q * ord a + r" using mod_eqD by atomize_elim

presburger

hence "y = (a(^)ord a)(^)q ⊗ a(^)r"

using x assms by (simp add: mult.commute nat_pow_mult nat_pow_pow)

hence "y = a(^)r" using assms by (simp add: pow_ord_eq_1)

have "r < ord a" using ord_ge_1[OF assms] by (simp add: r_def)

hence "r ∈ {0 .. ord a - 1}" by (force simp: r_def)

hence "y ∈ {a(^)x | x. x ∈ {0 .. ord a - 1}}" using ‘y=a(^)r‘ by
blast

}
thus "?L ⊆ ?R" by auto

qed

lemma ord_dvd_pow_eq_1 :

assumes "finite (carrier G)" "a ∈ carrier G" "a (^) k = 1"
shows "ord a dvd k"

proof -

def r ≡ "k mod ord a"

then obtain q where q:"k = q*ord a + r" using mod_eqD by atomize_elim

presburger

hence "a(^)k = (a(^)ord a)(^)q ⊗ a(^)r"

using assms by (simp add: mult.commute nat_pow_mult nat_pow_pow)

hence "a(^)k = a(^)r" using assms by (simp add: pow_ord_eq_1)

hence "a(^)r = 1" using assms(3) by simp

have "r < ord a" using ord_ge_1[OF assms(1-2)] by (simp add: r_def)

hence "r = 0" using ‘a(^)r = 1‘ ord_def[of a] ord_min[of r a] assms(1-2)

by linarith

thus ?thesis using q by simp
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qed

lemma dvd_gcd :

fixes a b :: nat

obtains q where "a * (b div gcd a b) = b*q"

proof
have "a * (b div gcd a b) = (a div gcd a b) * b" by (simp add: div_mult_swap

dvd_div_mult)

also have ". . . = b * (a div gcd a b)" by simp

finally show "a * (b div gcd a b) = b * (a div gcd a b) " .
qed

lemma ord_pow_dvd_ord_elem :

assumes finite[simp]: "finite (carrier G)"

assumes a[simp]:"a ∈ carrier G"

shows "ord (a(^)n) = ord a div gcd n (ord a)"

proof -

have "(a(^)n) (^) ord a = (a (^) ord a) (^) n"

by (simp add: mult.commute nat_pow_pow)

hence "(a(^)n) (^) ord a = 1" by (simp add: pow_ord_eq_1)

obtain q where "n * (ord a div gcd n (ord a)) = ord a * q" by (rule

dvd_gcd)

hence "(a(^)n) (^) (ord a div gcd n (ord a)) = (a (^) ord a)(^)q" by
(simp add : nat_pow_pow)

hence pow_eq_1: "(a(^)n) (^) (ord a div gcd n (ord a)) = 1"
by (auto simp add : pow_ord_eq_1[of a])

have "ord a ≥ 1" using ord_ge_1 by simp

have ge_1:"ord a div gcd n (ord a) ≥ 1"

proof -

have "gcd n (ord a) dvd ord a" by blast

thus ?thesis by (rule dvd_div_ge_1[OF ‘ord a ≥ 1‘])

qed
have "ord a ≤ order G" by (simp add: ord_le_group_order)

have "ord a div gcd n (ord a) ≤ order G"

proof -

have "ord a div gcd n (ord a) ≤ ord a" by simp

thus ?thesis using ‘ord a ≤ order G‘ by linarith

qed
hence ord_gcd_elem:"ord a div gcd n (ord a) ∈ {d ∈ {1..order G}. (a(^)n)

(^) d = 1}"
using ge_1 pow_eq_1 by force

{ fix d :: nat

assume d_elem:"d ∈ {d ∈ {1..order G}. (a(^)n) (^) d = 1}"
assume d_lt:"d < ord a div gcd n (ord a)"

hence pow_nd:"a(^)(n*d) = 1" using d_elem

by (simp add : nat_pow_pow)

hence "ord a dvd n*d" using assms by (auto simp add : ord_dvd_pow_eq_1)

then obtain q where "ord a * q = n*d" by (metis dvd_mult_div_cancel)

hence prod_eq:"(ord a div gcd n (ord a)) * q = (n div gcd n (ord a))
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* d"

by (simp add: dvd_div_mult)

have cp:"coprime (ord a div gcd n (ord a)) (n div gcd n (ord a))"

proof -

have "coprime (n div gcd n (ord a)) (ord a div gcd n (ord a))"

using div_gcd_coprime[of n "ord a"] ge_1 by fastforce

thus ?thesis by (simp add: gcd.commute)

qed
have dvd_d:"(ord a div gcd n (ord a)) dvd d"

proof -

have "ord a div gcd n (ord a) dvd (n div gcd n (ord a)) * d" us-
ing prod_eq

by (metis dvd_triv_right mult.commute)

hence "ord a div gcd n (ord a) dvd d * (n div gcd n (ord a))"

by (simp add: mult.commute)

thus ?thesis using coprime_dvd_mult[OF cp, of d] by fastforce

qed
have "d > 0" using d_elem by simp

hence "ord a div gcd n (ord a) ≤ d" using dvd_d by (simp add : Nat.dvd_imp_le)

hence False using d_lt by simp

} hence ord_gcd_min: "
∧

d . d ∈ {d ∈ {1..order G}. (a(^)n) (^) d =

1}
=⇒ d≥ord a div gcd n (ord a)" by fastforce

have fin:"finite {d ∈ {1..order G}. (a(^)n) (^) d = 1}" by auto

thus ?thesis using Min_eqI[OF fin ord_gcd_min ord_gcd_elem]

unfolding ord_def by simp

qed

lemma ord_1_eq_1 :

assumes "finite (carrier G)"

shows "ord 1 = 1"

using assms ord_ge_1 ord_min[of 1 1] by force

theorem lagrange_dvd:

assumes "finite(carrier G)" "subgroup H G" shows "(card H) dvd (order

G)"

using assms by (simp add: lagrange[symmetric])

lemma element_generates_subgroup:

assumes finite[simp]: "finite (carrier G)"

assumes a[simp]: "a ∈ carrier G"

shows "subgroup {a (^) i | i. i ∈ {0 .. ord a - 1}} G"

proof
show "{a(^)i | i. i ∈ {0 .. ord a - 1} } ⊆ carrier G" by auto

next
fix x y

assume A: "x ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}" "y ∈ {a(^)i | i.

i ∈ {0 .. ord a - 1}}"

obtain i::nat where i:"x = a(^)i" and i2:"i ∈ UNIV" using A by auto
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obtain j::nat where j:"y = a(^)j" and j2:"j ∈ UNIV" using A by auto

have "a(^)(i+j) ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}" using ord_elems[OF

assms] A by auto

thus "x ⊗ y ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}"

using i j a ord_elems assms by (auto simp add: nat_pow_mult)

next
show "1 ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}" by force

next
fix x assume x: "x ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}"

hence x_in_carrier: "x ∈ carrier G" by auto

then obtain d::nat where d:"x (^) d = 1" and "d≥1"
using finite_group_elem_finite_ord by auto

have inv_1:"x(^)(d - 1) ⊗ x = 1" using ‘d≥1‘ d nat_pow_Suc[of x "d

- 1"] by simp

have elem:"x (^) (d - 1) ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}"

proof -

obtain i::nat where i:"x = a(^)i" using x by auto

hence "x(^)(d - 1) ∈ {a(^)i | i. i ∈ (UNIV::nat set)}" by (auto simp

add: nat_pow_pow)

thus ?thesis using ord_elems[of a] by auto

qed
have inv:"inv x = x(^)(d - 1)" using inv_equality[OF inv_1] x_in_carrier

by blast

thus "inv x ∈ {a(^)i | i. i ∈ {0 .. ord a - 1}}" using elem inv by
auto

qed

lemma ord_dvd_group_order :

assumes finite[simp]: "finite (carrier G)"

assumes a[simp]: "a ∈ carrier G"

shows "ord a dvd order G"

proof -

have card_dvd:"card {a(^)i | i. i ∈ {0 .. ord a - 1}} dvd card (carrier

G)"

using lagrange_dvd element_generates_subgroup unfolding order_def

by simp

have "inj_on (λ i . a(^)i) {0..ord a - 1}" using ord_inj by simp

hence cards_eq:"card ( (λ i . a(^)i) ‘ {0..ord a - 1}) = card {0..ord

a - 1}"

using card_image[of "λ i . a(^)i" "{0..ord a - 1}"] by auto

have "(λ i . a(^)i) ‘ {0..ord a - 1} = {a(^)i | i. i ∈ {0..ord a -

1}}" by auto

hence "card {a(^)i | i. i ∈ {0..ord a - 1}} = card {0..ord a - 1}"

using cards_eq by simp

also have ". . . = ord a" using ord_ge_1[of a] by simp

finally show ?thesis using card_dvd by (simp add: order_def)

qed

end
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20 Number of Roots of a Polynomial

definition mult_of :: "(’a, ’b) ring_scheme ⇒ ’a monoid" where
"mult_of R ≡ (| carrier = carrier R - {0R}, mult = mult R, one = 1R|)"

lemma carrier_mult_of: "carrier (mult_of R) = carrier R - {0R}"
by (simp add: mult_of_def)

lemma mult_mult_of: "mult (mult_of R) = mult R"

by (simp add: mult_of_def)

lemma nat_pow_mult_of: "op (^)mult_of R = (op (^)R :: _ ⇒ nat ⇒ _)"

by (simp add: mult_of_def fun_eq_iff nat_pow_def)

lemma one_mult_of: "1mult_of R = 1R"
by (simp add: mult_of_def)

lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of

context field begin

lemma field_mult_group :

shows "group (mult_of R)"

apply (rule groupI)

apply (auto simp: mult_of_simps m_assoc dest: integral)

by (metis Diff_iff Units_inv_Units Units_l_inv field_Units singletonE)

lemma finite_mult_of: "finite (carrier R) =⇒ finite (carrier (mult_of

R))"

by (auto simp: mult_of_simps)

lemma order_mult_of: "finite (carrier R) =⇒ order (mult_of R) = order

R - 1"

unfolding order_def carrier_mult_of by (simp add: card.remove)

end

lemma (in monoid) Units_pow_closed :

fixes d :: nat

assumes "x ∈ Units G"

shows "x (^) d ∈ Units G"

by (metis assms group.is_monoid monoid.nat_pow_closed units_group

units_of_carrier units_of_pow)

lemma (in comm_monoid) is_monoid:

shows "monoid G" by unfold_locales
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declare comm_monoid.is_monoid[intro?]

lemma (in ring) r_right_minus_eq[simp]:

assumes "a ∈ carrier R" "b ∈ carrier R"

shows "a 	 b = 0 ←→ a = b"

using assms by (metis a_minus_def add.inv_closed minus_equality r_neg)

context UP_cring begin

lemma is_UP_cring:"UP_cring R" by (unfold_locales)

lemma is_UP_ring :

shows "UP_ring R" by (unfold_locales)

end

context UP_domain begin

lemma roots_bound:

assumes f [simp]: "f ∈ carrier P"

assumes f_not_zero: "f 6= 0P"
assumes finite: "finite (carrier R)"

shows "finite {a ∈ carrier R . eval R R id a f = 0} ∧
card {a ∈ carrier R . eval R R id a f = 0} ≤ deg R f" using

f f_not_zero

proof (induction "deg R f" arbitrary: f)

case 0

have "
∧
x. eval R R id x f 6= 0"

proof -

fix x

have "(
⊕

i∈{..deg R f}. id (coeff P f i) ⊗ x (^) i) 6= 0"
using 0 lcoeff_nonzero_nonzero[where p = f] by simp

thus "eval R R id x f 6= 0" using 0 unfolding eval_def P_def by simp

qed
then have *: "{a ∈ carrier R. eval R R (λa. a) a f = 0} = {}"

by (auto simp: id_def)

show ?case by (simp add: *)

next
case (Suc x)

show ?case

proof (cases "∃ a ∈ carrier R . eval R R id a f = 0")
case True

then obtain a where a_carrier[simp]: "a ∈ carrier R" and a_root:"eval

R R id a f = 0" by blast

have R_not_triv: "carrier R 6= {0}"
by (metis R.one_zeroI R.zero_not_one)

obtain q where q:"(q ∈ carrier P)" and
f:"f = (monom P 1R 1 	 P monom P a 0) ⊗P q ⊕P monom P (eval R R

id a f) 0"



259

using remainder_theorem[OF Suc.prems(1) a_carrier R_not_triv] by
auto

hence lin_fac: "f = (monom P 1R 1 	 P monom P a 0) ⊗P q" using q

by (simp add: a_root)

have deg:"deg R (monom P 1R 1 	 P monom P a 0) = 1"

using a_carrier by (simp add: deg_minus_eq)

hence mon_not_zero:"(monom P 1R 1 	 P monom P a 0) 6= 0P"
by (fastforce simp del: r_right_minus_eq)

have q_not_zero:"q 6= 0P" using Suc by (auto simp add : lin_fac)

hence "deg R q = x" using Suc deg deg_mult[OF mon_not_zero q_not_zero

_ q]

by (simp add : lin_fac)

hence q_IH:"finite {a ∈ carrier R . eval R R id a q = 0}
∧ card {a ∈ carrier R . eval R R id a q = 0} ≤ x" us-

ing Suc q q_not_zero by blast

have subs:"{a ∈ carrier R . eval R R id a f = 0}
⊆ {a ∈ carrier R . eval R R id a q = 0} ∪ {a}" (is "?L

⊆ ?R ∪ {a}")

using a_carrier ‘q ∈ _‘

by (auto simp: evalRR_simps lin_fac R.integral_iff)

have "{a ∈ carrier R . eval R R id a f = 0} ⊆ insert a {a ∈ carrier

R . eval R R id a q = 0}"
using subs by auto

hence "card {a ∈ carrier R . eval R R id a f = 0} ≤
card (insert a {a ∈ carrier R . eval R R id a q = 0})" us-

ing q_IH by (blast intro: card_mono)

also have ". . . ≤ deg R f" using q_IH ‘Suc x = _‘

by (simp add: card_insert_if)

finally show ?thesis using q_IH ‘Suc x = _‘ using finite by force

next
case False

hence "card {a ∈ carrier R. eval R R id a f = 0} = 0" using finite

by auto

also have ". . . ≤ deg R f" by simp

finally show ?thesis using finite by auto

qed
qed

end

lemma (in domain) num_roots_le_deg :

fixes p d :: nat

assumes finite:"finite (carrier R)"

assumes d_neq_zero : "d 6= 0"

shows "card {x ∈ carrier R. x (^) d = 1} ≤ d"

proof -

let ?f = "monom (UP R) 1R d 	 (UP R) monom (UP R) 1R 0"

have one_in_carrier:"1 ∈ carrier R" by simp

interpret R: UP_domain R "UP R" by (unfold_locales)
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have "deg R ?f = d"

using d_neq_zero by (simp add: R.deg_minus_eq)

hence f_not_zero:"?f 6= 0UP R" using d_neq_zero by (auto simp add :

R.deg_nzero_nzero)

have roots_bound:"finite {a ∈ carrier R . eval R R id a ?f = 0} ∧
card {a ∈ carrier R . eval R R id a ?f = 0} ≤ deg

R ?f"

using finite by (intro R.roots_bound[OF _ f_not_zero])

simp

have subs:"{x ∈ carrier R. x (^) d = 1} ⊆ {a ∈ carrier R . eval R R

id a ?f = 0}"
by (auto simp: R.evalRR_simps)

then have "card {x ∈ carrier R. x (^) d = 1} ≤
card {a ∈ carrier R. eval R R id a ?f = 0}" using finite by (simp

add : card_mono)

thus ?thesis using ‘deg R ?f = d‘ roots_bound by linarith

qed

21 The Multiplicative Group of a Field

In this section we show that the multiplicative group of a finite field is
generated by a single element, i.e. it is cyclic. The proof is inspired by the
first proof given in the survey [?].

lemma (in group) pow_order_eq_1:

assumes "finite (carrier G)" "x ∈ carrier G" shows "x (^) order G =

1"
using assms by (metis nat_pow_pow ord_dvd_group_order pow_ord_eq_1 dvdE

nat_pow_one)

lemma nat_div_eq: "a 6= 0 =⇒ (a :: nat) div b = a ←→ b = 1"

apply rule

apply (cases "b = 0")

apply simp_all

apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)

done

lemma (in group)

assumes finite’: "finite (carrier G)"

assumes "a ∈ carrier G"

shows pow_ord_eq_ord_iff: "group.ord G (a (^) k) = ord a ←→ coprime

k (ord a)" (is "?L ←→ ?R")

proof
assume A: ?L then show ?R

using assms ord_ge_1[OF assms] by (auto simp: nat_div_eq ord_pow_dvd_ord_elem)

next
assume ?R then show ?L

using ord_pow_dvd_ord_elem[OF assms, of k] by auto
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qed

context field begin

lemma num_elems_of_ord_eq_phi’:

assumes finite: "finite (carrier R)" and dvd: "d dvd order (mult_of

R)"

and exists: "∃ a∈carrier (mult_of R). group.ord (mult_of R) a =

d"

shows "card {a ∈ carrier (mult_of R). group.ord (mult_of R) a = d}

= phi’ d"

proof -

note mult_of_simps[simp]

have finite’: "finite (carrier (mult_of R))" using finite by (rule

finite_mult_of)

interpret G:group "mult_of R" rewrites "op (^)mult_of R = (op (^) :: _

⇒ nat ⇒ _)" and "1mult_of R = 1"
by (rule field_mult_group) simp_all

from exists

obtain a where a:"a ∈ carrier (mult_of R)" and ord_a: "group.ord (mult_of

R) a = d"

by (auto simp add: card_gt_0_iff)

have set_eq1:"{a(^)n| n. n ∈ {1 .. d}} = {x ∈ carrier (mult_of R).

x (^) d = 1}"
proof (rule card_seteq)

show "finite {x ∈ carrier (mult_of R). x (^) d = 1}" using finite

by auto

show "{a(^)n| n. n ∈ {1 ..d}} ⊆ {x ∈ carrier (mult_of R). x(^)d

= 1}"
proof

fix x assume "x ∈ {a(^)n | n. n ∈ {1 .. d}}"

then obtain n where n:"x = a(^)n ∧ n ∈ {1 .. d}" by auto

have "x(^)d =(a(^)d)(^)n" using n a ord_a by (simp add:nat_pow_pow

mult.commute)

hence "x(^)d = 1" using ord_a G.pow_ord_eq_1[OF finite’ a] by fastforce

thus "x ∈ {x ∈ carrier (mult_of R). x(^)d = 1}" using G.nat_pow_closed[OF

a] n by blast

qed

show "card {x ∈ carrier (mult_of R). x (^) d = 1} ≤ card {a(^)n

| n. n ∈ {1 .. d}}"

proof -

have *:"{a(^)n | n. n ∈ {1 .. d }} = ((λ n. a(^)n) ‘ {1 .. d})"

by auto

have "0 < order (mult_of R)" unfolding order_mult_of[OF finite]
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using card_mono[OF finite, of "{0, 1}"] by (simp add: order_def)

have "card {x ∈ carrier (mult_of R). x (^) d = 1} ≤ card {x ∈ carrier

R. x (^) d = 1}"
using finite by (auto intro: card_mono)

also have ". . . ≤ d" using ‘0 < order (mult_of R)‘ num_roots_le_deg[OF

finite, of d]

by (simp add : dvd_pos_nat[OF _ ‘d dvd order (mult_of R)‘])

finally show ?thesis using G.ord_inj’[OF finite’ a] ord_a * by (simp

add: card_image)

qed
qed

have set_eq2:"{x ∈ carrier (mult_of R) . group.ord (mult_of R) x =

d}

= (λ n . a(^)n) ‘ {n ∈ {1 .. d}. group.ord (mult_of R)

(a(^)n) = d}" (is "?L = ?R")

proof
{ fix x assume x:"x ∈ (carrier (mult_of R)) ∧ group.ord (mult_of

R) x = d"

hence "x ∈ {x ∈ carrier (mult_of R). x (^) d = 1}"
by (simp add: G.pow_ord_eq_1[OF finite’, of x, symmetric])

then obtain n where n:"x = a(^)n ∧ n ∈ {1 .. d}" using set_eq1

by blast

hence "x ∈ ?R" using x by fast

} thus "?L ⊆ ?R" by blast

show "?R ⊆ ?L" using a by (auto simp add: carrier_mult_of[symmetric]

simp del: carrier_mult_of)

qed
have "inj_on (λ n . a(^)n) {n ∈ {1 .. d}. group.ord (mult_of R) (a(^)n)

= d}"

using G.ord_inj’[OF finite’ a, unfolded ord_a] unfolding inj_on_def

by fast

hence "card ((λn. a(^)n) ‘ {n ∈ {1 .. d}. group.ord (mult_of R) (a(^)n)

= d})

= card {k ∈ {1 .. d}. group.ord (mult_of R) (a(^)k) = d}"

using card_image by blast

thus ?thesis using set_eq2 G.pow_ord_eq_ord_iff[OF finite’ ‘a ∈ _‘,

unfolded ord_a]

by (simp add: phi’_def)

qed

end

theorem (in field) finite_field_mult_group_has_gen :

assumes finite:"finite (carrier R)"

shows "∃ a ∈ carrier (mult_of R) . carrier (mult_of R) = {a(^)i | i::nat

. i ∈ UNIV}"

proof -
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note mult_of_simps[simp]

have finite’: "finite (carrier (mult_of R))" using finite by (rule

finite_mult_of)

interpret G: group "mult_of R" rewrites
"op (^)mult_of R = (op (^) :: _ ⇒ nat ⇒ _)" and "1mult_of R = 1"

by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)

let ?N = "λ x . card {a ∈ carrier (mult_of R). group.ord (mult_of R)

a = x}"

have "0 < order R - 1" unfolding order_def using card_mono[OF finite,

of "{0, 1}"] by simp

then have *: "0 < order (mult_of R)" using assms by (simp add: order_mult_of)

have fin: "finite {d. d dvd order (mult_of R) }" using dvd_nat_bounds[OF

*] by force

have "(
∑

d | d dvd order (mult_of R). ?N d)

= card (UN d:{d . d dvd order (mult_of R) }. {a ∈ carrier (mult_of

R). group.ord (mult_of R) a = d})"

(is "_ = card ?U")

using fin finite by (subst card_UN_disjoint) auto

also have "?U = carrier (mult_of R)"

proof
{ fix x assume x:"x ∈ carrier (mult_of R)"

hence x’:"x∈carrier (mult_of R)" by simp

then have "group.ord (mult_of R) x dvd order (mult_of R)"

using finite’ G.ord_dvd_group_order[OF _ x’] by (simp add: order_mult_of)

hence "x ∈ ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord

(mult_of R) x"] x by blast

} thus "carrier (mult_of R) ⊆ ?U" by blast

qed auto

also have "card ... = order (mult_of R)"

using order_mult_of finite’ by (simp add: order_def)

finally have sum_Ns_eq: "(
∑

d | d dvd order (mult_of R). ?N d) = order

(mult_of R)" .

{ fix d assume d:"d dvd order (mult_of R)"

have "card {a ∈ carrier (mult_of R). group.ord (mult_of R) a = d}

≤ phi’ d"

proof cases

assume "card {a ∈ carrier (mult_of R). group.ord (mult_of R) a

= d} = 0" thus ?thesis by presburger

next
assume "card {a ∈ carrier (mult_of R). group.ord (mult_of R) a

= d} 6= 0"

hence "∃ a ∈ carrier (mult_of R). group.ord (mult_of R) a = d" by
(auto simp: card_eq_0_iff)

thus ?thesis using num_elems_of_ord_eq_phi’[OF finite d] by auto

qed
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}
hence all_le:"

∧
i. i ∈ {d. d dvd order (mult_of R) }

=⇒ (λi. card {a ∈ carrier (mult_of R). group.ord (mult_of R)

a = i}) i ≤ (λi. phi’ i) i" by fast

hence le:"(
∑

i | i dvd order (mult_of R). ?N i)

≤ (
∑

i | i dvd order (mult_of R). phi’ i)"

using sum_mono[of "{d . d dvd order (mult_of R)}"

"λi. card {a ∈ carrier (mult_of R). group.ord (mult_of

R) a = i}"] by presburger

have "order (mult_of R) = (
∑

d | d dvd order (mult_of R). phi’ d)"

using *

by (simp add: sum_phi’_factors)

hence eq:"(
∑

i | i dvd order (mult_of R). ?N i)

= (
∑

i | i dvd order (mult_of R). phi’ i)" using le sum_Ns_eq

by presburger

have "
∧
i. i ∈ {d. d dvd order (mult_of R) } =⇒ ?N i = (λi. phi’ i)

i"

proof (rule ccontr)

fix i

assume i1:"i ∈ {d. d dvd order (mult_of R)}" and "?N i 6= phi’ i"

hence "?N i = 0"

using num_elems_of_ord_eq_phi’[OF finite, of i] by (auto simp: card_eq_0_iff)

moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of

"order (mult_of R)" i])

ultimately have "?N i < phi’ i" using phi’_nonzero by presburger

hence "(
∑

i | i dvd order (mult_of R). ?N i)

< (
∑

i | i dvd order (mult_of R). phi’ i)"

using sum_strict_mono_ex1[OF fin, of "?N" "λ i . phi’ i"]

i1 all_le by auto

thus False using eq by force

qed
hence "?N (order (mult_of R)) > 0" using * by (simp add: phi’_nonzero)

then obtain a where a:"a ∈ carrier (mult_of R)" and a_ord:"group.ord

(mult_of R) a = order (mult_of R)"

by (auto simp add: card_gt_0_iff)

hence set_eq:"{a(^)i | i::nat. i ∈ UNIV} = (λx. a(^)x) ‘ {0 .. group.ord

(mult_of R) a - 1}"

using G.ord_elems[OF finite’] by auto

have card_eq:"card ((λx. a(^)x) ‘ {0 .. group.ord (mult_of R) a - 1})

= card {0 .. group.ord (mult_of R) a - 1}"

by (intro card_image G.ord_inj finite’ a)

hence "card ((λ x . a(^)x) ‘ {0 .. group.ord (mult_of R) a - 1}) = card

{0 ..order (mult_of R) - 1}"

using assms by (simp add: card_eq a_ord)

hence card_R_minus_1:"card {a(^)i | i::nat. i ∈ UNIV} = order (mult_of

R)"

using * by (subst set_eq) auto

have **:"{a(^)i | i::nat. i ∈ UNIV} ⊆ carrier (mult_of R)"

using G.nat_pow_closed[OF a] by auto
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with _ have "carrier (mult_of R) = {a(^)i|i::nat. i ∈ UNIV}"

by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite

order_def del: UNIV_I)

thus ?thesis using a by blast

qed

end

22 Divisibility in monoids and rings

theory Divisibility

imports "HOL-Library.Permutation" Coset Group

begin

23 Factorial Monoids

23.1 Monoids with Cancellation Law

locale monoid_cancel = monoid +

assumes l_cancel: "[[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier G; c

∈ carrier G]] =⇒ a = b"

and r_cancel: "[[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈
carrier G]] =⇒ a = b"

lemma (in monoid) monoid_cancelI:

assumes l_cancel: "
∧
a b c. [[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier

G; c ∈ carrier G]] =⇒ a = b"

and r_cancel: "
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier

G; c ∈ carrier G]] =⇒ a = b"

shows "monoid_cancel G"

by standard fact+

lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" ..

sublocale group ⊆ monoid_cancel

by standard simp_all

locale comm_monoid_cancel = monoid_cancel + comm_monoid

lemma comm_monoid_cancelI:

fixes G (structure)
assumes "comm_monoid G"

assumes cancel: "
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier

G; c ∈ carrier G]] =⇒ a = b"

shows "comm_monoid_cancel G"

proof -

interpret comm_monoid G by fact
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show "comm_monoid_cancel G"

by unfold_locales (metis assms(2) m_ac(2))+

qed

lemma (in comm_monoid_cancel) is_comm_monoid_cancel: "comm_monoid_cancel

G"

by intro_locales

sublocale comm_group ⊆ comm_monoid_cancel ..

23.2 Products of Units in Monoids

lemma (in monoid) Units_m_closed[simp, intro]:

assumes h1unit: "h1 ∈ Units G"

and h2unit: "h2 ∈ Units G"

shows "h1 ⊗ h2 ∈ Units G"

unfolding Units_def

using assms

by auto (metis Units_inv_closed Units_l_inv Units_m_closed Units_r_inv)

lemma (in monoid) prod_unit_l:

assumes abunit[simp]: "a ⊗ b ∈ Units G"

and aunit[simp]: "a ∈ Units G"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "b ∈ Units G"

proof -

have c: "inv (a ⊗ b) ⊗ a ∈ carrier G" by simp

have "(inv (a ⊗ b) ⊗ a) ⊗ b = inv (a ⊗ b) ⊗ (a ⊗ b)"

by (simp add: m_assoc)

also have ". . . = 1" by simp

finally have li: "(inv (a ⊗ b) ⊗ a) ⊗ b = 1" .

have "1 = inv a ⊗ a" by (simp add: Units_l_inv[symmetric])

also have ". . . = inv a ⊗ 1 ⊗ a" by simp

also have ". . . = inv a ⊗ ((a ⊗ b) ⊗ inv (a ⊗ b)) ⊗ a"

by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)

also have ". . . = ((inv a ⊗ a) ⊗ b) ⊗ inv (a ⊗ b) ⊗ a"

by (simp add: m_assoc del: Units_l_inv)

also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by simp

also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ a)" by (simp add: m_assoc)

finally have ri: "b ⊗ (inv (a ⊗ b) ⊗ a) = 1 " by simp

from c li ri show "b ∈ Units G" by (auto simp: Units_def)

qed

lemma (in monoid) prod_unit_r:

assumes abunit[simp]: "a ⊗ b ∈ Units G"

and bunit[simp]: "b ∈ Units G"
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and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "a ∈ Units G"

proof -

have c: "b ⊗ inv (a ⊗ b) ∈ carrier G" by simp

have "a ⊗ (b ⊗ inv (a ⊗ b)) = (a ⊗ b) ⊗ inv (a ⊗ b)"

by (simp add: m_assoc del: Units_r_inv)

also have ". . . = 1" by simp

finally have li: "a ⊗ (b ⊗ inv (a ⊗ b)) = 1" .

have "1 = b ⊗ inv b" by (simp add: Units_r_inv[symmetric])

also have ". . . = b ⊗ 1 ⊗ inv b" by simp

also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ (a ⊗ b)) ⊗ inv b"

by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)

also have ". . . = (b ⊗ inv (a ⊗ b) ⊗ a) ⊗ (b ⊗ inv b)"

by (simp add: m_assoc del: Units_l_inv)

also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by simp

finally have ri: "(b ⊗ inv (a ⊗ b)) ⊗ a = 1 " by simp

from c li ri show "a ∈ Units G" by (auto simp: Units_def)

qed

lemma (in comm_monoid) unit_factor:

assumes abunit: "a ⊗ b ∈ Units G"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "a ∈ Units G"

using abunit[simplified Units_def]

proof clarsimp

fix i

assume [simp]: "i ∈ carrier G"

have carr’: "b ⊗ i ∈ carrier G" by simp

have "(b ⊗ i) ⊗ a = (i ⊗ b) ⊗ a" by (simp add: m_comm)

also have ". . . = i ⊗ (b ⊗ a)" by (simp add: m_assoc)

also have ". . . = i ⊗ (a ⊗ b)" by (simp add: m_comm)

also assume "i ⊗ (a ⊗ b) = 1"
finally have li’: "(b ⊗ i) ⊗ a = 1" .

have "a ⊗ (b ⊗ i) = a ⊗ b ⊗ i" by (simp add: m_assoc)

also assume "a ⊗ b ⊗ i = 1"
finally have ri’: "a ⊗ (b ⊗ i) = 1" .

from carr’ li’ ri’

show "a ∈ Units G" by (simp add: Units_def, fast)

qed
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23.3 Divisibility and Association

23.3.1 Function definitions

definition factor :: "[_, ’a, ’a] ⇒ bool" (infix "dividesı " 65)

where "a dividesG b ←→ (∃ c∈carrier G. b = a ⊗G c)"

definition associated :: "[_, ’a, ’a] ⇒ bool" (infix "∼ı " 55)

where "a ∼G b ←→ a dividesG b ∧ b dividesG a"

abbreviation "division_rel G ≡ (|carrier = carrier G, eq = op ∼G, le =

op dividesG|)"

definition properfactor :: "[_, ’a, ’a] ⇒ bool"

where "properfactor G a b ←→ a dividesG b ∧ ¬(b dividesG a)"

definition irreducible :: "[_, ’a] ⇒ bool"

where "irreducible G a ←→ a /∈ Units G ∧ (∀ b∈carrier G. properfactor

G b a −→ b ∈ Units G)"

definition prime :: "[_, ’a] ⇒ bool"

where "prime G p ←→
p /∈ Units G ∧
(∀ a∈carrier G. ∀ b∈carrier G. p dividesG (a ⊗G b) −→ p dividesG

a ∨ p dividesG b)"

23.3.2 Divisibility

lemma dividesI:

fixes G (structure)
assumes carr: "c ∈ carrier G"

and p: "b = a ⊗ c"

shows "a divides b"

unfolding factor_def using assms by fast

lemma dividesI’ [intro]:

fixes G (structure)
assumes p: "b = a ⊗ c"

and carr: "c ∈ carrier G"

shows "a divides b"

using assms by (fast intro: dividesI)

lemma dividesD:

fixes G (structure)
assumes "a divides b"

shows "∃ c∈carrier G. b = a ⊗ c"

using assms unfolding factor_def by fast

lemma dividesE [elim]:

fixes G (structure)
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assumes d: "a divides b"

and elim: "
∧
c. [[b = a ⊗ c; c ∈ carrier G]] =⇒ P"

shows "P"

proof -

from dividesD[OF d] obtain c where "c ∈ carrier G" and "b = a ⊗ c"

by auto

then show P by (elim elim)

qed

lemma (in monoid) divides_refl[simp, intro!]:

assumes carr: "a ∈ carrier G"

shows "a divides a"

by (intro dividesI[of "1"]) (simp_all add: carr)

lemma (in monoid) divides_trans [trans]:

assumes dvds: "a divides b" "b divides c"

and acarr: "a ∈ carrier G"

shows "a divides c"

using dvds[THEN dividesD] by (blast intro: dividesI m_assoc acarr)

lemma (in monoid) divides_mult_lI [intro]:

assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "(c ⊗ a) divides (c ⊗ b)"

using ab

apply (elim dividesE)

apply (simp add: m_assoc[symmetric] carr)

apply (fast intro: dividesI)

done

lemma (in monoid_cancel) divides_mult_l [simp]:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "(c ⊗ a) divides (c ⊗ b) = a divides b"

apply safe

apply (elim dividesE, intro dividesI, assumption)

apply (rule l_cancel[of c])

apply (simp add: m_assoc carr)+

apply (fast intro: carr)

done

lemma (in comm_monoid) divides_mult_rI [intro]:

assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "(a ⊗ c) divides (b ⊗ c)"

using carr ab

apply (simp add: m_comm[of a c] m_comm[of b c])

apply (rule divides_mult_lI, assumption+)

done
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lemma (in comm_monoid_cancel) divides_mult_r [simp]:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "(a ⊗ c) divides (b ⊗ c) = a divides b"

using carr by (simp add: m_comm[of a c] m_comm[of b c])

lemma (in monoid) divides_prod_r:

assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "a divides (b ⊗ c)"

using ab carr by (fast intro: m_assoc)

lemma (in comm_monoid) divides_prod_l:

assumes carr[intro]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier

G"

and ab: "a divides b"

shows "a divides (c ⊗ b)"

using ab carr

apply (simp add: m_comm[of c b])

apply (fast intro: divides_prod_r)

done

lemma (in monoid) unit_divides:

assumes uunit: "u ∈ Units G"

and acarr: "a ∈ carrier G"

shows "u divides a"

proof (intro dividesI[of "(inv u) ⊗ a"], fast intro: uunit acarr)

from uunit acarr have xcarr: "inv u ⊗ a ∈ carrier G" by fast

from uunit acarr have "u ⊗ (inv u ⊗ a) = (u ⊗ inv u) ⊗ a"

by (fast intro: m_assoc[symmetric])

also have ". . . = 1 ⊗ a" by (simp add: Units_r_inv[OF uunit])

also from acarr have ". . . = a" by simp

finally show "a = u ⊗ (inv u ⊗ a)" ..
qed

lemma (in comm_monoid) divides_unit:

assumes udvd: "a divides u"

and carr: "a ∈ carrier G" "u ∈ Units G"

shows "a ∈ Units G"

using udvd carr by (blast intro: unit_factor)

lemma (in comm_monoid) Unit_eq_dividesone:

assumes ucarr: "u ∈ carrier G"

shows "u ∈ Units G = u divides 1"
using ucarr by (fast dest: divides_unit intro: unit_divides)

23.3.3 Association

lemma associatedI:

fixes G (structure)
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assumes "a divides b" "b divides a"

shows "a ∼ b"

using assms by (simp add: associated_def)

lemma (in monoid) associatedI2:

assumes uunit[simp]: "u ∈ Units G"

and a: "a = b ⊗ u"

and bcarr[simp]: "b ∈ carrier G"

shows "a ∼ b"

using uunit bcarr

unfolding a

apply (intro associatedI)

apply (rule dividesI[of "inv u"], simp)

apply (simp add: m_assoc Units_closed)

apply fast

done

lemma (in monoid) associatedI2’:

assumes "a = b ⊗ u"

and "u ∈ Units G"

and "b ∈ carrier G"

shows "a ∼ b"

using assms by (intro associatedI2)

lemma associatedD:

fixes G (structure)
assumes "a ∼ b"

shows "a divides b"

using assms by (simp add: associated_def)

lemma (in monoid_cancel) associatedD2:

assumes assoc: "a ∼ b"

and carr: "a ∈ carrier G" "b ∈ carrier G"

shows "∃ u∈Units G. a = b ⊗ u"

using assoc

unfolding associated_def

proof clarify

assume "b divides a"

then obtain u where ucarr: "u ∈ carrier G" and a: "a = b ⊗ u"

by (rule dividesE)

assume "a divides b"

then obtain u’ where u’carr: "u’ ∈ carrier G" and b: "b = a ⊗ u’"

by (rule dividesE)

note carr = carr ucarr u’carr

from carr have "a ⊗ 1 = a" by simp

also have ". . . = b ⊗ u" by (simp add: a)

also have ". . . = a ⊗ u’ ⊗ u" by (simp add: b)
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also from carr have ". . . = a ⊗ (u’ ⊗ u)" by (simp add: m_assoc)

finally have "a ⊗ 1 = a ⊗ (u’ ⊗ u)" .
with carr have u1: "1 = u’ ⊗ u" by (fast dest: l_cancel)

from carr have "b ⊗ 1 = b" by simp

also have ". . . = a ⊗ u’" by (simp add: b)

also have ". . . = b ⊗ u ⊗ u’" by (simp add: a)

also from carr have ". . . = b ⊗ (u ⊗ u’)" by (simp add: m_assoc)

finally have "b ⊗ 1 = b ⊗ (u ⊗ u’)" .
with carr have u2: "1 = u ⊗ u’" by (fast dest: l_cancel)

from u’carr u1[symmetric] u2[symmetric] have "∃ u’∈carrier G. u’ ⊗
u = 1 ∧ u ⊗ u’ = 1"

by fast

then have "u ∈ Units G"

by (simp add: Units_def ucarr)

with ucarr a show "∃ u∈Units G. a = b ⊗ u" by fast

qed

lemma associatedE:

fixes G (structure)
assumes assoc: "a ∼ b"

and e: "[[a divides b; b divides a]] =⇒ P"

shows "P"

proof -

from assoc have "a divides b" "b divides a"

by (simp_all add: associated_def)

then show P by (elim e)

qed

lemma (in monoid_cancel) associatedE2:

assumes assoc: "a ∼ b"

and e: "
∧
u. [[a = b ⊗ u; u ∈ Units G]] =⇒ P"

and carr: "a ∈ carrier G" "b ∈ carrier G"

shows "P"

proof -

from assoc and carr have "∃ u∈Units G. a = b ⊗ u"

by (rule associatedD2)

then obtain u where "u ∈ Units G" "a = b ⊗ u"

by auto

then show P by (elim e)

qed

lemma (in monoid) associated_refl [simp, intro!]:

assumes "a ∈ carrier G"

shows "a ∼ a"

using assms by (fast intro: associatedI)

lemma (in monoid) associated_sym [sym]:
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assumes "a ∼ b"

and "a ∈ carrier G" "b ∈ carrier G"

shows "b ∼ a"

using assms by (iprover intro: associatedI elim: associatedE)

lemma (in monoid) associated_trans [trans]:

assumes "a ∼ b" "b ∼ c"

and "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "a ∼ c"

using assms by (iprover intro: associatedI divides_trans elim: associatedE)

lemma (in monoid) division_equiv [intro, simp]: "equivalence (division_rel

G)"

apply unfold_locales

apply simp_all

apply (metis associated_def)

apply (iprover intro: associated_trans)

done

23.3.4 Division and associativity

lemma divides_antisym:

fixes G (structure)
assumes "a divides b" "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"

shows "a ∼ b"

using assms by (fast intro: associatedI)

lemma (in monoid) divides_cong_l [trans]:

assumes "x ∼ x’"

and "x’ divides y"

and [simp]: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"

shows "x divides y"

proof -

from assms(1) have "x divides x’" by (simp add: associatedD)

also note assms(2)

finally show "x divides y" by simp

qed

lemma (in monoid) divides_cong_r [trans]:

assumes "x divides y"

and "y ∼ y’"

and [simp]: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "x divides y’"

proof -

note assms(1)

also from assms(2) have "y divides y’" by (simp add: associatedD)

finally show "x divides y’" by simp

qed
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lemma (in monoid) division_weak_partial_order [simp, intro!]:

"weak_partial_order (division_rel G)"

apply unfold_locales

apply simp_all

apply (simp add: associated_sym)

apply (blast intro: associated_trans)

apply (simp add: divides_antisym)

apply (blast intro: divides_trans)

apply (blast intro: divides_cong_l divides_cong_r associated_sym)

done

23.3.5 Multiplication and associativity

lemma (in monoid_cancel) mult_cong_r:

assumes "b ∼ b’"

and carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"

shows "a ⊗ b ∼ a ⊗ b’"

using assms

apply (elim associatedE2, intro associatedI2)

apply (auto intro: m_assoc[symmetric])

done

lemma (in comm_monoid_cancel) mult_cong_l:

assumes "a ∼ a’"

and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"

shows "a ⊗ b ∼ a’ ⊗ b"

using assms

apply (elim associatedE2, intro associatedI2)

apply assumption

apply (simp add: m_assoc Units_closed)

apply (simp add: m_comm Units_closed)

apply simp_all

done

lemma (in monoid_cancel) assoc_l_cancel:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"

and "a ⊗ b ∼ a ⊗ b’"

shows "b ∼ b’"

using assms

apply (elim associatedE2, intro associatedI2)

apply assumption

apply (rule l_cancel[of a])

apply (simp add: m_assoc Units_closed)

apply fast+

done

lemma (in comm_monoid_cancel) assoc_r_cancel:

assumes "a ⊗ b ∼ a’ ⊗ b"
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and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"

shows "a ∼ a’"

using assms

apply (elim associatedE2, intro associatedI2)

apply assumption

apply (rule r_cancel[of a b])

apply (metis Units_closed assms(3) assms(4) m_ac)

apply fast+

done

23.3.6 Units

lemma (in monoid_cancel) assoc_unit_l [trans]:

assumes "a ∼ b"

and "b ∈ Units G"

and "a ∈ carrier G"

shows "a ∈ Units G"

using assms by (fast elim: associatedE2)

lemma (in monoid_cancel) assoc_unit_r [trans]:

assumes aunit: "a ∈ Units G"

and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"

shows "b ∈ Units G"

using aunit bcarr associated_sym[OF asc] by (blast intro: assoc_unit_l)

lemma (in comm_monoid) Units_cong:

assumes aunit: "a ∈ Units G" and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"

shows "b ∈ Units G"

using assms by (blast intro: divides_unit elim: associatedE)

lemma (in monoid) Units_assoc:

assumes units: "a ∈ Units G" "b ∈ Units G"

shows "a ∼ b"

using units by (fast intro: associatedI unit_divides)

lemma (in monoid) Units_are_ones: "Units G {.=}(division_rel G) {1}"
apply (simp add: set_eq_def elem_def, rule, simp_all)

proof clarsimp

fix a

assume aunit: "a ∈ Units G"

show "a ∼ 1"
apply (rule associatedI)

apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric])

apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF

aunit])

done
next
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have "1 ∈ Units G" by simp

moreover have "1 ∼ 1" by simp

ultimately show "∃ a ∈ Units G. 1 ∼ a" by fast

qed

lemma (in comm_monoid) Units_Lower: "Units G = Lower (division_rel G)

(carrier G)"

apply (simp add: Units_def Lower_def)

apply (rule, rule)

apply clarsimp

apply (rule unit_divides)

apply (unfold Units_def, fast)

apply assumption

apply clarsimp

apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed)

done

23.3.7 Proper factors

lemma properfactorI:

fixes G (structure)
assumes "a divides b"

and "¬(b divides a)"

shows "properfactor G a b"

using assms unfolding properfactor_def by simp

lemma properfactorI2:

fixes G (structure)
assumes advdb: "a divides b"

and neq: "¬(a ∼ b)"

shows "properfactor G a b"

proof (rule properfactorI, rule advdb, rule notI)

assume "b divides a"

with advdb have "a ∼ b" by (rule associatedI)

with neq show "False" by fast

qed

lemma (in comm_monoid_cancel) properfactorI3:

assumes p: "p = a ⊗ b"

and nunit: "b /∈ Units G"

and carr: "a ∈ carrier G" "b ∈ carrier G" "p ∈ carrier G"

shows "properfactor G a p"

unfolding p

using carr

apply (intro properfactorI, fast)

proof (clarsimp, elim dividesE)

fix c

assume ccarr: "c ∈ carrier G"

note [simp] = carr ccarr
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have "a ⊗ 1 = a" by simp

also assume "a = a ⊗ b ⊗ c"

also have ". . . = a ⊗ (b ⊗ c)" by (simp add: m_assoc)

finally have "a ⊗ 1 = a ⊗ (b ⊗ c)" .

then have rinv: "1 = b ⊗ c" by (intro l_cancel[of "a" "1" "b ⊗ c"],

simp+)

also have ". . . = c ⊗ b" by (simp add: m_comm)

finally have linv: "1 = c ⊗ b" .

from ccarr linv[symmetric] rinv[symmetric] have "b ∈ Units G"

unfolding Units_def by fastforce

with nunit show False ..
qed

lemma properfactorE:

fixes G (structure)
assumes pf: "properfactor G a b"

and r: "[[a divides b; ¬(b divides a)]] =⇒ P"

shows "P"

using pf unfolding properfactor_def by (fast intro: r)

lemma properfactorE2:

fixes G (structure)
assumes pf: "properfactor G a b"

and elim: "[[a divides b; ¬(a ∼ b)]] =⇒ P"

shows "P"

using pf unfolding properfactor_def by (fast elim: elim associatedE)

lemma (in monoid) properfactor_unitE:

assumes uunit: "u ∈ Units G"

and pf: "properfactor G a u"

and acarr: "a ∈ carrier G"

shows "P"

using pf unit_divides[OF uunit acarr] by (fast elim: properfactorE)

lemma (in monoid) properfactor_divides:

assumes pf: "properfactor G a b"

shows "a divides b"

using pf by (elim properfactorE)

lemma (in monoid) properfactor_trans1 [trans]:

assumes dvds: "a divides b" "properfactor G b c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G a c"

using dvds carr

apply (elim properfactorE, intro properfactorI)

apply (iprover intro: divides_trans)+
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done

lemma (in monoid) properfactor_trans2 [trans]:

assumes dvds: "properfactor G a b" "b divides c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G a c"

using dvds carr

apply (elim properfactorE, intro properfactorI)

apply (iprover intro: divides_trans)+

done

lemma properfactor_lless:

fixes G (structure)
shows "properfactor G = lless (division_rel G)"

apply (rule ext)

apply (rule ext)

apply rule

apply (fastforce elim: properfactorE2 intro: weak_llessI)

apply (fastforce elim: weak_llessE intro: properfactorI2)

done

lemma (in monoid) properfactor_cong_l [trans]:

assumes x’x: "x’ ∼ x"

and pf: "properfactor G x y"

and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"

shows "properfactor G x’ y"

using pf

unfolding properfactor_lless

proof -

interpret weak_partial_order "division_rel G" ..
from x’x have "x’ .=division_rel G x" by simp

also assume "x @division_rel G y"

finally show "x’ @division_rel G y" by (simp add: carr)

qed

lemma (in monoid) properfactor_cong_r [trans]:

assumes pf: "properfactor G x y"

and yy’: "y ∼ y’"

and carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "properfactor G x y’"

using pf

unfolding properfactor_lless

proof -

interpret weak_partial_order "division_rel G" ..
assume "x @division_rel G y"

also from yy’

have "y .=division_rel G y’" by simp

finally show "x @division_rel G y’" by (simp add: carr)

qed
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lemma (in monoid_cancel) properfactor_mult_lI [intro]:

assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G (c ⊗ a) (c ⊗ b)"

using ab carr by (fastforce elim: properfactorE intro: properfactorI)

lemma (in monoid_cancel) properfactor_mult_l [simp]:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G (c ⊗ a) (c ⊗ b) = properfactor G a b"

using carr by (fastforce elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:

assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G (a ⊗ c) (b ⊗ c)"

using ab carr by (fastforce elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G (a ⊗ c) (b ⊗ c) = properfactor G a b"

using carr by (fastforce elim: properfactorE intro: properfactorI)

lemma (in monoid) properfactor_prod_r:

assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G a (b ⊗ c)"

by (intro properfactor_trans2[OF ab] divides_prod_r) simp_all

lemma (in comm_monoid) properfactor_prod_l:

assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "properfactor G a (c ⊗ b)"

by (intro properfactor_trans2[OF ab] divides_prod_l) simp_all

23.4 Irreducible Elements and Primes

23.4.1 Irreducible elements

lemma irreducibleI:

fixes G (structure)
assumes "a /∈ Units G"

and "
∧
b. [[b ∈ carrier G; properfactor G b a]] =⇒ b ∈ Units G"

shows "irreducible G a"

using assms unfolding irreducible_def by blast

lemma irreducibleE:

fixes G (structure)
assumes irr: "irreducible G a"

and elim: "[[a /∈ Units G; ∀ b. b ∈ carrier G ∧ properfactor G b a −→
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b ∈ Units G]] =⇒ P"

shows "P"

using assms unfolding irreducible_def by blast

lemma irreducibleD:

fixes G (structure)
assumes irr: "irreducible G a"

and pf: "properfactor G b a"

and bcarr: "b ∈ carrier G"

shows "b ∈ Units G"

using assms by (fast elim: irreducibleE)

lemma (in monoid_cancel) irreducible_cong [trans]:

assumes irred: "irreducible G a"

and aa’: "a ∼ a’"

and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G"

shows "irreducible G a’"

using assms

apply (elim irreducibleE, intro irreducibleI)

apply simp_all

apply (metis assms(2) assms(3) assoc_unit_l)

apply (metis assms(2) assms(3) assms(4) associated_sym properfactor_cong_r)

done

lemma (in monoid) irreducible_prod_rI:

assumes airr: "irreducible G a"

and bunit: "b ∈ Units G"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"

using airr carr bunit

apply (elim irreducibleE, intro irreducibleI, clarify)

apply (subgoal_tac "a ∈ Units G", simp)

apply (intro prod_unit_r[of a b] carr bunit, assumption)

apply (metis assms(2,3) associatedI2 m_closed properfactor_cong_r)

done

lemma (in comm_monoid) irreducible_prod_lI:

assumes birr: "irreducible G b"

and aunit: "a ∈ Units G"

and carr [simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"

apply (subst m_comm, simp+)

apply (intro irreducible_prod_rI assms)

done

lemma (in comm_monoid_cancel) irreducible_prodE [elim]:

assumes irr: "irreducible G (a ⊗ b)"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

and e1: "[[irreducible G a; b ∈ Units G]] =⇒ P"
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and e2: "[[a ∈ Units G; irreducible G b]] =⇒ P"

shows P

using irr

proof (elim irreducibleE)

assume abnunit: "a ⊗ b /∈ Units G"

and isunit[rule_format]: "∀ ba. ba ∈ carrier G ∧ properfactor G ba

(a ⊗ b) −→ ba ∈ Units G"

show P

proof (cases "a ∈ Units G")

case aunit: True

have "irreducible G b"

proof (rule irreducibleI, rule notI)

assume "b ∈ Units G"

with aunit have "(a ⊗ b) ∈ Units G" by fast

with abnunit show "False" ..
next

fix c

assume ccarr: "c ∈ carrier G"

and "properfactor G c b"

then have "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_l[of

c b a])

with ccarr show "c ∈ Units G" by (fast intro: isunit)

qed
with aunit show "P" by (rule e2)

next
case anunit: False

with carr have "properfactor G b (b ⊗ a)" by (fast intro: properfactorI3)

then have bf: "properfactor G b (a ⊗ b)" by (subst m_comm[of a b],

simp+)

then have bunit: "b ∈ Units G" by (intro isunit, simp)

have "irreducible G a"

proof (rule irreducibleI, rule notI)

assume "a ∈ Units G"

with bunit have "(a ⊗ b) ∈ Units G" by fast

with abnunit show "False" ..
next

fix c

assume ccarr: "c ∈ carrier G"

and "properfactor G c a"

then have "properfactor G c (a ⊗ b)"

by (simp add: properfactor_prod_r[of c a b])

with ccarr show "c ∈ Units G" by (fast intro: isunit)

qed
from this bunit show "P" by (rule e1)

qed
qed
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23.4.2 Prime elements

lemma primeI:

fixes G (structure)
assumes "p /∈ Units G"

and "
∧
a b. [[a ∈ carrier G; b ∈ carrier G; p divides (a ⊗ b)]] =⇒

p divides a ∨ p divides b"

shows "prime G p"

using assms unfolding prime_def by blast

lemma primeE:

fixes G (structure)
assumes pprime: "prime G p"

and e: "[[p /∈ Units G; ∀ a∈carrier G. ∀ b∈carrier G.

p divides a ⊗ b −→ p divides a ∨ p divides b]] =⇒ P"

shows "P"

using pprime unfolding prime_def by (blast dest: e)

lemma (in comm_monoid_cancel) prime_divides:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

and pprime: "prime G p"

and pdvd: "p divides a ⊗ b"

shows "p divides a ∨ p divides b"

using assms by (blast elim: primeE)

lemma (in monoid_cancel) prime_cong [trans]:

assumes pprime: "prime G p"

and pp’: "p ∼ p’"

and carr[simp]: "p ∈ carrier G" "p’ ∈ carrier G"

shows "prime G p’"

using pprime

apply (elim primeE, intro primeI)

apply (metis assms(2) assms(3) assoc_unit_l)

apply (metis assms(2) assms(3) assms(4) associated_sym divides_cong_l

m_closed)

done

23.5 Factorization and Factorial Monoids

23.5.1 Function definitions

definition factors :: "[_, ’a list, ’a] ⇒ bool"

where "factors G fs a ←→ (∀ x ∈ (set fs). irreducible G x) ∧ foldr

(op ⊗G) fs 1G = a"

definition wfactors ::"[_, ’a list, ’a] ⇒ bool"

where "wfactors G fs a ←→ (∀ x ∈ (set fs). irreducible G x) ∧ foldr

(op ⊗G) fs 1G ∼G a"

abbreviation list_assoc :: "(’a,_) monoid_scheme ⇒ ’a list ⇒ ’a list
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⇒ bool" (infix "[∼]ı " 44)

where "list_assoc G ≡ list_all2 (op ∼G)"

definition essentially_equal :: "[_, ’a list, ’a list] ⇒ bool"

where "essentially_equal G fs1 fs2 ←→ (∃ fs1’. fs1 <~~> fs1’ ∧ fs1’

[∼]G fs2)"

locale factorial_monoid = comm_monoid_cancel +

assumes factors_exist: "[[a ∈ carrier G; a /∈ Units G]] =⇒ ∃ fs. set fs

⊆ carrier G ∧ factors G fs a"

and factors_unique:

"[[factors G fs a; factors G fs’ a; a ∈ carrier G; a /∈ Units G;

set fs ⊆ carrier G; set fs’ ⊆ carrier G]] =⇒ essentially_equal

G fs fs’"

23.5.2 Comparing lists of elements

Association on lists

lemma (in monoid) listassoc_refl [simp, intro]:

assumes "set as ⊆ carrier G"

shows "as [∼] as"

using assms by (induct as) simp_all

lemma (in monoid) listassoc_sym [sym]:

assumes "as [∼] bs"

and "set as ⊆ carrier G"

and "set bs ⊆ carrier G"

shows "bs [∼] as"

using assms

proof (induct as arbitrary: bs, simp)

case Cons

then show ?case

apply (induct bs)

apply simp

apply clarsimp

apply (iprover intro: associated_sym)

done
qed

lemma (in monoid) listassoc_trans [trans]:

assumes "as [∼] bs" and "bs [∼] cs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G" and "set cs ⊆
carrier G"

shows "as [∼] cs"

using assms

apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)

apply (rule associated_trans)

apply (subgoal_tac "as ! i ∼ bs ! i", assumption)
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apply (simp, simp)

apply blast+

done

lemma (in monoid_cancel) irrlist_listassoc_cong:

assumes "∀ a∈set as. irreducible G a"

and "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "∀ a∈set bs. irreducible G a"

using assms

apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)

apply (blast intro: irreducible_cong)

done

Permutations

lemma perm_map [intro]:

assumes p: "a <~~> b"

shows "map f a <~~> map f b"

using p by induct auto

lemma perm_map_switch:

assumes m: "map f a = map f b" and p: "b <~~> c"

shows "∃ d. a <~~> d ∧ map f d = map f c"

using p m by (induct arbitrary: a) (simp, force, force, blast)

lemma (in monoid) perm_assoc_switch:

assumes a:"as [∼] bs" and p: "bs <~~> cs"

shows "∃ bs’. as <~~> bs’ ∧ bs’ [∼] cs"

using p a

apply (induct bs cs arbitrary: as, simp)

apply (clarsimp simp add: list_all2_Cons2, blast)

apply (clarsimp simp add: list_all2_Cons2)

apply blast

apply blast

done

lemma (in monoid) perm_assoc_switch_r:

assumes p: "as <~~> bs" and a:"bs [∼] cs"

shows "∃ bs’. as [∼] bs’ ∧ bs’ <~~> cs"

using p a

apply (induct as bs arbitrary: cs, simp)

apply (clarsimp simp add: list_all2_Cons1, blast)

apply (clarsimp simp add: list_all2_Cons1)

apply blast

apply blast

done

declare perm_sym [sym]
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lemma perm_setP:

assumes perm: "as <~~> bs"

and as: "P (set as)"

shows "P (set bs)"

proof -

from perm have "mset as = mset bs"

by (simp add: mset_eq_perm)

then have "set as = set bs"

by (rule mset_eq_setD)

with as show "P (set bs)"

by simp

qed

lemmas (in monoid) perm_closed = perm_setP[of _ _ "λas. as ⊆ carrier

G"]

lemmas (in monoid) irrlist_perm_cong = perm_setP[of _ _ "λas. ∀ a∈as.
irreducible G a"]

Essentially equal factorizations

lemma (in monoid) essentially_equalI:

assumes ex: "fs1 <~~> fs1’" "fs1’ [∼] fs2"

shows "essentially_equal G fs1 fs2"

using ex unfolding essentially_equal_def by fast

lemma (in monoid) essentially_equalE:

assumes ee: "essentially_equal G fs1 fs2"

and e: "
∧
fs1’. [[fs1 <~~> fs1’; fs1’ [∼] fs2]] =⇒ P"

shows "P"

using ee unfolding essentially_equal_def by (fast intro: e)

lemma (in monoid) ee_refl [simp,intro]:

assumes carr: "set as ⊆ carrier G"

shows "essentially_equal G as as"

using carr by (fast intro: essentially_equalI)

lemma (in monoid) ee_sym [sym]:

assumes ee: "essentially_equal G as bs"

and carr: "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "essentially_equal G bs as"

using ee

proof (elim essentially_equalE)

fix fs

assume "as <~~> fs" "fs [∼] bs"

from perm_assoc_switch_r [OF this] obtain fs’ where a: "as [∼] fs’"

and p: "fs’ <~~> bs"

by blast

from p have "bs <~~> fs’" by (rule perm_sym)

with a[symmetric] carr show ?thesis
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by (iprover intro: essentially_equalI perm_closed)

qed

lemma (in monoid) ee_trans [trans]:

assumes ab: "essentially_equal G as bs" and bc: "essentially_equal

G bs cs"

and ascarr: "set as ⊆ carrier G"

and bscarr: "set bs ⊆ carrier G"

and cscarr: "set cs ⊆ carrier G"

shows "essentially_equal G as cs"

using ab bc

proof (elim essentially_equalE)

fix abs bcs

assume "abs [∼] bs" and pb: "bs <~~> bcs"

from perm_assoc_switch [OF this] obtain bs’ where p: "abs <~~> bs’"

and a: "bs’ [∼] bcs"

by blast

assume "as <~~> abs"

with p have pp: "as <~~> bs’" by fast

from pp ascarr have c1: "set bs’ ⊆ carrier G" by (rule perm_closed)

from pb bscarr have c2: "set bcs ⊆ carrier G" by (rule perm_closed)

note a

also assume "bcs [∼] cs"

finally (listassoc_trans) have "bs’ [∼] cs" by (simp add: c1 c2 cscarr)

with pp show ?thesis

by (rule essentially_equalI)

qed

23.5.3 Properties of lists of elements

Multiplication of factors in a list

lemma (in monoid) multlist_closed [simp, intro]:

assumes ascarr: "set fs ⊆ carrier G"

shows "foldr (op ⊗) fs 1 ∈ carrier G"

using ascarr by (induct fs) simp_all

lemma (in comm_monoid) multlist_dividesI :

assumes "f ∈ set fs" and "f ∈ carrier G" and "set fs ⊆ carrier G"

shows "f divides (foldr (op ⊗) fs 1)"
using assms

apply (induct fs)

apply simp

apply (case_tac "f = a")

apply simp

apply (fast intro: dividesI)

apply clarsimp

apply (metis assms(2) divides_prod_l multlist_closed)
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done

lemma (in comm_monoid_cancel) multlist_listassoc_cong:

assumes "fs [∼] fs’"

and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"

shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"
using assms

proof (induct fs arbitrary: fs’, simp)

case (Cons a as fs’)

then show ?case

apply (induct fs’, simp)

proof clarsimp

fix b bs

assume "a ∼ b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"

and ascarr: "set as ⊆ carrier G"

then have p: "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ as 1"
by (fast intro: mult_cong_l)

also
assume "as [∼] bs"

and bscarr: "set bs ⊆ carrier G"

and "
∧
fs’. [[as [∼] fs’; set fs’ ⊆ carrier G]] =⇒ foldr op ⊗ as

1 ∼ foldr op ⊗ fs’ 1"
then have "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by simp

with ascarr bscarr bcarr have "b ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr

op ⊗ bs 1"
by (fast intro: mult_cong_r)

finally show "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (simp add: ascarr bscarr acarr bcarr)

qed
qed

lemma (in comm_monoid) multlist_perm_cong:

assumes prm: "as <~~> bs"

and ascarr: "set as ⊆ carrier G"

shows "foldr (op ⊗) as 1 = foldr (op ⊗) bs 1"
using prm ascarr

apply (induct, simp, clarsimp simp add: m_ac, clarsimp)

proof clarsimp

fix xs ys zs

assume "xs <~~> ys" "set xs ⊆ carrier G"

then have "set ys ⊆ carrier G" by (rule perm_closed)

moreover assume "set ys ⊆ carrier G =⇒ foldr op ⊗ ys 1 = foldr op

⊗ zs 1"
ultimately show "foldr op ⊗ ys 1 = foldr op ⊗ zs 1" by simp

qed

lemma (in comm_monoid_cancel) multlist_ee_cong:

assumes "essentially_equal G fs fs’"
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and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"

shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"
using assms

apply (elim essentially_equalE)

apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)

done

23.5.4 Factorization in irreducible elements

lemma wfactorsI:

fixes G (structure)
assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 ∼ a"

shows "wfactors G fs a"

using assms unfolding wfactors_def by simp

lemma wfactorsE:

fixes G (structure)
assumes wf: "wfactors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 ∼ a]] =⇒
P"

shows "P"

using wf unfolding wfactors_def by (fast dest: e)

lemma (in monoid) factorsI:

assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 = a"

shows "factors G fs a"

using assms unfolding factors_def by simp

lemma factorsE:

fixes G (structure)
assumes f: "factors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 = a]] =⇒ P"

shows "P"

using f unfolding factors_def by (simp add: e)

lemma (in monoid) factors_wfactors:

assumes "factors G as a" and "set as ⊆ carrier G"

shows "wfactors G as a"

using assms by (blast elim: factorsE intro: wfactorsI)

lemma (in monoid) wfactors_factors:

assumes "wfactors G as a" and "set as ⊆ carrier G"

shows "∃ a’. factors G as a’ ∧ a’ ∼ a"

using assms by (blast elim: wfactorsE intro: factorsI)

lemma (in monoid) factors_closed [dest]:

assumes "factors G fs a" and "set fs ⊆ carrier G"
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shows "a ∈ carrier G"

using assms by (elim factorsE, clarsimp)

lemma (in monoid) nunit_factors:

assumes anunit: "a /∈ Units G"

and fs: "factors G as a"

shows "length as > 0"

proof -

from anunit Units_one_closed have "a 6= 1" by auto

with fs show ?thesis by (auto elim: factorsE)

qed

lemma (in monoid) unit_wfactors [simp]:

assumes aunit: "a ∈ Units G"

shows "wfactors G [] a"

using aunit by (intro wfactorsI) (simp, simp add: Units_assoc)

lemma (in comm_monoid_cancel) unit_wfactors_empty:

assumes aunit: "a ∈ Units G"

and wf: "wfactors G fs a"

and carr[simp]: "set fs ⊆ carrier G"

shows "fs = []"

proof (cases fs)

case Nil

then show ?thesis .
next

case fs: (Cons f fs’)

from carr have fcarr[simp]: "f ∈ carrier G" and carr’[simp]: "set

fs’ ⊆ carrier G"

by (simp_all add: fs)

from fs wf have "irreducible G f" by (simp add: wfactors_def)

then have fnunit: "f /∈ Units G" by (fast elim: irreducibleE)

from fs wf have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)

note aunit

also from fs wf

have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)

have "a ∼ f ⊗ foldr (op ⊗) fs’ 1"
by (simp add: Units_closed[OF aunit] a[symmetric])

finally have "f ⊗ foldr (op ⊗) fs’ 1 ∈ Units G" by simp

then have "f ∈ Units G" by (intro unit_factor[of f], simp+)

with fnunit show ?thesis by contradiction

qed

Comparing wfactors

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:

assumes fact: "wfactors G fs a"
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and asc: "fs [∼] fs’"

and carr: "a ∈ carrier G" "set fs ⊆ carrier G" "set fs’ ⊆ carrier

G"

shows "wfactors G fs’ a"

using fact

apply (elim wfactorsE, intro wfactorsI)

apply (metis assms(2) assms(4) assms(5) irrlist_listassoc_cong)

proof -

from asc[symmetric] have "foldr op ⊗ fs’ 1 ∼ foldr op ⊗ fs 1"
by (simp add: multlist_listassoc_cong carr)

also assume "foldr op ⊗ fs 1 ∼ a"

finally show "foldr op ⊗ fs’ 1 ∼ a" by (simp add: carr)

qed

lemma (in comm_monoid) wfactors_perm_cong_l:

assumes "wfactors G fs a"

and "fs <~~> fs’"

and "set fs ⊆ carrier G"

shows "wfactors G fs’ a"

using assms

apply (elim wfactorsE, intro wfactorsI)

apply (rule irrlist_perm_cong, assumption+)

apply (simp add: multlist_perm_cong[symmetric])

done

lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:

assumes ee: "essentially_equal G as bs"

and bfs: "wfactors G bs b"

and carr: "b ∈ carrier G" "set as ⊆ carrier G" "set bs ⊆ carrier

G"

shows "wfactors G as b"

using ee

proof (elim essentially_equalE)

fix fs

assume prm: "as <~~> fs"

with carr have fscarr: "set fs ⊆ carrier G" by (simp add: perm_closed)

note bfs

also assume [symmetric]: "fs [∼] bs"

also (wfactors_listassoc_cong_l)

note prm[symmetric]

finally (wfactors_perm_cong_l)

show "wfactors G as b" by (simp add: carr fscarr)

qed

lemma (in monoid) wfactors_cong_r [trans]:

assumes fac: "wfactors G fs a" and aa’: "a ∼ a’"

and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G" "set fs ⊆ carrier

G"
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shows "wfactors G fs a’"

using fac

proof (elim wfactorsE, intro wfactorsI)

assume "foldr op ⊗ fs 1 ∼ a" also note aa’

finally show "foldr op ⊗ fs 1 ∼ a’" by simp

qed

23.5.5 Essentially equal factorizations

lemma (in comm_monoid_cancel) unitfactor_ee:

assumes uunit: "u ∈ Units G"

and carr: "set as ⊆ carrier G"

shows "essentially_equal G (as[0 := (as!0 ⊗ u)]) as"

(is "essentially_equal G ?as’ as")

using assms

apply (intro essentially_equalI[of _ ?as’], simp)

apply (cases as, simp)

apply (clarsimp, fast intro: associatedI2[of u])

done

lemma (in comm_monoid_cancel) factors_cong_unit:

assumes uunit: "u ∈ Units G"

and anunit: "a /∈ Units G"

and afs: "factors G as a"

and ascarr: "set as ⊆ carrier G"

shows "factors G (as[0 := (as!0 ⊗ u)]) (a ⊗ u)"

(is "factors G ?as’ ?a’")

using assms

apply (elim factorsE, clarify)

apply (cases as)

apply (simp add: nunit_factors)

apply clarsimp

apply (elim factorsE, intro factorsI)

apply (clarsimp, fast intro: irreducible_prod_rI)

apply (simp add: m_ac Units_closed)

done

lemma (in comm_monoid) perm_wfactorsD:

assumes prm: "as <~~> bs"

and afs: "wfactors G as a"

and bfs: "wfactors G bs b"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"

and ascarr [simp]: "set as ⊆ carrier G"

shows "a ∼ b"

using afs bfs

proof (elim wfactorsE)

from prm have [simp]: "set bs ⊆ carrier G" by (simp add: perm_closed)

assume "foldr op ⊗ as 1 ∼ a"

then have "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
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also from prm

have "foldr op ⊗ as 1 = foldr op ⊗ bs 1" by (rule multlist_perm_cong,

simp)

also assume "foldr op ⊗ bs 1 ∼ b"

finally show "a ∼ b" by simp

qed

lemma (in comm_monoid_cancel) listassoc_wfactorsD:

assumes assoc: "as [∼] bs"

and afs: "wfactors G as a"

and bfs: "wfactors G bs b"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"

and [simp]: "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "a ∼ b"

using afs bfs

proof (elim wfactorsE)

assume "foldr op ⊗ as 1 ∼ a"

then have "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)

also from assoc

have "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by (rule multlist_listassoc_cong,

simp+)

also assume "foldr op ⊗ bs 1 ∼ b"

finally show "a ∼ b" by simp

qed

lemma (in comm_monoid_cancel) ee_wfactorsD:

assumes ee: "essentially_equal G as bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"

and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"

shows "a ∼ b"

using ee

proof (elim essentially_equalE)

fix fs

assume prm: "as <~~> fs"

then have as’carr[simp]: "set fs ⊆ carrier G"

by (simp add: perm_closed)

from afs prm have afs’: "wfactors G fs a"

by (rule wfactors_perm_cong_l) simp

assume "fs [∼] bs"

from this afs’ bfs show "a ∼ b"

by (rule listassoc_wfactorsD) simp_all

qed

lemma (in comm_monoid_cancel) ee_factorsD:

assumes ee: "essentially_equal G as bs"

and afs: "factors G as a" and bfs:"factors G bs b"

and "set as ⊆ carrier G" "set bs ⊆ carrier G"
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shows "a ∼ b"

using assms by (blast intro: factors_wfactors dest: ee_wfactorsD)

lemma (in factorial_monoid) ee_factorsI:

assumes ab: "a ∼ b"

and afs: "factors G as a" and anunit: "a /∈ Units G"

and bfs: "factors G bs b" and bnunit: "b /∈ Units G"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "essentially_equal G as bs"

proof -

note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]

factors_closed[OF bfs bscarr] bscarr[THEN subsetD]

from ab carr obtain u where uunit: "u ∈ Units G" and a: "a = b ⊗ u"

by (elim associatedE2)

from uunit bscarr have ee: "essentially_equal G (bs[0 := (bs!0 ⊗ u)])

bs"

(is "essentially_equal G ?bs’ bs")

by (rule unitfactor_ee)

from bscarr uunit have bs’carr: "set ?bs’ ⊆ carrier G"

by (cases bs) (simp_all add: Units_closed)

from uunit bnunit bfs bscarr have fac: "factors G ?bs’ (b ⊗ u)"

by (rule factors_cong_unit)

from afs fac[simplified a[symmetric]] ascarr bs’carr anunit

have "essentially_equal G as ?bs’"

by (blast intro: factors_unique)

also note ee

finally show "essentially_equal G as bs"

by (simp add: ascarr bscarr bs’carr)

qed

lemma (in factorial_monoid) ee_wfactorsI:

assumes asc: "a ∼ b"

and asf: "wfactors G as a" and bsf: "wfactors G bs b"

and acarr[simp]: "a ∈ carrier G" and bcarr[simp]: "b ∈ carrier G"

and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"

shows "essentially_equal G as bs"

using assms

proof (cases "a ∈ Units G")

case aunit: True

also note asc

finally have bunit: "b ∈ Units G" by simp

from aunit asf ascarr have e: "as = []"
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by (rule unit_wfactors_empty)

from bunit bsf bscarr have e’: "bs = []"

by (rule unit_wfactors_empty)

have "essentially_equal G [] []"

by (fast intro: essentially_equalI)

then show ?thesis

by (simp add: e e’)

next
case anunit: False

have bnunit: "b /∈ Units G"

proof clarify

assume "b ∈ Units G"

also note asc[symmetric]

finally have "a ∈ Units G" by simp

with anunit show False ..
qed

from wfactors_factors[OF asf ascarr] obtain a’ where fa’: "factors

G as a’" and a’: "a’ ∼ a"

by blast

from fa’ ascarr have a’carr[simp]: "a’ ∈ carrier G"

by fast

have a’nunit: "a’ /∈ Units G"

proof clarify

assume "a’ ∈ Units G"

also note a’

finally have "a ∈ Units G" by simp

with anunit

show "False" ..
qed

from wfactors_factors[OF bsf bscarr] obtain b’ where fb’: "factors

G bs b’" and b’: "b’ ∼ b"

by blast

from fb’ bscarr have b’carr[simp]: "b’ ∈ carrier G"

by fast

have b’nunit: "b’ /∈ Units G"

proof clarify

assume "b’ ∈ Units G"

also note b’

finally have "b ∈ Units G" by simp

with bnunit show False ..
qed

note a’

also note asc
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also note b’[symmetric]

finally have "a’ ∼ b’" by simp

from this fa’ a’nunit fb’ b’nunit ascarr bscarr show "essentially_equal

G as bs"

by (rule ee_factorsI)

qed

lemma (in factorial_monoid) ee_wfactors:

assumes asf: "wfactors G as a"

and bsf: "wfactors G bs b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows asc: "a ∼ b = essentially_equal G as bs"

using assms by (fast intro: ee_wfactorsI ee_wfactorsD)

lemma (in factorial_monoid) wfactors_exist [intro, simp]:

assumes acarr[simp]: "a ∈ carrier G"

shows "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a"

proof (cases "a ∈ Units G")

case True

then have "wfactors G [] a" by (rule unit_wfactors)

then show ?thesis by (intro exI) force

next
case False

with factors_exist [OF acarr] obtain fs where fscarr: "set fs ⊆ carrier

G" and f: "factors G fs a"

by blast

from f have "wfactors G fs a" by (rule factors_wfactors) fact

with fscarr show ?thesis by fast

qed

lemma (in monoid) wfactors_prod_exists [intro, simp]:

assumes "∀ a ∈ set as. irreducible G a" and "set as ⊆ carrier G"

shows "∃ a. a ∈ carrier G ∧ wfactors G as a"

unfolding wfactors_def using assms by blast

lemma (in factorial_monoid) wfactors_unique:

assumes "wfactors G fs a"

and "wfactors G fs’ a"

and "a ∈ carrier G"

and "set fs ⊆ carrier G"

and "set fs’ ⊆ carrier G"

shows "essentially_equal G fs fs’"

using assms by (fast intro: ee_wfactorsI[of a a])

lemma (in monoid) factors_mult_single:

assumes "irreducible G a" and "factors G fb b" and "a ∈ carrier G"

shows "factors G (a # fb) (a ⊗ b)"

using assms unfolding factors_def by simp
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lemma (in monoid_cancel) wfactors_mult_single:

assumes f: "irreducible G a" "wfactors G fb b"

"a ∈ carrier G" "b ∈ carrier G" "set fb ⊆ carrier G"

shows "wfactors G (a # fb) (a ⊗ b)"

using assms unfolding wfactors_def by (simp add: mult_cong_r)

lemma (in monoid) factors_mult:

assumes factors: "factors G fa a" "factors G fb b"

and ascarr: "set fa ⊆ carrier G"

and bscarr: "set fb ⊆ carrier G"

shows "factors G (fa @ fb) (a ⊗ b)"

using assms

unfolding factors_def

apply safe

apply force

apply hypsubst_thin

apply (induct fa)

apply simp

apply (simp add: m_assoc)

done

lemma (in comm_monoid_cancel) wfactors_mult [intro]:

assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"

and ascarr: "set as ⊆ carrier G" and bscarr:"set bs ⊆ carrier G"

shows "wfactors G (as @ bs) (a ⊗ b)"

using wfactors_factors[OF asf ascarr] and wfactors_factors[OF bsf bscarr]

proof clarsimp

fix a’ b’

assume asf’: "factors G as a’" and a’a: "a’ ∼ a"

and bsf’: "factors G bs b’" and b’b: "b’ ∼ b"

from asf’ have a’carr: "a’ ∈ carrier G" by (rule factors_closed) fact

from bsf’ have b’carr: "b’ ∈ carrier G" by (rule factors_closed) fact

note carr = acarr bcarr a’carr b’carr ascarr bscarr

from asf’ bsf’ have "factors G (as @ bs) (a’ ⊗ b’)"

by (rule factors_mult) fact+

with carr have abf’: "wfactors G (as @ bs) (a’ ⊗ b’)"

by (intro factors_wfactors) simp_all

also from b’b carr have trb: "a’ ⊗ b’ ∼ a’ ⊗ b"

by (intro mult_cong_r)

also from a’a carr have tra: "a’ ⊗ b ∼ a ⊗ b"

by (intro mult_cong_l)

finally show "wfactors G (as @ bs) (a ⊗ b)"

by (simp add: carr)

qed
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lemma (in comm_monoid) factors_dividesI:

assumes "factors G fs a"

and "f ∈ set fs"

and "set fs ⊆ carrier G"

shows "f divides a"

using assms by (fast elim: factorsE intro: multlist_dividesI)

lemma (in comm_monoid) wfactors_dividesI:

assumes p: "wfactors G fs a"

and fscarr: "set fs ⊆ carrier G" and acarr: "a ∈ carrier G"

and f: "f ∈ set fs"

shows "f divides a"

using wfactors_factors[OF p fscarr]

proof clarsimp

fix a’

assume fsa’: "factors G fs a’" and a’a: "a’ ∼ a"

with fscarr have a’carr: "a’ ∈ carrier G"

by (simp add: factors_closed)

from fsa’ fscarr f have "f divides a’"

by (fast intro: factors_dividesI)

also note a’a

finally show "f divides a"

by (simp add: f fscarr[THEN subsetD] acarr a’carr)

qed

23.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:

assumes wfactors_exists: "
∧
a. a ∈ carrier G =⇒ ∃ fs. set fs ⊆ carrier

G ∧ wfactors G fs a"

and wfactors_unique:

"
∧
a fs fs’. [[a ∈ carrier G; set fs ⊆ carrier G; set fs’ ⊆ carrier

G;

wfactors G fs a; wfactors G fs’ a]] =⇒ essentially_equal G fs

fs’"

shows "factorial_monoid G"

proof
fix a

assume acarr: "a ∈ carrier G" and anunit: "a /∈ Units G"

from wfactors_exists[OF acarr]

obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors G

as a"

by blast

from wfactors_factors [OF afs ascarr] obtain a’ where afs’: "factors

G as a’" and a’a: "a’ ∼ a"

by blast
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from afs’ ascarr have a’carr: "a’ ∈ carrier G"

by fast

have a’nunit: "a’ /∈ Units G"

proof clarify

assume "a’ ∈ Units G"

also note a’a

finally have "a ∈ Units G" by (simp add: acarr)

with anunit show False ..
qed

from a’carr acarr a’a obtain u where uunit: "u ∈ Units G" and a’:

"a’ = a ⊗ u"

by (blast elim: associatedE2)

note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]

have "a = a ⊗ 1" by simp

also have ". . . = a ⊗ (u ⊗ inv u)" by (simp add: uunit)

also have ". . . = a’ ⊗ inv u" by (simp add: m_assoc[symmetric] a’[symmetric])

finally have a: "a = a’ ⊗ inv u" .

from ascarr uunit have cr: "set (as[0:=(as!0 ⊗ inv u)]) ⊆ carrier

G"

by (cases as) auto

from afs’ uunit a’nunit acarr ascarr have "factors G (as[0:=(as!0 ⊗
inv u)]) a"

by (simp add: a factors_cong_unit)

with cr show "∃ fs. set fs ⊆ carrier G ∧ factors G fs a"

by fast

qed (blast intro: factors_wfactors wfactors_unique)

23.6 Factorizations as Multisets

Gives useful operations like intersection

abbreviation "assocs G x ≡ eq_closure_of (division_rel G) {x}"

definition "fmset G as = mset (map (λa. assocs G a) as)"

Helper lemmas

lemma (in monoid) assocs_repr_independence:

assumes "y ∈ assocs G x"

and "x ∈ carrier G"

shows "assocs G x = assocs G y"

using assms

apply safe

apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])

apply (clarsimp, iprover intro: associated_trans associated_sym,

simp+)



299

apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])

apply (clarsimp, iprover intro: associated_trans, simp+)

done

lemma (in monoid) assocs_self:

assumes "x ∈ carrier G"

shows "x ∈ assocs G x"

using assms by (fastforce intro: closure_ofI2)

lemma (in monoid) assocs_repr_independenceD:

assumes repr: "assocs G x = assocs G y"

and ycarr: "y ∈ carrier G"

shows "y ∈ assocs G x"

unfolding repr using ycarr by (intro assocs_self)

lemma (in comm_monoid) assocs_assoc:

assumes "a ∈ assocs G b"

and "b ∈ carrier G"

shows "a ∼ b"

using assms by (elim closure_ofE2) simp

lemmas (in comm_monoid) assocs_eqD = assocs_repr_independenceD[THEN assocs_assoc]

23.6.1 Comparing multisets

lemma (in monoid) fmset_perm_cong:

assumes prm: "as <~~> bs"

shows "fmset G as = fmset G bs"

using perm_map[OF prm] unfolding mset_eq_perm fmset_def by blast

lemma (in comm_monoid_cancel) eqc_listassoc_cong:

assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "map (assocs G) as = map (assocs G) bs"

using assms

apply (induct as arbitrary: bs, simp)

apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)

apply (clarsimp elim!: closure_ofE2) defer 1

apply (clarsimp elim!: closure_ofE2) defer 1

proof -

fix a x z

assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"

assume "x ∼ a"

also assume "a ∼ z"

finally have "x ∼ z" by simp

with carr show "x ∈ assocs G z"

by (intro closure_ofI2) simp_all

next
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fix a x z

assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"

assume "x ∼ z"

also assume [symmetric]: "a ∼ z"

finally have "x ∼ a" by simp

with carr show "x ∈ assocs G a"

by (intro closure_ofI2) simp_all

qed

lemma (in comm_monoid_cancel) fmset_listassoc_cong:

assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "fmset G as = fmset G bs"

using assms unfolding fmset_def by (simp add: eqc_listassoc_cong)

lemma (in comm_monoid_cancel) ee_fmset:

assumes ee: "essentially_equal G as bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "fmset G as = fmset G bs"

using ee

proof (elim essentially_equalE)

fix as’

assume prm: "as <~~> as’"

from prm ascarr have as’carr: "set as’ ⊆ carrier G"

by (rule perm_closed)

from prm have "fmset G as = fmset G as’"

by (rule fmset_perm_cong)

also assume "as’ [∼] bs"

with as’carr bscarr have "fmset G as’ = fmset G bs"

by (simp add: fmset_listassoc_cong)

finally show "fmset G as = fmset G bs" .
qed

lemma (in monoid_cancel) fmset_ee__hlp_induct:

assumes prm: "cas <~~> cbs"

and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"

shows "∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧
cbs = map (assocs G) bs) −→ (∃ as’. as <~~> as’ ∧ map (assocs G)

as’ = cbs)"

apply (rule perm.induct[of cas cbs], rule prm)

apply safe

apply (simp_all del: mset_map)

apply (simp add: map_eq_Cons_conv)

apply blast

apply force

proof -

fix ys as bs
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assume p1: "map (assocs G) as <~~> ys"

and r1[rule_format]:

"∀ asa bs. map (assocs G) as = map (assocs G) asa ∧ ys = map (assocs

G) bs

−→ (∃ as’. asa <~~> as’ ∧ map (assocs G) as’ = map (assocs G)

bs)"

and p2: "ys <~~> map (assocs G) bs"

and r2[rule_format]: "∀ as bsa. ys = map (assocs G) as ∧ map (assocs

G) bs = map (assocs G) bsa

−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bsa)"

and p3: "map (assocs G) as <~~> map (assocs G) bs"

from p1 have "mset (map (assocs G) as) = mset ys"

by (simp add: mset_eq_perm del: mset_map)

then have setys: "set (map (assocs G) as) = set ys"

by (rule mset_eq_setD)

have "set (map (assocs G) as) = {assocs G x | x. x ∈ set as}" by auto

with setys have "set ys ⊆ { assocs G x | x. x ∈ set as}" by simp

then have "∃ yy. ys = map (assocs G) yy"

proof (induct ys)

case Nil

then show ?case by simp

next
case Cons

then show ?case

proof clarsimp

fix yy x

show "∃ yya. assocs G x # map (assocs G) yy = map (assocs G) yya"

by (rule exI[of _ "x#yy"]) simp

qed
qed
then obtain yy where ys: "ys = map (assocs G) yy" ..

from p1 ys have "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs

G) yy"

by (intro r1) simp

then obtain as’ where asas’: "as <~~> as’" and as’yy: "map (assocs

G) as’ = map (assocs G) yy"

by auto

from p2 ys have "∃ as’. yy <~~> as’ ∧ map (assocs G) as’ = map (assocs

G) bs"

by (intro r2) simp

then obtain as’’ where yyas’’: "yy <~~> as’’" and as’’bs: "map (assocs

G) as’’ = map (assocs G) bs"

by auto

from perm_map_switch [OF as’yy yyas’’]
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obtain cs where as’cs: "as’ <~~> cs" and csas’’: "map (assocs G) cs

= map (assocs G) as’’"

by blast

from asas’ and as’cs have ascs: "as <~~> cs"

by fast

from csas’’ and as’’bs have "map (assocs G) cs = map (assocs G) bs"

by simp

with ascs show "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs

G) bs"

by fast

qed

lemma (in comm_monoid_cancel) fmset_ee:

assumes mset: "fmset G as = fmset G bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "essentially_equal G as bs"

proof -

from mset have mpp: "map (assocs G) as <~~> map (assocs G) bs"

by (simp add: fmset_def mset_eq_perm del: mset_map)

define cas where "cas = map (assocs G) as"

define cbs where "cbs = map (assocs G) bs"

from cas_def cbs_def mpp have [rule_format]:

"∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧ cbs = map (assocs

G) bs)

−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = cbs)"

by (intro fmset_ee__hlp_induct, simp+)

with mpp cas_def cbs_def have "∃ as’. as <~~> as’ ∧ map (assocs G) as’

= map (assocs G) bs"

by simp

then obtain as’ where tp: "as <~~> as’" and tm: "map (assocs G) as’

= map (assocs G) bs"

by auto

from tm have lene: "length as’ = length bs"

by (rule map_eq_imp_length_eq)

from tp have "set as = set as’"

by (simp add: mset_eq_perm mset_eq_setD)

with ascarr have as’carr: "set as’ ⊆ carrier G"

by simp

from tm as’carr[THEN subsetD] bscarr[THEN subsetD] have "as’ [∼] bs"

by (induct as’ arbitrary: bs) (simp, fastforce dest: assocs_eqD[THEN

associated_sym])

with tp show "essentially_equal G as bs"

by (fast intro: essentially_equalI)

qed
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lemma (in comm_monoid_cancel) ee_is_fmset:

assumes "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "essentially_equal G as bs = (fmset G as = fmset G bs)"

using assms by (fast intro: ee_fmset fmset_ee)

23.6.2 Interpreting multisets as factorizations

lemma (in monoid) mset_fmsetEx:

assumes elems: "
∧
X. X ∈ set_mset Cs =⇒ ∃ x. P x ∧ X = assocs G x"

shows "∃ cs. (∀ c ∈ set cs. P c) ∧ fmset G cs = Cs"

proof -

from surjE[OF surj_mset] obtain Cs’ where Cs: "Cs = mset Cs’"

by blast

have "∃ cs. (∀ c ∈ set cs. P c) ∧ mset (map (assocs G) cs) = Cs"

using elems

unfolding Cs

apply (induct Cs’, simp)

proof (clarsimp simp del: mset_map)

fix a Cs’ cs

assume ih: "
∧
X. X = a ∨ X ∈ set Cs’ =⇒ ∃ x. P x ∧ X = assocs G

x"

and csP: "∀ x∈set cs. P x"

and mset: "mset (map (assocs G) cs) = mset Cs’"

from ih obtain c where cP: "P c" and a: "a = assocs G c"

by auto

from cP csP have tP: "∀ x∈set (c#cs). P x"

by simp

from mset a have "mset (map (assocs G) (c#cs)) = add_mset a (mset

Cs’)"

by simp

with tP show "∃ cs. (∀ x∈set cs. P x) ∧ mset (map (assocs G) cs) =

add_mset a (mset Cs’)"

by fast

qed
then show ?thesis by (simp add: fmset_def)

qed

lemma (in monoid) mset_wfactorsEx:

assumes elems: "
∧
X. X ∈ set_mset Cs =⇒ ∃ x. (x ∈ carrier G ∧ irreducible

G x) ∧ X = assocs G x"

shows "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c

∧ fmset G cs = Cs"

proof -

have "∃ cs. (∀ c∈set cs. c ∈ carrier G ∧ irreducible G c) ∧ fmset G

cs = Cs"

by (intro mset_fmsetEx, rule elems)

then obtain cs where p[rule_format]: "∀ c∈set cs. c ∈ carrier G ∧ irreducible

G c"
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and Cs[symmetric]: "fmset G cs = Cs" by auto

from p have cscarr: "set cs ⊆ carrier G" by fast

from p have "∃ c. c ∈ carrier G ∧ wfactors G cs c"

by (intro wfactors_prod_exists) auto

then obtain c where ccarr: "c ∈ carrier G" and cfs: "wfactors G cs

c" by auto

with cscarr Cs show ?thesis by fast

qed

23.6.3 Multiplication on multisets

lemma (in factorial_monoid) mult_wfactors_fmset:

assumes afs: "wfactors G as a"

and bfs: "wfactors G bs b"

and cfs: "wfactors G cs (a ⊗ b)"

and carr: "a ∈ carrier G" "b ∈ carrier G"

"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"

shows "fmset G cs = fmset G as + fmset G bs"

proof -

from assms have "wfactors G (as @ bs) (a ⊗ b)"

by (intro wfactors_mult)

with carr cfs have "essentially_equal G cs (as@bs)"

by (intro ee_wfactorsI[of "a⊗b" "a⊗b"]) simp_all

with carr have "fmset G cs = fmset G (as@bs)"

by (intro ee_fmset) simp_all

also have "fmset G (as@bs) = fmset G as + fmset G bs"

by (simp add: fmset_def)

finally show "fmset G cs = fmset G as + fmset G bs" .
qed

lemma (in factorial_monoid) mult_factors_fmset:

assumes afs: "factors G as a"

and bfs: "factors G bs b"

and cfs: "factors G cs (a ⊗ b)"

and "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"

shows "fmset G cs = fmset G as + fmset G bs"

using assms by (blast intro: factors_wfactors mult_wfactors_fmset)

lemma (in comm_monoid_cancel) fmset_wfactors_mult:

assumes mset: "fmset G cs = fmset G as + fmset G bs"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier G"

and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"

shows "c ∼ a ⊗ b"

proof -

from carr fs have m: "wfactors G (as @ bs) (a ⊗ b)"

by (intro wfactors_mult)
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from mset have "fmset G cs = fmset G (as@bs)"

by (simp add: fmset_def)

then have "essentially_equal G cs (as@bs)"

by (rule fmset_ee) (simp_all add: carr)

then show "c ∼ a ⊗ b"

by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp_all add: assms m)

qed

23.6.4 Divisibility on multisets

lemma (in factorial_monoid) divides_fmsubset:

assumes ab: "a divides b"

and afs: "wfactors G as a"

and bfs: "wfactors G bs b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "set as ⊆ carrier G"

"set bs ⊆ carrier G"

shows "fmset G as ⊆# fmset G bs"

using ab

proof (elim dividesE)

fix c

assume ccarr: "c ∈ carrier G"

from wfactors_exist [OF this]

obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors G

cs c"

by blast

note carr = carr ccarr cscarr

assume "b = a ⊗ c"

with afs bfs cfs carr have "fmset G bs = fmset G as + fmset G cs"

by (intro mult_wfactors_fmset[OF afs cfs]) simp_all

then show ?thesis by simp

qed

lemma (in comm_monoid_cancel) fmsubset_divides:

assumes msubset: "fmset G as ⊆# fmset G bs"

and afs: "wfactors G as a"

and bfs: "wfactors G bs b"

and acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and ascarr: "set as ⊆ carrier G"

and bscarr: "set bs ⊆ carrier G"

shows "a divides b"

proof -

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:

wfactorsE)

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:

wfactorsE)
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have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c

∧ fmset G cs = fmset G bs - fmset G as"

proof (intro mset_wfactorsEx, simp)

fix X

assume "X ∈# fmset G bs - fmset G as"

then have "X ∈# fmset G bs" by (rule in_diffD)

then have "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)

then have "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct bs) auto

then obtain x where xbs: "x ∈ set bs" and X: "X = assocs G x" by
auto

with bscarr have xcarr: "x ∈ carrier G" by fast

from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X show "∃ x. x ∈ carrier G ∧ irreducible

G x ∧ X = assocs G x"

by fast

qed
then obtain c cs

where ccarr: "c ∈ carrier G"

and cscarr: "set cs ⊆ carrier G"

and csf: "wfactors G cs c"

and csmset: "fmset G cs = fmset G bs - fmset G as" by auto

from csmset msubset

have "fmset G bs = fmset G as + fmset G cs"

by (simp add: multiset_eq_iff subseteq_mset_def)

then have basc: "b ∼ a ⊗ c"

by (rule fmset_wfactors_mult) fact+

then show ?thesis

proof (elim associatedE2)

fix u

assume "u ∈ Units G" "b = a ⊗ c ⊗ u"

with acarr ccarr show "a divides b"

by (fast intro: dividesI[of "c ⊗ u"] m_assoc)

qed (simp_all add: acarr bcarr ccarr)

qed

lemma (in factorial_monoid) divides_as_fmsubset:

assumes "wfactors G as a"

and "wfactors G bs b"

and "a ∈ carrier G"

and "b ∈ carrier G"

and "set as ⊆ carrier G"

and "set bs ⊆ carrier G"

shows "a divides b = (fmset G as ⊆# fmset G bs)"

using assms

by (blast intro: divides_fmsubset fmsubset_divides)

Proper factors on multisets
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lemma (in factorial_monoid) fmset_properfactor:

assumes asubb: "fmset G as ⊆# fmset G bs"

and anb: "fmset G as 6= fmset G bs"

and "wfactors G as a"

and "wfactors G bs b"

and "a ∈ carrier G"

and "b ∈ carrier G"

and "set as ⊆ carrier G"

and "set bs ⊆ carrier G"

shows "properfactor G a b"

apply (rule properfactorI)

apply (rule fmsubset_divides[of as bs], fact+)

proof
assume "b divides a"

then have "fmset G bs ⊆# fmset G as"

by (rule divides_fmsubset) fact+

with asubb have "fmset G as = fmset G bs"

by (rule subset_mset.antisym)

with anb show False ..
qed

lemma (in factorial_monoid) properfactor_fmset:

assumes pf: "properfactor G a b"

and "wfactors G as a"

and "wfactors G bs b"

and "a ∈ carrier G"

and "b ∈ carrier G"

and "set as ⊆ carrier G"

and "set bs ⊆ carrier G"

shows "fmset G as ⊆# fmset G bs ∧ fmset G as 6= fmset G bs"

using pf

apply (elim properfactorE)

apply rule

apply (intro divides_fmsubset, assumption)

apply (rule assms)+

using assms(2,3,4,6,7) divides_as_fmsubset

apply auto

done

23.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_prime:

assumes pirr: "irreducible G p"

and pcarr: "p ∈ carrier G"

shows "prime G p"

using pirr

proof (elim irreducibleE, intro primeI)

fix a b

assume acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
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and pdvdab: "p divides (a ⊗ b)"

and pnunit: "p /∈ Units G"

assume irreduc[rule_format]:

"∀ b. b ∈ carrier G ∧ properfactor G b p −→ b ∈ Units G"

from pdvdab obtain c where ccarr: "c ∈ carrier G" and abpc: "a ⊗ b

= p ⊗ c"

by (rule dividesE)

from wfactors_exist [OF acarr]

obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors G

as a"

by blast

from wfactors_exist [OF bcarr]

obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors G

bs b"

by auto

from wfactors_exist [OF ccarr]

obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors G

cs c"

by auto

note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr

from afs and bfs have abfs: "wfactors G (as @ bs) (a ⊗ b)"

by (rule wfactors_mult) fact+

from pirr cfs have pcfs: "wfactors G (p # cs) (p ⊗ c)"

by (rule wfactors_mult_single) fact+

with abpc have abfs’: "wfactors G (p # cs) (a ⊗ b)"

by simp

from abfs’ abfs have "essentially_equal G (p # cs) (as @ bs)"

by (rule wfactors_unique) simp+

then obtain ds where "p # cs <~~> ds" and dsassoc: "ds [∼] (as @ bs)"

by (fast elim: essentially_equalE)

then have "p ∈ set ds"

by (simp add: perm_set_eq[symmetric])

with dsassoc obtain p’ where "p’ ∈ set (as@bs)" and pp’: "p ∼ p’"

unfolding list_all2_conv_all_nth set_conv_nth by force

then consider "p’ ∈ set as" | "p’ ∈ set bs" by auto

then show "p divides a ∨ p divides b"

proof cases

case 1

with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
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also from afs

have "p’ divides a" by (rule wfactors_dividesI) fact+

finally have "p divides a" by simp

then show ?thesis ..
next

case 2

with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’

also from bfs

have "p’ divides b" by (rule wfactors_dividesI) fact+

finally have "p divides b" by simp

then show ?thesis ..
qed

qed

— A version using factors, more complicated
lemma (in factorial_monoid) factors_irreducible_prime:

assumes pirr: "irreducible G p"

and pcarr: "p ∈ carrier G"

shows "prime G p"

using pirr

apply (elim irreducibleE, intro primeI)

apply assumption

proof -

fix a b

assume acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and pdvdab: "p divides (a ⊗ b)"

assume irreduc[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b

p −→ b ∈ Units G"

from pdvdab obtain c where ccarr: "c ∈ carrier G" and abpc: "a ⊗ b

= p ⊗ c"

by (rule dividesE)

note [simp] = pcarr acarr bcarr ccarr

show "p divides a ∨ p divides b"

proof (cases "a ∈ Units G")

case aunit: True

note pdvdab

also have "a ⊗ b = b ⊗ a" by (simp add: m_comm)

also from aunit have bab: "b ⊗ a ∼ b"

by (intro associatedI2[of "a"], simp+)

finally have "p divides b" by simp

then show ?thesis ..
next

case anunit: False
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show ?thesis

proof (cases "b ∈ Units G")

case bunit: True

note pdvdab

also from bunit

have baa: "a ⊗ b ∼ a"

by (intro associatedI2[of "b"], simp+)

finally have "p divides a" by simp

then show ?thesis ..
next

case bnunit: False

have cnunit: "c /∈ Units G"

proof
assume cunit: "c ∈ Units G"

from bnunit have "properfactor G a (a ⊗ b)"

by (intro properfactorI3[of _ _ b], simp+)

also note abpc

also from cunit have "p ⊗ c ∼ p"

by (intro associatedI2[of c], simp+)

finally have "properfactor G a p" by simp

with acarr have "a ∈ Units G" by (fast intro: irreduc)

with anunit show False ..
qed

have abnunit: "a ⊗ b /∈ Units G"

proof clarsimp

assume "a ⊗ b ∈ Units G"

then have "a ∈ Units G" by (rule unit_factor) fact+

with anunit show False ..
qed

from factors_exist [OF acarr anunit]

obtain as where ascarr: "set as ⊆ carrier G" and afac: "factors

G as a"

by blast

from factors_exist [OF bcarr bnunit]

obtain bs where bscarr: "set bs ⊆ carrier G" and bfac: "factors

G bs b"

by blast

from factors_exist [OF ccarr cnunit]

obtain cs where cscarr: "set cs ⊆ carrier G" and cfac: "factors

G cs c"

by auto

note [simp] = ascarr bscarr cscarr

from afac and bfac have abfac: "factors G (as @ bs) (a ⊗ b)"
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by (rule factors_mult) fact+

from pirr cfac have pcfac: "factors G (p # cs) (p ⊗ c)"

by (rule factors_mult_single) fact+

with abpc have abfac’: "factors G (p # cs) (a ⊗ b)"

by simp

from abfac’ abfac have "essentially_equal G (p # cs) (as @ bs)"

by (rule factors_unique) (fact | simp)+

then obtain ds where "p # cs <~~> ds" and dsassoc: "ds [∼] (as

@ bs)"

by (fast elim: essentially_equalE)

then have "p ∈ set ds"

by (simp add: perm_set_eq[symmetric])

with dsassoc obtain p’ where "p’ ∈ set (as@bs)" and pp’: "p ∼
p’"

unfolding list_all2_conv_all_nth set_conv_nth by force

then consider "p’ ∈ set as" | "p’ ∈ set bs" by auto

then show "p divides a ∨ p divides b"

proof cases

case 1

with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’

also from afac 1 have "p’ divides a" by (rule factors_dividesI)

fact+

finally have "p divides a" by simp

then show ?thesis ..
next

case 2

with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’

also from bfac

have "p’ divides b" by (rule factors_dividesI) fact+

finally have "p divides b" by simp

then show ?thesis ..
qed

qed
qed

qed

23.8 Greatest Common Divisors and Lowest Common Mul-
tiples

23.8.1 Definitions

definition isgcd :: "[(’a,_) monoid_scheme, ’a, ’a, ’a] ⇒ bool" ("(_

gcdofı _ _)" [81,81,81] 80)

where "x gcdofG a b ←→ x dividesG a ∧ x dividesG b ∧
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(∀ y∈carrier G. (y dividesG a ∧ y dividesG b −→ y dividesG x))"

definition islcm :: "[_, ’a, ’a, ’a] ⇒ bool" ("(_ lcmofı _ _)" [81,81,81]

80)

where "x lcmofG a b ←→ a dividesG x ∧ b dividesG x ∧
(∀ y∈carrier G. (a dividesG y ∧ b dividesG y −→ x dividesG y))"

definition somegcd :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"

where "somegcd G a b = (SOME x. x ∈ carrier G ∧ x gcdofG a b)"

definition somelcm :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"

where "somelcm G a b = (SOME x. x ∈ carrier G ∧ x lcmofG a b)"

definition "SomeGcd G A = inf (division_rel G) A"

locale gcd_condition_monoid = comm_monoid_cancel +

assumes gcdof_exists: "[[a ∈ carrier G; b ∈ carrier G]] =⇒ ∃ c. c ∈ carrier

G ∧ c gcdof a b"

locale primeness_condition_monoid = comm_monoid_cancel +

assumes irreducible_prime: "[[a ∈ carrier G; irreducible G a]] =⇒ prime

G a"

locale divisor_chain_condition_monoid = comm_monoid_cancel +

assumes division_wellfounded: "wf {(x, y). x ∈ carrier G ∧ y ∈ carrier

G ∧ properfactor G x y}"

23.8.2 Connections to Lattice.thy

lemma gcdof_greatestLower:

fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "(x ∈ carrier G ∧ x gcdof a b) = greatest (division_rel G) x

(Lower (division_rel G) {a, b})"

by (auto simp: isgcd_def greatest_def Lower_def elem_def)

lemma lcmof_leastUpper:

fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "(x ∈ carrier G ∧ x lcmof a b) = least (division_rel G) x (Upper

(division_rel G) {a, b})"

by (auto simp: islcm_def least_def Upper_def elem_def)

lemma somegcd_meet:

fixes G (structure)
assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "somegcd G a b = meet (division_rel G) a b"

by (simp add: somegcd_def meet_def inf_def gcdof_greatestLower[OF carr])
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lemma (in monoid) isgcd_divides_l:

assumes "a divides b"

and "a ∈ carrier G" "b ∈ carrier G"

shows "a gcdof a b"

using assms unfolding isgcd_def by fast

lemma (in monoid) isgcd_divides_r:

assumes "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"

shows "b gcdof a b"

using assms unfolding isgcd_def by fast

23.8.3 Existence of gcd and lcm

lemma (in factorial_monoid) gcdof_exists:

assumes acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

shows "∃ c. c ∈ carrier G ∧ c gcdof a b"

proof -

from wfactors_exist [OF acarr]

obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors G

as a"

by blast

from afs have airr: "∀ a ∈ set as. irreducible G a"

by (fast elim: wfactorsE)

from wfactors_exist [OF bcarr]

obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors G

bs b"

by blast

from bfs have birr: "∀ b ∈ set bs. irreducible G b"

by (fast elim: wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c

∧
fmset G cs = fmset G as ∩# fmset G bs"

proof (intro mset_wfactorsEx)

fix X

assume "X ∈# fmset G as ∩# fmset G bs"

then have "X ∈# fmset G as" by simp

then have "X ∈ set (map (assocs G) as)"

by (simp add: fmset_def)

then have "∃ x. X = assocs G x ∧ x ∈ set as"

by (induct as) auto

then obtain x where X: "X = assocs G x" and xas: "x ∈ set as"

by blast

with ascarr have xcarr: "x ∈ carrier G"

by blast
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from xas airr have xirr: "irreducible G x"

by simp

from xcarr and xirr and X show "∃ x. (x ∈ carrier G ∧ irreducible

G x) ∧ X = assocs G x"

by blast

qed
then obtain c cs

where ccarr: "c ∈ carrier G"

and cscarr: "set cs ⊆ carrier G"

and csirr: "wfactors G cs c"

and csmset: "fmset G cs = fmset G as ∩# fmset G bs"

by auto

have "c gcdof a b"

proof (simp add: isgcd_def, safe)

from csmset

have "fmset G cs ⊆# fmset G as"

by (simp add: multiset_inter_def subset_mset_def)

then show "c divides a" by (rule fmsubset_divides) fact+

next
from csmset have "fmset G cs ⊆# fmset G bs"

by (simp add: multiset_inter_def subseteq_mset_def, force)

then show "c divides b"

by (rule fmsubset_divides) fact+

next
fix y

assume "y ∈ carrier G"

from wfactors_exist [OF this]

obtain ys where yscarr: "set ys ⊆ carrier G" and yfs: "wfactors

G ys y"

by blast

assume "y divides a"

then have ya: "fmset G ys ⊆# fmset G as"

by (rule divides_fmsubset) fact+

assume "y divides b"

then have yb: "fmset G ys ⊆# fmset G bs"

by (rule divides_fmsubset) fact+

from ya yb csmset have "fmset G ys ⊆# fmset G cs"

by (simp add: subset_mset_def)

then show "y divides c"

by (rule fmsubset_divides) fact+

qed
with ccarr show "∃ c. c ∈ carrier G ∧ c gcdof a b"

by fast

qed
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lemma (in factorial_monoid) lcmof_exists:

assumes acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

shows "∃ c. c ∈ carrier G ∧ c lcmof a b"

proof -

from wfactors_exist [OF acarr]

obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors G

as a"

by blast

from afs have airr: "∀ a ∈ set as. irreducible G a"

by (fast elim: wfactorsE)

from wfactors_exist [OF bcarr]

obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors G

bs b"

by blast

from bfs have birr: "∀ b ∈ set bs. irreducible G b"

by (fast elim: wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c

∧
fmset G cs = (fmset G as - fmset G bs) + fmset G bs"

proof (intro mset_wfactorsEx)

fix X

assume "X ∈# (fmset G as - fmset G bs) + fmset G bs"

then have "X ∈# fmset G as ∨ X ∈# fmset G bs"

by (auto dest: in_diffD)

then consider "X ∈ set_mset (fmset G as)" | "X ∈ set_mset (fmset

G bs)"

by fast

then show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G

x"

proof cases

case 1

then have "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)

then have "∃ x. x ∈ set as ∧ X = assocs G x" by (induct as) auto

then obtain x where xas: "x ∈ set as" and X: "X = assocs G x"

by auto

with ascarr have xcarr: "x ∈ carrier G" by fast

from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X show ?thesis by fast

next
case 2

then have "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)

then have "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct as) auto

then obtain x where xbs: "x ∈ set bs" and X: "X = assocs G x"

by auto

with bscarr have xcarr: "x ∈ carrier G" by fast

from xbs birr have xirr: "irreducible G x" by simp
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from xcarr and xirr and X show ?thesis by fast

qed
qed
then obtain c cs

where ccarr: "c ∈ carrier G"

and cscarr: "set cs ⊆ carrier G"

and csirr: "wfactors G cs c"

and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"

by auto

have "c lcmof a b"

proof (simp add: islcm_def, safe)

from csmset have "fmset G as ⊆# fmset G cs"

by (simp add: subseteq_mset_def, force)

then show "a divides c"

by (rule fmsubset_divides) fact+

next
from csmset have "fmset G bs ⊆# fmset G cs"

by (simp add: subset_mset_def)

then show "b divides c"

by (rule fmsubset_divides) fact+

next
fix y

assume "y ∈ carrier G"

from wfactors_exist [OF this]

obtain ys where yscarr: "set ys ⊆ carrier G" and yfs: "wfactors

G ys y"

by blast

assume "a divides y"

then have ya: "fmset G as ⊆# fmset G ys"

by (rule divides_fmsubset) fact+

assume "b divides y"

then have yb: "fmset G bs ⊆# fmset G ys"

by (rule divides_fmsubset) fact+

from ya yb csmset have "fmset G cs ⊆# fmset G ys"

apply (simp add: subseteq_mset_def, clarify)

apply (case_tac "count (fmset G as) a < count (fmset G bs) a")

apply simp

apply simp

done
then show "c divides y"

by (rule fmsubset_divides) fact+

qed
with ccarr show "∃ c. c ∈ carrier G ∧ c lcmof a b"

by fast

qed
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23.9 Conditions for Factoriality

23.9.1 Gcd condition

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:

"weak_lower_semilattice (division_rel G)"

proof -

interpret weak_partial_order "division_rel G" ..
show ?thesis

apply (unfold_locales, simp_all)

proof -

fix x y

assume carr: "x ∈ carrier G" "y ∈ carrier G"

from gcdof_exists [OF this] obtain z where zcarr: "z ∈ carrier G"

and isgcd: "z gcdof x y"

by blast

with carr have "greatest (division_rel G) z (Lower (division_rel

G) {x, y})"

by (subst gcdof_greatestLower[symmetric], simp+)

then show "∃ z. greatest (division_rel G) z (Lower (division_rel G)

{x, y})"

by fast

qed
qed

lemma (in gcd_condition_monoid) gcdof_cong_l:

assumes a’a: "a’ ∼ a"

and agcd: "a gcdof b c"

and a’carr: "a’ ∈ carrier G" and carr’: "a ∈ carrier G" "b ∈ carrier

G" "c ∈ carrier G"

shows "a’ gcdof b c"

proof -

note carr = a’carr carr’

interpret weak_lower_semilattice "division_rel G" by simp

have "a’ ∈ carrier G ∧ a’ gcdof b c"

apply (simp add: gcdof_greatestLower carr’)

apply (subst greatest_Lower_cong_l[of _ a])

apply (simp add: a’a)

apply (simp add: carr)

apply (simp add: carr)

apply (simp add: carr)

apply (simp add: gcdof_greatestLower[symmetric] agcd carr)

done
then show ?thesis ..

qed

lemma (in gcd_condition_monoid) gcd_closed [simp]:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "somegcd G a b ∈ carrier G"

proof -
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interpret weak_lower_semilattice "division_rel G" by simp

show ?thesis

apply (simp add: somegcd_meet[OF carr])

apply (rule meet_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_isgcd:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "(somegcd G a b) gcdof a b"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

from carr have "somegcd G a b ∈ carrier G ∧ (somegcd G a b) gcdof a

b"

apply (subst gcdof_greatestLower, simp, simp)

apply (simp add: somegcd_meet[OF carr] meet_def)

apply (rule inf_of_two_greatest[simplified], assumption+)

done
then show "(somegcd G a b) gcdof a b"

by simp

qed

lemma (in gcd_condition_monoid) gcd_exists:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "∃ x∈carrier G. x = somegcd G a b"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

by (metis carr(1) carr(2) gcd_closed)

qed

lemma (in gcd_condition_monoid) gcd_divides_l:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "(somegcd G a b) divides a"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

by (metis carr(1) carr(2) gcd_isgcd isgcd_def)

qed

lemma (in gcd_condition_monoid) gcd_divides_r:

assumes carr: "a ∈ carrier G" "b ∈ carrier G"

shows "(somegcd G a b) divides b"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp
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show ?thesis

by (metis carr gcd_isgcd isgcd_def)

qed

lemma (in gcd_condition_monoid) gcd_divides:

assumes sub: "z divides x" "z divides y"

and L: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

shows "z divides (somegcd G x y)"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

by (metis gcd_isgcd isgcd_def assms)

qed

lemma (in gcd_condition_monoid) gcd_cong_l:

assumes xx’: "x ∼ x’"

and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"

shows "somegcd G x y ∼ somegcd G x’ y"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

apply (simp add: somegcd_meet carr)

apply (rule meet_cong_l[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_cong_r:

assumes carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

and yy’: "y ∼ y’"

shows "somegcd G x y ∼ somegcd G x y’"

proof -

interpret weak_lower_semilattice "division_rel G" by simp

show ?thesis

apply (simp add: somegcd_meet carr)

apply (rule meet_cong_r[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcdI:

assumes dvd: "a divides b" "a divides c"

and others: "∀ y∈carrier G. y divides b ∧ y divides c −→ y divides

a"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:

"c ∈ carrier G"

shows "a ∼ somegcd G b c"
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apply (simp add: somegcd_def)

apply (rule someI2_ex)

apply (rule exI[of _ a], simp add: isgcd_def)

apply (simp add: assms)

apply (simp add: isgcd_def assms, clarify)

apply (insert assms, blast intro: associatedI)

done

lemma (in gcd_condition_monoid) gcdI2:

assumes "a gcdof b c" and "a ∈ carrier G" and "b ∈ carrier G" and
"c ∈ carrier G"

shows "a ∼ somegcd G b c"

using assms unfolding isgcd_def by (blast intro: gcdI)

lemma (in gcd_condition_monoid) SomeGcd_ex:

assumes "finite A" "A ⊆ carrier G" "A 6= {}"

shows "∃ x∈ carrier G. x = SomeGcd G A"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

apply (simp add: SomeGcd_def)

apply (rule finite_inf_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_assoc:

assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "somegcd G (somegcd G a b) c ∼ somegcd G a (somegcd G b c)"

proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show ?thesis

apply (subst (2 3) somegcd_meet, (simp add: carr)+)

apply (simp add: somegcd_meet carr)

apply (rule weak_meet_assoc[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_mult:

assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:

"c ∈ carrier G"

shows "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)"

proof -

let ?d = "somegcd G a b"

let ?e = "somegcd G (c ⊗ a) (c ⊗ b)"

note carr[simp] = acarr bcarr ccarr

have dcarr: "?d ∈ carrier G" by simp

have ecarr: "?e ∈ carrier G" by simp
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note carr = carr dcarr ecarr

have "?d divides a" by (simp add: gcd_divides_l)

then have cd’ca: "c ⊗ ?d divides (c ⊗ a)" by (simp add: divides_mult_lI)

have "?d divides b" by (simp add: gcd_divides_r)

then have cd’cb: "c ⊗ ?d divides (c ⊗ b)" by (simp add: divides_mult_lI)

from cd’ca cd’cb have cd’e: "c ⊗ ?d divides ?e"

by (rule gcd_divides) simp_all

then obtain u where ucarr[simp]: "u ∈ carrier G" and e_cdu: "?e =

c ⊗ ?d ⊗ u"

by blast

note carr = carr ucarr

have "?e divides c ⊗ a" by (rule gcd_divides_l) simp_all

then obtain x where xcarr: "x ∈ carrier G" and ca_ex: "c ⊗ a = ?e

⊗ x"

by blast

with e_cdu have ca_cdux: "c ⊗ a = c ⊗ ?d ⊗ u ⊗ x"

by simp

from ca_cdux xcarr have "c ⊗ a = c ⊗ (?d ⊗ u ⊗ x)"

by (simp add: m_assoc)

then have "a = ?d ⊗ u ⊗ x"

by (rule l_cancel[of c a]) (simp add: xcarr)+

then have du’a: "?d ⊗ u divides a"

by (rule dividesI[OF xcarr])

have "?e divides c ⊗ b" by (intro gcd_divides_r) simp_all

then obtain x where xcarr: "x ∈ carrier G" and cb_ex: "c ⊗ b = ?e

⊗ x"

by blast

with e_cdu have cb_cdux: "c ⊗ b = c ⊗ ?d ⊗ u ⊗ x"

by simp

from cb_cdux xcarr have "c ⊗ b = c ⊗ (?d ⊗ u ⊗ x)"

by (simp add: m_assoc)

with xcarr have "b = ?d ⊗ u ⊗ x"

by (intro l_cancel[of c b]) simp_all

then have du’b: "?d ⊗ u divides b"

by (intro dividesI[OF xcarr])

from du’a du’b carr have du’d: "?d ⊗ u divides ?d"

by (intro gcd_divides) simp_all

then have uunit: "u ∈ Units G"

proof (elim dividesE)

fix v
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assume vcarr[simp]: "v ∈ carrier G"

assume d: "?d = ?d ⊗ u ⊗ v"

have "?d ⊗ 1 = ?d ⊗ u ⊗ v" by simp fact

also have "?d ⊗ u ⊗ v = ?d ⊗ (u ⊗ v)" by (simp add: m_assoc)

finally have "?d ⊗ 1 = ?d ⊗ (u ⊗ v)" .
then have i2: "1 = u ⊗ v" by (rule l_cancel) simp_all

then have i1: "1 = v ⊗ u" by (simp add: m_comm)

from vcarr i1[symmetric] i2[symmetric] show "u ∈ Units G"

by (auto simp: Units_def)

qed

from e_cdu uunit have "somegcd G (c ⊗ a) (c ⊗ b) ∼ c ⊗ somegcd G

a b"

by (intro associatedI2[of u]) simp_all

from this[symmetric] show "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a)

(c ⊗ b)"

by simp

qed

lemma (in monoid) assoc_subst:

assumes ab: "a ∼ b"

and cP: "∀ a b. a ∈ carrier G ∧ b ∈ carrier G ∧ a ∼ b

−→ f a ∈ carrier G ∧ f b ∈ carrier G ∧ f a ∼ f b"

and carr: "a ∈ carrier G" "b ∈ carrier G"

shows "f a ∼ f b"

using assms by auto

lemma (in gcd_condition_monoid) relprime_mult:

assumes abrelprime: "somegcd G a b ∼ 1"
and acrelprime: "somegcd G a c ∼ 1"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "somegcd G a (b ⊗ c) ∼ 1"
proof -

have "c = c ⊗ 1" by simp

also from abrelprime[symmetric]

have ". . . ∼ c ⊗ somegcd G a b"

by (rule assoc_subst) (simp add: mult_cong_r)+

also have ". . . ∼ somegcd G (c ⊗ a) (c ⊗ b)"

by (rule gcd_mult) fact+

finally have c: "c ∼ somegcd G (c ⊗ a) (c ⊗ b)"

by simp

from carr have a: "a ∼ somegcd G a (c ⊗ a)"

by (fast intro: gcdI divides_prod_l)

have "somegcd G a (b ⊗ c) ∼ somegcd G a (c ⊗ b)"

by (simp add: m_comm)

also from a have ". . . ∼ somegcd G (somegcd G a (c ⊗ a)) (c ⊗ b)"

by (rule assoc_subst) (simp add: gcd_cong_l)+
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also from gcd_assoc have ". . . ∼ somegcd G a (somegcd G (c ⊗ a) (c ⊗
b))"

by (rule assoc_subst) simp+

also from c[symmetric] have ". . . ∼ somegcd G a c"

by (rule assoc_subst) (simp add: gcd_cong_r)+

also note acrelprime

finally show "somegcd G a (b ⊗ c) ∼ 1"
by simp

qed

lemma (in gcd_condition_monoid) primeness_condition: "primeness_condition_monoid

G"

apply unfold_locales

apply (rule primeI)

apply (elim irreducibleE, assumption)

proof -

fix p a b

assume pcarr: "p ∈ carrier G" and acarr: "a ∈ carrier G" and bcarr:

"b ∈ carrier G"

and pirr: "irreducible G p"

and pdvdab: "p divides a ⊗ b"

from pirr have pnunit: "p /∈ Units G"

and r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b p −→ b

∈ Units G"

by (fast elim: irreducibleE)+

show "p divides a ∨ p divides b"

proof (rule ccontr, clarsimp)

assume npdvda: "¬ p divides a"

with pcarr acarr have "1 ∼ somegcd G p a"

apply (intro gcdI, simp, simp, simp)

apply (fast intro: unit_divides)

apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])

apply (rule r, rule, assumption)

apply (rule properfactorI, assumption)

proof
fix y

assume ycarr: "y ∈ carrier G"

assume "p divides y"

also assume "y divides a"

finally have "p divides a"

by (simp add: pcarr ycarr acarr)

with npdvda show False ..
qed simp_all

with pcarr acarr have pa: "somegcd G p a ∼ 1"
by (fast intro: associated_sym[of "1"] gcd_closed)

assume npdvdb: "¬ p divides b"
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with pcarr bcarr have "1 ∼ somegcd G p b"

apply (intro gcdI, simp, simp, simp)

apply (fast intro: unit_divides)

apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])

apply (rule r, rule, assumption)

apply (rule properfactorI, assumption)

proof
fix y

assume ycarr: "y ∈ carrier G"

assume "p divides y"

also assume "y divides b"

finally have "p divides b" by (simp add: pcarr ycarr bcarr)

with npdvdb

show "False" ..
qed simp_all

with pcarr bcarr have pb: "somegcd G p b ∼ 1"
by (fast intro: associated_sym[of "1"] gcd_closed)

from pcarr acarr bcarr pdvdab have "p gcdof p (a ⊗ b)"

by (fast intro: isgcd_divides_l)

with pcarr acarr bcarr have "p ∼ somegcd G p (a ⊗ b)"

by (fast intro: gcdI2)

also from pa pb pcarr acarr bcarr have "somegcd G p (a ⊗ b) ∼ 1"
by (rule relprime_mult)

finally have "p ∼ 1"
by (simp add: pcarr acarr bcarr)

with pcarr have "p ∈ Units G"

by (fast intro: assoc_unit_l)

with pnunit show False ..
qed

qed

sublocale gcd_condition_monoid ⊆ primeness_condition_monoid

by (rule primeness_condition)

23.9.2 Divisor chain condition

lemma (in divisor_chain_condition_monoid) wfactors_exist:

assumes acarr: "a ∈ carrier G"

shows "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

proof -

have r[rule_format]: "a ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧
wfactors G as a)"

proof (rule wf_induct[OF division_wellfounded])

fix x

assume ih: "∀ y. (y, x) ∈ {(x, y). x ∈ carrier G ∧ y ∈ carrier G

∧ properfactor G x y}

−→ y ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧
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wfactors G as y)"

show "x ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧ wfactors G as

x)"

apply clarify

apply (cases "x ∈ Units G")

apply (rule exI[of _ "[]"], simp)

apply (cases "irreducible G x")

apply (rule exI[of _ "[x]"], simp add: wfactors_def)

proof -

assume xcarr: "x ∈ carrier G"

and xnunit: "x /∈ Units G"

and xnirr: "¬ irreducible G x"

then have "∃ y. y ∈ carrier G ∧ properfactor G y x ∧ y /∈ Units

G"

apply -

apply (rule ccontr)

apply simp

apply (subgoal_tac "irreducible G x", simp)

apply (rule irreducibleI, simp, simp)

done
then obtain y where ycarr: "y ∈ carrier G" and ynunit: "y /∈ Units

G"

and pfyx: "properfactor G y x"

by blast

have ih’: "
∧
y. [[y ∈ carrier G; properfactor G y x]]

=⇒ ∃ as. set as ⊆ carrier G ∧ wfactors G as y"

by (rule ih[rule_format, simplified]) (simp add: xcarr)+

from ih’ [OF ycarr pfyx]

obtain ys where yscarr: "set ys ⊆ carrier G" and yfs: "wfactors

G ys y"

by blast

from pfyx have "y divides x" and nyx: "¬ y ∼ x"

by (fast elim: properfactorE2)+

then obtain z where zcarr: "z ∈ carrier G" and x: "x = y ⊗ z"

by blast

from zcarr ycarr have "properfactor G z x"

apply (subst x)

apply (intro properfactorI3[of _ _ y])

apply (simp add: m_comm)

apply (simp add: ynunit)+

done
from ih’ [OF zcarr this]

obtain zs where zscarr: "set zs ⊆ carrier G" and zfs: "wfactors

G zs z"



326

by blast

from yscarr zscarr have xscarr: "set (ys@zs) ⊆ carrier G"

by simp

from yfs zfs ycarr zcarr yscarr zscarr have "wfactors G (ys@zs)

(y⊗z)"
by (rule wfactors_mult)

then have "wfactors G (ys@zs) x"

by (simp add: x)

with xscarr show "∃ xs. set xs ⊆ carrier G ∧ wfactors G xs x"

by fast

qed
qed
from acarr show ?thesis by (rule r)

qed

23.9.3 Primeness condition

lemma (in comm_monoid_cancel) multlist_prime_pos:

assumes carr: "a ∈ carrier G" "set as ⊆ carrier G"

and aprime: "prime G a"

and "a divides (foldr (op ⊗) as 1)"
shows "∃ i<length as. a divides (as!i)"

proof -

have r[rule_format]: "set as ⊆ carrier G ∧ a divides (foldr (op ⊗)
as 1)

−→ (∃ i. i < length as ∧ a divides (as!i))"

apply (induct as)

apply clarsimp defer 1

apply clarsimp defer 1

proof -

assume "a divides 1"
with carr have "a ∈ Units G"

by (fast intro: divides_unit[of a 1])
with aprime show False

by (elim primeE, simp)

next
fix aa as

assume ih[rule_format]: "a divides foldr op ⊗ as 1 −→ (∃ i<length
as. a divides as ! i)"

and carr’: "aa ∈ carrier G" "set as ⊆ carrier G"

and "a divides aa ⊗ foldr op ⊗ as 1"
with carr aprime have "a divides aa ∨ a divides foldr op ⊗ as 1"

by (intro prime_divides) simp+

then show "∃ i<Suc (length as). a divides (aa # as) ! i"

proof
assume "a divides aa"

then have p1: "a divides (aa#as)!0" by simp

have "0 < Suc (length as)" by simp

with p1 show ?thesis by fast
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next
assume "a divides foldr op ⊗ as 1"
from ih [OF this] obtain i where "a divides as ! i" and len: "i

< length as" by auto

then have p1: "a divides (aa#as) ! (Suc i)" by simp

from len have "Suc i < Suc (length as)" by simp

with p1 show ?thesis by force

qed
qed
from assms show ?thesis

by (intro r) auto

qed

lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:

"∀ a as’. a ∈ carrier G ∧ set as ⊆ carrier G ∧ set as’ ⊆ carrier G

∧
wfactors G as a ∧ wfactors G as’ a −→ essentially_equal G

as as’"

proof (induct as)

case Nil

show ?case

proof auto

fix a as’

assume a: "a ∈ carrier G"

assume "wfactors G [] a"

then obtain "1 ∼ a" by (auto elim: wfactorsE)

with a have "a ∈ Units G" by (auto intro: assoc_unit_r)

moreover assume "wfactors G as’ a"

moreover assume "set as’ ⊆ carrier G"

ultimately have "as’ = []" by (rule unit_wfactors_empty)

then show "essentially_equal G [] as’" by simp

qed
next

case (Cons ah as)

then show ?case

proof clarsimp

fix a as’

assume ih [rule_format]:

"∀ a as’. a ∈ carrier G ∧ set as’ ⊆ carrier G ∧ wfactors G as a

∧
wfactors G as’ a −→ essentially_equal G as as’"

and acarr: "a ∈ carrier G" and ahcarr: "ah ∈ carrier G"

and ascarr: "set as ⊆ carrier G" and as’carr: "set as’ ⊆ carrier

G"

and afs: "wfactors G (ah # as) a"

and afs’: "wfactors G as’ a"

then have ahdvda: "ah divides a"

by (intro wfactors_dividesI[of "ah#as" "a"]) simp_all

then obtain a’ where a’carr: "a’ ∈ carrier G" and a: "a = ah ⊗ a’"
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by blast

have a’fs: "wfactors G as a’"

apply (rule wfactorsE[OF afs], rule wfactorsI, simp)

apply (simp add: a)

apply (insert ascarr a’carr)

apply (intro assoc_l_cancel[of ah _ a’] multlist_closed ahcarr,

assumption+)

done
from afs have ahirr: "irreducible G ah"

by (elim wfactorsE) simp

with ascarr have ahprime: "prime G ah"

by (intro irreducible_prime ahcarr)

note carr [simp] = acarr ahcarr ascarr as’carr a’carr

note ahdvda

also from afs’ have "a divides (foldr (op ⊗) as’ 1)"
by (elim wfactorsE associatedE, simp)

finally have "ah divides (foldr (op ⊗) as’ 1)"
by simp

with ahprime have "∃ i<length as’. ah divides as’!i"

by (intro multlist_prime_pos) simp_all

then obtain i where len: "i<length as’" and ahdvd: "ah divides as’!i"

by blast

from afs’ carr have irrasi: "irreducible G (as’!i)"

by (fast intro: nth_mem[OF len] elim: wfactorsE)

from len carr have asicarr[simp]: "as’!i ∈ carrier G"

unfolding set_conv_nth by force

note carr = carr asicarr

from ahdvd obtain x where "x ∈ carrier G" and asi: "as’!i = ah ⊗
x"

by blast

with carr irrasi[simplified asi] have asiah: "as’!i ∼ ah"

apply -

apply (elim irreducible_prodE[of "ah" "x"], assumption+)

apply (rule associatedI2[of x], assumption+)

apply (rule irreducibleE[OF ahirr], simp)

done

note setparts = set_take_subset[of i as’] set_drop_subset[of "Suc

i" as’]

note partscarr [simp] = setparts[THEN subset_trans[OF _ as’carr]]

note carr = carr partscarr

have "∃ aa_1. aa_1 ∈ carrier G ∧ wfactors G (take i as’) aa_1"

apply (intro wfactors_prod_exists)

using setparts afs’

apply (fast elim: wfactorsE)
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apply simp

done
then obtain aa_1 where aa1carr: "aa_1 ∈ carrier G" and aa1fs: "wfactors

G (take i as’) aa_1"

by auto

have "∃ aa_2. aa_2 ∈ carrier G ∧ wfactors G (drop (Suc i) as’) aa_2"

apply (intro wfactors_prod_exists)

using setparts afs’

apply (fast elim: wfactorsE)

apply simp

done
then obtain aa_2 where aa2carr: "aa_2 ∈ carrier G"

and aa2fs: "wfactors G (drop (Suc i) as’) aa_2"

by auto

note carr = carr aa1carr[simp] aa2carr[simp]

from aa1fs aa2fs

have v1: "wfactors G (take i as’ @ drop (Suc i) as’) (aa_1 ⊗ aa_2)"

by (intro wfactors_mult, simp+)

then have v1’: "wfactors G (as’!i # take i as’ @ drop (Suc i) as’)

(as’!i ⊗ (aa_1 ⊗ aa_2))"

apply (intro wfactors_mult_single)

using setparts afs’

apply (fast intro: nth_mem[OF len] elim: wfactorsE)

apply simp_all

done

from aa2carr carr aa1fs aa2fs have "wfactors G (as’!i # drop (Suc

i) as’) (as’!i ⊗ aa_2)"

by (metis irrasi wfactors_mult_single)

with len carr aa1carr aa2carr aa1fs

have v2: "wfactors G (take i as’ @ as’!i # drop (Suc i) as’) (aa_1

⊗ (as’!i ⊗ aa_2))"

apply (intro wfactors_mult)

apply fast

apply (simp, (fast intro: nth_mem[OF len])?)+

done

from len have as’: "as’ = (take i as’ @ as’!i # drop (Suc i) as’)"

by (simp add: Cons_nth_drop_Suc)

with carr have eer: "essentially_equal G (take i as’ @ as’!i # drop

(Suc i) as’) as’"

by simp

with v2 afs’ carr aa1carr aa2carr nth_mem[OF len] have "aa_1 ⊗ (as’!i

⊗ aa_2) ∼ a"

by (metis as’ ee_wfactorsD m_closed)

then have t1: "as’!i ⊗ (aa_1 ⊗ aa_2) ∼ a"
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by (metis aa1carr aa2carr asicarr m_lcomm)

from carr asiah have "ah ⊗ (aa_1 ⊗ aa_2) ∼ as’!i ⊗ (aa_1 ⊗ aa_2)"

by (metis associated_sym m_closed mult_cong_l)

also note t1

finally have "ah ⊗ (aa_1 ⊗ aa_2) ∼ a" by simp

with carr aa1carr aa2carr a’carr nth_mem[OF len] have a’: "aa_1 ⊗
aa_2 ∼ a’"

by (simp add: a, fast intro: assoc_l_cancel[of ah _ a’])

note v1

also note a’

finally have "wfactors G (take i as’ @ drop (Suc i) as’) a’"

by simp

from a’fs this carr have "essentially_equal G as (take i as’ @ drop

(Suc i) as’)"

by (intro ih[of a’]) simp

then have ee1: "essentially_equal G (ah # as) (ah # take i as’ @

drop (Suc i) as’)"

by (elim essentially_equalE) (fastforce intro: essentially_equalI)

from carr have ee2: "essentially_equal G (ah # take i as’ @ drop

(Suc i) as’)

(as’ ! i # take i as’ @ drop (Suc i) as’)"

proof (intro essentially_equalI)

show "ah # take i as’ @ drop (Suc i) as’ <~~> ah # take i as’ @

drop (Suc i) as’"

by simp

next
show "ah # take i as’ @ drop (Suc i) as’ [∼] as’ ! i # take i as’

@ drop (Suc i) as’"

by (simp add: list_all2_append) (simp add: asiah[symmetric])

qed

note ee1

also note ee2

also have "essentially_equal G (as’ ! i # take i as’ @ drop (Suc i)

as’)

(take i as’ @ as’ ! i # drop (Suc i) as’)"

apply (intro essentially_equalI)

apply (subgoal_tac "as’ ! i # take i as’ @ drop (Suc i) as’ <~~>

take i as’ @ as’ ! i # drop (Suc i) as’")

apply simp

apply (rule perm_append_Cons)

apply simp

done
finally have "essentially_equal G (ah # as) (take i as’ @ as’ ! i #

drop (Suc i) as’)"
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by simp

then show "essentially_equal G (ah # as) as’"

by (subst as’)

qed
qed

lemma (in primeness_condition_monoid) wfactors_unique:

assumes "wfactors G as a" "wfactors G as’ a"

and "a ∈ carrier G" "set as ⊆ carrier G" "set as’ ⊆ carrier G"

shows "essentially_equal G as as’"

by (rule wfactors_unique__hlp_induct[rule_format, of a]) (simp add:

assms)

23.9.4 Application to factorial monoids

Number of factors for wellfoundedness

definition factorcount :: "_ ⇒ ’a ⇒ nat"

where "factorcount G a =

(THE c. ∀ as. set as ⊆ carrier G ∧ wfactors G as a −→ c = length

as)"

lemma (in monoid) ee_length:

assumes ee: "essentially_equal G as bs"

shows "length as = length bs"

by (rule essentially_equalE[OF ee]) (metis list_all2_conv_all_nth perm_length)

lemma (in factorial_monoid) factorcount_exists:

assumes carr[simp]: "a ∈ carrier G"

shows "∃ c. ∀ as. set as ⊆ carrier G ∧ wfactors G as a −→ c = length

as"

proof -

have "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

by (intro wfactors_exist) simp

then obtain as where ascarr[simp]: "set as ⊆ carrier G" and afs: "wfactors

G as a"

by (auto simp del: carr)

have "∀ as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ length as =

length as’"

by (metis afs ascarr assms ee_length wfactors_unique)

then show "∃ c. ∀ as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ c

= length as’" ..
qed

lemma (in factorial_monoid) factorcount_unique:

assumes afs: "wfactors G as a"

and acarr[simp]: "a ∈ carrier G" and ascarr[simp]: "set as ⊆ carrier

G"

shows "factorcount G a = length as"

proof -
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have "∃ ac. ∀ as. set as ⊆ carrier G ∧ wfactors G as a −→ ac = length

as"

by (rule factorcount_exists) simp

then obtain ac where alen: "∀ as. set as ⊆ carrier G ∧ wfactors G as

a −→ ac = length as"

by auto

have ac: "ac = factorcount G a"

apply (simp add: factorcount_def)

apply (rule theI2)

apply (rule alen)

apply (metis afs alen ascarr)+

done
from ascarr afs have "ac = length as"

by (iprover intro: alen[rule_format])

with ac show ?thesis

by simp

qed

lemma (in factorial_monoid) divides_fcount:

assumes dvd: "a divides b"

and acarr: "a ∈ carrier G"

and bcarr:"b ∈ carrier G"

shows "factorcount G a ≤ factorcount G b"

proof (rule dividesE[OF dvd])

fix c

from assms have "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

by blast

then obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors

G as a"

by blast

with acarr have fca: "factorcount G a = length as"

by (intro factorcount_unique)

assume ccarr: "c ∈ carrier G"

then have "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c"

by blast

then obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors

G cs c"

by blast

note [simp] = acarr bcarr ccarr ascarr cscarr

assume b: "b = a ⊗ c"

from afs cfs have "wfactors G (as@cs) (a ⊗ c)"

by (intro wfactors_mult) simp_all

with b have "wfactors G (as@cs) b"

by simp

then have "factorcount G b = length (as@cs)"

by (intro factorcount_unique) simp_all
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then have "factorcount G b = length as + length cs"

by simp

with fca show ?thesis

by simp

qed

lemma (in factorial_monoid) associated_fcount:

assumes acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and asc: "a ∼ b"

shows "factorcount G a = factorcount G b"

apply (rule associatedE[OF asc])

apply (drule divides_fcount[OF _ acarr bcarr])

apply (drule divides_fcount[OF _ bcarr acarr])

apply simp

done

lemma (in factorial_monoid) properfactor_fcount:

assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"

and pf: "properfactor G a b"

shows "factorcount G a < factorcount G b"

proof (rule properfactorE[OF pf], elim dividesE)

fix c

from assms have "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

by blast

then obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors

G as a"

by blast

with acarr have fca: "factorcount G a = length as"

by (intro factorcount_unique)

assume ccarr: "c ∈ carrier G"

then have "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c"

by blast

then obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors

G cs c"

by blast

assume b: "b = a ⊗ c"

have "wfactors G (as@cs) (a ⊗ c)"

by (rule wfactors_mult) fact+

with b have "wfactors G (as@cs) b"

by simp

with ascarr cscarr bcarr have "factorcount G b = length (as@cs)"

by (simp add: factorcount_unique)

then have fcb: "factorcount G b = length as + length cs"

by simp
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assume nbdvda: "¬ b divides a"

have "c /∈ Units G"

proof
assume cunit:"c ∈ Units G"

have "b ⊗ inv c = a ⊗ c ⊗ inv c"

by (simp add: b)

also from ccarr acarr cunit have ". . . = a ⊗ (c ⊗ inv c)"

by (fast intro: m_assoc)

also from ccarr cunit have ". . . = a ⊗ 1" by simp

also from acarr have ". . . = a" by simp

finally have "a = b ⊗ inv c" by simp

with ccarr cunit have "b divides a"

by (fast intro: dividesI[of "inv c"])

with nbdvda show False by simp

qed
with cfs have "length cs > 0"

apply -

apply (rule ccontr, simp)

apply (metis Units_one_closed ccarr cscarr l_one one_closed properfactorI3

properfactor_fmset unit_wfactors)

done
with fca fcb show ?thesis

by simp

qed

sublocale factorial_monoid ⊆ divisor_chain_condition_monoid

apply unfold_locales

apply (rule wfUNIVI)

apply (rule measure_induct[of "factorcount G"])

apply simp

apply (metis properfactor_fcount)

done

sublocale factorial_monoid ⊆ primeness_condition_monoid

by standard (rule irreducible_prime)

lemma (in factorial_monoid) primeness_condition: "primeness_condition_monoid

G" ..

lemma (in factorial_monoid) gcd_condition [simp]: "gcd_condition_monoid

G"

by standard (rule gcdof_exists)

sublocale factorial_monoid ⊆ gcd_condition_monoid

by standard (rule gcdof_exists)

lemma (in factorial_monoid) division_weak_lattice [simp]: "weak_lattice

(division_rel G)"
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proof -

interpret weak_lower_semilattice "division_rel G"

by simp

show "weak_lattice (division_rel G)"

proof (unfold_locales, simp_all)

fix x y

assume carr: "x ∈ carrier G" "y ∈ carrier G"

from lcmof_exists [OF this] obtain z where zcarr: "z ∈ carrier G"

and isgcd: "z lcmof x y"

by blast

with carr have "least (division_rel G) z (Upper (division_rel G)

{x, y})"

by (simp add: lcmof_leastUpper[symmetric])

then show "∃ z. least (division_rel G) z (Upper (division_rel G) {x,

y})"

by blast

qed
qed

23.10 Factoriality Theorems

theorem factorial_condition_one:

"divisor_chain_condition_monoid G ∧ primeness_condition_monoid G ←→
factorial_monoid G"

proof (rule iffI, clarify)

assume dcc: "divisor_chain_condition_monoid G"

and pc: "primeness_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)

interpret primeness_condition_monoid "G" by (rule pc)

show "factorial_monoid G"

by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)

next
assume "factorial_monoid G"

then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ∧ primeness_condition_monoid

G"

by rule unfold_locales

qed

theorem factorial_condition_two:

"divisor_chain_condition_monoid G ∧ gcd_condition_monoid G ←→ factorial_monoid

G"

proof (rule iffI, clarify)

assume dcc: "divisor_chain_condition_monoid G"

and gc: "gcd_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)

interpret gcd_condition_monoid "G" by (rule gc)

show "factorial_monoid G"

by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)
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next
assume "factorial_monoid G"

then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ∧ gcd_condition_monoid G"

by rule unfold_locales

qed

end

theory QuotRing

imports RingHom

begin

24 Quotient Rings

24.1 Multiplication on Cosets

definition rcoset_mult :: "[(’a, _) ring_scheme, ’a set, ’a set, ’a set]

⇒ ’a set"

("[mod _:] _
⊗

ı _" [81,81,81] 80)

where "rcoset_mult R I A B = (
⋃
a∈A.

⋃
b∈B. I +>R (a ⊗R b))"

rcoset_mult fulfils the properties required by congruences

lemma (in ideal) rcoset_mult_add:

"x ∈ carrier R =⇒ y ∈ carrier R =⇒ [mod I:] (I +> x)
⊗

(I +> y)

= I +> (x ⊗ y)"

apply rule

apply (rule, simp add: rcoset_mult_def, clarsimp)

defer 1

apply (rule, simp add: rcoset_mult_def)

defer 1

proof -

fix z x’ y’

assume carr: "x ∈ carrier R" "y ∈ carrier R"

and x’rcos: "x’ ∈ I +> x"

and y’rcos: "y’ ∈ I +> y"

and zrcos: "z ∈ I +> x’ ⊗ y’"

from x’rcos have "∃ h∈I. x’ = h ⊕ x"

by (simp add: a_r_coset_def r_coset_def)

then obtain hx where hxI: "hx ∈ I" and x’: "x’ = hx ⊕ x"

by fast+

from y’rcos have "∃ h∈I. y’ = h ⊕ y"

by (simp add: a_r_coset_def r_coset_def)

then obtain hy where hyI: "hy ∈ I" and y’: "y’ = hy ⊕ y"

by fast+
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from zrcos have "∃ h∈I. z = h ⊕ (x’ ⊗ y’)"

by (simp add: a_r_coset_def r_coset_def)

then obtain hz where hzI: "hz ∈ I" and z: "z = hz ⊕ (x’ ⊗ y’)"

by fast+

note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]

from z have "z = hz ⊕ (x’ ⊗ y’)" .
also from x’ y’ have ". . . = hz ⊕ ((hx ⊕ x) ⊗ (hy ⊕ y))" by simp

also from carr have ". . . = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗
y" by algebra

finally have z2: "z = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" .

from hxI hyI hzI carr have "hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy ∈ I"

by (simp add: I_l_closed I_r_closed)

with z2 have "∃ h∈I. z = h ⊕ x ⊗ y" by fast

then show "z ∈ I +> x ⊗ y" by (simp add: a_r_coset_def r_coset_def)

next
fix z

assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"

and zrcos: "z ∈ I +> x ⊗ y"

from xcarr have xself: "x ∈ I +> x" by (intro a_rcos_self)

from ycarr have yself: "y ∈ I +> y" by (intro a_rcos_self)

show "∃ a∈I +> x. ∃ b∈I +> y. z ∈ I +> a ⊗ b"

using xself and yself and zrcos by fast

qed

24.2 Quotient Ring Definition

definition FactRing :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) ring"

(infixl "Quot" 65)

where "FactRing R I =

(|carrier = a_rcosetsR I, mult = rcoset_mult R I,

one = (I +>R 1R), zero = I, add = set_add R|)"

24.3 Factorization over General Ideals

The quotient is a ring

lemma (in ideal) quotient_is_ring: "ring (R Quot I)"

apply (rule ringI)

— abelian group
apply (rule comm_group_abelian_groupI)

apply (simp add: FactRing_def)

apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def’])

— mult monoid
apply (rule monoidI)

apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def
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a_r_coset_def[symmetric])

— mult closed
apply (clarify)

apply (simp add: rcoset_mult_add, fast)

— mult one_closed
apply force

— mult assoc
apply clarify

apply (simp add: rcoset_mult_add m_assoc)

— mult one
apply clarify

apply (simp add: rcoset_mult_add)

apply clarify

apply (simp add: rcoset_mult_add)

— distr
apply clarify

apply (simp add: rcoset_mult_add a_rcos_sum l_distr)

apply clarify

apply (simp add: rcoset_mult_add a_rcos_sum r_distr)

done

This is a ring homomorphism

lemma (in ideal) rcos_ring_hom: "(op +> I) ∈ ring_hom R (R Quot I)"

apply (rule ring_hom_memI)

apply (simp add: FactRing_def a_rcosetsI[OF a_subset])

apply (simp add: FactRing_def rcoset_mult_add)

apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)

done

lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) (op

+> I)"

apply (rule ring_hom_ringI)

apply (rule is_ring, rule quotient_is_ring)

apply (simp add: FactRing_def a_rcosetsI[OF a_subset])

apply (simp add: FactRing_def rcoset_mult_add)

apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)

done

The quotient of a cring is also commutative

lemma (in ideal) quotient_is_cring:

assumes "cring R"

shows "cring (R Quot I)"

proof -

interpret cring R by fact

show ?thesis

apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)

apply (rule quotient_is_ring)
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apply (rule ring.axioms[OF quotient_is_ring])

apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])

apply clarify

apply (simp add: rcoset_mult_add m_comm)

done
qed

Cosets as a ring homomorphism on crings

lemma (in ideal) rcos_ring_hom_cring:

assumes "cring R"

shows "ring_hom_cring R (R Quot I) (op +> I)"

proof -

interpret cring R by fact

show ?thesis

apply (rule ring_hom_cringI)

apply (rule rcos_ring_hom_ring)

apply (rule is_cring)

apply (rule quotient_is_cring)

apply (rule is_cring)

done
qed

24.4 Factorization over Prime Ideals

The quotient ring generated by a prime ideal is a domain

lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"

apply (rule domain.intro)

apply (rule quotient_is_cring, rule is_cring)

apply (rule domain_axioms.intro)

apply (simp add: FactRing_def) defer 1

apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarify)

apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, clarsimp)

assume "I +> 1 = I"

then have "1 ∈ I" by (simp only: a_coset_join1 one_closed a_subgroup)

then have "carrier R ⊆ I" by (subst one_imp_carrier, simp, fast)

with a_subset have "I = carrier R" by fast

with I_notcarr show False by fast

next
fix x y

assume carr: "x ∈ carrier R" "y ∈ carrier R"

and a: "I +> x ⊗ y = I"

and b: "I +> y 6= I"

have ynI: "y /∈ I"

proof (rule ccontr, simp)

assume "y ∈ I"

then have "I +> y = I" by (rule a_rcos_const)
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with b show False by simp

qed

from carr have "x ⊗ y ∈ I +> x ⊗ y" by (simp add: a_rcos_self)

then have xyI: "x ⊗ y ∈ I" by (simp add: a)

from xyI and carr have xI: "x ∈ I ∨ y ∈ I" by (simp add: I_prime)

with ynI have "x ∈ I" by fast

then show "I +> x = I" by (rule a_rcos_const)

qed

Generating right cosets of a prime ideal is a homomorphism on commutative
rings

lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot

I) (op +> I)"

by (rule rcos_ring_hom_cring) (rule is_cring)

24.5 Factorization over Maximal Ideals

In a commutative ring, the quotient ring over a maximal ideal is a field.
The proof follows “W. Adkins, S. Weintraub: Algebra – An Approach via
Module Theory”

lemma (in maximalideal) quotient_is_field:

assumes "cring R"

shows "field (R Quot I)"

proof -

interpret cring R by fact

show ?thesis

apply (intro cring.cring_fieldI2)

apply (rule quotient_is_cring, rule is_cring)

defer 1

apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarsimp)

apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, simp)

— Quotient is not empty
assume "0R Quot I = 1R Quot I"

then have II1: "I = I +> 1" by (simp add: FactRing_def)

from a_rcos_self[OF one_closed] have "1 ∈ I"

by (simp add: II1[symmetric])

then have "I = carrier R" by (rule one_imp_carrier)

with I_notcarr show False by simp

next
— Existence of Inverse
fix a

assume IanI: "I +> a 6= I" and acarr: "a ∈ carrier R"

— Helper ideal J
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define J :: "’a set" where "J = (carrier R #> a) <+> I"

have idealJ: "ideal J R"

apply (unfold J_def, rule add_ideals)

apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal,

rule acarr)

apply (rule is_ideal)

done

— Showing J not smaller than I

have IinJ: "I ⊆ J"

proof (rule, simp add: J_def r_coset_def set_add_defs)

fix x

assume xI: "x ∈ I"

have Zcarr: "0 ∈ carrier R" by fast

from xI[THEN a_Hcarr] acarr

have "x = 0 ⊗ a ⊕ x" by algebra

with Zcarr and xI show "∃ xa∈carrier R. ∃ k∈I. x = xa ⊗ a ⊕ k"

by fast

qed

— Showing J 6= I

have anI: "a /∈ I"

proof (rule ccontr, simp)

assume "a ∈ I"

then have "I +> a = I" by (rule a_rcos_const)

with IanI show False by simp

qed

have aJ: "a ∈ J"

proof (simp add: J_def r_coset_def set_add_defs)

from acarr

have "a = 1 ⊗ a ⊕ 0" by algebra

with one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]

show "∃ x∈carrier R. ∃ k∈I. a = x ⊗ a ⊕ k" by fast

qed

from aJ and anI have JnI: "J 6= I" by fast

— Deducing J = carrier R because I is maximal
from idealJ and IinJ have "J = I ∨ J = carrier R"

proof (rule I_maximal, unfold J_def)

have "carrier R #> a ⊆ carrier R"

using subset_refl acarr by (rule r_coset_subset_G)

then show "carrier R #> a <+> I ⊆ carrier R"

using a_subset by (rule set_add_closed)

qed

with JnI have Jcarr: "J = carrier R" by simp
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— Calculating an inverse for a
from one_closed[folded Jcarr]

have "∃ r∈carrier R. ∃ i∈I. 1 = r ⊗ a ⊕ i"

by (simp add: J_def r_coset_def set_add_defs)

then obtain r i where rcarr: "r ∈ carrier R"

and iI: "i ∈ I" and one: "1 = r ⊗ a ⊕ i" by fast

from one and rcarr and acarr and iI[THEN a_Hcarr]

have rai1: "a ⊗ r = 	i ⊕ 1" by algebra

— Lifting to cosets
from iI have "	i ⊕ 1 ∈ I +> 1"

by (intro a_rcosI, simp, intro a_subset, simp)

with rai1 have "a ⊗ r ∈ I +> 1" by simp

then have "I +> 1 = I +> a ⊗ r"

by (rule a_repr_independence, simp) (rule a_subgroup)

from rcarr and this[symmetric]

show "∃ r∈carrier R. I +> a ⊗ r = I +> 1" by fast

qed
qed

end

theory IntRing

imports "HOL-Computational_Algebra.Primes" QuotRing Lattice HOL.Int

begin

25 The Ring of Integers

25.1 Some properties of int

lemma dvds_eq_abseq:

fixes k :: int

shows "l dvd k ∧ k dvd l ←→ |l| = |k|"
apply rule

apply (simp add: zdvd_antisym_abs)

apply (simp add: dvd_if_abs_eq)

done

25.2 Z: The Set of Integers as Algebraic Structure

abbreviation int_ring :: "int ring" ("Z")
where "int_ring ≡ (|carrier = UNIV, mult = op *, one = 1, zero = 0,

add = op +|)"

lemma int_Zcarr [intro!, simp]: "k ∈ carrier Z"
by simp
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lemma int_is_cring: "cring Z"
apply (rule cringI)

apply (rule abelian_groupI, simp_all)

defer 1

apply (rule comm_monoidI, simp_all)

apply (rule distrib_right)

apply (fast intro: left_minus)

done

25.3 Interpretations

Since definitions of derived operations are global, their interpretation needs
to be done as early as possible — that is, with as few assumptions as possible.

interpretation int: monoid Z
rewrites "carrier Z = UNIV"

and "mult Z x y = x * y"

and "one Z = 1"

and "pow Z x n = x^n"

proof -

— Specification
show "monoid Z" by standard auto

then interpret int: monoid Z .

— Carrier
show "carrier Z = UNIV" by simp

— Operations
{ fix x y show "mult Z x y = x * y" by simp }
show "one Z = 1" by simp

show "pow Z x n = x^n" by (induct n) simp_all

qed

interpretation int: comm_monoid Z
rewrites "finprod Z f A = prod f A"

proof -

— Specification
show "comm_monoid Z" by standard auto

then interpret int: comm_monoid Z .

— Operations
{ fix x y have "mult Z x y = x * y" by simp }
note mult = this

have one: "one Z = 1" by simp

show "finprod Z f A = prod f A"

by (induct A rule: infinite_finite_induct, auto)

qed

interpretation int: abelian_monoid Z
rewrites int_carrier_eq: "carrier Z = UNIV"
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and int_zero_eq: "zero Z = 0"

and int_add_eq: "add Z x y = x + y"

and int_finsum_eq: "finsum Z f A = sum f A"

proof -

— Specification
show "abelian_monoid Z" by standard auto

then interpret int: abelian_monoid Z .

— Carrier
show "carrier Z = UNIV" by simp

— Operations
{ fix x y show "add Z x y = x + y" by simp }
note add = this

show zero: "zero Z = 0"

by simp

show "finsum Z f A = sum f A"

by (induct A rule: infinite_finite_induct, auto)

qed

interpretation int: abelian_group Z

rewrites "carrier Z = UNIV"

and "zero Z = 0"

and "add Z x y = x + y"

and "finsum Z f A = sum f A"

and int_a_inv_eq: "a_inv Z x = - x"

and int_a_minus_eq: "a_minus Z x y = x - y"

proof -

— Specification
show "abelian_group Z"
proof (rule abelian_groupI)

fix x

assume "x ∈ carrier Z"
then show "∃ y ∈ carrier Z. y ⊕Z x = 0Z"

by simp arith

qed auto

then interpret int: abelian_group Z .
— Operations
{ fix x y have "add Z x y = x + y" by simp }
note add = this

have zero: "zero Z = 0" by simp

{
fix x

have "add Z (- x) x = zero Z"
by (simp add: add zero)

then show "a_inv Z x = - x"

by (simp add: int.minus_equality)
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}
note a_inv = this

show "a_minus Z x y = x - y"

by (simp add: int.minus_eq add a_inv)

qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq)+

interpretation int: "domain" Z
rewrites "carrier Z = UNIV"

and "zero Z = 0"

and "add Z x y = x + y"

and "finsum Z f A = sum f A"

and "a_inv Z x = - x"

and "a_minus Z x y = x - y"

proof -

show "domain Z"
by unfold_locales (auto simp: distrib_right distrib_left)

qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq

int_a_minus_eq)+

Removal of occurrences of UNIV in interpretation result — experimental.

lemma UNIV:

"x ∈ UNIV ←→ True"

"A ⊆ UNIV ←→ True"

"(∀ x ∈ UNIV. P x) ←→ (∀ x. P x)"

"(EX x : UNIV. P x) ←→ (EX x. P x)"

"(True −→ Q) ←→ Q"

"(True =⇒ PROP R) ≡ PROP R"

by simp_all

interpretation int :

partial_order "(|carrier = UNIV::int set, eq = op =, le = op ≤|)"
rewrites "carrier (|carrier = UNIV::int set, eq = op =, le = op ≤|) =

UNIV"

and "le (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y = (x

≤ y)"

and "lless (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y =

(x < y)"

proof -

show "partial_order (|carrier = UNIV::int set, eq = op =, le = op ≤|)"
by standard simp_all

show "carrier (|carrier = UNIV::int set, eq = op =, le = op ≤|) = UNIV"

by simp

show "le (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y = (x ≤
y)"

by simp

show "lless (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y = (x

< y)"

by (simp add: lless_def) auto

qed
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interpretation int :

lattice "(|carrier = UNIV::int set, eq = op =, le = op ≤|)"
rewrites "join (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y =

max x y"

and "meet (|carrier = UNIV::int set, eq = op =, le = op ≤|) x y = min

x y"

proof -

let ?Z = "(|carrier = UNIV::int set, eq = op =, le = op ≤|)"
show "lattice ?Z"

apply unfold_locales

apply (simp add: least_def Upper_def)

apply arith

apply (simp add: greatest_def Lower_def)

apply arith

done
then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"

apply (rule int.joinI)

apply (simp_all add: least_def Upper_def)

apply arith

done
show "meet ?Z x y = min x y"

apply (rule int.meetI)

apply (simp_all add: greatest_def Lower_def)

apply arith

done
qed

interpretation int :

total_order "(|carrier = UNIV::int set, eq = op =, le = op ≤|)"
by standard clarsimp

25.4 Generated Ideals of Z

lemma int_Idl: "IdlZ {a} = {x * a | x. True}"

apply (subst int.cgenideal_eq_genideal[symmetric]) apply simp

apply (simp add: cgenideal_def)

done

lemma multiples_principalideal: "principalideal {x * a | x. True } Z"
by (metis UNIV_I int.cgenideal_eq_genideal int.cgenideal_is_principalideal

int_Idl)

lemma prime_primeideal:

assumes prime: "prime p"

shows "primeideal (IdlZ {p}) Z"
apply (rule primeidealI)

apply (rule int.genideal_ideal, simp)
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apply (rule int_is_cring)

apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)

apply clarsimp defer 1

apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)

apply (elim exE)

proof -

fix a b x

assume "a * b = x * p"

then have "p dvd a * b" by simp

then have "p dvd a ∨ p dvd b"

by (metis prime prime_dvd_mult_eq_int)

then show "(∃ x. a = x * p) ∨ (∃ x. b = x * p)"

by (metis dvd_def mult.commute)

next
assume "UNIV = {uu. EX x. uu = x * p}"

then obtain x where "1 = x * p" by best

then have "|p * x| = 1" by (simp add: mult.commute)

then show False using prime

by (auto dest!: abs_zmult_eq_1 simp: prime_def)

qed

25.5 Ideals and Divisibility

lemma int_Idl_subset_ideal: "IdlZ {k} ⊆ IdlZ {l} = (k ∈ IdlZ {l})"

by (rule int.Idl_subset_ideal’) simp_all

lemma Idl_subset_eq_dvd: "IdlZ {k} ⊆ IdlZ {l} ←→ l dvd k"

apply (subst int_Idl_subset_ideal, subst int_Idl, simp)

apply (rule, clarify)

apply (simp add: dvd_def)

apply (simp add: dvd_def ac_simps)

done

lemma dvds_eq_Idl: "l dvd k ∧ k dvd l ←→ IdlZ {k} = IdlZ {l}"

proof -

have a: "l dvd k ←→ (IdlZ {k} ⊆ IdlZ {l})"

by (rule Idl_subset_eq_dvd[symmetric])

have b: "k dvd l ←→ (IdlZ {l} ⊆ IdlZ {k})"

by (rule Idl_subset_eq_dvd[symmetric])

have "l dvd k ∧ k dvd l ←→ IdlZ {k} ⊆ IdlZ {l} ∧ IdlZ {l} ⊆ IdlZ
{k}"

by (subst a, subst b, simp)

also have "IdlZ {k} ⊆ IdlZ {l} ∧ IdlZ {l} ⊆ IdlZ {k} ←→ IdlZ {k}

= IdlZ {l}"

by blast

finally show ?thesis .
qed
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lemma Idl_eq_abs: "IdlZ {k} = IdlZ {l} ←→ |l| = |k|"
apply (subst dvds_eq_abseq[symmetric])

apply (rule dvds_eq_Idl[symmetric])

done

25.6 Ideals and the Modulus

definition ZMod :: "int ⇒ int ⇒ int set"

where "ZMod k r = (IdlZ {k}) +>Z r"

lemmas ZMod_defs =

ZMod_def genideal_def

lemma rcos_zfact:

assumes kIl: "k ∈ ZMod l r"

shows "∃ x. k = x * l + r"

proof -

from kIl[unfolded ZMod_def] have "∃ xl∈IdlZ {l}. k = xl + r"

by (simp add: a_r_coset_defs)

then obtain xl where xl: "xl ∈ IdlZ {l}" and k: "k = xl + r"

by auto

from xl obtain x where "xl = x * l"

by (auto simp: int_Idl)

with k have "k = x * l + r"

by simp

then show "∃ x. k = x * l + r" ..
qed

lemma ZMod_imp_zmod:

assumes zmods: "ZMod m a = ZMod m b"

shows "a mod m = b mod m"

proof -

interpret ideal "IdlZ {m}" Z
by (rule int.genideal_ideal) fast

from zmods have "b ∈ ZMod m a"

unfolding ZMod_def by (simp add: a_repr_independenceD)

then have "∃ x. b = x * m + a"

by (rule rcos_zfact)

then obtain x where "b = x * m + a"

by fast

then have "b mod m = (x * m + a) mod m"

by simp

also have ". . . = ((x * m) mod m) + (a mod m)"

by (simp add: mod_add_eq)

also have ". . . = a mod m"

by simp

finally have "b mod m = a mod m" .
then show "a mod m = b mod m" ..

qed
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lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"

proof -

interpret ideal "IdlZ {m}" Z
by (rule int.genideal_ideal) fast

show ?thesis

unfolding ZMod_def

apply (rule a_repr_independence’[symmetric])

apply (simp add: int_Idl a_r_coset_defs)

proof -

have "a = m * (a div m) + (a mod m)"

by (simp add: mult_div_mod_eq [symmetric])

then have "a = (a div m) * m + (a mod m)"

by simp

then show "∃ h. (∃ x. h = x * m) ∧ a = h + a mod m"

by fast

qed simp

qed

lemma zmod_imp_ZMod:

assumes modeq: "a mod m = b mod m"

shows "ZMod m a = ZMod m b"

proof -

have "ZMod m a = ZMod m (a mod m)"

by (rule ZMod_mod)

also have ". . . = ZMod m (b mod m)"

by (simp add: modeq[symmetric])

also have ". . . = ZMod m b"

by (rule ZMod_mod[symmetric])

finally show ?thesis .
qed

corollary ZMod_eq_mod: "ZMod m a = ZMod m b ←→ a mod m = b mod m"

apply (rule iffI)

apply (erule ZMod_imp_zmod)

apply (erule zmod_imp_ZMod)

done

25.7 Factorization

definition ZFact :: "int ⇒ int set ring"

where "ZFact k = Z Quot (IdlZ {k})"

lemmas ZFact_defs = ZFact_def FactRing_def

lemma ZFact_is_cring: "cring (ZFact k)"

apply (unfold ZFact_def)

apply (rule ideal.quotient_is_cring)

apply (intro ring.genideal_ideal)



350

apply (simp add: cring.axioms[OF int_is_cring] ring.intro)

apply simp

apply (rule int_is_cring)

done

lemma ZFact_zero: "carrier (ZFact 0) = (
⋃
a. {{a}})"

apply (insert int.genideal_zero)

apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def)

done

lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"

apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps)

apply (subst int.genideal_one)

apply (rule, rule, clarsimp)

apply (rule, rule, clarsimp)

apply (rule, clarsimp, arith)

apply (rule, clarsimp)

apply (rule exI[of _ "0"], clarsimp)

done

lemma ZFact_prime_is_domain:

assumes pprime: "prime p"

shows "domain (ZFact p)"

apply (unfold ZFact_def)

apply (rule primeideal.quotient_is_domain)

apply (rule prime_primeideal[OF pprime])

done

end

26 More on rings etc.

theory More_Ring

imports
Ring

begin

lemma (in cring) field_intro2: "0R ~= 1R =⇒ ∀ x ∈ carrier R - {0R}.
x ∈ Units R =⇒ field R"

apply (unfold_locales)

apply (insert cring_axioms, auto)

apply (rule trans)

apply (subgoal_tac "a = (a ⊗ b) ⊗ inv b")

apply assumption

apply (subst m_assoc)

apply auto

apply (unfold Units_def)

apply auto

done
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lemma (in monoid) inv_char: "x : carrier G =⇒ y : carrier G =⇒
x ⊗ y = 1 =⇒ y ⊗ x = 1 =⇒ inv x = y"

apply (subgoal_tac "x : Units G")

apply (subgoal_tac "y = inv x ⊗ 1")
apply simp

apply (erule subst)

apply (subst m_assoc [symmetric])

apply auto

apply (unfold Units_def)

apply auto

done

lemma (in comm_monoid) comm_inv_char: "x : carrier G =⇒ y : carrier

G =⇒
x ⊗ y = 1 =⇒ inv x = y"

apply (rule inv_char)

apply auto

apply (subst m_comm, auto)

done

lemma (in ring) inv_neg_one [simp]: "inv (	 1) = 	 1"
apply (rule inv_char)

apply (auto simp add: l_minus r_minus)

done

lemma (in monoid) inv_eq_imp_eq: "x : Units G =⇒ y : Units G =⇒
inv x = inv y =⇒ x = y"

apply (subgoal_tac "inv(inv x) = inv(inv y)")

apply (subst (asm) Units_inv_inv)+

apply auto

done

lemma (in ring) Units_minus_one_closed [intro]: "	 1 : Units R"

apply (unfold Units_def)

apply auto

apply (rule_tac x = "	 1" in bexI)

apply auto

apply (simp add: l_minus r_minus)

done

lemma (in monoid) inv_one [simp]: "inv 1 = 1"
apply (rule inv_char)

apply auto

done

lemma (in ring) inv_eq_neg_one_eq: "x : Units R =⇒ (inv x = 	 1) =

(x = 	 1)"
apply auto
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apply (subst Units_inv_inv [symmetric])

apply auto

done

lemma (in monoid) inv_eq_one_eq: "x : Units G =⇒ (inv x = 1) = (x =

1)"
by (metis Units_inv_inv inv_one)

end
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