The Isabelle/HOL Algebra Library

Clemens Ballarin (Editor)
With contributions by Jesús Aransay, Clemens Ballarin, Stephan
Hohe, Florian Kammüller and Lawrence C Paulson
October 8, 2017

Contents

1 Objects 8
1.1 Structure with Carrier Set. 8
1.2 Structure with Carrier and Equivalence Relation eq 8
2 Orders 16
2.1 Partial Orders 16
2.1.1 The order relation 16
2.1.2 Upper and lower bounds of a set 18
2.1.3 Least and greatest, as predicate 22
2.1.4 Intervals 25
2.1.5 Isotone functions 26
2.1.6 Idempotent functions 27
2.1.7 Order embeddings 27
2.1.8 Commuting functions 27
2.2 Partial orders where eq is the Equality 27
2.3 Bounded Orders 29
2.4 Total Orders 30
2.5 Total orders where eq is the Equality 30
3 Lattices 31
3.1 Supremum and infimum 31
3.2 Dual operators 32
3.3 Lattices 32
3.3.1 Supremum 33
3.3.2 Infimum 38
3.4 Weak Bounded Lattices 44
3.5 Lattices where eq is the Equality 45
3.6 Bounded Lattices 46
4 Complete Lattices 47
4.1 Infimum Laws 50
4.2 Supremum Laws 51
4.3 Fixed points of a lattice 52
4.3.1 Least fixed points 54
4.3.2 Greatest fixed points 56
4.4 Complete lattices where eq is the Equality 58
4.5 Fixed points 59
4.6 Interval complete lattices 60
4.7 Knaster-Tarski theorem and variants 62
4.8 Examples 71
4.8.1 The Powerset of a Set is a Complete Lattice 71
4.9 Limit preserving functions 72
5 Galois connections 73
5.1 Definition and basic properties 73
5.2 Well-typed connections 73
5.3 Galois connections 74
5.4 Composition of Galois connections 78
5.5 Retracts 79
5.6 Coretracts 80
5.7 Galois Bijections 80
6 Monoids and Groups 82
6.1 Definitions 82
6.2 Groups 86
6.3 Cancellation Laws and Basic Properties 88
6.4 Subgroups 91
6.5 Direct Products 92
6.6 Homomorphisms and Isomorphisms 94
6.7 Commutative Structures 96
6.8 The Lattice of Subgroups of a Group 97
6.9 Product Operator for Commutative Monoids 99
6.9.1 Inductive Definition of a Relation for Products over Sets 99
6.9.2 Products over Finite Sets 105
7 Cosets and Quotient Groups 110
7.1 Basic Properties of Cosets 110
7.2 Normal subgroups 118
7.3 More Properties of Cosets 119
7.3.1 Set of Inverses of an r_{-}coset. 121
7.3.2 Theorems for <\#> with \#> or <\#. 121
7.3.3 An Equivalence Relation 122
7.3.4 Two Distinct Right Cosets are Disjoint 123
7.4 Further lemmas for $r_{\text {_ congruent }}$ 123
7.5 Order of a Group and Lagrange's Theorem 125
7.6 Quotient Groups: Factorization of a Group 126
7.7 The First Isomorphism Theorem 128
8 Sylow's Theorem 131
8.1 Main Part of the Proof 134
8.2 Discharging the Assumptions of sylow_central 135
8.2.1 Introduction and Destruct Rules for H 136
8.3 Equal Cardinalities of M and the Set of Cosets 137
8.3.1 The Opposite Injection 138
8.4 Sylow's Theorem 140
9 Bijections of a Set, Permutation and Automorphism Groups140
9.1 Bijections Form a Group 141
9.2 Automorphisms Form a Group 141
10 The Algebraic Hierarchy of Rings 143
10.1 Abelian Groups 143
10.2 Basic Properties 144
10.3 Rings: Basic Definitions 147
10.4 Rings 148
10.4.1 Normaliser for Rings 149
10.4.2 Sums over Finite Sets 153
10.5 Integral Domains 153
10.6 Fields 154
10.7 Morphisms 155
11 More on groups 157
12 More on finite products 160
13 Modules over an Abelian Group 162
13.1 Definitions 162
13.2 Basic Properties of Algebras 164
13.3 More Lifting from Groups to Abelian Groups 165
13.3.1 Definitions 165
13.3.2 Cosets 167
13.3.3 Subgroups 169
13.3.4 Additive subgroups are normal 169
13.3.5 Congruence Relation 173
13.3.6 Factorization 174
13.3.7 The First Isomorphism Theorem 176
13.3.8 Homomorphisms 176
13.3.9 Cosets 178
13.3.10 Addition of Subgroups 180
14 Ideals 181
14.1 Definitions 181
14.1.1 General definition 181
14.1.2 Ideals Generated by a Subset of carrier R 182
14.1.3 Principal Ideals 182
14.1.4 Maximal Ideals 182
14.1.5 Prime Ideals 183
14.2 Special Ideals 184
14.3 General Ideal Properies 184
14.4 Intersection of Ideals 185
14.5 Addition of Ideals 187
14.6 Ideals generated by a subset of carrier R 188
14.7 Union of Ideals 192
14.8 Properties of Principal Ideals 193
14.9 Prime Ideals 194
14.10Maximal Ideals 195
14.11Derived Theorems 198
15 Homomorphisms of Non-Commutative Rings 201
15.1 The Kernel of a Ring Homomorphism 203
15.2 Cosets 203
16 Univariate Polynomials 205
16.1 The Constructor for Univariate Polynomials 205
16.2 Effect of Operations on Coefficients 208
16.3 Polynomials Form a Ring. 209
16.4 Polynomials Form a Commutative Ring. 213
16.5 Polynomials over a commutative ring for a commutative ring 214
16.6 Polynomials Form an Algebra 214
16.7 Further Lemmas Involving Monomials 215
16.8 The Degree Function 220
16.9 Polynomials over Integral Domains 226
16.10The Evaluation Homomorphism and Universal Property 227
16.11The long division algorithm: some previous facts 235
16.12The long division proof for commutative rings 237
16.13Sample Application of Evaluation Homomorphism 243
17 Simplification Rules for Polynomials 244
18 Properties of the Euler φ-function 246
19 Order of an Element of a Group 250
20 Number of Roots of a Polynomial 257
21 The Multiplicative Group of a Field 260
22 Divisibility in monoids and rings 265
23 Factorial Monoids 265
23.1 Monoids with Cancellation Law 265
23.2 Products of Units in Monoids 266
23.3 Divisibility and Association 268
23.3.1 Function definitions 268
23.3.2 Divisibility 268
23.3.3 Association 270
23.3.4 Division and associativity 273
23.3.5 Multiplication and associativity 274
23.3.6 Units 275
23.3.7 Proper factors 276
23.4 Irreducible Elements and Primes 279
23.4.1 Irreducible elements 279
23.4.2 Prime elements 282
23.5 Factorization and Factorial Monoids 282
23.5.1 Function definitions 282
23.5.2 Comparing lists of elements 283
23.5.3 Properties of lists of elements 286
23.5.4 Factorization in irreducible elements 288
23.5.5 Essentially equal factorizations 291
23.5.6 Factorial monoids and wfactors 297
23.6 Factorizations as Multisets 298
23.6.1 Comparing multisets 299
23.6.2 Interpreting multisets as factorizations 303
23.6.3 Multiplication on multisets 304
23.6.4 Divisibility on multisets 305
23.7 Irreducible Elements are Prime 307
23.8 Greatest Common Divisors and Lowest Common Multiples 311
23.8.1 Definitions 311
23.8.2 Connections to Lattice.thy 312
23.8.3 Existence of gcd and lcm 313
23.9 Conditions for Factoriality 317
23.9.1 Gcd condition 317
23.9.2 Divisor chain condition 324
23.9.3 Primeness condition 326
23.9.4 Application to factorial monoids 331
23.10Factoriality Theorems 335
24 Quotient Rings 336
24.1 Multiplication on Cosets 336
24.2 Quotient Ring Definition 337
24.3 Factorization over General Ideals 337
24.4 Factorization over Prime Ideals 339
24.5 Factorization over Maximal Ideals 340
25 The Ring of Integers 342
25.1 Some properties of int 342
$25.2 \mathcal{Z}$: The Set of Integers as Algebraic Structure 342
25.3 Interpretations 343
25.4 Generated Ideals of \mathcal{Z} 346
25.5 Ideals and Divisibility 347
25.6 Ideals and the Modulus 348
25.7 Factorization 349
26 More on rings etc. 350


```
theory Congruence
imports
    Main
    "HOL-Library.FuncSet"
begin
```


1 Objects

1.1 Structure with Carrier Set.

```
record 'a partial_object =
    carrier :: "'a set"
lemma funcset_carrier:
    "\llbracketf \in carrier X }->\mathrm{ carrier Y; x }\in\mathrm{ carrier X | C f x }\in\mathrm{ carrier Y"
    by (fact funcset_mem)
lemma funcset_carrier':
    "\llbracketf \in carrier A }->\mathrm{ carrier A; x }\in\mathrm{ carrier A \ # f x }\in\mathrm{ carrier A"
    by (fact funcset_mem)
```


1.2 Structure with Carrier and Equivalence Relation eq

```
record 'a eq_object = "'a partial_object" +
    eq : : "'a \(\Rightarrow\) 'a \(\Rightarrow\) bool" (infixl ".= " 50)
```

definition
elem :: "_ \Rightarrow 'a \Rightarrow 'a set \Rightarrow bool" (infixl ". $\in \imath "$ 50)
where $" x . \epsilon_{S} A \longleftrightarrow\left(\exists y \in A . x .=S_{S} y\right) "$
definition
set_eq : : "_ \Rightarrow 'a set \Rightarrow 'a set \Rightarrow bool" (infixl "\{.=\}々" 50)
where "A $\{.=\}_{S} B \longleftrightarrow\left(\left(\forall x \in A . x . \in_{S} B\right) \wedge\left(\forall x \in B . x . \epsilon_{S} A\right)\right) "$
definition
eq_class_of :: "_ \Rightarrow 'a \Rightarrow 'a set" ("class'_of थ")
where "class_of $S_{S} x=\{y \in$ carrier S. x . $=$ S $y\} "$
definition
eq_closure_of :: "_ \Rightarrow 'a set \Rightarrow 'a set" ("closure'_of थ")
where "closure_of ${ }_{S} A=\left\{y \in\right.$ carrier $\left.S . y . \epsilon_{S} A\right\} "$
definition
eq_is_closed :: "_ \Rightarrow 'a set \Rightarrow bool" ("is'_closed»")
where "is_closed $A \longleftrightarrow A \subseteq$ carrier $S \wedge$ closure_of $S A=A "$
abbreviation

```
    not_eq :: "_ # 'a # 'a # bool" (infixl ".#``" 50)
where "x . #S y == ~ (x . =S y)"
abbreviation
    not_elem :: "_ # 'a # 'a set }=>\mathrm{ b bool" (infixl ".&乙" 50)
    where "x . }\not=\textrm{S}A== ~(x . \inG A )"
abbreviation
    set_not_eq :: "_ # 'a set }=>\mathrm{ 'a set }=>\mathrm{ b bool" (infixl "{. =} \" 50)
    where "A {. # } } B == ~(A {.=}
locale equivalence =
    fixes S (structure)
    assumes refl [simp, intro]: "x \in carrier S \Longrightarrow x .= x"
        and sym [sym]: "\llbracketx .= y; x \in carrier S; y \in carrier S \rrbracket \Longrightarrow y .=
x"
        and trans [trans]:
        "\llbracketx .= y; y .= z; x \in carrier S; y \in carrier S; z \in carrier S \rrbracket
" .= z"
```


lemma elemI:

```
fixes \(R\) (structure)
assumes "a' \(\in A\) " and "a . = a'"
shows "a . \(\in\) A"
unfolding elem_def
using assms
by fast
lemma (in equivalence) elem_exact:
assumes "a \(\in\) carrier \(S\) " and "a \(\in\) A"
shows "a . \(\in\) A"
using assms
by (fast intro: elemI)
lemma elemE:
fixes \(S\) (structure)
assumes "a . \(\in\) A"
and " \(\wedge a^{\prime} \cdot \llbracket a^{\prime} \in A ; a .=a^{\prime} \rrbracket \Longrightarrow P "\)
shows "P"
using assms
unfolding elem_def
by fast
lemma (in equivalence) elem_cong_l [trans]:
assumes cong: "a' . = a"
and \(a: ~ " a . \in A "\)
and carr: "a \(\in\) carrier \(S "\) "a’ \(\in\) carrier S" \(^{\prime \prime}\)
```

```
        and Acarr: "A \subseteq carrier S"
    shows "a' .\in A"
using a
apply (elim elemE, intro elemI)
proof assumption
    fix b
    assume bA: "b \in A"
    note [simp] = carr bA[THEN subsetD[OF Acarr]]
    note cong
    also assume "a .= b"
    finally show "a' .= b" by simp
qed
lemma (in equivalence) elem_subsetD:
    assumes "A \subseteq B"
        and aA: "a .\in A"
    shows "a .\in B"
using assms
by (fast intro: elemI elim: elemE dest: subsetD)
lemma (in equivalence) mem_imp_elem [simp, intro]:
    "[| x \in A; x G carrier S |] ==> x . G A"
    unfolding elem_def by blast
lemma set_eqI:
    fixes R (structure)
    assumes ltr: "\a. a }\in\textrm{A}\Longrightarrow\textrm{a}.\in\textrm{B}
        and rtl: "\b. b \in B \Longrightarrow b .\in A"
    shows "A {.=} B"
unfolding set_eq_def
by (fast intro: ltr rtl)
lemma set_eqI2:
    fixes R (structure)
    assumes ltr: "\a b. a }\in\textrm{A}\Longrightarrow\exists\textrm{b}\in\textrm{B}.\textrm{a}.= b
        and rtl: "^b. b \in B \Longrightarrow \existsa\inA. b .= a"
    shows "A {.=} B"
    by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+
lemma set_eqD1:
    fixes R (structure)
    assumes AA': "A {.=} A'"
        and "a \in A"
    shows "\existsa'\inA'. a .= a'"
using assms
unfolding set_eq_def elem_def
by fast
lemma set_eqD2:
```

```
    fixes R (structure)
    assumes AA': "A {.=} A'"
        and "a' }\inA\mathrm{ '"
    shows "\existsa\inA. a' .= a"
using assms
unfolding set_eq_def elem_def
by fast
lemma set_eqE:
    fixes R (structure)
    assumes AB: "A {.=} B"
        and r: "\llbracket\foralla\inA. a .\in B; \forallb\inB. b . }\in\textrm{A}\rrbracket\Longrightarrow P"
    shows "P"
using AB
unfolding set_eq_def
by (blast dest: r)
lemma set_eqE2:
    fixes R (structure)
    assumes AB: "A {.=} B"
        and r: "\llbracket\foralla\inA. (\existsb\inB. a .= b); \forallb\inB. (\existsa\inA. b .= a)\rrbracket\LongrightarrowP"
    shows "P"
using AB
unfolding set_eq_def elem_def
by (blast dest: r)
lemma set_eqE':
    fixes R (structure)
    assumes AB: "A {.=} B"
        and aA: "a \in A" and bB: "b \in B"
        and r: "\a' b'. \llbracketa' \in A; b .= a'; b' \in B; a .= b'\rrbracket \Longrightarrow P"
    shows "P"
proof -
    from AB aA
        have "\existsb'\inB. a .= b'" by (rule set_eqD1)
    from this obtain b'
        where b': "b' \in B" "a .= b'" by auto
    from AB bB
        have "\existsa'\inA. b .= a'" by (rule set_eqD2)
    from this obtain a'
        where a': "a' \in A" "b .= a'" by auto
    from a' b'
        show "P" by (rule r)
qed
lemma (in equivalence) eq_elem_cong_r [trans]:
    assumes a: "a .\in A"
```

```
        and cong: "A {.=} A'"
        and carr: "a \in carrier S"
        and Carr: "A}\subseteq\mathrm{ carrier S" "A' }\subseteq\mathrm{ carrier S"
    shows "a .\in A'"
using a cong
proof (elim elemE set_eqE)
    fix b
    assume bA: "b \in A"
        and inA': "\forallb\inA. b .\in A'"
    note [simp] = carr Carr Carr [THEN subsetD] bA
    assume "a .= b"
    also from bA inA,
        have "b .\in A'" by fast
    finally
        show "a .\in A'" by simp
qed
lemma (in equivalence) set_eq_sym [sym]:
    assumes "A {.=} B"
        and "A\subseteqcarrier S" "B \subseteqcarrier S"
    shows "B {.=} A"
using assms
unfolding set_eq_def elem_def
by fast
```

```
lemma (in equivalence) equal_set_eq_trans [trans]:
```

lemma (in equivalence) equal_set_eq_trans [trans]:
assumes $A B$: "A $=B$ " and $B C$: "B $\{.=\} C "$
assumes $A B$: "A $=B$ " and $B C$: "B $\{.=\} C "$
shows "A \{.=\} C"
shows "A \{.=\} C"
using $A B B C$ by simp
using $A B B C$ by simp
lemma (in equivalence) set_eq_equal_trans [trans]:
lemma (in equivalence) set_eq_equal_trans [trans]:
assumes AB: "A $\{.=\}$ B" and $\mathrm{BC}: ~ " \mathrm{~B}=\mathrm{C} "$
assumes AB: "A $\{.=\}$ B" and $\mathrm{BC}: ~ " \mathrm{~B}=\mathrm{C} "$
shows "A \{.=\} C"
shows "A \{.=\} C"
using $A B B C$ by simp
using $A B B C$ by simp
lemma (in equivalence) set_eq_trans [trans]:
lemma (in equivalence) set_eq_trans [trans]:
assumes $A B$: "A $\{.=\}$ B" and $B C:$ " $\{.=\}$ C"
assumes $A B$: "A $\{.=\}$ B" and $B C:$ " $\{.=\}$ C"
and carr: "A \subseteq carrier $S "$ " $\mathrm{B} \subseteq$ carrier $\mathrm{S} " \quad$ "C \subseteq carrier $\mathrm{S} "$
and carr: "A \subseteq carrier $S "$ " $\mathrm{B} \subseteq$ carrier $\mathrm{S} " \quad$ "C \subseteq carrier $\mathrm{S} "$
shows "A \{.=\} C"
shows "A \{.=\} C"
proof (intro set_eqI)
proof (intro set_eqI)
fix a
fix a
assume $a A: ~ " a \in A "$
assume $a A: ~ " a \in A "$
with carr have "a \in carrier S " by fast
with carr have "a \in carrier S " by fast
note [simp] = carr this

```
    note [simp] = carr this
```

```
    from aA
        have "a .\in A" by (simp add: elem_exact)
    also note AB
    also note BC
    finally
        show "a .\in C" by simp
next
    fix c
    assume cC: "c \in C"
    with carr have "c \in carrier S" by fast
    note [simp] = carr this
    from cC
        have "c .\in C" by (simp add: elem_exact)
    also note BC[symmetric]
    also note AB[symmetric]
    finally
        show "c .\in A" by simp
qed
```

```
lemma (in equivalence) set_eq_pairI:
    assumes xx ': " \(\mathrm{x} .=\mathrm{x}\) " "
        and carr: "x \(\in\) carrier \(S "\) "x' \(\in\) carrier \(S " ~ " y \in c a r r i e r ~ S " ~\)
    shows "\{x, y\} \{.=\} \{x', y\}"
unfolding set_eq_def elem_def
proof safe
    have " \(x\) ' \(\in\{x\) ', \(y\}\) " by fast
    with \(x\) ' show \(" \exists b \in\left\{x^{\prime}, y\right\} . x .=b "\) by fast
next
    have "y \(\in\{x\) ', \(y\}\) " by fast
    with carr show \(" \exists b \in\{x\), \(y\} . y .=b "\) by fast
next
    have " \(x \in\{x, y\}\) " by fast
    with xx '[symmetric] carr
    show " \(\exists \mathrm{a} \in\{\mathrm{x}, \mathrm{y}\} . \mathrm{x}\). \(=\mathrm{a}\) " by fast
next
    have " \(y \in\{x, y\}\) " by fast
    with carr show " \(\exists \mathrm{a} \in\{\mathrm{x}, \mathrm{y}\} . \mathrm{y} .=\mathrm{a}\) " by fast
qed
lemma (in equivalence) is_closedI:
    assumes closed: "!!x y. [| x .= y; x \(\in A ; y \in \operatorname{carrier~} S\) |] \(==>y \in\)
A"
            and \(\mathrm{S}:\) "A \(\subseteq\) carrier \(\mathrm{S} "\)
    shows "is_closed A"
```

```
    unfolding eq_is_closed_def eq_closure_of_def elem_def
    using S
    by (blast dest: closed sym)
lemma (in equivalence) closure_of_eq:
    "[| x .= x'; A \subseteq carrier S; x \in closure_of A; x \in carrier S; x' \in carrier
S |] ==> x' \in closure_of A"
    unfolding eq_closure_of_def elem_def
    by (blast intro: trans sym)
lemma (in equivalence) is_closed_eq [dest]:
    "[| x .= x'; x \in A; is_closed A; x G carrier S; x' \in carrier S |] ==>
x' \in A"
    unfolding eq_is_closed_def
    using closure_of_eq [where A = A]
    by simp
lemma (in equivalence) is_closed_eq_rev [dest]:
    "[| x .= x'; x' \in A; is_closed A; x \in carrier S; x' \in carrier S |]
==> x \in A"
    by (drule sym) (simp_all add: is_closed_eq)
lemma closure_of_closed [simp, intro]:
    fixes S (structure)
    shows "closure_of A \subseteq carrier S"
unfolding eq_closure_of_def
by fast
lemma closure_of_memI:
    fixes S (structure)
    assumes "a . \in A"
        and "a \in carrier S"
    shows "a \in closure_of A"
unfolding eq_closure_of_def
using assms
by fast
lemma closure_ofI2:
    fixes S (structure)
    assumes "a .= a'"
        and "a' \in A"
        and "a \in carrier S"
    shows "a \in closure_of A"
unfolding eq_closure_of_def elem_def
using assms
by fast
lemma closure_of_memE:
    fixes S (structure)
```

```
    assumes p: "a \in closure_of A"
        and r: "\llbracketa \in carrier S; a . }\in\textrm{A}|\Longrightarrow\textrm{P}
    shows "P"
proof -
    from p
                have acarr: "a \in carrier S"
                and "a . \in A"
                by (simp add: eq_closure_of_def)+
    thus "P" by (rule r)
qed
lemma closure_ofE2:
    fixes S (structure)
    assumes p: "a \in closure_of A"
        and r: "\a'. \llbracketa \in carrier S; a' \in A; a .= a'\rrbracket \Longrightarrow P"
    shows "P"
proof -
    from p have acarr: "a \in carrier S" by (simp add: eq_closure_of_def)
    from p have "\existsa'\inA. a .= a'" by (simp add: eq_closure_of_def elem_def)
    from this obtain a'
        where "a' \in A" and "a .= a'" by auto
    from acarr and this
        show "P" by (rule r)
qed
```

lemma equivalence_subset:
assumes "equivalence L" "A \subseteq carrier L"
shows "equivalence (L() carrier := A))"
proof -
interpret L: equivalence L
by (simp add: assms)
show ?thesis
by (unfold_locales, simp_all add: L.sym assms rev_subsetD, meson L.trans
assms(2) contra_subsetD)
qed
end
theory Order
imports
"HOL-Library.FuncSet"
Congruence
begin

2 Orders

2．1 Partial Orders

```
record 'a gorder = "'a eq_object" +
    le :: "['a, 'a] => bool" (infixl "\sqsubseteq\imath" 50)
```

abbreviation inv_gorder :: "_ \Rightarrow 'a gorder" where
"inv_gorder L \equiv
(carrier = carrier L,
eq $=o p .=_{L}$,
le $=\left(\lambda \mathrm{x} y . \mathrm{y} \sqsubseteq_{\mathrm{L}} \mathrm{x}\right)$) "
lemma inv_gorder_inv:
"inv_gorder (inv_gorder L) = L"
by simp
locale weak_partial_order = equivalence L for L (structure) +
assumes le_refl [intro, simp]:
"x \in carrier $L==>x \sqsubseteq x "$
and weak_le_antisym [intro]:

and le_trans [trans]:
" [l x $\sqsubseteq \mathrm{y} ; \mathrm{y} \sqsubseteq \mathrm{z} ; \mathrm{x} \in \operatorname{carrier~L;~y~} \in \operatorname{carrier~L;~} \mathrm{z} \in \operatorname{carrier} \mathrm{L}$
l] ==> x $\sqsubseteq \mathrm{z"}$
and le_cong:
"【x .= y; z .= w; x \in carrier $L ; y \in \operatorname{carrier~L;~z~} \in$ carrier L;
w \in carrier L $\rrbracket \Longrightarrow$
$\mathrm{x} \sqsubseteq \mathrm{z} \longleftrightarrow \mathrm{y} \sqsubseteq \mathrm{w} "$

definition

lless ：：＂［＿，＇a，＇a］＝＞bool＂（infixl＂ட々＂50）
where $" \mathrm{x} \sqsubset_{\mathrm{L}} \mathrm{y} \longleftrightarrow \mathrm{x} \sqsubseteq_{\mathrm{L}} \mathrm{y}$ \＆ $\mathrm{x} . \neq \mathrm{L}^{\mathrm{y}} \mathrm{y}$＂

2．1．1 The order relation

```
context weak_partial_order
```

begin
lemma le＿cong＿l［intro，trans］：
＂【x ．$=\mathrm{y} ; \mathrm{y} \sqsubseteq \mathrm{z} ; \mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in \operatorname{carrier~} \mathrm{L} ; \mathrm{z} \in$ carrier L $\rrbracket \Longrightarrow$ $\mathrm{x} \sqsubseteq \mathrm{z}^{\prime \prime}$
by（auto intro：le＿cong［THEN iffD2］）
lemma le＿cong＿r［intro，trans］：
＂【x $\sqsubseteq \mathrm{y} ; \mathrm{y} .=\mathrm{z} ; \mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in \operatorname{carrier} \mathrm{L} ; \mathrm{z} \in$ carrier L $\rrbracket \Longrightarrow$ $\mathrm{x} \sqsubseteq \mathrm{z}^{\prime \prime}$
by（auto intro：le＿cong［THEN iffD1］）
lemma weak＿refl［intro，simp］：＂【x ．＝y； $\mathrm{x} \in \operatorname{carrier~L;~y~} \in$ carrier

```
L \ \Longrightarrow x \sqsubseteq y'
    by (simp add: le_cong_l)
end
lemma weak_llessI:
    fixes R (structure)
    assumes "x \sqsubseteq y" and "~ (x .= y)"
    shows "x \sqsubset y"
    using assms unfolding lless_def by simp
lemma lless_imp_le:
    fixes R (structure)
    assumes "x }\sqsubsety
    shows "x \sqsubseteq y"
    using assms unfolding lless_def by simp
lemma weak_lless_imp_not_eq:
    fixes R (structure)
    assumes "x \sqsubset y"
    shows "\neg (x .= y)"
    using assms unfolding lless_def by simp
lemma weak_llessE:
    fixes R (structure)
    assumes p: "x \sqsubset y" and e: "\llbracketx \sqsubseteq y; ᄀ (x .= y)\rrbracket \Longrightarrow P"
    shows "P"
    using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)
lemma (in weak_partial_order) lless_cong_l [trans]:
    assumes xx': "x .= x'"
        and xy: "x' \sqsubset y"
        and carr: "x \in carrier L" "x' \in carrier L" "y \in carrier L"
    shows "x \sqsubset y"
    using assms unfolding lless_def by (auto intro: trans sym)
lemma (in weak_partial_order) lless_cong_r [trans]:
    assumes xy: "x \sqsubset y"
        and yy': "y .= y'"
        and carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
    shows "x \sqsubset y""
    using assms unfolding lless_def by (auto intro: trans sym)
lemma (in weak_partial_order) lless_antisym:
    assumes "a \in carrier L" "b \in carrier L"
        and "a \sqsubset b" "b }\sqsubset a
    shows "P"
    using assms
```

```
    by (elim weak_llessE) auto
lemma (in weak_partial_order) lless_trans [trans]:
    assumes "a \sqsubset b" "b \sqsubset c"
        and carr[simp]: "a \in carrier L" "b \in carrier L" "c \in carrier L"
    shows "a \sqsubset c"
    using assms unfolding lless_def by (blast dest: le_trans intro: sym)
lemma weak_partial_order_subset:
    assumes "weak_partial_order L" "A \subseteq carrier L"
    shows "weak_partial_order (L( carrier := A D)"
proof -
    interpret L: weak_partial_order L
        by (simp add: assms)
    interpret equivalence "(L| carrier := A |)"
        by (simp add: L.equivalence_axioms assms(2) equivalence_subset)
    show ?thesis
        apply (unfold_locales, simp_all)
        using assms(2) apply auto[1]
        using assms(2) apply auto[1]
        apply (meson L.le_trans assms(2) contra_subsetD)
        apply (meson L.le_cong assms(2) subsetCE)
    done
qed
```


2.1.2 Upper and lower bounds of a set

definition

 Upper :: "[_, 'a set] => 'a set"
 where "Upper \(L A=\left\{u\right.\). (ALL \(x . x \in A \cap\) carrier \(\left.\left.L-->x \sqsubseteq_{L} u\right)\right\} \cap\) carrier
 L"

definition

 Lower :: "[_, 'a set] => 'a set"
 where "Lower \(L A=\left\{1\right.\). (ALL \(x . x \in A \cap\) carrier \(\left.\left.L-->1 \sqsubseteq_{L} x\right)\right\} \cap\) carrier
 L"
lemma Upper_closed [intro!, simp]:
"Upper L A \subseteq carrier L"
by (unfold Upper_def) clarify
lemma Upper_memD [dest]:
fixes L (structure)

carrier L"
by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_elemD [dest]:
" [| u . \in Upper L A; u $\in \operatorname{carrier~L;~x~} \in A ; A \subseteq \operatorname{carrier~L~|]~==>~x~} \sqsubseteq$

```
u"
    unfolding Upper_def elem_def
    by (blast dest: sym)
lemma Upper_memI:
    fixes L (structure)
    shows "[| !! y. y }\in\textrm{A}==>\textrm{y}\sqsubseteq\textrm{x};\textrm{x}\in\operatorname{carrier L |] ==> x }\in\mathrm{ Upper L
A"
    by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_elemI:
    "[| !! y. y \in A ==> y \sqsubseteq x; x \in carrier L |] ==> x . \in Upper L A"
    unfolding Upper_def by blast
lemma Upper_antimono:
    "A\subseteqB ==> Upper L B \subseteq Upper L A"
    by (unfold Upper_def) blast
lemma (in weak_partial_order) Upper_is_closed [simp]:
    "A \subseteq carrier L ==> is_closed (Upper L A)"
    by (rule is_closedI) (blast intro: Upper_memI)+
lemma (in weak_partial_order) Upper_mem_cong:
    assumes a'carr: "a' \in carrier L" and Acarr: "A \subseteq carrier L"
        and aa': "a .= a'"
        and aelem: "a \in Upper L A"
    shows "a' \in Upper L A"
proof (rule Upper_memI[OF _ a'carr])
    fix y
    assume yA: "y \in A"
    hence "y \sqsubseteq a" by (intro Upper_memD[OF aelem, THEN conjunct1] Acarr)
    also note aa'
    finally
        show "y \sqsubseteq a'"
        by (simp add: a'carr subsetD[OF Acarr yA] subsetD[OF Upper_closed
aelem])
qed
lemma (in weak_partial_order) Upper_cong:
    assumes Acarr: "A \subseteq carrier L" and A'carr: "A' \subseteq carrier L"
        and AA': "A {.=} A""
    shows "Upper L A = Upper L A'"
unfolding Upper_def
apply rule
    apply (rule, clarsimp) defer 1
    apply (rule, clarsimp) defer 1
proof -
    fix x a'
    assume carr: "x \in carrier L" "a' \in carrier L"
```

```
        and a'A': "a' \in A'"
    assume aLxCond[rule_format]: "\foralla. a }\in\textrm{A}\wedge \textrm{a}\in\operatorname{carrier L \longrightarrow a \sqsubseteq x"
    from AA' and a'A' have "\existsa\inA. a' .= a" by (rule set_eqD2)
    from this obtain a
        where aA: "a \in A"
        and a'a: "a' .= a"
        by auto
    note [simp] = subsetD[OF Acarr aA] carr
    note a'a
    also have "a }\sqsubseteq\textrm{x"}\mathrm{ by (simp add: aLxCond aA)
    finally show "a' \sqsubseteq x" by simp
next
    fix x a
    assume carr: "x \in carrier L" "a \in carrier L"
        and aA: "a \in A"
    assume a'LxCond[rule_format]: " }\forall\textrm{a}, a' (\in A' ^ a' \in carrier L \longrightarrow a'
\sqsubseteq"
    from AA' and aA have "\existsa'\inA'. a .= a'" by (rule set_eqD1)
    from this obtain a'
        where a'A': "a' \in A'"
        and aa': "a .= a'"
        by auto
    note [simp] = subsetD[OF A'carr a'A'] carr
    note aa'
    also have "a' \sqsubseteq x" by (simp add: a'LxCond a'A')
    finally show "a \sqsubseteq x" by simp
qed
lemma Lower_closed [intro!, simp]:
    "Lower L A \subseteq carrier L"
    by (unfold Lower_def) clarify
lemma Lower_memD [dest]:
    fixes L (structure)
    shows "[| l & Lower L A; x \in A; A \subseteq carrier L |] ==> l \sqsubseteqx ^l \in
carrier L"
    by (unfold Lower_def) blast
lemma Lower_memI:
    fixes L (structure)
    shows "[| !! y. y \in A => x \sqsubseteq y; x \in carrier L |] ==> x & Lower L
A"
    by (unfold Lower_def) blast
lemma Lower_antimono:
```

```
    "A \subseteq B ==> Lower L B \subseteq Lower L A"
    by (unfold Lower_def) blast
lemma (in weak_partial_order) Lower_is_closed [simp]:
    "A \subseteq carrier L \Longrightarrow is_closed (Lower L A)"
    by (rule is_closedI) (blast intro: Lower_memI dest: sym)+
lemma (in weak_partial_order) Lower_mem_cong:
    assumes a'carr: "a' \in carrier L" and Acarr: "A \subseteq carrier L"
        and aa': "a .= a'"
        and aelem: "a \in Lower L A"
    shows "a' \in Lower L A"
using assms Lower_closed[of L A]
by (intro Lower_memI) (blast intro: le_cong_l[OF aa'[symmetric]])
lemma (in weak_partial_order) Lower_cong:
    assumes Acarr: "A \subseteq carrier L" and A'carr: "A' \subseteq carrier L"
        and AA': "A {.=} A'"
    shows "Lower L A = Lower L A'"
unfolding Lower_def
apply rule
    apply clarsimp defer 1
    apply clarsimp defer 1
proof -
    fix x a'
    assume carr: "x \in carrier L" "a' \in carrier L"
        and a'A': "a' \in A'"
    assume "\foralla. a }\in\textrm{A}\wedge a \in carrier L \longrightarrow x \sqsubseteq a"
    hence aLxCond: " \a. \llbracketa \in A; a \in carrier L\rrbracket \Longrightarrow m\sqsubseteq a" by fast
    from AA' and a'A' have "\existsa\inA. a' .= a" by (rule set_eqD2)
    from this obtain a
        where aA: "a \in A"
        and a'a: "a' .= a"
        by auto
    from aA and subsetD[OF Acarr aA]
        have "x \sqsubseteqa" by (rule aLxCond)
    also note a'a[symmetric]
    finally
            show "x \sqsubseteq a'" by (simp add: carr subsetD[OF Acarr aA])
next
    fix x a
    assume carr: "x \in carrier L" "a \in carrier L"
        and aA: "a \in A"
    assume "\foralla'. a' \in A' ^ a' \in carrier L \longrightarrow x \sqsubseteq a'"
    hence a'LxCond: "\a'. \llbracketa' \in A'; a' \in carrier L\rrbracket \Longrightarrow x \sqsubseteq a'" by fast+
    from AA' and aA have "\existsa'\inA'. a .= a'" by (rule set_eqD1)
```

```
    from this obtain a'
        where a'A': "a' \in A'"
        and aa': "a .= a'"
        by auto
    from a'A' and subsetD[OF A'carr a'A']
        have "x\sqsubseteq a'" by (rule a'LxCond)
    also note aa'[symmetric]
    finally show "x \sqsubseteq a" by (simp add: carr subsetD[OF A'carr a'A'])
qed
```

Jacobson: Theorem 8.1

```
lemma Lower_empty [simp]:
    "Lower L \{\} = carrier L"
    by (unfold Lower_def) simp
lemma Upper_empty [simp]:
    "Upper L \{\} = carrier L"
    by (unfold Upper_def) simp
```


2.1.3 Least and greatest, as predicate

definition

```
    least :: "[_, 'a, 'a set] => bool"
    where "least \(L 1 A \longleftrightarrow A \subseteq\) carrier \(L \& 1 \in A \&\left(A L L x: A .1 \sqsubseteq_{L} x\right) "\)
```

definition
greatest :: "[_, ’a, ’a set] => bool"
where "greatest $L \mathrm{~g} \mathrm{~A} \longleftrightarrow \mathrm{~A} \subseteq$ carrier $\mathrm{L} \& \mathrm{~g} \in \mathrm{~A} \&\left(A L L \mathrm{x}: \mathrm{A} . \mathrm{x} \sqsubseteq_{\mathrm{L}}\right.$
g) "
Could weaken these to $l \in$ carrier $L \wedge l . \in A$ and $g \in \operatorname{carrier} L \wedge g . \in$
A.
lemma least_closed [intro, simp]:
"least L l A ==> l \in carrier L"
by (unfold least_def) fast
lemma least_mem:
"least L l A ==> l \in A"
by (unfold least_def) fast
lemma (in weak_partial_order) weak_least_unique:
" [| least L x A; least L y A |] ==> x .= y"
by (unfold least_def) blast
lemma least_le:
fixes L (structure)
shows "[| least L x A; $a \in A \mid]==>x \sqsubseteq a "$
by (unfold least_def) fast

```
lemma (in weak_partial_order) least_cong:
    "[| x .= x'; x \in carrier L; x' \in carrier L; is_closed A |] ==> least
L x A = least L x' A"
    by (unfold least_def) (auto dest: sym)
abbreviation is_lub :: "[_, 'a, 'a set] => bool"
where "is_lub L x A \equiv least L x (Upper L A)"
least is not congruent in the second parameter for A {.=} A'
lemma (in weak_partial_order) least_Upper_cong_l:
    assumes "x .= x'"
        and "x \in carrier L" "x' \in carrier L"
        and "A \subseteq carrier L"
    shows "least L x (Upper L A) = least L x' (Upper L A)"
    apply (rule least_cong) using assms by auto
lemma (in weak_partial_order) least_Upper_cong_r:
    assumes Acarrs: "A \subseteq carrier L" "A' \subseteq carrier L"
        and AA': "A {.=} A'"
    shows "least L x (Upper L A) = least L x (Upper L A')"
apply (subgoal_tac "Upper L A = Upper L A'", simp)
by (rule Upper_cong) fact+
lemma least_UpperI:
    fixes L (structure)
    assumes above: "!! x. x \in A ==> x \sqsubseteq s"
        and below: "!! y. y \in Upper L A ==> s \sqsubseteq y"
        and L: "A \subseteq carrier L" "s \in carrier L"
    shows "least L s (Upper L A)"
proof -
    have "Upper L A \subseteq carrier L" by simp
    moreover from above L have "s \in Upper L A" by (simp add: Upper_def)
    moreover from below have "ALL x : Upper L A. s \sqsubseteq x" by fast
    ultimately show ?thesis by (simp add: least_def)
qed
lemma least_Upper_above:
    fixes L (structure)
    shows "[| least L s (Upper L A); x \in A; A \subseteq carrier L |] ==> x \sqsubseteq s"
    by (unfold least_def) blast
lemma greatest_closed [intro, simp]:
    "greatest L l A ==> l G carrier L"
    by (unfold greatest_def) fast
lemma greatest_mem:
    "greatest L l A ==> l G A"
    by (unfold greatest_def) fast
```

```
lemma (in weak_partial_order) weak_greatest_unique:
    "[| greatest L x A; greatest L y A |] ==> x .= y"
    by (unfold greatest_def) blast
lemma greatest_le:
    fixes L (structure)
    shows "[| greatest L x A; a \in A |] ==> a \sqsubseteq x"
    by (unfold greatest_def) fast
lemma (in weak_partial_order) greatest_cong:
    "[| x .= x'; x G carrier L; x' \in carrier L; is_closed A |] ==>
    greatest L x A = greatest L x' A"
    by (unfold greatest_def) (auto dest: sym)
abbreviation is_glb :: "[_, 'a, 'a set] => bool"
where "is_glb L x A \equiv greatest L x (Lower L A)"
greatest is not congruent in the second parameter for A {.=} A'
lemma (in weak_partial_order) greatest_Lower_cong_l:
    assumes "x .= x'"
        and "x \in carrier L" "x' \in carrier L"
        and "A \subseteq carrier L"
    shows "greatest L x (Lower L A) = greatest L x' (Lower L A)"
    apply (rule greatest_cong) using assms by auto
lemma (in weak_partial_order) greatest_Lower_cong_r:
    assumes Acarrs: "A \subseteq carrier L" "A' \subseteq carrier L"
        and AA': "A {.=} A'"
    shows "greatest L x (Lower L A) = greatest L x (Lower L A')"
apply (subgoal_tac "Lower L A = Lower L A'", simp)
by (rule Lower_cong) fact+
lemma greatest_LowerI:
    fixes L (structure)
    assumes below: "!! x. x \in A ==> i \sqsubseteq x"
        and above: "!! y. y \in Lower L A ==> y \sqsubseteq i"
        and L: "A \subseteq carrier L" "i \in carrier L"
    shows "greatest L i (Lower L A)"
proof -
    have "Lower L A \subseteq carrier L" by simp
    moreover from below L have "i \in Lower L A" by (simp add: Lower_def)
    moreover from above have "ALL x : Lower L A. x \sqsubseteq i" by fast
    ultimately show ?thesis by (simp add: greatest_def)
qed
lemma greatest_Lower_below:
    fixes L (structure)
    shows "[l greatest L i (Lower L A); x \in A; A \subseteq carrier L |] ==> i }
x"
```

```
    by (unfold greatest_def) blast
lemma Lower_dual [simp]:
    "Lower (inv_gorder L) A = Upper L A"
    by (simp add:Upper_def Lower_def)
lemma Upper_dual [simp]:
    "Upper (inv_gorder L) A = Lower L A"
    by (simp add:Upper_def Lower_def)
lemma least_dual [simp]:
    "least (inv_gorder L) x A = greatest L x A"
    by (simp add:least_def greatest_def)
lemma greatest_dual [simp]:
    "greatest (inv_gorder L) x A = least L x A"
    by (simp add:least_def greatest_def)
lemma (in weak_partial_order) dual_weak_order:
    "weak_partial_order (inv_gorder L)"
    apply (unfold_locales)
    apply (simp_all)
    apply (metis sym)
    apply (metis trans)
    apply (metis weak_le_antisym)
    apply (metis le_trans)
    apply (metis le_cong_l le_cong_r sym)
done
lemma dual_weak_order_iff:
    "weak_partial_order (inv_gorder A) \longleftrightarrow weak_partial_order A"
proof
    assume "weak_partial_order (inv_gorder A)"
    then interpret dpo: weak_partial_order "inv_gorder A"
    rewrites "carrier (inv_gorder A) = carrier A"
    and "le (inv_gorder A) = ( }\lambda\mathrm{ x y. le A y x)"
    and "eq (inv_gorder A) = eq A"
        by (simp_all)
    show "weak_partial_order A"
        by (unfold_locales, auto intro: dpo.sym dpo.trans dpo.le_trans)
next
    assume "weak_partial_order A"
    thus "weak_partial_order (inv_gorder A)"
        by (metis weak_partial_order.dual_weak_order)
qed
```


2.1.4 Intervals

```
    at_least_at_most :: "('a, 'c) gorder_scheme = 'a => 'a => 'a set" ("(1{__.._}\imath)")
    where "{l..u}
context weak_partial_order
begin
lemma at_least_at_most_upper [dest]:
    "x}\in{a..b}\Longrightarrowx\sqsubseteq b"
    by (simp add: at_least_at_most_def)
lemma at_least_at_most_lower [dest]:
    "x \in {a..b} \Longrightarrowa\sqsubseteq x"
    by (simp add: at_least_at_most_def)
lemma at_least_at_most_closed: "{a..b} \subseteq carrier L"
    by (auto simp add: at_least_at_most_def)
lemma at_least_at_most_member [intro]:
    "\llbracketx cecarrier L; a \sqsubseteqx; x \sqsubseteq b \ \Longrightarrow x \in{a..b}"
    by (simp add: at_least_at_most_def)
end
```


2.1.5 Isotone functions

```
definition isotone :: "('a, 'c) gorder_scheme # ('b, 'd) gorder_scheme
# ('a # 'b) => bool"
    where
    "isotone A B f 三
    weak_partial_order A ^ weak_partial_order B ^
    (\forallx\incarrier A. }\forall\textrm{y}\in\textrm{carrier A. x }\mp@subsup{\sqsubseteq}{\textrm{A}}{}\textrm{y}\longrightarrow\textrm{f}x\mp@subsup{\sqsubseteq}{\textrm{B}}{\textrm{f}}\textrm{y})
lemma isotoneI [intro?]:
    fixes f :: "'a # 'b"
    assumes "weak_partial_order L1"
            "weak_partial_order L2"
            "(\x y. \llbracketx f carrier L1; y \in carrier L1; x \sqsubseteq ¢L1 y \
                        "fx \sqsubseteqL2 f y)"
    shows "isotone L1 L2 f"
    using assms by (auto simp add:isotone_def)
abbreviation Monotone :: "('a, 'b) gorder_scheme }=>\mathrm{ ('a # 'a) = bool"
("Mono\imath")
    where "Monotone L f \equiv isotone L L f"
lemma use_iso1:
    "\llbracketisotone A A f; x }\in\mathrm{ carrier A; y }\in\mathrm{ carrier A; x }\mp@subsup{\sqsubseteq}{A}{A}y\rrbracket
    f x \sqsubseteqA f y"
    by (simp add: isotone_def)
```

```
lemma use_iso2:
    "\llbracketisotone A B f; x \in carrier A; y \in carrier A; x \sqsubseteqA y\rrbracket \Longrightarrow
        f x \sqsubseteqB f y"
    by (simp add: isotone_def)
lemma iso_compose:
    |f}\in\mathrm{ carrier A }->\mathrm{ carrier B; isotone A B f; g }\in\mathrm{ carrier B }->\mathrm{ carrier
C; isotone B C g}\rrbracket
        isotone A C (g o f)'
    by (simp add: isotone_def, safe, metis Pi_iff)
lemma (in weak_partial_order) inv_isotone [simp]:
    "isotone (inv_gorder A) (inv_gorder B) f = isotone A B f"
    by (auto simp add:isotone_def dual_weak_order dual_weak_order_iff)
```


2.1.6 Idempotent functions

```
definition idempotent ::
    "('a, 'b) gorder_scheme }=>('a m 'a) => bool" ("Idem\imath") where
    "idempotent L f 三 \forallx\incarrier L. f (f x) .=L f x"
```

lemma (in weak_partial_order) idempotent:
"【 Idem $f ; x \in$ carrier $L \rrbracket \Longrightarrow f(f x) .=f x "$
by (auto simp add: idempotent_def)

2.1.7 Order embeddings

definition order_emb :: " ('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool"
where
"order_emb A B f \equiv weak_partial_order A
\wedge weak_partial_order B
$\wedge\left(\forall \mathrm{x} \in\right.$ carrier $\mathrm{A} . \forall \mathrm{y} \in$ carrier A. $\mathrm{f} \mathrm{x} \sqsubseteq_{\mathrm{B}} \mathrm{f} \mathrm{y} \longleftrightarrow \mathrm{x} \sqsubseteq_{\mathrm{A}}$ y)"
lemma order_emb_isotone: "order_emb A B f \Longrightarrow isotone A B f"
by (auto simp add: isotone_def order_emb_def)

2.1.8 Commuting functions

definition commuting :: " ('a, 'c) gorder_scheme \Rightarrow ('a \Rightarrow 'a) \Rightarrow ('a \Rightarrow 'a) \Rightarrow bool" where
"commuting A $f \mathrm{~g}=\left(\forall \mathrm{x} \in \mathrm{carrier} \mathrm{A} .(\mathrm{f} \circ \mathrm{g}) \mathrm{x} .=_{\mathrm{A}}(\mathrm{g} \circ \mathrm{f}) \mathrm{x}\right)$ "

2.2 Partial orders where eq is the Equality

locale partial_order = weak_partial_order +
assumes eq_is_equal: "op .= = op ="
begin

```
declare weak_le_antisym [rule del]
lemma le_antisym [intro]:
    "[| x \sqsubseteq y; y \sqsubseteq x; x \in carrier L; y \in carrier L l] ==> x = y"
    using weak_le_antisym unfolding eq_is_equal .
lemma lless_eq:
    "x \sqsubset y \longleftrightarrow x \sqsubseteq y & x f y"
    unfolding lless_def by (simp add: eq_is_equal)
lemma set_eq_is_eq: "A {.=} B \longleftrightarrow A = B"
    by (auto simp add: set_eq_def elem_def eq_is_equal)
end
lemma (in partial_order) dual_order:
    "partial_order (inv_gorder L)"
proof -
    interpret dwo: weak_partial_order "inv_gorder L"
        by (metis dual_weak_order)
    show ?thesis
        by (unfold_locales, simp add:eq_is_equal)
qed
lemma dual_order_iff:
    "partial_order (inv_gorder A) \longleftrightarrow partial_order A"
proof
    assume assm:"partial_order (inv_gorder A)"
    then interpret po: partial_order "inv_gorder A"
    rewrites "carrier (inv_gorder A) = carrier A"
    and "le (inv_gorder A) = ( }\lambda\mathrm{ x y. le A y x)"
    and "eq (inv_gorder A) = eq A"
        by (simp_all)
    show "partial_order A"
        apply (unfold_locales, simp_all)
        apply (metis po.sym, metis po.trans)
        apply (metis po.weak_le_antisym, metis po.le_trans)
        apply (metis (full_types) po.eq_is_equal, metis po.eq_is_equal)
    done
next
    assume "partial_order A"
    thus "partial_order (inv_gorder A)"
        by (metis partial_order.dual_order)
qed
Least and greatest, as predicate
lemma (in partial_order) least_unique:
    "[| least L x A; least L y A |] ==> x = y"
```

using weak_least_unique unfolding eq_is_equal .
lemma (in partial_order) greatest_unique:
"[l greatest L x A; greatest L y A |] ==> x = y"
using weak_greatest_unique unfolding eq_is_equal .

2.3 Bounded Orders

definition

top : : "_ => 'a" ("Т थ") where
$" T_{L}=($ SOME x. greatest L x (carrier L))"

definition

```
    bottom :: "_ => 'a" ("\perp\imath") where
    " }\mp@subsup{\perp}{\textrm{L}}{}=(SOME x. least L x (carrier L))"
```

locale weak_partial_order_bottom = weak_partial_order L for L (structure)
$+$
assumes bottom_exists: " \exists x. least L x (carrier L)"
begin
lemma bottom_least: "least L \perp (carrier L)"
proof -
obtain x where "least L x (carrier L)"
by (metis bottom_exists)
thus ?thesis
by (auto intro:someI2 simp add: bottom_def)
qed
lemma bottom_closed [simp, intro]:
" $\perp \in$ carrier L"
by (metis bottom_least least_mem)
lemma bottom_lower [simp, intro]:
"x \in carrier $L \Longrightarrow \perp \sqsubseteq$ x"
by (metis bottom_least least_le)
end
locale weak_partial_order_top = weak_partial_order L for L (structure)
$+$
assumes top_exists: " \exists x. greatest L x (carrier L)"
begin
lemma top_greatest: "greatest L T (carrier L)"
proof -
obtain x where "greatest L x (carrier L)"
by (metis top_exists)

```
    thus ?thesis
    by (auto intro:someI2 simp add: top_def)
qed
lemma top_closed [simp, intro]:
    "T G carrier L"
    by (metis greatest_mem top_greatest)
lemma top_higher [simp, intro]:
    "x \in carrier L \Longrightarrow x \sqsubseteq 丁"
    by (metis greatest_le top_greatest)
end
```


2.4 Total Orders

```
locale weak_total_order = weak_partial_order +
    assumes total: "\llbracketx c carrier L; y \in carrier L \rrbracket \Longrightarrow x \sqsubseteq y V y \sqsubseteq x"
```

Introduction rule: the usual definition of total order

```
lemma (in weak_partial_order) weak_total_orderI:
    assumes total: "!!x y. \llbracketx \in carrier L; y \in carrier L \rrbracket \Longrightarrow x \sqsubseteq y V
y \sqsubseteq x"
    shows "weak_total_order L"
    by unfold_locales (rule total)
```


2.5 Total orders where eq is the Equality

locale total_order = partial_order +
assumes total_order_total: "【x \in carrier L; $y \in \operatorname{carrier~} L \rrbracket \Longrightarrow x$ $\sqsubseteq \mathrm{y} \vee \mathrm{y} \sqsubseteq \mathrm{x} "$
sublocale total_order < weak?: weak_total_order by unfold_locales (rule total_order_total)

Introduction rule: the usual definition of total order

```
lemma (in partial_order) total_orderI:
    assumes total: "!!x y. \llbracketx < carrier L; y \in carrier L \rrbracket\Longrightarrow x \sqsubseteq y \vee
y \sqsubseteq x"
    shows "total_order L"
    by unfold_locales (rule total)
```

end
theory Lattice
imports Order
begin

3 Lattices

3．1 Supremum and infimum

definition

sup ：：＂［＿，＇a set］＝＞＇a＂（＂ L^{2}＿＂［90］90）
where $" \bigsqcup_{\mathrm{L}} \mathrm{A}=($ SOME x ．least L x（Upper L A））＂

definition

inf ：：＂［＿，＇a set］＝＞＇a＂（＂П 乙＿＂［90］90）
where $" П_{\mathrm{L}} \mathrm{A}=($ SOME x ．greatest L x（Lower L A））＂
definition supr ：：
＂（＇a，＇b）gorder＿scheme \Rightarrow＇c set \Rightarrow（＇c \Rightarrow＇a）\Rightarrow＇a＂
where＂supr LAf＝$\bigsqcup_{L}(f$＇A）＂
definition infi ：：
＂（＇a，＇b）gorder＿scheme \Rightarrow＇c set $\Rightarrow\left({ }^{\prime} c \Rightarrow\right.$＇a）$\Rightarrow$＇a＂
where＂infi LAf $=\Pi_{L}(f$＇A）＂

syntax

```
    "_inf1" :: "('a, 'b) gorder_scheme \(\Rightarrow\) pttrns \(\Rightarrow\) 'a \(\Rightarrow\) 'a" ("(3IINF 2
_./ _)" [0, 10] 10)
    "_inf" :: "('a, 'b) gorder_scheme \(\Rightarrow\) pttrn \(\Rightarrow\) 'c set \(\Rightarrow\) 'a \(\Rightarrow\) 'a"
("(3IINF々 _:_./ _)" [0, 0, 10] 10)
    "_sup1" : : "(’a, 'b) gorder_scheme \(\Rightarrow\) pttrns \(\Rightarrow\) 'a \(\Rightarrow\) 'a" ("(3SSUP 2
_./ _)" [0, 10] 10)
    "_sup" \(\quad::\) "('a, 'b) gorder_scheme \(\Rightarrow\) pttrn \(\Rightarrow\) 'c set \(\Rightarrow\) 'a \(\Rightarrow\) 'a"
("(3SSUPr _:_./ _)" [0, 0, 10] 10)
```


translations

```
    "IINF
    "IINFL x:A. B" == "CONST infi L A (%x. B)"
    "SSUPL x. B" == "CONST supr L CONST UNIV (%x. B)"
    "SSUPL x:A. B" == "CONST supr L A (%x. B)"
```

definition
join :: "[_, 'a, 'a] => 'a" (infixl "ப々" 65)
where "x $\sqcup_{L} y=\bigsqcup_{L}\{x, y\}$ "

definition

 meet :: "[_, 'a, 'a] => 'a" (infixl "Пఒ" 70)
 where "x \(\Pi_{\mathrm{L}} \mathrm{y}=\Pi_{\mathrm{L}}\{\mathrm{x}, \mathrm{y}\}\) "

definition

LEAST＿FP ：：＂（＇a，＇b）gorder＿scheme \Rightarrow（＇a \Rightarrow＇a）\Rightarrow＇a＂（＂LFP 2 ＂）where
＂LEAST＿FP L $f=\prod_{\mathrm{L}}\left\{\mathrm{u} \in\right.$ carrier $\left.\mathrm{L} . \mathrm{f} u \sqsubseteq_{\mathrm{L}} \mathrm{u}\right\}$＂－least fixed point

definition

GREATEST_FP:: "('a, 'b) gorder_scheme $\Rightarrow(\prime \mathrm{a} \Rightarrow$ 'a) \Rightarrow 'a" ("GFP \imath ") where
"GREATEST_FP L f = $\bigsqcup_{L}\left\{u \in\right.$ carrier L. $\left.u \sqsubseteq_{L} f u\right\} " \quad$ greatest fixed point

3.2 Dual operators

```
lemma sup_dual [simp]:
    "\inv_gorder LA = П LA"
    by (simp add: sup_def inf_def)
lemma inf_dual [simp]:
    "П}\mp@subsup{\}{\mathrm{ inv_gorder L }}{\mathrm{ A }}=\mp@subsup{\}{L}{LA
    by (simp add: sup_def inf_def)
lemma join_dual [simp]:
    "p \sqcupinv_gorder L q = p }\mp@subsup{\Pi}{L}{}q
    by (simp add:join_def meet_def)
lemma meet_dual [simp]:
    "p חinv_gorder L q = p \sqcup
    by (simp add:join_def meet_def)
lemma top_dual [simp]:
    "T}\mp@subsup{T}{\mathrm{ inv_gorder L = }}{L
    by (simp add: top_def bottom_def)
lemma bottom_dual [simp]:
    " }\mp@subsup{\perp}{\mathrm{ inv_gorder L }}{l}=\mp@subsup{T}{L}{}
    by (simp add: top_def bottom_def)
lemma LFP_dual [simp]:
    "LEAST_FP (inv_gorder L) f = GREATEST_FP L f"
    by (simp add:LEAST_FP_def GREATEST_FP_def)
lemma GFP_dual [simp]:
    "GREATEST_FP (inv_gorder L) f = LEAST_FP L f"
    by (simp add:LEAST_FP_def GREATEST_FP_def)
```


3.3 Lattices

locale weak_upper_semilattice = weak_partial_order +
assumes sup_of_two_exists:
" $[\mid \mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in$ carrier $\mathrm{L} \mid]==>$ EX s . least $L \mathrm{~s}$ (Upper L \{x, y\})"
locale weak_lower_semilattice = weak_partial_order +
assumes inf_of_two_exists:
" [| x \in carrier L; $y \in$ carrier L $\mid]==>$ EX s. greatest L s (Lower
L \{x, y\})"

```
locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice
lemma (in weak_lattice) dual_weak_lattice:
    "weak_lattice (inv_gorder L)"
proof -
    interpret dual: weak_partial_order "inv_gorder L"
            by (metis dual_weak_order)
    show ?thesis
            apply (unfold_locales)
            apply (simp_all add: inf_of_two_exists sup_of_two_exists)
    done
qed
```


3.3.1 Supremum

lemma (in weak_upper_semilattice) joinI:
" [| !!l. least L l (Upper L $\{x, y\}$) ==> P l; $x \in$ carrier L; y \in carrier
L |]
==> P (x ப y)"
proof (unfold join_def sup_def)
assume L: "x \in carrier $L " \quad$ " $y \in$ carrier $L "$
and P: "!!l. least L 1 (Upper L $\{x, y\}$) ==> P l"
with sup_of_two_exists obtain s where "least L s (Upper L \{x, y\})"
by fast
with L show "P (SOME l. least L 1 (Upper L \{x, y\}))"
by (fast intro: someI2 P)
qed
lemma (in weak_upper_semilattice) join_closed [simp]:
" [| x \in carrier L; y \in carrier L l] ==> x $\sqcup \mathrm{y} \in$ carrier L"
by (rule joinI) (rule least_closed)
lemma (in weak_upper_semilattice) join_cong_l:
assumes carr: "x \in carrier L" "x' \in carrier L" "y \in carrier L"
and xx ': " $\mathrm{x} .=\mathrm{x}$ ""
shows "x $\sqcup \mathrm{y} .=\mathrm{x}$ ’ $\sqcup \mathrm{y}$ "
proof (rule joinI, rule joinI)
fix a b
from xx ' carr have seq: "\{x, y\} \{.=\} \{x', y\}" by (rule set_eq_pairI)
assume leasta: "least L a (Upper L \{x, y\})"
assume "least L b (Upper L \{x', y\})"
with carr
have leastb: "least L b (Upper L \{x, y\})"
by (simp add: least_Upper_cong_r[0F _ _ seq])

```
    from leasta leastb
        show "a .= b" by (rule weak_least_unique)
qed (rule carr)+
lemma (in weak_upper_semilattice) join_cong_r:
    assumes carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
        and yy': "y .= y'"
    shows "x \sqcup y .= x \sqcup y'"
proof (rule joinI, rule joinI)
    fix a b
    have "{x, y} = {y, x}" by fast
    also from carr yy'
        have "{y, x} {.=} {y', x}" by (intro set_eq_pairI)
    also have "{y', x} = {x, y'}" by fast
    finally
        have seq: "{x, y} {.=} {x, y'}" .
    assume leasta: "least L a (Upper L {x, y})"
    assume "least L b (Upper L {x, y'})"
    with carr
        have leastb: "least L b (Upper L {x, y})"
        by (simp add: least_Upper_cong_r[OF _ _ seq])
    from leasta leastb
        show "a .= b" by (rule weak_least_unique)
qed (rule carr)+
lemma (in weak_partial_order) sup_of_singletonI:
    "x \in carrier L ==> least L x (Upper L {x})"
    by (rule least_UpperI) auto
lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
    "x \in carrier L ==> \{x} .= x"
    unfolding sup_def
    by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)
lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
    "x carrier L \Longrightarrow \{x} \in carrier L"
    unfolding sup_def
    by (rule someI2) (auto intro: sup_of_singletonI)
Condition on A: supremum exists.
```

```
lemma (in weak_upper_semilattice) sup_insertI:
```

lemma (in weak_upper_semilattice) sup_insertI:
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
least L a (Upper L A); x G carrier L; A \subseteq carrier L |]
least L a (Upper L A); x G carrier L; A \subseteq carrier L |]
==> P (\(insert x A))"
==> P (\(insert x A))"
proof (unfold sup_def)
proof (unfold sup_def)
assume L: "x \in carrier L" "A \subseteq carrier L"
assume L: "x \in carrier L" "A \subseteq carrier L"
and P: "!!l. least L l (Upper L (insert x A)) ==> P l"

```
        and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
```

```
    and least_a: "least L a (Upper L A)"
    from L least_a have La: "a \in carrier L" by simp
    from L sup_of_two_exists least_a
    obtain s where least_s: "least L s (Upper L {a, x})" by blast
    show "P (SOME l. least L l (Upper L (insert x A)))"
    proof (rule someI2)
        show "least L s (Upper L (insert x A))"
        proof (rule least_UpperI)
            fix z
            assume "z \in insert x A"
            then show "z\sqsubseteqs"
            proof
                assume "z = x" then show ?thesis
                    by (simp add: least_Upper_above [OF least_s] L La)
        next
            assume "z \in A"
            with L least_s least_a show ?thesis
                by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)
        qed
    next
        fix y
        assume y: "y \in Upper L (insert x A)"
        show "s\sqsubseteq y"
        proof (rule least_le [OF least_s], rule Upper_memI)
            fix z
            assume z: "z \in {a, x}"
            then show "z\sqsubseteqy"
            proof
                have y': "y \in Upper L A"
                            apply (rule subsetD [where A = "Upper L (insert x A)"])
                        apply (rule Upper_antimono)
                        apply blast
                    apply (rule y)
                    done
                    assume "z = a"
                    with y' least_a show ?thesis by (fast dest: least_le)
            next
                assume "z \in {x}"
                with y L show ?thesis by blast
            qed
        qed (rule Upper_closed [THEN subsetD, OF y])
    next
        from L show "insert x A \subseteq carrier L" by simp
        from least_s show "s \in carrier L" by simp
        qed
    qed (rule P)
qed
lemma (in weak_upper_semilattice) finite_sup_least:
```

```
    "[| finite A; A \subseteq carrier L; A ~= {} |] ==> least L (\A) (Upper L A)"
proof (induct set: finite)
    case empty
    then show ?case by simp
next
    case (insert x A)
    show ?case
    proof (cases "A = {}")
        case True
        with insert show ?thesis
                by simp (simp add: least_cong [OF weak_sup_of_singleton] sup_of_singletonI)
    next
        case False
        with insert have "least L ( }\\mathrm{ A) (Upper L A)" by simp
        with _ show ?thesis
                by (rule sup_insertI) (simp_all add: insert [simplified])
    qed
qed
lemma (in weak_upper_semilattice) finite_sup_insertI:
    assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
        and xA: "finite A" "x \in carrier L" "A \subseteq carrier L"
    shows "P (\ (insert x A))"
proof (cases "A = {}")
    case True with P and xA show ?thesis
        by (simp add: finite_sup_least)
next
    case False with P and xA show ?thesis
        by (simp add: sup_insertI finite_sup_least)
qed
lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
    "[| finite A; A \subseteq carrier L; A ~= {} |] ==> \A G carrier L"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case insert then show ?case
        by - (rule finite_sup_insertI, simp_all)
qed
lemma (in weak_upper_semilattice) join_left:
    "[| x \in carrier L; y \in carrier L l] ==> x \sqsubseteq x \sqcup y"
    by (rule joinI [folded join_def]) (blast dest: least_mem)
lemma (in weak_upper_semilattice) join_right:
    "[| x \in carrier L; y \in carrier L l] ==> y \sqsubseteq x \sqcup y"
    by (rule joinI [folded join_def]) (blast dest: least_mem)
```

```
lemma (in weak_upper_semilattice) sup_of_two_least:
    "[| x \in carrier L; y \in carrier L |] ==> least L (\{x, y}) (Upper L
{x, y})"
proof (unfold sup_def)
    assume L: "x \in carrier L" "y \in carrier L"
    with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"
by fast
    with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L
{x, y})"
    by (fast intro: someI2 weak_least_unique)
qed
lemma (in weak_upper_semilattice) join_le:
    assumes sub: "x \sqsubseteq z" "y \sqsubseteq z"
        and x: "x \in carrier L" and y: "y \in carrier L" and z: "z \in carrier
L"
    shows "x \sqcup y \sqsubseteq z"
proof (rule joinI [OF _ x y])
    fix s
    assume "least L s (Upper L {x, y})"
    with sub z show "s \sqsubseteq z" by (fast elim: least_le intro: Upper_memI)
qed
lemma (in weak_lattice) weak_le_iff_meet:
    assumes "x \in carrier L" "y \in carrier L"
    shows "x }\sqsubseteqy\longleftrightarrow(x \sqcup y) .= y"
    by (meson assms(1) assms(2) join_closed join_le join_left join_right
le_cong_r local.le_refl weak_le_antisym)
lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "x \sqcup(y \sqcup z) .= \{x, y, z}"
proof (rule finite_sup_insertI)
    - The textbook argument in Jacobson I, p 457
    fix s
    assume sup: "least L s (Upper L {x, y, z})"
    show "x \sqcup(y \sqcup z) .= s"
    proof (rule weak_le_antisym)
        from sup L show "x \sqcup(y \sqcup z) \sqsubseteq s"
            by (fastforce intro!: join_le elim: least_Upper_above)
    next
        from sup L show "s \sqsubseteq x \sqcup (y \sqcup z)"
        by (erule_tac least_le)
            (blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)
    qed (simp_all add: L least_closed [OF sup])
qed (simp_all add: L)
Commutativity holds for =
lemma join_comm:
```

```
    fixes L (structure)
    shows "x \sqcup y = y ப x"
    by (unfold join_def) (simp add: insert_commute)
lemma (in weak_upper_semilattice) weak_join_assoc:
    assumes L: "x \in carrier L" "y f carrier L" "z \in carrier L"
    shows "(x \sqcup y) \sqcup z .= x \sqcup(y \sqcup z)"
proof -
    have "(x \sqcup y) \sqcup z = z \sqcup (x \sqcup y)" by (simp only: join_comm)
    also from L have "... .= \{z, x, y}" by (simp add: weak_join_assoc_lemma)
    also from L have "... = \{x, y, z}" by (simp add: insert_commute)
    also from L have "... .= x \sqcup(y \sqcup z)" by (simp add: weak_join_assoc_lemma
[symmetric])
    finally show ?thesis by (simp add: L)
qed
```


3.3.2 Infimum

lemma (in weak_lower_semilattice) meetI:
" [l !!i. greatest L i (Lower L \{x, y\}) ==> P i;
$\mathrm{x} \in$ carrier $\mathrm{L} ; \mathrm{y} \in$ carrier $\mathrm{L} \|]$
=> P ($x \sqcap y$)"
proof (unfold meet_def inf_def)
assume L: "x \in carrier L" "y \in carrier L"
and P: "!!g. greatest L g (Lower L \{x, y\}) ==> P g"
with inf_of_two_exists obtain i where "greatest L i (Lower L \{x, y\})"
by fast
with L show "P (SOME g. greatest L g (Lower L \{x, y\}))"
by (fast intro: someI2 weak_greatest_unique P)
qed
lemma (in weak_lower_semilattice) meet_closed [simp]:
" [| x \in carrier L; y \in carrier L $\mid]=\Rightarrow x \sqcap y \in$ carrier L"
by (rule meetI) (rule greatest_closed)
lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x \in carrier $L "$ " x ' \in carrier $L " ~ " y \in c a r r i e r ~ L " ~$
and xx ': " $\mathrm{x} .=\mathrm{x}$ " "
shows "x $\sqcap \mathrm{y} .=\mathrm{x}$) $\sqcap \mathrm{y}$ "
proof (rule meetI, rule meetI)
fix a b
from xx ' carr
have seq: "\{x, y\} \{.=\} \{x', y\}" by (rule set_eq_pairI)
assume greatesta: "greatest L a (Lower L \{x, y\})"
assume "greatest L b (Lower L \{x', y\})"
with carr
have greatestb: "greatest L b (Lower L \{x, y\})"

```
by (simp add: greatest_Lower_cong_r[OF _ _ seq])
    from greatesta greatestb
        show "a .= b" by (rule weak_greatest_unique)
qed (rule carr)+
lemma (in weak_lower_semilattice) meet_cong_r:
    assumes carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
        and yy': "y .= y'"
    shows "x П y .= x П y'"
proof (rule meetI, rule meetI)
    fix a b
    have "{x, y} = {y, x}" by fast
    also from carr yy,
        have "{y, x} {.=} {y', x}" by (intro set_eq_pairI)
    also have "{y', x} = {x, y'}" by fast
    finally
        have seq: "{x, y} {.=} {x, y'}".
    assume greatesta: "greatest L a (Lower L {x, y})"
    assume "greatest L b (Lower L {x, y'})"
    with carr
        have greatestb: "greatest L b (Lower L {x, y})"
        by (simp add: greatest_Lower_cong_r[OF _ _ seq])
    from greatesta greatestb
        show "a .= b" by (rule weak_greatest_unique)
qed (rule carr)+
lemma (in weak_partial_order) inf_of_singletonI:
    "x \in carrier L ==> greatest L x (Lower L {x})"
    by (rule greatest_LowerI) auto
lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
    "x carrier L ==> }\{x} .= x"
    unfolding inf_def
    by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)
lemma (in weak_partial_order) inf_of_singleton_closed:
    "x \in carrier L ==> П{x} \in carrier L"
    unfolding inf_def
    by (rule someI2) (auto intro: inf_of_singletonI)
```

Condition on A : infimum exists.

```
lemma (in weak_lower_semilattice) inf_insertI:
    "[l !!i. greatest L i (Lower L (insert x A)) ==> P i;
    greatest L a (Lower L A); x G carrier L; A \subseteq carrier L |]
    ==> P (П(insert x A))"
proof (unfold inf_def)
```

```
    assume L: "x \in carrier L" "A \subseteq carrier L"
    and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
    and greatest_a: "greatest L a (Lower L A)"
    from L greatest_a have La: "a \in carrier L" by simp
    from L inf_of_two_exists greatest_a
    obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
    show "P (SOME g. greatest L g (Lower L (insert x A)))"
    proof (rule someI2)
        show "greatest L i (Lower L (insert x A))"
        proof (rule greatest_LowerI)
            fix z
            assume "z \in insert x A"
            then show "i \sqsubseteq z"
            proof
                assume "z = x" then show ?thesis
                            by (simp add: greatest_Lower_below [OF greatest_i] L La)
            next
                    assume "z \in A"
                with L greatest_i greatest_a show ?thesis
                by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)
            qed
        next
            fix y
            assume y: "y \in Lower L (insert x A)"
            show "y\sqsubseteq i"
            proof (rule greatest_le [OF greatest_i], rule Lower_memI)
                fix z
                    assume z: "z \in {a, x}"
                    then show "y\sqsubseteq z"
                    proof
                    have y': "y \in Lower L A"
                        apply (rule subsetD [where A = "Lower L (insert x A)"])
                        apply (rule Lower_antimono)
                        apply blast
                        apply (rule y)
                        done
                    assume "z = a"
                    with y' greatest_a show ?thesis by (fast dest: greatest_le)
                    next
                    assume "z \in{x}"
                    with y L show ?thesis by blast
                    qed
            qed (rule Lower_closed [THEN subsetD, OF y])
        next
            from L show "insert x A \subseteq carrier L" by simp
            from greatest_i show "i \in carrier L" by simp
        qed
    qed (rule P)
qed
```

```
lemma (in weak_lower_semilattice) finite_inf_greatest:
    "[| finite A; A \subseteq carrier L; A ~ = {} |] ==> greatest L (ПA) (Lower
L A)"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case (insert x A)
    show ?case
    proof (cases "A = {}")
        case True
        with insert show ?thesis
            by simp (simp add: greatest_cong [OF weak_inf_of_singleton]
                        inf_of_singleton_closed inf_of_singletonI)
    next
        case False
        from insert show ?thesis
        proof (rule_tac inf_insertI)
            from False insert show "greatest L (ПA) (Lower L A)" by simp
        qed simp_all
    qed
qed
lemma (in weak_lower_semilattice) finite_inf_insertI:
    assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
            and xA: "finite A" "x \in carrier L" "A \subseteq carrier L"
    shows "P ( }\\mathrm{ (insert x A))"
proof (cases "A = {}")
    case True with P and xA show ?thesis
            by (simp add: finite_inf_greatest)
next
    case False with P and xA show ?thesis
        by (simp add: inf_insertI finite_inf_greatest)
qed
lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
    "[| finite A; A \subseteq carrier L; A ~= {} |] ==> ПA G carrier L"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case insert then show ?case
        by (rule_tac finite_inf_insertI) (simp_all)
qed
lemma (in weak_lower_semilattice) meet_left:
    "[| x G carrier L; y \in carrier L |] ==> x П y \sqsubseteq x"
    by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
lemma (in weak_lower_semilattice) meet_right:
```

```
    "[| x \in carrier L; y \in carrier L |] ==> x П y \sqsubseteq y"
    by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
lemma (in weak_lower_semilattice) inf_of_two_greatest:
    "[| x \in carrier L; y \in carrier L |] ==>
    greatest L ( }\{x,y}) (Lower L {x, y})"
proof (unfold inf_def)
    assume L: "x \in carrier L" "y \in carrier L"
    with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})"
by fast
    with L
    show "greatest L (SOME z. greatest L z (Lower L {x, y})) (Lower L {x,
y})"
    by (fast intro: someI2 weak_greatest_unique)
qed
lemma (in weak_lower_semilattice) meet_le:
    assumes sub: "z \sqsubseteq x" "z\sqsubseteq y"
        and x: "x \in carrier L" and y: "y \in carrier L" and z: "z \in carrier
L"
    shows "z \sqsubseteq x П y"
proof (rule meetI [OF _ x y])
    fix i
    assume "greatest L i (Lower L {x, y})"
    with sub z show "z \sqsubseteq i" by (fast elim: greatest_le intro: Lower_memI)
qed
lemma (in weak_lattice) weak_le_iff_join:
    assumes "x \in carrier L" "y \in carrier L"
    shows "x \sqsubseteqy u x .= (x П y)"
    by (meson assms(1) assms(2) local.le_refl local.le_trans meet_closed
meet_le meet_left meet_right weak_le_antisym weak_refl)
lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "x \sqcap(y \sqcapz) .= П{x, y, z}"
proof (rule finite_inf_insertI)
```

The textbook argument in Jacobson I, p 457
fix i
assume inf: "greatest L i (Lower L \{x, y, z\})"
show "x $\sqcap(y \sqcap z) .=i "$
proof (rule weak_le_antisym)
from inf L show "i $\sqsubseteq x \sqcap(y \sqcap z) "$
by (fastforce intro!: meet_le elim: greatest_Lower_below)
next
from inf L show $" x \sqcap(y \sqcap z) \sqsubseteq i "$
by (erule_tac greatest_le)
(blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)

```
    qed (simp_all add: L greatest_closed [OF inf])
qed (simp_all add: L)
lemma meet_comm:
    fixes L (structure)
    shows "x П y = y П x"
    by (unfold meet_def) (simp add: insert_commute)
lemma (in weak_lower_semilattice) weak_meet_assoc:
    assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
    shows "(x П y) П z .= x П (y П z)"
proof -
    have "(x \sqcap y) }|\textrm{z = z \sqcap (x }\sqcap\textrm{y})" by (simp only: meet_comm
    also from L have "... .= \ {z, x, y}" by (simp add: weak_meet_assoc_lemma)
    also from L have "... = П {x, y, z}" by (simp add: insert_commute)
    also from L have "... .= x \sqcap (y П z)" by (simp add: weak_meet_assoc_lemma
[symmetric])
    finally show ?thesis by (simp add: L)
qed
Total orders are lattices.
sublocale weak_total_order \subseteq weak?: weak_lattice
proof
    fix x y
    assume L: "x \in carrier L" "y \in carrier L"
    show "EX s. least L s (Upper L {x, y})"
    proof -
        note total L
        moreover
        {
            assume "x \sqsubseteq y"
            with L have "least L y (Upper L {x, y})"
            by (rule_tac least_UpperI) auto
        }
        moreover
        {
            assume "y \sqsubseteq x"
            with L have "least L x (Upper L {x, y})"
                by (rule_tac least_UpperI) auto
        }
        ultimately show ?thesis by blast
    qed
next
    fix x y
    assume L: "x \in carrier L" "y \in carrier L"
    show "EX i. greatest L i (Lower L {x, y})"
    proof -
        note total L
```

```
    moreover
    {
        assume "y\sqsubseteq x"
        with L have "greatest L y (Lower L {x, y})"
        by (rule_tac greatest_LowerI) auto
    }
    moreover
    {
        assume "x \sqsubseteq y"
        with L have "greatest L x (Lower L {x, y})"
        by (rule_tac greatest_LowerI) auto
    }
    ultimately show ?thesis by blast
    qed
qed
```


3.4 Weak Bounded Lattices

locale weak_bounded_lattice = weak_lattice + weak_partial_order_bottom + weak_partial_order_top
begin
lemma bottom_meet: "x \in carrier $L \Longrightarrow \perp \sqcap \mathrm{x} .=\perp$ "
by (metis bottom_least least_def meet_closed meet_left weak_le_antisym)
lemma bottom_join: "x carrier $L \Longrightarrow \perp \sqcup \mathrm{x} .=\mathrm{x}$ "
by (metis bottom_least join_closed join_le join_right le_refl least_def weak_le_antisym)
lemma bottom_weak_eq:
" $\llbracket \mathrm{b} \in$ carrier $\mathrm{L} ; \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier~} \mathrm{L} \Longrightarrow \mathrm{b} \sqsubseteq \mathrm{x} \rrbracket \Longrightarrow \mathrm{b} .=\perp "$
by (metis bottom_closed bottom_lower weak_le_antisym)
lemma top_join: "x \in carrier $L \Longrightarrow \top \sqcup x$.= \rceil "
by (metis join_closed join_left top_closed top_higher weak_le_antisym)
lemma top_meet: "x \in carrier $L \Longrightarrow \top \sqcap x$. $=x "$
by (metis le_refl meet_closed meet_le meet_right top_closed top_higher weak_le_antisym)
lemma top_weak_eq: " $\llbracket \mathrm{t} \in$ carrier $\mathrm{L} ; ~ \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{L} \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{t}$
$\rrbracket \Longrightarrow \mathrm{t} .=\mathrm{\top}{ }^{\prime \prime}$
by (metis top_closed top_higher weak_le_antisym)
end
sublocale weak_bounded_lattice \subseteq weak_partial_order ..

```
3.5 Lattices where eq is the Equality
locale upper_semilattice = partial_order +
    assumes sup_of_two_exists:
        "[| x \in carrier L; y \in carrier L |] ==> EX s. least L s (Upper L {x,
y})"
sublocale upper_semilattice \subseteq weak?: weak_upper_semilattice
    by unfold_locales (rule sup_of_two_exists)
locale lower_semilattice = partial_order +
    assumes inf_of_two_exists:
        "[| x \in carrier L; y \in carrier L |] ==> EX s. greatest L s (Lower
L {x, y})"
sublocale lower_semilattice \subseteq weak?: weak_lower_semilattice
    by unfold_locales (rule inf_of_two_exists)
locale lattice = upper_semilattice + lower_semilattice
sublocale lattice \subseteq weak_lattice ..
lemma (in lattice) dual_lattice:
    "lattice (inv_gorder L)"
proof -
    interpret dual: weak_lattice "inv_gorder L"
        by (metis dual_weak_lattice)
    show ?thesis
        apply (unfold_locales)
        apply (simp_all add: inf_of_two_exists sup_of_two_exists)
        apply (simp add:eq_is_equal)
    done
qed
lemma (in lattice) le_iff_join:
    assumes "x \in carrier L" "y \in carrier L"
    shows "x\sqsubseteqy u x = (x П y)"
    by (simp add: assms(1) assms(2) eq_is_equal weak_le_iff_join)
lemma (in lattice) le_iff_meet:
    assumes "x \in carrier L" "y \in carrier L"
    shows "x }\sqsubseteqy\longleftrightarrow(x \sqcup y) = y"
    by (simp add: assms(1) assms(2) eq_is_equal weak_le_iff_meet)
```

Total orders are lattices.

```
sublocale total_order \subseteq weak?: lattice
    by standard (auto intro: weak.weak.sup_of_two_exists weak.weak.inf_of_two_exists)
```

Functions that preserve joins and meets
definition join_pres :: " ('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"join_pres $X Y f \equiv$ lattice $X \wedge$ lattice $Y \wedge(\forall \mathrm{x} \in$ carrier $X . \forall$ y \in carrier X. $f\left(x \sqcup_{X} y\right)=f x \sqcup_{Y} f(y) "$
definition meet_pres :: " ('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool" where
"meet_pres X Y f \equiv lattice $\mathrm{X} \wedge$ lattice $Y \wedge(\forall \mathrm{x} \in$ carrier $\mathrm{X} . \forall \mathrm{y} \in$ carrier $\left.X . f\left(x \nabla_{X} y\right)=f x \Pi_{Y} f y\right) "$
lemma join_pres_isotone:
assumes "f \in carrier $X \rightarrow$ carrier Y" "join_pres X Y f"
shows "isotone X Y f"
using assms
apply (rule_tac isotoneI)
apply (auto simp add: join_pres_def lattice.le_iff_meet funcset_carrier)
using lattice_def partial_order_def upper_semilattice_def apply blast
using lattice_def partial_order_def upper_semilattice_def apply blast
apply fastforce
done
lemma meet_pres_isotone:
assumes "f \in carrier $X \rightarrow$ carrier Y " "meet_pres X Y f"
shows "isotone X Y f"
using assms
apply (rule_tac isotoneI)
apply (auto simp add: meet_pres_def lattice.le_iff_join funcset_carrier)
using lattice_def partial_order_def upper_semilattice_def apply blast using lattice_def partial_order_def upper_semilattice_def apply blast apply fastforce
done

3.6 Bounded Lattices

```
locale bounded_lattice =
    lattice +
    weak_partial_order_bottom +
    weak_partial_order_top
```

sublocale bounded_lattice \subseteq weak_bounded_lattice ..
context bounded_lattice
begin
lemma bottom_eq:
"【 b \in carrier $L ; ~ \bigwedge x . x \in \operatorname{carrier~} L \Longrightarrow b \sqsubseteq x \rrbracket \Longrightarrow b=\perp "$
by (metis bottom_closed bottom_lower le_antisym)
lemma top_eq: $" \llbracket \mathrm{t} \in \operatorname{carrier} \mathrm{L} ; \bigwedge \mathrm{x} . \mathrm{x} \in \operatorname{carrier} \mathrm{L} \Longrightarrow \mathrm{x} \sqsubseteq \mathrm{t} \rrbracket \Longrightarrow$

```
t = Т''
    by (metis le_antisym top_closed top_higher)
end
```

end
theory Complete_Lattice
imports Lattice
begin

4 Complete Lattices

locale weak_complete_lattice = weak_partial_order +
assumes sup_exists:
"[| A \subseteq carrier $L \|]==>E X s$. least L s (Upper L A)" and inf_exists:

```
        "[| A \subseteq carrier L |] ==> EX i. greatest L i (Lower L A)"
```

sublocale weak_complete_lattice \subseteq weak_lattice
proof
fix x y
assume $a: ~ " x \in$ carrier $L "$ "y \in carrier $L "$
thus "ヨs. is_lub L s $\{x, y\} "$
by (rule_tac sup_exists[of "\{x, y\}"], auto)
from a show " $\exists \mathrm{s}$. is_glb L s $\{x, y\}$ "
by (rule_tac inf_exists[of "\{x, y\}"], auto)
qed
Introduction rule: the usual definition of complete lattice

```
lemma (in weak_partial_order) weak_complete_latticeI:
    assumes sup_exists:
        "!!A. [| A \subseteq carrier L |] ==> EX s. least L s (Upper L A)"
        and inf_exists:
        "!!A. [| A \subseteq carrier L |] ==> EX i. greatest L i (Lower L A)"
    shows "weak_complete_lattice L"
    by standard (auto intro: sup_exists inf_exists)
lemma (in weak_complete_lattice) dual_weak_complete_lattice:
    "weak_complete_lattice (inv_gorder L)"
proof -
    interpret dual: weak_lattice "inv_gorder L"
        by (metis dual_weak_lattice)
    show ?thesis
        apply (unfold_locales)
        apply (simp_all add:inf_exists sup_exists)
    done
```

qed
lemma (in weak_complete_lattice) supI:
" [| ! ! l. least L l (Upper L A) ==> P l; A \subseteq carrier L I]
==> P ($\downarrow \mathrm{A})$ "
proof (unfold sup_def)
assume L: "A \subseteq carrier L"
and P: "!!l. least L 1 (Upper L A) ==> P l"
with sup_exists obtain s where "least L s (Upper L A)" by blast
with L show "P (SOME l. least L l (Upper L A))"
by (fast intro: someI2 weak_least_unique P)
qed
lemma (in weak_complete_lattice) sup_closed [simp]:
"A \subseteq carrier $L==>$ A \in carrier $L "$
by (rule supI) simp_all
lemma (in weak_complete_lattice) sup_cong:
assumes "A \subseteq carrier $\mathrm{L} "$ " $\mathrm{B} \subseteq$ carrier L" "A $\{.=\}$ B"
shows " $\downarrow \mathrm{A} .=\bigsqcup \mathrm{B}$ "
proof -
have " $\bigwedge x$. is_lub L x A \longleftrightarrow is_lub L x B"
by (rule least_Upper_cong_r, simp_all add: assms)
moreover have " $\downarrow \mathrm{B} \in$ carrier L"
by (simp add: assms(2))
ultimately show ?thesis
by (simp add: sup_def)
qed
sublocale weak_complete_lattice \subseteq weak_bounded_lattice
apply (unfold_locales)
apply (metis Upper_empty empty_subsetI sup_exists)
apply (metis Lower_empty empty_subsetI inf_exists)
done
lemma (in weak_complete_lattice) infI:
" [| !!i. greatest L i (Lower L A) ==> P i; A \subseteq carrier L |]
==> P (ПA)"
proof (unfold inf_def)
assume L: "A \subseteq carrier L"
and P: "!!1. greatest L 1 (Lower L A) ==> P l"
with inf_exists obtain s where "greatest L s (Lower L A)" by blast
with L show "P (SOME 1. greatest L l (Lower L A))"
by (fast intro: someI2 weak_greatest_unique P)
qed
lemma (in weak_complete_lattice) inf_closed [simp]:
"A \subseteq carrier $\mathrm{L}==>{ }^{\prime} \in$ carrier L"
by (rule infI) simp_all

```
lemma (in weak_complete_lattice) inf_cong:
    assumes "A \subseteqcarrier L" "B \subseteq carrier L" "A {.=} B"
    shows "П A .= П B"
proof -
    have "\ x. is_glb L x A \longleftrightarrow is_glb L x B"
        by (rule greatest_Lower_cong_r, simp_all add: assms)
    moreover have "П B \in carrier L"
        by (simp add: assms(2))
    ultimately show ?thesis
        by (simp add: inf_def)
qed
theorem (in weak_partial_order) weak_complete_lattice_criterion1:
    assumes top_exists: "EX g. greatest L g (carrier L)"
        and inf_exists:
            "!!A. [| A \subseteq carrier L; A ~= {} |] ==> EX i. greatest L i (Lower
L A)"
    shows "weak_complete_lattice L"
proof (rule weak_complete_latticeI)
    from top_exists obtain top where top: "greatest L top (carrier L)"
    fix A
    assume L: "A \subseteq carrier L"
    let ?B = "Upper L A"
    from L top have "top \in ?B" by (fast intro!: Upper_memI intro: greatest_le)
    then have B_non_empty: "?B ~= {}" by fast
    have B_L: "?B \subseteq carrier L" by simp
    from inf_exists [OF B_L B_non_empty]
    obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
    have "least L b (Upper L A)"
apply (rule least_UpperI)
    apply (rule greatest_le [where A = "Lower L ?B"])
            apply (rule b_inf_B)
            apply (rule Lower_memI)
            apply (erule Upper_memD [THEN conjunct1])
            apply assumption
            apply (rule L)
            apply (fast intro: L [THEN subsetD])
    apply (erule greatest_Lower_below [OF b_inf_B])
    apply simp
    apply (rule L)
apply (rule greatest_closed [OF b_inf_B])
done
    then show "EX s. least L s (Upper L A)" ..
next
    fix A
    assume L: "A \subseteq carrier L"
    show "EX i. greatest L i (Lower L A)"
```

```
    proof (cases "A = {}")
        case True then show ?thesis
            by (simp add: top_exists)
    next
    case False with L show ?thesis
        by (rule inf_exists)
    qed
qed
```

Supremum

```
declare (in partial_order) weak_sup_of_singleton [simp del]
lemma (in partial_order) sup_of_singleton [simp]:
    "x \in carrier L ==> \{x} = x"
    using weak_sup_of_singleton unfolding eq_is_equal .
```

lemma (in upper_semilattice) join_assoc_lemma:
assumes L: "x \in carrier L" "y \in carrier L" " $z \in$ carrier L"
shows "x $\sqcup(y \sqcup z)=\bigsqcup\{x, y, z\} "$
using weak_join_assoc_lemma L unfolding eq_is_equal .
lemma (in upper_semilattice) join_assoc:
assumes L: "x \in carrier L" "y \in carrier L" " $\mathrm{z} \in$ carrier L"
shows " $(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z) "$
using weak_join_assoc L unfolding eq_is_equal .

Infimum

```
declare (in partial_order) weak_inf_of_singleton [simp del]
lemma (in partial_order) inf_of_singleton [simp]:
    "x \in carrier L ==> П{x} = x"
    using weak_inf_of_singleton unfolding eq_is_equal .
Condition on A : infimum exists.
```

```
lemma (in lower_semilattice) meet_assoc_lemma:
```

lemma (in lower_semilattice) meet_assoc_lemma:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "x П(y П z) = П{x, y, z}"
shows "x П(y П z) = П{x, y, z}"
using weak_meet_assoc_lemma L unfolding eq_is_equal .
using weak_meet_assoc_lemma L unfolding eq_is_equal .
lemma (in lower_semilattice) meet_assoc:
lemma (in lower_semilattice) meet_assoc:
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
assumes L: "x \in carrier L" "y \in carrier L" "z \in carrier L"
shows "(x П y) П z = x П (y П z)"
shows "(x П y) П z = x П (y П z)"
using weak_meet_assoc L unfolding eq_is_equal .

```
    using weak_meet_assoc L unfolding eq_is_equal .
```


4.1 Infimum Laws

context weak_complete_lattice begin

```
lemma inf_glb:
    assumes "A \subseteq carrier L"
    shows "greatest L (ПA) (Lower L A)"
proof -
    obtain i where "greatest L i (Lower L A)"
        by (metis assms inf_exists)
    thus ?thesis
        apply (simp add: inf_def)
        apply (rule someI2[of _ "i"])
        apply (auto)
    done
qed
lemma inf_lower:
    assumes "A \subseteq carrier L" "x \in A"
    shows "ПA\sqsubseteq x"
    by (metis assms greatest_Lower_below inf_glb)
lemma inf_greatest:
    assumes "A \subseteq carrier L" "z \in carrier L"
        "(\bigwedgex. x \in A \Longrightarrow z \sqsubseteqx)"
    shows "z\sqsubseteqПA"
    by (metis Lower_memI assms greatest_le inf_glb)
lemma weak_inf_empty [simp]: "П{} .= 丁"
    by (metis Lower_empty empty_subsetI inf_glb top_greatest weak_greatest_unique)
lemma weak_inf_carrier [simp]: "Пcarrier L .= \perp"
    by (metis bottom_weak_eq inf_closed inf_lower subset_refl)
lemma weak_inf_insert [simp]:
    "\llbracketa carrier L; A \subseteq carrier L \rrbracket \Longrightarrow Пinsert a A .= a П ПA"
    apply (rule weak_le_antisym)
    apply (force intro: meet_le inf_greatest inf_lower inf_closed)
    apply (rule inf_greatest)
    apply (force)
    apply (force intro: inf_closed)
    apply (auto)
    apply (metis inf_closed meet_left)
    apply (force intro: le_trans inf_closed meet_right meet_left inf_lower)
done
```


4.2 Supremum Laws

```
lemma sup_lub:
assumes "A \(\subseteq\) carrier L"
shows "least L ( \(\square\) A) (Upper L A)"
by (metis Upper_is_closed assms least_closed least_cong supI sup_closed
```

```
sup_exists weak_least_unique)
lemma sup_upper:
    assumes "A \subseteq carrier L" "x \in A"
    shows "x\sqsubseteq\bigsqcupA"
    by (metis assms least_Upper_above supI)
lemma sup_least:
    assumes "A \subseteq carrier L" "z \in carrier L"
            "(\x. x }\in\textrm{A}\Longrightarrow\textrm{x}\sqsubseteq\textrm{z})
    shows "\A \sqsubseteq z"
    by (metis Upper_memI assms least_le sup_lub)
lemma weak_sup_empty [simp]: "\{} .= \perp"
    by (metis Upper_empty bottom_least empty_subsetI sup_lub weak_least_unique)
lemma weak_sup_carrier [simp]: "\carrier L .= 丁"
    by (metis Lower_closed Lower_empty sup_closed sup_upper top_closed top_higher
weak_le_antisym)
lemma weak_sup_insert [simp]:
    "\llbracketa < carrier L; A \subseteq carrier L \ \Longrightarrow \insert a A .= a ப \A"
    apply (rule weak_le_antisym)
    apply (rule sup_least)
    apply (auto)
    apply (metis join_left sup_closed)
    apply (rule le_trans) defer
    apply (rule join_right)
    apply (auto)
    apply (rule join_le)
    apply (auto intro: sup_upper sup_least sup_closed)
done
end
```


4.3 Fixed points of a lattice

definition "fps $L f=\left\{x \in \operatorname{carrier} L . f x .={ }_{L} x\right\} "$
abbreviation "fpl L $f \equiv \mathrm{~L}($ carrier $:=\mathrm{fps} \mathrm{L} f)$ "
lemma (in weak_partial_order)
use_fps: "x \in fps L $f \Longrightarrow f x$.= \times
by (simp add: fps_def)
lemma fps_carrier [simp]:
"fps Lf \subseteq carrier L"
by (auto simp add: fps_def)

```
lemma (in weak_complete_lattice) fps_sup_image:
    assumes "f \in carrier L }->\mathrm{ carrier L" "A }\subseteqffps L f"
    shows "\ (f ' A) .= \ A"
proof -
    from assms(2) have AL: "A \subseteq carrier L"
            by (auto simp add: fps_def)
    show ?thesis
    proof (rule sup_cong, simp_all add: AL)
            from assms(1) AL show "f ' A \subseteq carrier L"
                by (auto)
            from assms(2) show "f ' A {.=} A"
                apply (auto simp add: fps_def)
                apply (rule set_eqI2)
                apply blast
                apply (rename_tac b)
                apply (rule_tac x="f b" in bexI)
                apply (metis (mono_tags, lifting) Ball_Collect assms(1) Pi_iff local.sym)
                apply (auto)
            done
    qed
qed
lemma (in weak_complete_lattice) fps_idem:
    "\llbracketf c carrier L }->\mathrm{ carrier L; Idem f \ # fps L f {.=} f ' carrier
L"
    apply (rule set_eqI2)
    apply (auto simp add: idempotent_def fps_def)
    apply (metis Pi_iff local.sym)
    apply force
done
context weak_complete_lattice
begin
lemma weak_sup_pre_fixed_point:
    assumes "f \in carrier L }->\mathrm{ carrier L" "isotone L L f" "A }\subseteqffps L f"
    shows "(\
proof (rule sup_least)
    from assms(3) show AL: "A \subseteq carrier L"
        by (auto simp add: fps_def)
    thus fA: "f (\A) \in carrier L"
            by (simp add: assms funcset_carrier[of f L L])
    fix x
    assume xA: "x \in A"
    hence "x \in fps L f"
            using assms subsetCE by blast
    hence "f x .= L x"
        by (auto simp add: fps_def)
```

```
    moreover have "f x \sqsubseteq
    by (meson AL assms(2) subsetCE sup_closed sup_upper use_iso1 xA)
    ultimately show "x \sqsubseteq
        by (meson AL fA assms(1) funcset_carrier le_cong local.refl subsetCE
xA)
qed
lemma weak_sup_post_fixed_point:
    assumes "f \in carrier L }->\mathrm{ carrier L" "isotone L L f" "A }\subseteqffps L f"
```



```
proof (rule inf_greatest)
    from assms(3) show AL: "A \subseteq carrier L"
            by (auto simp add: fps_def)
    thus fA: "f (ПA) \in carrier L"
        by (simp add: assms funcset_carrier[of f L L])
    fix x
    assume xA: "x \in A"
    hence "x \in fps L f"
        using assms subsetCE by blast
    hence "f x . = L x"
        by (auto simp add: fps_def)
    moreover have "f (㵦A) \sqsubseteqL f x"
        by (meson AL assms(2) inf_closed inf_lower subsetCE use_iso1 xA)
    ultimately show "f (泣A) \sqsubseteq
        by (meson AL assms(1) fA funcset_carrier le_cong_r subsetCE xA)
qed
```


4.3.1 Least fixed points

```
lemma LFP_closed [intro, simp]:
    "LFP f G carrier L"
    by (metis (lifting) LEAST_FP_def inf_closed mem_Collect_eq subsetI)
lemma LFP_lowerbound:
    assumes "x \in carrier L" "f x \sqsubseteq x"
    shows "LFP f \sqsubseteq x"
    by (auto intro:inf_lower assms simp add:LEAST_FP_def)
lemma LFP_greatest:
    assumes "x \in carrier L"
                "(\u. \llbracketu G carrier L; f u\sqsubsetequ\rrbracket \ x \sqsubseteq u)"
    shows "x \sqsubseteq LFP f"
    by (auto simp add:LEAST_FP_def intro:inf_greatest assms)
lemma LFP_lemma2:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "f (LFP f) \sqsubseteq LFP f"
    using assms
    apply (auto simp add:Pi_def)
```

```
    apply (rule LFP_greatest)
    apply (metis LFP_closed)
    apply (metis LFP_closed LFP_lowerbound le_trans use_iso1)
done
lemma LFP_lemma3:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "LFP f \sqsubseteqf (LFP f)"
    using assms
    apply (auto simp add:Pi_def)
    apply (metis LFP_closed LFP_lemma2 LFP_lowerbound assms(2) use_iso2)
done
lemma LFP_weak_unfold:
    "【Mono f; f \in carrier L }->\mathrm{ carrier L \ C LFP f .= f (LFP f)"
    by (auto intro: LFP_lemma2 LFP_lemma3 funcset_mem)
lemma LFP_fixed_point [intro]:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "LFP f \in fps L f"
proof -
    have "f (LFP f) G carrier L"
        using assms(2) by blast
    with assms show ?thesis
        by (simp add: LFP_weak_unfold fps_def local.sym)
qed
lemma LFP_least_fixed_point:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L" "x f fps L f"
    shows "LFP f \sqsubseteq x"
    using assms by (force intro: LFP_lowerbound simp add: fps_def)
lemma LFP_idem:
    assumes "f \in carrier L }->\mathrm{ carrier L" "Mono f" "Idem f"
    shows "LFP f .= (f &)"
proof (rule weak_le_antisym)
    from assms(1) show fb: "f }\perp\in\in\mathrm{ carrier L"
        by (rule funcset_mem, simp)
    from assms show mf: "LFP f \in carrier L"
        by blast
    show "LFP f \sqsubseteq f &"
    proof -
        have "f (f &) .= f \perp"
            by (auto simp add: fps_def fb assms(3) idempotent)
            moreover have "f (f &) \in carrier L"
            by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
            ultimately show ?thesis
            by (auto intro: LFP_lowerbound simp add: fb)
    qed
```

```
    show "f \perp\sqsubseteq LFP f"
    proof -
        have "f \perp\sqsubseteqf(LFP f)"
        by (auto intro: use_iso1[of _ f] simp add: assms)
    moreover have "... .= LFP f"
        using assms(1) assms(2) fps_def by force
    moreover from assms(1) have "f (LFP f) \in carrier L"
        by (auto)
    ultimately show ?thesis
        using fb by blast
    qed
qed
```


4.3.2 Greatest fixed points

```
lemma GFP_closed [intro, simp]:
    "GFP f \in carrier L"
    by (auto intro:sup_closed simp add:GREATEST_FP_def)
lemma GFP_upperbound:
    assumes "x \in carrier L" "x \sqsubseteq f x"
    shows "x \sqsubseteq GFP f"
    by (auto intro:sup_upper assms simp add:GREATEST_FP_def)
lemma GFP_least:
    assumes "x \in carrier L"
            "(\bigwedgeu.\llbracketu u carrier L; u \sqsubseteq f u\rrbracket\Longrightarrow | u ¢ )"
    shows "GFP f \sqsubseteqx"
    by (auto simp add:GREATEST_FP_def intro:sup_least assms)
lemma GFP_lemma2:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "GFP f \sqsubseteqf(GFP f)"
    using assms
    apply (auto simp add:Pi_def)
    apply (rule GFP_least)
    apply (metis GFP_closed)
    apply (metis GFP_closed GFP_upperbound le_trans use_iso2)
done
lemma GFP_lemma3:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "f (GFP f) \sqsubseteqGFP f"
    by (metis GFP_closed GFP_lemma2 GFP_upperbound assms funcset_mem use_iso2)
lemma GFP_weak_unfold:
    "\llbracket Mono f; f \in carrier L }->\mathrm{ carrier L | \ GFP f .= f (GFP f)"
    by (auto intro: GFP_lemma2 GFP_lemma3 funcset_mem)
```

```
lemma (in weak_complete_lattice) GFP_fixed_point [intro]:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L"
    shows "GFP f \in fps L f"
    using assms
proof -
    have "f (GFP f) \in carrier L"
        using assms(2) by blast
    with assms show ?thesis
        by (simp add: GFP_weak_unfold fps_def local.sym)
qed
lemma GFP_greatest_fixed_point:
    assumes "Mono f" "f \in carrier L }->\mathrm{ carrier L" "x f fps L f"
    shows "x \sqsubseteqGFP f"
    using assms
    by (rule_tac GFP_upperbound, auto simp add: fps_def, meson PiE local.sym
weak_refl)
lemma GFP_idem:
    assumes "f \in carrier L }->\mathrm{ carrier L" "Mono f" "Idem f"
    shows "GFP f .= (f T)"
proof (rule weak_le_antisym)
    from assms(1) show fb: "f T \in carrier L"
        by (rule funcset_mem, simp)
    from assms show mf: "GFP f \in carrier L"
        by blast
    show "f † \sqsubseteqGFP f"
    proof -
        have "f (f T) .= f T"
            by (auto simp add: fps_def fb assms(3) idempotent)
        moreover have "f (f T) \in carrier L"
                by (rule funcset_mem[of f "carrier L"], simp_all add: assms fb)
            ultimately show ?thesis
                by (rule_tac GFP_upperbound, simp_all add: fb local.sym)
    qed
    show "GFP f \sqsubseteq f 丁"
    proof -
        have "GFP f \sqsubseteq f (GFP f)"
            by (simp add: GFP_lemma2 assms(1) assms(2))
            moreover have "... \sqsubseteq f 丁"
                by (auto intro: use_iso1[of _ f] simp add: assms)
        moreover from assms(1) have "f (GFP f) \in carrier L"
                by (auto)
        ultimately show ?thesis
            using fb local.le_trans by blast
    qed
qed
end
```


4.4 Complete lattices where eq is the Equality

```
locale complete_lattice = partial_order +
    assumes sup_exists:
        "[| A \subseteq carrier L |] ==> EX s. least L s (Upper L A)"
        and inf_exists:
        "[| A \subseteq carrier L |] ==> EX i. greatest L i (Lower L A)"
sublocale complete_lattice \subseteq lattice
proof
    fix x y
    assume a: "x \in carrier L" "y \in carrier L"
    thus "\existss. is_lub L s {x, y}"
        by (rule_tac sup_exists[of "{x, y}"], auto)
    from a show "\existss. is_glb L s {x, y}"
        by (rule_tac inf_exists[of "{x, y}"], auto)
qed
sublocale complete_lattice \subseteq weak?: weak_complete_lattice
    by standard (auto intro: sup_exists inf_exists)
lemma complete_lattice_lattice [simp]:
    assumes "complete_lattice X"
    shows "lattice X"
proof -
    interpret c: complete_lattice X
        by (simp add: assms)
    show ?thesis
        by (unfold_locales)
qed
```

Introduction rule: the usual definition of complete lattice

```
lemma (in partial_order) complete_latticeI:
    assumes sup_exists:
        "!!A. [| A \subseteq carrier L |] ==> EX s. least L s (Upper L A)"
        and inf_exists:
        "!!A. [| A \subseteq carrier L |] ==> EX i. greatest L i (Lower L A)"
    shows "complete_lattice L"
    by standard (auto intro: sup_exists inf_exists)
theorem (in partial_order) complete_lattice_criterion1:
    assumes top_exists: "EX g. greatest L g (carrier L)"
        and inf_exists:
            "!!A. [| A \subseteq carrier L; A ~ = {} |] ==> EX i. greatest L i (Lower
L A)"
    shows "complete_lattice L"
proof (rule complete_latticeI)
    from top_exists obtain top where top: "greatest L top (carrier L)"
    fix A
```

```
    assume L: "A \subseteq carrier L"
    let ?B = "Upper L A"
    from L top have "top \in ?B" by (fast intro!: Upper_memI intro: greatest_le)
    then have B_non_empty: "?B ~= {}" by fast
    have B_L: "?B \subseteq carrier L" by simp
    from inf_exists [OF B_L B_non_empty]
    obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
    have "least L b (Upper L A)"
apply (rule least_UpperI)
    apply (rule greatest_le [where A = "Lower L ?B"])
            apply (rule b_inf_B)
            apply (rule Lower_memI)
            apply (erule Upper_memD [THEN conjunct1])
            apply assumption
            apply (rule L)
            apply (fast intro: L [THEN subsetD])
    apply (erule greatest_Lower_below [OF b_inf_B])
    apply simp
    apply (rule L)
apply (rule greatest_closed [OF b_inf_B])
done
    then show "EX s. least L s (Upper L A)" ..
next
    fix A
    assume L: "A \subseteq carrier L"
    show "EX i. greatest L i (Lower L A)"
    proof (cases "A = {}")
            case True then show ?thesis
                by (simp add: top_exists)
    next
            case False with L show ?thesis
                by (rule inf_exists)
    qed
qed
```


4.5 Fixed points

```
context complete_lattice
begin
lemma LFP_unfold:
"【 Monof; f \(\in\) carrier \(L \rightarrow\) carrier L \(\rrbracket \Longrightarrow\) LFP \(f=f(L F P f) "\)
using eq_is_equal weak.LFP_weak_unfold by auto
lemma LFP_const:
"t \(\in\) carrier \(L \Longrightarrow\) LFP ( \(\lambda \mathrm{x} . \mathrm{t}\) ) = t"
by (simp add: local.le_antisym weak.LFP_greatest weak.LFP_lowerbound)
lemma LFP_id:
```

```
    "LFP id = \perp"
    by (simp add: local.le_antisym weak.LFP_lowerbound)
lemma GFP_unfold:
    "\llbracketMono f; f \in carrier L }->\mathrm{ carrier L \ C GFP f = f (GFP f)"
    using eq_is_equal weak.GFP_weak_unfold by auto
lemma GFP_const:
    "t \in carrier L \Longrightarrow GFP ( }\lambda\textrm{x}.\textrm{t})=\textrm{t}
    by (simp add: local.le_antisym weak.GFP_least weak.GFP_upperbound)
lemma GFP_id:
    "GFP id = T"
    using weak.GFP_upperbound by auto
end
```


4.6 Interval complete lattices

```
context weak_complete_lattice
begin
lemma at_least_at_most_Sup:
"【a \(\in\) carrier \(L ; b \in\) carrier \(L ; a \sqsubseteq b \rrbracket \Longrightarrow \bigsqcup\{a . . b\} .=b "\)
apply (rule weak_le_antisym)
apply (rule sup_least)
apply (auto simp add: at_least_at_most_closed)
apply (rule sup_upper)
apply (auto simp add: at_least_at_most_closed)
done
lemma at_least_at_most_Inf:
\(" \llbracket \mathrm{a} \in\) carrier \(\mathrm{L} ; \mathrm{b} \in\) carrier \(\mathrm{L} ; \mathrm{a} \sqsubseteq \mathrm{b} \rrbracket \Longrightarrow \Pi\) aa..b\} .= \(\mathrm{a} "\)
apply (rule weak_le_antisym)
apply (rule inf_lower)
apply (auto simp add: at_least_at_most_closed)
apply (rule inf_greatest)
apply (auto simp add: at_least_at_most_closed)
done
end
lemma weak_complete_lattice_interval:
assumes "weak_complete_lattice L" "a \(\in\) carrier L" "b \(\in\) carrier L" "a \(\sqsubseteq_{\mathrm{L}} \mathrm{b}{ }^{\prime \prime}\)
shows "weak_complete_lattice (L ( carrier := \{a..b\} \(\}_{\text {L }}\) ))"
proof -
interpret L: weak_complete_lattice L
by (simp add: assms)
```

```
    interpret weak_partial_order "L ( carrier := {a..b}_ ) "
    proof -
    have "{a..b} L \subseteq carrier L"
        by (auto, simp add: at_least_at_most_def)
    thus "weak_partial_order (L(carrier := {a..b|} |))"
        by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
    qed
    show ?thesis
    proof
        fix A
    assume a: "A \subseteq carrier (L(carrier := {a..b} LD)"
    show "\existss. is_lub (L(|carrier := {a..b}_L|) s A"
    proof (cases "A = {}")
        case True
        thus ?thesis
            by (rule_tac x="a" in exI, auto simp add: least_def assms)
    next
        case False
        show ?thesis
```



```
            show b:"\x. x }\inA=x \sqsubseteqL \bigsqcupLA"
                using a by (auto intro: L.sup_upper, meson L.at_least_at_most_closed
L.sup_upper subset_trans)
            show "^y. y \in Upper (L|carrier := {a..b} (D) A \Longrightarrow \ \ LA \sqsubseteq
                using a L.at_least_at_most_closed by (rule_tac L.sup_least,
auto intro: funcset_mem simp add: Upper_def)
            from a show "A\subseteq{a..b}_L"
                by (auto)
            from a show "\bigsqcup}\mp@subsup{\}{L}{}A\in{a..b}_L
                apply (rule_tac L.at_least_at_most_member)
                apply (auto)
                apply (meson L.at_least_at_most_closed L.sup_closed subset_trans)
                apply (meson False L.at_least_at_most_closed L.at_least_at_most_lower
L.le_trans L.sup_closed b all_not_in_conv assms(2) contra_subsetD subset_trans)
            apply (rule L.sup_least)
            apply (auto simp add: assms)
            using L.at_least_at_most_closed apply blast
            done
        qed
    qed
    show "\existss. is_glb (L(|carrier := {a..b} ()) s A"
    proof (cases "A = {}")
        case True
        thus ?thesis
            by (rule_tac x="b" in exI, auto simp add: greatest_def assms)
    next
        case False
        show ?thesis
```



```
    show b:"\x. x }\in\textrm{A}\Longrightarrow\mp@subsup{\prod}{\textrm{L}}{
        using a L.at_least_at_most_closed by (force intro!: L.inf_lower)
        show "^y. y \in Lower (L|carrier := {a..b} LD) A \Longrightarrow y \sqsubseteq
                using a L.at_least_at_most_closed by (rule_tac L.inf_greatest,
auto intro: funcset_carrier' simp add: Lower_def)
    from a show "A \subseteq{a..b}_L"
                by (auto)
            from a show "П}\mp@subsup{|}{\textrm{L}}{}A\in{a..b}_L
                apply (rule_tac L.at_least_at_most_member)
                apply (auto)
                apply (meson L.at_least_at_most_closed L.inf_closed subset_trans)
                apply (meson L.at_least_at_most_closed L.at_least_at_most_lower
L.inf_greatest assms(2) set_rev_mp subset_trans)
                            apply (meson False L.at_least_at_most_closed L.at_least_at_most_upper
L.inf_closed L.le_trans b all_not_in_conv assms(3) contra_subsetD subset_trans)
                    done
                qed
        qed
    qed
qed
```


4.7 Knaster-Tarski theorem and variants

The set of fixed points of a complete lattice is itself a complete lattice
theorem Knaster_Tarski:
assumes "weak_complete_lattice L" "f \in carrier L \rightarrow carrier L" "isotone
L L f"
shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice ?L'")
proof -
interpret L: weak_complete_lattice L
by (simp add: assms)
interpret weak_partial_order ?L'
proof -
have "\{x \in carrier $\left.L . f x .={ }_{L} x\right\} \subseteq$ carrier $L "$
by (auto)
thus "weak_partial_order ?L'"
by (simp add: L.weak_partial_order_axioms weak_partial_order_subset)
qed
show ?thesis
proof (unfold_locales, simp_all)
fix A
assume A: "A \subseteq fps L f"
show " $\exists \mathrm{s}$. is_lub (fpl L f) s A" proof
from A have AL: "A \subseteq carrier L"
by (meson fps_carrier subset_eq)

```
    let ?w = "\\L A"
    have w: "f (\}\mp@subsup{L}{L}{}A)\in carrier L"
    by (rule funcset_mem[of f "carrier L"], simp_all add: AL assms(2))
    have pf_w: "(\
    by (simp add: A L.weak_sup_pre_fixed_point assms(2) assms(3))
    have f_top_chain: "f ' {}w.. . TL} }
    proof (auto simp add: at_least_at_most_def)
    fix x
    assume b: "x \in carrier L" "泣A \sqsubseteqL x"
    from b show fx: "f x \in carrier L"
        using assms(2) by blast
    show "\bigsqcup}\mp@subsup{L}{L}{A}\mp@subsup{\sqsubseteq}{L}{}f\mp@code{x"
    proof -
        have "?w \sqsubseteqL f ?w"
        proof (rule_tac L.sup_least, simp_all add: AL w)
            fix y
            assume c: "y \in A"
            hence y: "y \in fps L f"
                    using A subsetCE by blast
            with assms have "y . =L f y"
            proof -
                    from y have "y \in carrier L"
                        by (simp add: fps_def)
                    moreover hence "f y \in carrier L"
                by (rule_tac funcset_mem[of f "carrier L"], simp_all add:
assms)
                    ultimately show ?thesis using y
                        by (rule_tac L.sym, simp_all add: L.use_fps)
                    qed
                    moreover have "y }\mp@subsup{\sqsubseteq}{L}{}\mp@subsup{\bigsqcup}{L}{}
                            by (simp add: AL L.sup_upper c(1))
            ultimately show "y \sqsubseteqL f (\}\mp@subsup{\}{L}{}A)
                    by (meson fps_def AL funcset_mem L.refl L.weak_complete_lattice_axioms
assms(2) assms(3) c(1) isotone_def rev_subsetD weak_complete_lattice.sup_closed
weak_partial_order.le_cong)
        qed
        thus ?thesis
            by (meson AL funcset_mem L.le_trans L.sup_closed assms(2)
assms(3) b(1) b(2) use_iso2)
    qed
    show "f x \sqsubseteqL TL"
        by (simp add: fx)
qed
let ?L' = "L( carrier := {?w...TL} ( )"
```

```
    interpret L': weak_complete_lattice ?L'
    by (auto intro: weak_complete_lattice_interval simp add: L.weak_complete_lattice_ax
AL)
    let ?L'' = "L(| carrier := fps L f |)"
    show "is_lub ?L'' (LFP?L' f) A"
    proof (rule least_UpperI, simp_all)
    fix x
    assume "x \in Upper ?L'' A"
    hence "LFP?L' f \sqsubseteq?L' x"
        apply (rule_tac L'.LFP_lowerbound)
            apply (auto simp add: Upper_def)
            apply (simp add: A AL L.at_least_at_most_member L.sup_least
set_rev_mp)
            apply (simp add: Pi_iff assms(2) fps_def, rule_tac L.weak_refl)
            apply (auto)
            apply (rule funcset_mem[of f "carrier L"], simp_all add: assms(2))
            done
            thus " LFP?L, f \sqsubseteq
            by (simp)
        next
            fix x
            assume xA: "x \in A"
            show "x \sqsubseteq}\mp@subsup{\sqsubseteq}{L}{}LFP
            proof -
                have "LFP?L, f \in carrier ?L'"
                    by blast
                    thus ?thesis
                    by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_lower
L.le_trans L.sup_closed L.sup_upper xA subsetCE)
            qed
        next
            show "A \subseteqfps L f"
            by (simp add: A)
        next
            show "LFP?L, f \in fps L f"
            proof (auto simp add: fps_def)
            have "LFP?L, f \in carrier ?L'"
                by (rule L'.LFP_closed)
            thus c:"LFP?L, f \in carrier L"
                    by (auto simp add: at_least_at_most_def)
            have "LFP?L' f .=?L' f (LFP?L' f)"
            proof (rule "L'.LFP_weak_unfold", simp_all)
                show "f \in{\\mp@subsup{\}{L}{}A..T}\mp@subsup{T}{L}{}\mp@subsup{}}{L}{}->{\mp@subsup{\}{L}{}A..T\mp@subsup{T}{L}{}\mp@subsup{}}{L}{}
                    apply (auto simp add: Pi_def at_least_at_most_def)
                    using assms(2) apply blast
                    apply (meson AL funcset_mem L.le_trans L.sup_closed assms(2)
assms(3) pf_w use_iso2)
```

```
                using assms(2) apply blast
                    done
                        from assms(3) show "Mono
                        apply (auto simp add: isotone_def)
                        using L'.weak_partial_order_axioms apply blast
                        apply (meson L.at_least_at_most_closed subsetCE)
    done
    qed
    thus "f (LFP?L, f) .= = L LFP?L' f"
    by (simp add: L.equivalence_axioms funcset_carrier' c assms(2)
equivalence.sym)
            qed
        qed
    qed
    show "\existsi. is_glb (L(|carrier := fps L f)) i A"
    proof
        from A have AL: "A \subseteq carrier L"
        by (meson fps_carrier subset_eq)
    let ?w = "ПL A"
    have w: "f (П
        by (simp add: AL funcset_carrier' assms(2))
    have pf_w: "f (㕸 A) \sqsubseteqL (㕸 A)"
        by (simp add: A L.weak_sup_post_fixed_point assms(2) assms(3))
    have f_bot_chain: "f ' { { L L..?w}_L }\subseteq{{\mp@subsup{\perp}{\textrm{L}}{}..?w\mp@subsup{}}{\textrm{L}}{
    proof (auto simp add: at_least_at_most_def)
        fix x
        assume b: "x \in carrier L" "x \sqsubseteqL П \A"
        from b show fx: "f x f carrier L"
            using assms(2) by blast
        show "f x \sqsubseteqL ПLA"
        proof -
            have "f ?w БL ?w"
            proof (rule_tac L.inf_greatest, simp_all add: AL w)
                    fix y
                    assume c: "y \in A"
                    with assms have "y .=L f y"
                            by (metis (no_types, lifting) A funcset_carrier'[OF assms(2)]
L.sym fps_def mem_Collect_eq subset_eq)
            moreover have "}\mp@subsup{\square}{\textrm{L}}{A}\mp@subsup{\sqsubseteq}{\textrm{L}}{
                    by (simp add: AL L.inf_lower c)
                    ultimately show "f ( }\mp@subsup{|}{L}{}A)\mp@subsup{\sqsubseteq}{L}{}y
                            by (meson AL L.inf_closed L.le_trans c pf_w set_rev_mp w)
                qed
                thus ?thesis
                        by (meson AL L.inf_closed L.le_trans assms(3) b(1) b(2) fx
use_iso2 w)
```

qed
show $" \perp_{L} \sqsubseteq_{L} f x "$
by (simp add: fx)
qed
let $\mathrm{LL}^{\prime}=$ "L(carrier $\left.:=\left\{\perp_{\mathrm{L}} \ldots ? \mathrm{w}\right\}_{\mathrm{L}} \mid\right)$ "
interpret L': weak_complete_lattice ?L'
by (auto intro!: weak_complete_lattice_interval simp add: L.weak_complete_lattice_a
AL)
let $\mathrm{LL}^{\prime}{ }^{\prime}=$ "L(carrier $\left.:=\mathrm{fps} \mathrm{L} \mathrm{f} \mid\right) "$
show "is_glb ?L', (GFP?L' f) A"
proof (rule greatest_LowerI, simp_all)
fix x
assume " $x \in$ Lower ?L', A"
hence "x $\sqsubseteq ? \mathrm{~L}$, GFP?L, f "
apply (rule_tac L'.GFP_upperbound)
apply (auto simp add: Lower_def)
apply (meson A AL L.at_least_at_most_member L.bottom_lower L.weak_complete_lattic
fps_carrier subsetCE weak_complete_lattice.inf_greatest)
apply (simp add: funcset_carrier' L.sym assms(2) fps_def)
done
thus "x \sqsubseteq_{L} GFP? ${ }^{\prime}$, f "
by (simp)
next
fix x
assume $x A: ~ " x \in A "$
show "GFP? ${ }^{\prime}$, $f \sqsubseteq_{L} x$ "
proof -
have "GFP?L' $f \in$ carrier ?L'"
by blast
thus ?thesis
by (simp, meson AL L.at_least_at_most_closed L.at_least_at_most_upper
L.inf_closed L.inf_lower L.le_trans subsetCE xA)
qed
next
show "A \subseteq fps $\mathrm{L} f$ "
by (simp add: A)
next
show "GFP?L, $f \in f p s L f "$
proof (auto simp add: fps_def)
have "GFP?L, $f \in$ carrier ?L'"
by (rule L'. GFP_closed)
thus c:"GFP? ${ }^{\prime}$, $f \in$ carrier L"
by (auto simp add: at_least_at_most_def)
have "GFP?L, f . $=$? L , f ($\mathrm{GFP}_{\text {?L }}$, f)"

```
            proof (rule "L'.GFP_weak_unfold", simp_all)
            show "f \in { | L L..?w}L }->{\mp@subsup{|}{L}{
            apply (auto simp add: Pi_def at_least_at_most_def)
            using assms(2) apply blast
            apply (simp add: funcset_carrier' assms(2))
            apply (meson AL funcset_carrier L.inf_closed L.le_trans
assms(2) assms(3) pf_w use_iso2)
            done
            from assms(3) show "Mono
                    apply (auto simp add: isotone_def)
                    using L'.weak_partial_order_axioms apply blast
                    using L.at_least_at_most_closed apply (blast intro: funcset_carrier')
            done
                qed
            thus "f (GFP?L, f) .= = GFP?L, f"
                            by (simp add: L.equivalence_axioms funcset_carrier' c assms(2)
equivalence.sym)
                qed
            qed
        qed
    qed
qed
theorem Knaster_Tarski_top:
    assumes "weak_complete_lattice L" "isotone L L f" "f \in carrier L }
carrier L"
```



```
proof -
    interpret L: weak_complete_lattice L
        by (simp add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    show ?thesis
    proof (rule L.weak_le_antisym, simp_all)
        show "Tfpl L f \sqsubseteqL GFP( f"
            by (rule L.GFP_greatest_fixed_point, simp_all add: assms L'.top_closed[simplified])
            show "GFP L f \sqsubseteqL T Tfpl L f"
            proof -
            have "GFP
                by (rule L.GFP_fixed_point, simp_all add: assms)
                    hence "GFPL f \in carrier (fpl L f)"
                    by simp
            hence "GFPL f \sqsubseteqfpl L f }\mp@subsup{T}{fpl L f"}{
                    by (rule L'.top_higher)
            thus ?thesis
                by simp
            qed
            show " }\mp@subsup{\top}{\mathrm{ fpl L f }}{}\in\mathrm{ carrier L"
            proof -
```

```
            have "carrier (fpl L f) \subseteq carrier L"
                    by (auto simp add: fps_def)
            with L'.top_closed show ?thesis
                    by blast
        qed
    qed
qed
theorem Knaster_Tarski_bottom:
    assumes "weak_complete_lattice L" "isotone L L f" "f \in carrier L }
carrier L"
    shows " }\mp@subsup{|}{fpl L f . = L LFP}{L
proof -
    interpret L: weak_complete_lattice L
            by (simp add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    show ?thesis
    proof (rule L.weak_le_antisym, simp_all)
        show "LFP L f \sqsubseteqL }\mp@subsup{\perp}{fpl L f"}{
            by (rule L.LFP_least_fixed_point, simp_all add: assms L'.bottom_closed[simplified])
            show " }\mp@subsup{\perp}{fpl L f }{¢L LFPL
            proof -
                have "LFPL f \in fps L f"
                    by (rule L.LFP_fixed_point, simp_all add: assms)
            hence "LFP
                by simp
            hence " }\mp@subsup{|}{fpl L f }{¢fpl L f LFPPL f"
                    by (rule L'.bottom_lower)
            thus ?thesis
                    by simp
            qed
            show " }\mp@subsup{|}{\mathrm{ fpl L f }}{}\in\mathrm{ carrier L"
            proof -
                have "carrier (fpl L f) \subseteq carrier L"
                    by (auto simp add: fps_def)
            with L'.bottom_closed show ?thesis
                by blast
            qed
    qed
qed
```

If a function is both idempotent and isotone then the image of the function forms a complete lattice
theorem Knaster_Tarski_idem:
assumes "complete_lattice L" "f \in carrier $L \rightarrow$ carrier L" "isotone
L L f" "idempotent L f"
shows "complete_lattice (L()carrier := f carrier L|))"
proof -

```
    interpret L: complete_lattice L
        by (simp add: assms)
    have "fps L f = f ' carrier L"
        using L.weak.fps_idem[OF assms(2) assms(4)]
        by (simp add: L.set_eq_is_eq)
    then interpret L': weak_complete_lattice "(L|carrier := f ' carrier
LD)"
    by (metis Knaster_Tarski L.weak.weak_complete_lattice_axioms assms(2)
assms(3))
    show ?thesis
        using L'.sup_exists L'.inf_exists
        by (unfold_locales, auto simp add: L.eq_is_equal)
qed
theorem Knaster_Tarski_idem_extremes:
    assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f \in carrier L }->\mathrm{ carrier L"
```



```
proof -
    interpret L: weak_complete_lattice "L"
        by (simp_all add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    have FA: "fps L f \subseteq carrier L"
        by (auto simp add: fps_def)
    show "T fpl L f . = = f f (T L )"
    proof -
        from FA have "T fpl L f \in carrier L"
        proof -
            have "T fpl L f \in fps L f"
                using L'.top_closed by auto
            thus ?thesis
                    using FA by blast
            qed
            moreover with assms have "f TL }\in\mathrm{ carrier L"
                by (auto)
            ultimately show ?thesis
                using L.trans[OF Knaster_Tarski_top[of L f] L.GFP_idem[of f]]
                by (simp_all add: assms)
    qed
    show " }\mp@subsup{\perp}{\mathrm{ fpl L f . = L f ( }}{~
    proof -
        from FA have " }\mp@subsup{|}{fpl L f}{f}\in\mathrm{ carrier L"
        proof -
            have " }\mp@subsup{\perp}{fpl L f }{f
                using L'.bottom_closed by auto
            thus ?thesis
                using FA by blast
```

```
    qed
    moreover with assms have "f \mp@subsup{ }{L}{}\in carrier L"
        by (auto)
            ultimately show ?thesis
        using L.trans[OF Knaster_Tarski_bottom[of L f] L.LFP_idem[of f]]
        by (simp_all add: assms)
    qed
qed
theorem Knaster_Tarski_idem_inf_eq:
    assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f \in carrier L }->\mathrm{ carrier L"
            "A\subseteqfps L f"
    shows "П
proof -
    interpret L: weak_complete_lattice "L"
        by (simp_all add: assms)
    interpret L': weak_complete_lattice "fpl L f"
        by (rule Knaster_Tarski, simp_all add: assms)
    have FA: "fps L f \subseteq carrier L"
        by (auto simp add: fps_def)
    have A: "A \subseteq carrier L"
            using FA assms(5) by blast
    have fA: "f ( ПLA) \in fps L f"
            by (metis (no_types, lifting) A L.idempotent L.inf_closed PiE assms(3)
assms(4) fps_def mem_Collect_eq)
    have infA: "П fpl L fA f fps L f"
            by (rule L'.inf_closed[simplified], simp add: assms)
    show ?thesis
    proof (rule L.weak_le_antisym)
        show ic: "П \pl L fA G carrier L"
            using FA infA by blast
            show fc: "f (㵦A) \in carrier L"
                using FA fA by blast
            show "f (П
            proof -
                have "\x. x }\in\textrm{A}\Longrightarrow\textrm{f}(\mp@subsup{П}{L}{}A)\mp@subsup{\sqsubseteq}{L}{}\textrm{x}
                    by (meson A FA L.inf_closed L.inf_lower L.le_trans L.weak_sup_post_fixed_point
assms(2) assms(4) assms(5) fA subsetCE)
            hence "f (泣A) \sqsubseteqfpl L f \ \fpl L f A"
                by (rule_tac L'.inf_greatest, simp_all add: fA assms(3,5))
            thus ?thesis
            by (simp)
    qed
    show "П
    proof -
                have "\x. x }\in\textrm{A}\Longrightarrow\mp@subsup{\prod}{\textrm{fpl L f A }}{\mp@code{fpl L f x"}
                    by (rule L'.inf_lower, simp_all add: assms)
```

```
        hence "П
            apply (rule_tac L.inf_greatest, simp_all add: A)
            using FA infA apply blast
            done
```



```
            by (metis (no_types, lifting) A FA L.inf_closed assms(2) infA
subsetCE use_iso1)
```



```
            by (metis (no_types, lifting) FA L.sym L.use_fps L.weak_complete_lattice_axioms
PiE assms(4) infA subsetCE weak_complete_lattice_def weak_partial_order.weak_refl)
            show ?thesis
            using FA fA infA by (auto intro!: L.le_trans[OF 2 1] ic fc, metis
FA PiE assms(4) subsetCE)
            qed
    qed
qed
```


4.8 Examples

4.8.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
"complete_lattice (|carrier = Pow A, eq = op =, le =op \subseteq)"
(is "complete_lattice ?L")
proof (rule partial_order.complete_latticeI)
show "partial_order ?L"
by standard auto
next
fix B
assume "B \subseteq carrier ?L"
then have "least ?L (\bigcup B) (Upper ?L B)"
by (fastforce intro!: least_UpperI simp: Upper_def)
then show "EX s. least ?L s (Upper ?L B)" ..
next
fix B
assume "B \subseteq carrier ?L"
then have "greatest ?L ($\cap \mathrm{B} \cap \mathrm{A}$) (Lower ?L B)"
$\bigcap B$ is not the infimum of $B: \bigcap\{ \}=$ UNIV which is in general bigger than A !
by (fastforce intro!: greatest_LowerI simp: Lower_def)
then show "EX i. greatest ?L i (Lower ?L B)" ..
qed
Another example, that of the lattice of subgroups of a group, can be found in Group theory (Section 6.8).

4.9 Limit preserving functions

```
definition weak_sup_pres :: "('a, 'c) gorder_scheme # ('b, 'd) gorder_scheme
('a }=>\mathrm{ 'b) }=>\mathrm{ bool" where
"weak_sup_pres X Y f \equiv complete_lattice X ^ complete_lattice Y ^ ( }\forall\textrm{A
```



```
definition sup_pres :: "('a, 'c) gorder_scheme # ('b, 'd) gorder_scheme
('a }=>\mathrm{ 'b) }=>\mathrm{ bool" where
"sup_pres X Y f \equiv complete_lattice X ^ complete_lattice Y ^ ( }\forall\textrm{A}\subseteq\mathrm{ carrier
X. f (\X A) = (\Y (f ' A)))"
definition weak_inf_pres :: "('a, 'c) gorder_scheme m ('b, 'd) gorder_scheme
# ('a }=>\mathrm{ 'b) # bool" where
"weak_inf_pres X Y f \equiv complete_lattice X ^ complete_lattice Y ^ ( }\forall\textrm{A
```



```
definition inf_pres :: "('a, 'c) gorder_scheme # ('b, 'd) gorder_scheme
('a }=>\mathrm{ 'b) }=>\mathrm{ bool" where
"inf_pres X Y f \equiv complete_lattice X ^ complete_lattice Y ^ ( }\forall\textrm{A}\subseteq\mathrm{ carrier
```



```
lemma weak_sup_pres:
    "sup_pres X Y f \Longrightarrow weak_sup_pres X Y f"
    by (simp add: sup_pres_def weak_sup_pres_def)
lemma weak_inf_pres:
    "inf_pres X Y f \Longrightarrow weak_inf_pres X Y f"
    by (simp add: inf_pres_def weak_inf_pres_def)
lemma sup_pres_is_join_pres:
    assumes "weak_sup_pres X Y f"
    shows "join_pres X Y f"
    using assms
    apply (simp add: join_pres_def weak_sup_pres_def, safe)
    apply (rename_tac x y)
    apply (drule_tac x="{x, y}" in spec)
    apply (auto simp add: join_def)
done
lemma inf_pres_is_meet_pres:
    assumes "weak_inf_pres X Y f"
    shows "meet_pres X Y f"
    using assms
    apply (simp add: meet_pres_def weak_inf_pres_def, safe)
    apply (rename_tac x y)
    apply (drule_tac x="{x, y}" in spec)
    apply (auto simp add: meet_def)
done
```

end

```
theory Galois_Connection
    imports Complete_Lattice
begin
```


5 Galois connections

5.1 Definition and basic properties

```
record ('a, 'b, 'c, 'd) galcon =
    orderA :: "('a, 'c) gorder_scheme" ("\mathcal{X `")}
    orderB :: "('b, ’d) gorder_scheme" ("Y`")
    lower :: "'a = 'b" ("\pi*\imath")
    upper :: "'b = 'a" (" }\mp@subsup{\pi}{*}{*
```

type_synonym ('a, 'b) galois = "('a, 'b, unit, unit) galcon"
abbreviation "inv_galcon $\mathrm{G} \equiv$ (orderA $=$ inv_gorder \mathcal{Y}_{G}, orderB = inv_gorder
\mathcal{X}_{G}, lower $=$ upper G , upper $=$ lower $\mathrm{G} \mid$ |"
definition comp_galcon : : "('b, 'c) galois \Rightarrow ('a, 'b) galois \Rightarrow ('a, 'c)
galois" (infixr "○g" 85)
where "G $\circ_{g} \mathrm{~F}=($ orderA $=$ orderA F , orderB $=$ orderB G , lower = lower
G o lower F, upper = upper F o upper G |)"
definition id_galcon :: "'a gorder \Rightarrow ('a, 'a) galois" (" I_{g} ") where

5.2 Well-typed connections

locale connection =
fixes G (structure)
assumes is_order_A: "partial_order \mathcal{X} "
and is_order_B: "partial_order \mathcal{Y} "
and lower_closure: " $\pi^{*} \in$ carrier $\mathcal{X} \rightarrow$ carrier \mathcal{Y} "
and upper_closure: " $\pi_{*} \in$ carrier $\mathcal{Y} \rightarrow$ carrier \mathcal{X} "
begin
lemma lower_closed: "x $\in \operatorname{carrier~} \mathcal{X} \Longrightarrow \pi^{*} \mathrm{x} \in \operatorname{carrier} \mathcal{Y}$ " using lower_closure by auto
lemma upper_closed: "y \in carrier $\mathcal{Y} \Longrightarrow \pi_{*}$ y $\in \operatorname{carrier} \mathcal{X}$ " using upper_closure by auto
end

5.3 Galois connections

```
locale galois_connection = connection +
    assumes galois_property: "\llbracketx \in carrier \mathcal{X}; y \in carrier \mathcal{Y}\rrbracket\Longrightarrow #* x
\sqsubseteq\mathcal{Y }\longleftrightarrow\textrm{x}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\mp@subsup{\textrm{y}}{}{\prime\prime}
begin
    lemma is_weak_order_A: "weak_partial_order \mathcal{X"}
    proof -
        interpret po: partial_order \mathcal{X}
        by (metis is_order_A)
        show ?thesis ..
    qed
    lemma is_weak_order_B: "weak_partial_order Y"
    proof -
        interpret po: partial_order \mathcal{Y}
            by (metis is_order_B)
        show ?thesis ..
    qed
    lemma right: "\llbracketx \in carrier \mathcal{X}; y \in carrier \mathcal{Y; }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}\rrbracket\Longrightarrowx}\sqsubseteq\mathcal{X
\pi* y'
        by (metis galois_property)
    lemma left: "\llbracketx }\in\mathrm{ carrier }\mathcal{X}; y \in carrier \mathcal{Y};\textrm{x}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}\rrbracket\Longrightarrow #* x
\sqsubseteqy y"
        by (metis galois_property)
```

 lemma deflation: "y carrier \(\mathcal{Y} \Longrightarrow \pi^{*}\left(\pi_{*} y\right) \sqsubseteq \mathcal{y}\) y"
 by (metis Pi_iff is_weak_order_A left upper_closure weak_partial_order.le_refl)
 lemma inflation: "x \(\in \operatorname{carrier} \mathcal{X} \Longrightarrow \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*}\left(\pi^{*} \mathrm{x}\right)\) "
 by (metis (no_types, lifting) PiE galois_connection.right galois_connection_axioms
 is_weak_order_B lower_closure weak_partial_order.le_refl)
lemma lower_iso: "isotone $\mathcal{X} \mathcal{Y} \pi^{*} "$
proof (auto simp add:isotone_def)
show "weak_partial_order \mathcal{X} "
by (metis is_weak_order_A)
show "weak_partial_order \mathcal{Y} "
by (metis is_weak_order_B)
fix x y
assume a: "x $\in \operatorname{carrier} \mathcal{X} "$ "y $\in \operatorname{carrier} \mathcal{X} "$ "x $\sqsubseteq \mathcal{X}$ y"
have b: " $\pi^{*} \mathrm{y} \in$ carrier \mathcal{Y} "
using a(2) lower_closure by blast
then have $" \pi_{*}\left(\pi^{*}\right.$ y) \in carrier $\mathcal{X} "$
using upper_closure by blast
then have "x $\sqsubseteq \mathcal{X} \quad \pi_{*}\left(\pi^{*} \mathrm{y}\right)$ "
by (meson a inflation is_weak_order_A weak_partial_order.le_trans)

```
    thus " }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\mp@subsup{\pi}{}{*}\textrm{y
    by (meson b a(1) Pi_iff galois_property lower_closure upper_closure)
    qed
    lemma upper_iso: "isotone \mathcal{Y X }}\mp@subsup{\pi}{*}{
    apply (auto simp add:isotone_def)
    apply (metis is_weak_order_B)
    apply (metis is_weak_order_A)
    apply (metis (no_types, lifting) Pi_mem deflation is_weak_order_B
lower_closure right upper_closure weak_partial_order.le_trans)
    done
    lemma lower_comp: "x c carrier \mathcal{X \Longrightarrow }\Longrightarrow\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}\textrm{x}))=\mp@subsup{\pi}{}{*}\textrm{x}"
        by (meson deflation funcset_mem inflation is_order_B lower_closure
lower_iso partial_order.le_antisym upper_closure use_iso2)
    lemma lower_comp': "x c carrier \mathcal{X }\Longrightarrow(\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*})\textrm{x}=\mp@subsup{\pi}{}{*}\textrm{x"}
        by (simp add: lower_comp)
    lemma upper_comp: "y \in carrier \mathcal{Y}\Longrightarrow 
    proof -
        assume a1: "y \in carrier \mathcal{Y"}
        hence f1: " }\mp@subsup{\pi}{*}{}\textrm{y}\in\mathrm{ carrier }\mathcal{X}\mathrm{ " using upper_closure by blast
        have f2: " }\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}y)\sqsubseteqy y" using a1 deflation by blas
        have f3: " }\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}\textrm{y}))\in\mathrm{ carrier }\mathcal{X}
            using f1 lower_closure upper_closure by auto
        have " }\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}y)\in\mathrm{ carrier Y)" using f1 lower_closure by blast
        thus " }\mp@subsup{\pi}{*}{}(\mp@subsup{\pi}{*}{*}(\mp@subsup{\pi}{*}{}\textrm{y}))=\mp@subsup{\pi}{*}{}\textrm{y}
            by (meson a1 f1 f2 f3 inflation is_order_A partial_order.le_antisym
upper_iso use_iso2)
    qed
    lemma upper_comp': "y \in carrier \mathcal{Y C ( }\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{})\textrm{y}=\mp@subsup{\pi}{*}{}\mathrm{ y"}
        by (simp add: upper_comp)
    lemma adjoint_idem1: "idempotent \mathcal{Y ( }\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{})"
        by (simp add: idempotent_def is_order_B partial_order.eq_is_equal
upper_comp)
    lemma adjoint_idem2: "idempotent \mathcal{X ( }\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*})"
        by (simp add: idempotent_def is_order_A partial_order.eq_is_equal
lower_comp)
    lemma fg_iso: "isotone \mathcal{Y Y (}\mp@subsup{\pi}{}{*}\circ\mp@subsup{\pi}{*}{})"
        by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
    lemma gf_iso: "isotone \mathcal{X X ( }\mp@subsup{\pi}{*}{}\circ\mp@subsup{\pi}{}{*}\mathrm{ )"}
        by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)
```

```
lemma semi_inverse1: "x \(\in\) carrier \(\mathcal{X} \Longrightarrow \pi^{*} \mathrm{x}=\pi^{*}\left(\pi_{*}\left(\pi^{*} \mathrm{x}\right)\right)\) "
    by (metis lower_comp)
lemma semi_inverse2: "x \(\in \operatorname{carrier} \mathcal{Y} \Longrightarrow \pi_{*} \mathrm{x}=\pi_{*}\left(\pi^{*}\left(\pi_{*} \mathrm{x}\right)\right)\) "
    by (metis upper_comp)
theorem lower_by_complete_lattice:
    assumes "complete_lattice \(\mathcal{Y}\) " "x \(\in\) carrier \(\mathcal{X}\) "
    shows \(" \pi^{*}(\mathrm{x})=\Pi \mathcal{Y}\left\{\mathrm{y} \in \operatorname{carrier} \mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*}(\mathrm{y})\right\} "\)
proof -
    interpret \(\mathrm{Y}:\) complete_lattice \(\mathcal{Y}\)
        by (simp add: assms)
    show ?thesis
    proof (rule Y.le_antisym)
        show x : " \(\pi^{*} \mathrm{x} \in\) carrier \(\mathcal{Y}\) "
            using assms(2) lower_closure by blast
        show \(" \pi^{*} \mathrm{x} \sqsubseteq \mathcal{Y} \sqcap \mathcal{Y}\left\{\mathrm{y} \in \operatorname{carrier} \mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\}\) "
        proof (rule Y.weak.inf_greatest)
            show " \(\left\{\mathrm{y} \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\} \subseteq\) carrier \(\mathcal{Y}\) "
                by auto
            show \(" \pi^{*} \mathrm{x} \in\) carrier \(\mathcal{Y}\) " by (fact x )
            fix \(z\)
            assume "z \(\in\left\{y \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\} "\)
            thus " \(\pi^{*} \mathrm{x} \sqsubseteq \mathcal{y}\) "
                using assms(2) left by auto
        qed
        show \(" \sqcap \mathcal{Y}\left\{\mathrm{y} \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\} \sqsubseteq \mathcal{Y} \pi^{*} \mathrm{x} "\)
        proof (rule Y.weak.inf_lower)
            show \("\left\{y \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\} \subseteq\) carrier \(\mathcal{Y}\) "
                by auto
            show " \(\pi^{*} \mathrm{x} \in\left\{\mathrm{y} \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\}\) "
            proof (auto)
                show " \(\pi^{*} \mathrm{x} \in\) carrier \(\mathcal{Y}\) " by (fact x )
                        show "x \(\sqsubseteq \mathcal{X} \pi_{*}\left(\pi^{*} \mathrm{x}\right)\) "
                        using assms(2) inflation by blast
            qed
        qed
        show \(" \sqcap \mathcal{Y}\left\{y \in\right.\) carrier \(\left.\mathcal{Y} . \mathrm{x} \sqsubseteq \mathcal{X} \pi_{*} \mathrm{y}\right\} \in \operatorname{carrier} \mathcal{Y}\) "
        by (auto intro: Y.weak.inf_closed)
    qed
qed
theorem upper_by_complete_lattice:
    assumes "complete_lattice \(\mathcal{X}\) " "y \(\in\) carrier \(\mathcal{Y}\) "
    shows \(" \pi_{*}(\mathrm{y})=\bigsqcup \mathcal{X}\left\{\mathrm{x} \in \operatorname{carrier} \mathcal{X} . \pi^{*}(\mathrm{x}) \sqsubseteq \mathcal{Y}\right.\) y \(\} "\)
proof -
    interpret X: complete_lattice \(\mathcal{X}\)
        by (simp add: assms)
```

```
    show ?thesis
    proof (rule X.le_antisym)
    show y: " }\mp@subsup{\pi}{*}{}\textrm{y}\in\mathrm{ carrier }\mathcal{X}
            using assms(2) upper_closure by blast
    show " }\mp@subsup{\pi}{*}{}\textrm{y}\sqsubseteq\mathcal{X}\bigsqcup\mathcal{X}{\textrm{x}\in\operatorname{carrier \mathcal{X}. 片 x \sqsubseteq\mathcal{Y y}"}
    proof (rule X.weak.sup_upper)
        show "{x\in carrier \mathcal{X. }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}\subseteq\mathrm{ carrier }\mathcal{X}"
            by auto
        show " }\mp@subsup{\pi}{*}{}\textrm{y}\in{\textrm{x}\in\operatorname{carrier \mathcal{X}. \mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}y}"
        proof (auto)
            show " }\mp@subsup{\pi}{*}{}\mathrm{ y }\in\mathrm{ carrier }\mathcal{X}" by (fact y
            show " }\mp@subsup{\pi}{}{*}\mathrm{ ( }\mp@subsup{\pi}{*}{}\mathrm{ y) БY y"
                by (simp add: assms(2) deflation)
        qed
    qed
    show "\bigsqcup\mathcal{X}{\textrm{x}\in\operatorname{carrier \mathcal{X}. }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}\sqsubseteq\mathcal{X}\mp@subsup{\pi}{*}{}\textrm{y}"
    proof (rule X.weak.sup_least)
        show "{x\in carrier \mathcal{X . }\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}\subseteq\mathrm{ carrier }\mathcal{X}"
            by auto
        show " }\mp@subsup{\pi}{*}{}\textrm{y}\in\mathrm{ carrier X X" by (fact y)
        fix z
        assume "z \in{x \in carrier \mathcal{X}. 片 x \sqsubseteq\mathcal{Y y}"}
        thus "z\sqsubseteq\mathcal{X}}\mp@subsup{\pi}{*}{*}\textrm{y
            by (simp add: assms(2) right)
    qed
    show " }\\mathcal{X}{\textrm{x}\in\mathrm{ carrier }\mathcal{X}.\mp@subsup{\pi}{}{*}\textrm{x}\sqsubseteq\mathcal{Y}\textrm{y}}\in\operatorname{carrier \mathcal{X"}
        by (auto intro: X.weak.sup_closed)
    qed
qed
```

end
lemma dual_galois [simp]: " galois_connection (orderA = inv_gorder B, orderB = inv_gorder A, lower = f, upper = g D
$=$ galois_connection (order $A=A$, orderB $=\mathrm{B}$,
lower = g, upper = f |)"
by (auto simp add: galois_connection_def galois_connection_axioms_def connection_def dual_order_iff)
definition lower_adjoint :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow (' $\mathrm{a} \Rightarrow$ ' b) \Rightarrow bool" where
"lower_adjoint A B $\mathrm{f} \equiv \exists \mathrm{g}$. galois_connection (orderA $=\mathrm{A}$, orderB $=$ B, lower $=f$, upper $=g \mid) "$
definition upper_adjoint :: "('a, 'c) gorder_scheme \Rightarrow ('b, 'd) gorder_scheme \Rightarrow ('b \Rightarrow 'a) \Rightarrow bool" where
"upper_adjoint A B g $\equiv \exists \mathrm{f}$. galois_connection (orderA $=\mathrm{A}$, orderB $=$
B, lower $=f$, upper $=g \mid) "$

```
lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder
B) f = upper_adjoint B A f"
    by (simp add: lower_adjoint_def upper_adjoint_def)
lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder
B) f = lower_adjoint B A f"
    by (simp add: lower_adjoint_def upper_adjoint_def)
lemma lower_type: "lower_adjoint A B f \Longrightarrow f \in carrier A }->\mathrm{ carrier B"
    by (auto simp add:lower_adjoint_def galois_connection_def galois_connection_axioms_def
connection_def)
lemma upper_type: "upper_adjoint A B g m g carrier B }->\mathrm{ carrier A"
    by (auto simp add:upper_adjoint_def galois_connection_def galois_connection_axioms_def
connection_def)
```


5.4 Composition of Galois connections

lemma id_galois: "partial_order $\mathrm{A} \Longrightarrow$ galois_connection ($\mathrm{I}_{g}(\mathrm{~A})$)"
by (simp add: id_galcon_def galois_connection_def galois_connection_axioms_def
connection_def)
lemma comp_galcon_closed:
assumes "galois_connection G " "galois_connection F " " $\mathcal{Y}_{\mathrm{F}}=\mathcal{X}_{\mathrm{G}}$ "
shows "galois_connection (G \circ_{g} F)"
proof -
interpret F: galois_connection F
by (simp add: assms)
interpret G: galois_connection G
by (simp add: assms)
have "partial_order $\mathcal{X}_{\mathrm{G}} \circ_{g} \mathrm{~F}$ "
by (simp add: F.is_order_A comp_galcon_def)
moreover have "partial_order $\mathcal{Y}_{\mathrm{G}} \mathrm{o}_{g} \mathrm{~F}$ "
by (simp add: G.is_order_B comp_galcon_def)
moreover have $" \pi^{*}{ }_{\mathrm{G}} \circ \pi^{*}{ }_{\mathrm{F}} \in$ carrier $\mathcal{X}_{\mathrm{F}} \rightarrow$ carrier \mathcal{Y}_{G} " using F.lower_closure G.lower_closure assms(3) by auto
moreover have $" \pi_{* F} \circ \pi_{* G} \in$ carrier $\mathcal{Y}_{\mathrm{G}} \rightarrow$ carrier \mathcal{X}_{F} "
using F.upper_closure G.upper_closure assms(3) by auto
moreover
have " $\bigwedge \mathrm{x} \mathrm{y} . \llbracket \mathrm{x} \in \operatorname{carrier} \mathcal{X}_{\mathrm{F}} ; \mathrm{y} \in \operatorname{carrier} \mathcal{Y}_{\mathrm{G}} \rrbracket \Longrightarrow$

$$
\left(\pi_{\mathrm{G}}^{*}\left(\pi^{*} \mathrm{~F} \text { x) } \sqsubseteq \mathcal{Y}_{\mathrm{G}} \mathrm{y}\right)=\left(\mathrm{x} \sqsubseteq \mathcal{X}_{\mathrm{F}} \pi_{* \mathrm{~F}}\left(\pi_{* \mathrm{G}} \mathrm{y}\right)\right) "\right.
$$

by (metis F.galois_property F.lower_closure G.galois_property G.upper_closure
assms(3) Pi_iff)
ultimately show ?thesis
by (simp add: comp_galcon_def galois_connection_def galois_connection_axioms_def connection_def)
qed

```
lemma comp_galcon_right_unit [simp]: "F og I 
    by (simp add: comp_galcon_def id_galcon_def)
lemma comp_galcon_left_unit [simp]: "Ig}(\mp@subsup{\mathcal{Y}}{\textrm{F}}{})\mp@subsup{\circ}{g}{}\textrm{F}=\textrm{F
    by (simp add: comp_galcon_def id_galcon_def)
lemma galois_connectionI:
    assumes
        "partial_order A" "partial_order B"
        "L \in carrier A }->\mathrm{ carrier B" "R }\in\mathrm{ carrier B }->\mathrm{ carrier A"
        "isotone A B L" "isotone B A R"
```



```
y"
    shows "galois_connection ( orderA = A, orderB = B, lower = L, upper
= R |)"
    using assms by (simp add: galois_connection_def connection_def galois_connection_axioms_d
lemma galois_connectionI':
    assumes
        "partial_order A" "partial_order B"
            L \in carrier A }->\mathrm{ carrier B" "R }\in\mathrm{ carrier B }->\mathrm{ carrier A"
            "isotone A B L" "isotone B A R"
            "^X. X \in carrier(B) \Longrightarrow L(R(X)) \sqsubseteqB X"
            "^X. X \in carrier (A) \Longrightarrow X \sqsubseteq
    shows "galois_connection ( orderA = A, orderB = B, lower = L, upper
= R |)"
    using assms
    by (auto simp add: galois_connection_def connection_def galois_connection_axioms_def,
(meson PiE isotone_def weak_partial_order.le_trans)+)
```


5.5 Retracts

locale retract $=$ galois_connection +
assumes retract_property: "x $\in \operatorname{carrier} \mathcal{X} \Longrightarrow \pi_{*}\left(\pi^{*} \mathrm{x}\right) \sqsubseteq \mathcal{X}$ x"
begin
lemma retract_inverse: "x $\in \operatorname{carrier} \mathcal{X} \Longrightarrow \pi_{*}\left(\pi^{*} \mathrm{x}\right)=\mathrm{x} "$
by (meson funcset_mem inflation is_order_A lower_closure partial_order.le_antisym
retract_axioms retract_axioms_def retract_def upper_closure)
lemma retract_injective: "inj_on π^{*} (carrier \mathcal{X})"
by (metis inj_onI retract_inverse)
end
theorem comp_retract_closed:
assumes "retract G " "retract F " " $\mathcal{Y}_{\mathrm{F}}=\mathcal{X}_{\mathrm{G}}$ "
shows "retract (G \circ_{g} F)"
proof -
interpret f: retract F
by (simp add: assms)

```
interpret g: retract G
    by (simp add: assms)
interpret gf: galois_connection "(G Og F)"
    by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed retract.axioms(1))
show ?thesis
proof
    fix x
    assume "x\in carrier }\mp@subsup{\mathcal{X}}{\textrm{G}}{\mp@subsup{\circ}{g}{}}\mp@subsup{\textrm{F}}{}{\prime
```



```
        using assms(3) f.inflation f.lower_closed f.retract_inverse g.retract_inverse
by (auto simp add: comp_galcon_def)
    qed
qed
```


5.6 Coretracts

locale coretract = galois_connection +
assumes coretract_property: "y carrier $\mathcal{Y} \Longrightarrow \mathrm{y} \sqsubseteq \mathcal{Y} \pi^{*}\left(\pi_{*} \mathrm{y}\right)$ "
begin
lemma coretract_inverse: "y \in carrier $\mathcal{Y} \Longrightarrow \pi^{*}\left(\pi_{*}\right.$ y) = y"
by (meson coretract_axioms coretract_axioms_def coretract_def deflation
funcset_mem is_order_B lower_closure partial_order.le_antisym upper_closure)
lemma retract_injective: "inj_on π_{*} (carrier \mathcal{Y})"
by (metis coretract_inverse inj_onI)
end
theorem comp_coretract_closed:
assumes "coretract $\mathrm{G} "$ "coretract F " " $\mathcal{Y}_{\mathrm{F}}=\mathcal{X}_{\mathrm{G}}$ "
shows "coretract (G \circ_{g} F)"
proof -
interpret f: coretract F
by (simp add: assms)
interpret g : coretract G
by (simp add: assms)
interpret gf: galois_connection " (G \circ_{g} F)"
by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed coretract.axioms(1))
show ?thesis
proof
fix y
assume "y \in carrier $\mathcal{Y}_{G} \circ_{g} F$ "
thus "le $\mathcal{Y}_{\mathrm{G}}{\circ_{g}} \mathrm{~F}$ y $\left(\pi_{\mathrm{G}} \mathrm{o}_{g} \mathrm{~F}\left(\pi_{*_{G}} \circ_{g} \mathrm{~F}\right.\right.$ y))"
by (simp add: comp_galcon_def assms(3) f.coretract_inverse g.coretract_property
g.upper_closed)
qed
qed

5.7 Galois Bijections

locale galois_bijection = connection +

```
    assumes lower_iso: "isotone \mathcal{X Y }}\mp@subsup{\pi}{}{*}
    and upper_iso: "isotone \mathcal{Y X }\mp@subsup{\pi}{*}{*}"
    and lower_inv_eq: "x \in carrier \mathcal{X \Longrightarrow }\Longrightarrow\mathrm{ * ( }\mp@subsup{\pi}{}{*}\textrm{x})=\textrm{x}"
    and upper_inv_eq: "y \in carrier \mathcal{Y }\Longrightarrow\mp@subsup{\pi}{}{*}(\mp@subsup{\pi}{*}{}y)= y"
begin
    lemma lower_bij: "bij_betw }\mp@subsup{\pi}{}{*}\mathrm{ (carrier X) (carrier Y)"
        by (rule bij_betwI[where g=" }\mp@subsup{\pi}{*}{}"\mathrm{ ], auto intro: upper_inv_eq lower_inv_eq
upper_closed lower_closed)
    lemma upper_bij: "bij_betw }\mp@subsup{\pi}{*}{}\mathrm{ (carrier Y) (carrier X)"
    by (rule bij_betwI[where g=" }\mp@subsup{\pi}{}{*}
upper_closed lower_closed)
sublocale gal_bij_conn: galois_connection
    apply (unfold_locales, auto)
    using lower_closed lower_inv_eq upper_iso use_iso2 apply fastforce
    using lower_iso upper_closed upper_inv_eq use_iso2 apply fastforce
done
sublocale gal_bij_ret: retract
    by (unfold_locales, simp add: gal_bij_conn.is_weak_order_A lower_inv_eq
weak_partial_order.le_refl)
sublocale gal_bij_coret: coretract
    by (unfold_locales, simp add: gal_bij_conn.is_weak_order_B upper_inv_eq
weak_partial_order.le_refl)
end
theorem comp_galois_bijection_closed:
    assumes "galois_bijection G" "galois_bijection F" "\mathcal{Y}}
    shows "galois_bijection (G og F)"
proof -
    interpret f: galois_bijection F
        by (simp add: assms)
    interpret g: galois_bijection G
        by (simp add: assms)
    interpret gf: galois_connection "(G Og F)"
        by (simp add: assms(3) comp_galcon_closed f.gal_bij_conn.galois_connection_axioms
g.gal_bij_conn.galois_connection_axioms galois_connection.axioms(1))
    show ?thesis
    proof
```



```
            by (simp add: comp_galcon_def, metis comp_galcon_def galcon.select_convs(1)
galcon.select_convs(2) galcon.select_convs(3) gf.lower_iso)
```



```
                by (simp add: gf.upper_iso)
            fix x
```

```
    assume "x \in carrier }\mp@subsup{\mathcal{X}}{\textrm{G}}{\mp@subsup{O}{g}{}
    thus " }\mp@subsup{\pi}{*G 龵 F ( }{~
        using assms(3) f.lower_closed f.lower_inv_eq g.lower_inv_eq by (auto
simp add: comp_galcon_def)
    next
            fix y
            assume "y \in carrier }\mp@subsup{\mathcal{Y}}{\textrm{G}}{\mp@subsup{\circ}{g}{}
            thus " }\mp@subsup{\pi}{\textrm{G}}{*}\mp@subsup{\circ}{g}{}\textrm{F}(\mp@subsup{\pi}{*G}{}\mp@subsup{\circ}{g}{}\textrm{F
            by (simp add: comp_galcon_def assms(3) f.upper_inv_eq g.upper_closed
g.upper_inv_eq)
    qed
qed
end
```

theory Group
imports Complete_Lattice "HOL-Library.FuncSet"
begin

6 Monoids and Groups

6.1 Definitions

Definitions follow [2].

```
record 'a monoid = "'a partial_object" +
    mult :: "['a, 'a] => 'a" (infixl "\otimes\imath" 70)
    one :: 'a ("1\imath")
definition
    m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\imath _" [81] 80)
```



```
definition
    Units :: "_ => 'a set"
    - The set of invertible elements
    where "Units G = {y. y \in carrier G & ( }\exists\textrm{x}\in\mathrm{ carrier G. x }\mp@subsup{\otimes}{\textrm{G}}{}\textrm{y}=\mp@subsup{\mathbf{1}}{\textrm{G}}{
& y }\mp@subsup{\otimes}{G}{}\textrm{x}=\mp@subsup{1}{\textrm{G}}{\mathrm{ ) }"}
consts
    pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a" (infixr
"((-))\imath" 75)
overloading nat_pow == "pow :: [_, 'a, nat] => 'a"
begin
    definition "nat_pow G a n = rec_nat 1 1 (%u b. b & & a) n"
end
```

```
overloading int_pow == "pow :: [_, 'a, int] => 'a"
begin
    definition "int_pow G a z =
        (let p = rec_nat 1 1 (%u b. b & |G a)
        in if z < O then invG (p (nat (-z))) else p (nat z))"
end
lemma int_pow_int: "x (^)
by(simp add: int_pow_def nat_pow_def)
locale monoid =
    fixes G (structure)
    assumes m_closed [intro, simp]:
            "\llbracketx \in carrier G; y \in carrier G\rrbracket \Longrightarrow x \otimes y \in carrier G"
        and m_assoc:
            "\llbracketx \in carrier G; y \in carrier G; z \in carrier G\rrbracket
            \Longrightarrow(x \otimes y) \otimes z = x \otimes (y \otimes z)"
        and one_closed [intro, simp]: "1 \in carrier G"
        and l_one [simp]: "x \in carrier G \Longrightarrow1\otimes x = x"
        and r_one [simp]: "x \in carrier G \Longrightarrow x \otimes 1 = x"
lemma monoidI:
    fixes G (structure)
    assumes m_closed:
        "!!x y. [| x \in carrier G; y \in carrier G |] ==> x & y \in carrier
G"
            and one_closed: "1 \in carrier G"
            and m_assoc:
                "!!x y z. [| x \in carrier G; y \in carrier G; z \in carrier G |] ==>
                    (x \otimes y) \otimes z = x \otimes (y \otimes z)"
            and l_one: "!!x. x \in carrier G ==> 1 & x = x"
            and r_one: "!!x. x \in carrier G ==> x \otimes 1 = x"
    shows "monoid G"
    by (fast intro!: monoid.intro intro: assms)
lemma (in monoid) Units_closed [dest]:
    "x \in Units G ==> x \in carrier G"
    by (unfold Units_def) fast
lemma (in monoid) inv_unique:
    assumes eq: "y \otimes x = 1" "x \otimes y' = 1"
            and G: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
    shows "y = y'"
proof -
    from G eq have "y = y \otimes (x \otimes y')" by simp
    also from G have "... = (y \otimes x) \otimes y'" by (simp add: m_assoc)
    also from G eq have "... = y'" by simp
    finally show ?thesis .
qed
```

```
lemma (in monoid) Units_m_closed [intro, simp]:
    assumes x: "x \in Units G" and y: "y \in Units G"
    shows "x \otimes y \in Units G"
proof -
    from x obtain x' where x: "x \in carrier G" "x' \in carrier G" and xinv:
"x \otimes x' = 1" "x' \otimes x = 1"
        unfolding Units_def by fast
    from y obtain y' where y: "y \in carrier G" "y' \in carrier G" and yinv:
"y & y' = 1" "y' \otimes y = 1"
        unfolding Units_def by fast
    from x y xinv yinv have "y' \otimes (x' \otimes x) \otimes y = 1" by simp
    moreover from x y xinv yinv have "x \otimes (y \otimes y') \otimes x' = 1" by simp
    moreover note x y
    ultimately show ?thesis unfolding Units_def
        - Must avoid premature use of hyp_subst_tac.
        apply (rule_tac CollectI)
        apply (rule)
        apply (fast)
        apply (rule bexI [where x = "y' \otimes x'"])
        apply (auto simp: m_assoc)
        done
qed
lemma (in monoid) Units_one_closed [intro, simp]:
    "1 \in Units G"
    by (unfold Units_def) auto
lemma (in monoid) Units_inv_closed [intro, simp]:
    "x \in Units G ==> inv x \in carrier G"
    apply (unfold Units_def m_inv_def, auto)
    apply (rule theI2, fast)
        apply (fast intro: inv_unique, fast)
    done
lemma (in monoid) Units_l_inv_ex:
    "x \in Units G ==> \existsy \in carrier G. y \otimes x = 1"
    by (unfold Units_def) auto
lemma (in monoid) Units_r_inv_ex:
    "x \in Units G ==> \existsy f carrier G. x \otimes y = 1"
    by (unfold Units_def) auto
lemma (in monoid) Units_l_inv [simp]:
    "x \in Units G ==> inv x \otimes x = 1"
    apply (unfold Units_def m_inv_def, auto)
    apply (rule theI2, fast)
        apply (fast intro: inv_unique, fast)
    done
```

```
lemma (in monoid) Units_r_inv [simp]:
    "x \in Units G ==> x \otimes inv x = 1"
    apply (unfold Units_def m_inv_def, auto)
    apply (rule theI2, fast)
        apply (fast intro: inv_unique, fast)
    done
lemma (in monoid) Units_inv_Units [intro, simp]:
    "x \in Units G ==> inv x \in Units G"
proof -
    assume x: "x \in Units G"
    show "inv x \in Units G"
        by (auto simp add: Units_def
            intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed
lemma (in monoid) Units_l_cancel [simp]:
    "[| x \in Units G; y \in carrier G; z \in carrier G l] ==>
        (x & y = x \otimes z) = (y = z)"
proof
    assume eq: "x \otimes y = x \otimes z"
        and G: "x \in Units G" "y \in carrier G" "z \in carrier G"
    then have "(inv x \otimes x) \otimes y = (inv x \otimes x) \otimes z"
            by (simp add: m_assoc Units_closed del: Units_l_inv)
    with G show "y = z" by simp
next
    assume eq: "y = z"
            and G: "x \in Units G" "y \in carrier G" "z \in carrier G"
    then show "x }\otimes\textrm{y}=\textrm{x}\otimes\textrm{z}"\mathrm{ by simp
qed
lemma (in monoid) Units_inv_inv [simp]:
    "x U Units G ==> inv (inv x) = x"
proof -
    assume x: "x \in Units G"
    then have "inv x \otimes inv (inv x) = inv x \otimes x" by simp
    with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed
lemma (in monoid) inv_inj_on_Units:
    "inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
    fix x y
    assume G: "x \in Units G" "y \in Units G" and eq: "inv x = inv y"
    then have "inv (inv x) = inv (inv y)" by simp
    with G show "x = y" by simp
qed
```

```
lemma (in monoid) Units_inv_comm:
    assumes inv: "x \otimes y = 1"
        and G: "x \in Units G" "y \in Units G"
    shows "y \otimes x = 1"
proof -
    from G have "x \otimes y \otimes x = x \otimes 1" by (auto simp add: inv Units_closed)
    with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed
lemma (in monoid) carrier_not_empty: "carrier G \not= {}"
by auto
Power
lemma (in monoid) nat_pow_closed [intro, simp]:
    "x \in carrier G ==> x (`) (n::nat) \in carrier G"
    by (induct n) (simp_all add: nat_pow_def)
lemma (in monoid) nat_pow_0 [simp]:
    "x (^) (0::nat) = 1"
    by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_Suc [simp]:
    "x (^) (Suc n) = x (`) n \otimes x"
    by (simp add: nat_pow_def)
lemma (in monoid) nat_pow_one [simp]:
    "1 (~) (n::nat) = 1"
    by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
    "x \in carrier G ==> x (^) (n::nat) \otimes x (^) m = x (^) (n + m)"
    by (induct m) (simp_all add: m_assoc [THEN sym])
lemma (in monoid) nat_pow_pow:
    "x f carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
    by (induct m) (simp, simp add: nat_pow_mult add.commute)
```


6.2 Groups

A group is a monoid all of whose elements are invertible.
locale group $=$ monoid +
assumes Units: "carrier G <= Units G"
lemma (in group) is_group: "group G" by (rule group_axioms)
theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
"!!x y. [| x \in carrier $G ; y \in \operatorname{carrier} G \operatorname{l}]==>x \otimes y \in$ carrier G"
and one_closed [simp]: "1 \in carrier G"
and m_assoc:
"!!x y z. [| x \in carrier $G ; y \in \operatorname{carrier~G;~z~} \in$ carrier G |] ==>
$(x \otimes y) \otimes z=x \otimes(y \otimes z) "$
and l_one [simp]: "!!x. x \in carrier $G==1 \otimes x=x "$
and l_inv_ex: "!!x. $x \in$ carrier $G==>\exists y \in \operatorname{carrier~} G . y \otimes x=1 "$
shows "group G"
proof -
have l_cancel [simp]:
"!!x y z. [| x \in carrier G; y \in carrier $G ; z \in \operatorname{carrier~G~|]~==>~}$ $(x \otimes y=x \otimes z)=(y=z) "$
proof
fix x y z
assume eq: "x $\otimes \mathrm{y}=\mathrm{x} \otimes \mathrm{z}$ "
and $G:$ "x \in carrier $G " \quad " y \in \operatorname{carrier} G " \quad " z \in \operatorname{carrier} G "$
with l_inv_ex obtain x_inv where xG: "x_inv \in carrier $G "$
and $l_{-} i n v: ~ " x _i n v ~ \otimes x=1 "$ by fast
from G eq $x G$ have $"\left(x _i n v ~ \otimes x\right) \otimes y=\left(x _i n v \otimes x\right) \otimes z "$
by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)
next
fix x y z
assume eq: "y = z "
and $G:$ "x \in carrier $G "$ "y \in carrier $G " ~ " z \in c a r r i e r ~ G " ~$ then show " $\mathrm{x} \otimes \mathrm{y}=\mathrm{x} \otimes \mathrm{z}$ " by simp
qed
have $r_{\text {_one: }}$
"!!x. $\mathrm{x} \in$ carrier $\mathrm{G}=\Rightarrow \mathrm{x} \otimes 1=\mathrm{x}$ "
proof -
fix x
assume $x:$ "x \in carrier G "
with l_inv_ex obtain x_inv where $x G: ~ " x _i n v \in c a r r i e r ~ G " ~$ and l_inv: "x_inv $\otimes x=1 "$ by fast
from x xG have "x_inv $\otimes(x \otimes 1)=x _i n v \otimes x^{\prime \prime}$
by (simp add: m_assoc [symmetric] l_inv)
with x xG show $\mathrm{x} \times 1=\mathrm{x}$ " by simp
qed
have inv_ex:
"!!x. $x \in$ carrier $G==>\exists y \in$ carrier $G . y \otimes x=1 \& x \otimes y=1 "$
proof -
fix x
assume $x:$ "x \in carrier $G "$
with l_inv_ex obtain y where $y: ~ " y ~ c a r r i e r ~ G " ~$
and l_inv: "y $\otimes x=1 "$ by fast
from x y have $" y \otimes(x \otimes y)=y \otimes 1 "$
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have $r_{-} i n v: ~ " x \otimes y=1 "$

```
        by simp
    from x y show "\existsy f carrier G. y \otimes x = 1 & x \otimes y = 1"
        by (fast intro: l_inv r_inv)
    qed
    then have carrier_subset_Units: "carrier G <= Units G"
        by (unfold Units_def) fast
    show ?thesis
    by standard (auto simp: r_one m_assoc carrier_subset_Units)
qed
lemma (in monoid) group_l_invI:
    assumes l_inv_ex:
        "!!x. x \in carrier G ==> \existsy \in carrier G. y \otimes x = 1"
    shows "group G"
    by (rule groupI) (auto intro: m_assoc l_inv_ex)
lemma (in group) Units_eq [simp]:
    "Units G = carrier G"
proof
    show "Units G <= carrier G" by fast
next
    show "carrier G <= Units G" by (rule Units)
qed
lemma (in group) inv_closed [intro, simp]:
    "x \in carrier G ==> inv x \in carrier G"
    using Units_inv_closed by simp
lemma (in group) l_inv_ex [simp]:
    "x f carrier G ==> \existsy \in carrier G. y \otimes x = 1"
    using Units_l_inv_ex by simp
lemma (in group) r_inv_ex [simp]:
    "x \in carrier G ==> \existsy f carrier G. x \otimes y = 1"
    using Units_r_inv_ex by simp
lemma (in group) l_inv [simp]:
    "x f carrier G ==> inv x \otimes x = 1"
    using Units_l_inv by simp
```


6.3 Cancellation Laws and Basic Properties

```
lemma (in group) l_cancel [simp]:
```

lemma (in group) l_cancel [simp]:
"[| x \in carrier G; y \in carrier G; z \in carrier G l] ==>
"[| x \in carrier G; y \in carrier G; z \in carrier G l] ==>
(x \otimes y = x \otimes z) = (y = z)"
(x \otimes y = x \otimes z) = (y = z)"
using Units_l_inv by simp
using Units_l_inv by simp
lemma (in group) r_inv [simp]:
lemma (in group) r_inv [simp]:
"x \in carrier G ==> x @ inv x = 1"

```
    "x \in carrier G ==> x @ inv x = 1"
```

```
proof -
    assume x: "x \in carrier G"
    then have "inv x }\otimes(x\otimes\mathrm{ inv x) = inv x }\otimes1
            by (simp add: m_assoc [symmetric])
    with x show ?thesis by (simp del: r_one)
qed
lemma (in group) r_cancel [simp]:
    "[| x \in carrier G; y \in carrier G; z \in carrier G |] ==>
        (y \otimes x = z \otimes x ) = (y = z)"
proof
    assume eq: "y \otimes x = z \otimes x"
            and G: "x \in carrier G" "y \in carrier G" "z \in carrier G"
    then have "y \otimes (x & inv x) = z & (x \otimes inv x)"
            by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
    with G show "y = z" by simp
next
    assume eq: "y = z"
            and G: "x \in carrier G" "y \in carrier G" "z \in carrier G"
    then show "y \otimes x = z \otimes x" by simp
qed
lemma (in group) inv_one [simp]:
    "inv 1 = 1"
proof -
    have "inv 1 = 1 \otimes (inv 1)" by (simp del: r_inv Units_r_inv)
    moreover have "... = 1" by simp
    finally show ?thesis .
qed
lemma (in group) inv_inv [simp]:
    "x \in carrier G ==> inv (inv x) = x"
    using Units_inv_inv by simp
lemma (in group) inv_inj:
    "inj_on (m_inv G) (carrier G)"
    using inv_inj_on_Units by simp
lemma (in group) inv_mult_group:
    "[| x \in carrier G; y \in carrier G |] ==> inv (x \otimes y) = inv y \otimes inv x"
proof -
    assume G: "x \in carrier G" "y \in carrier G"
    then have "inv (x & y) \otimes (x & y) = (inv y \otimes inv x) \otimes (x & y)"
            by (simp add: m_assoc) (simp add: m_assoc [symmetric])
    with G show ?thesis by (simp del: l_inv Units_l_inv)
qed
lemma (in group) inv_comm:
    "[| x \otimes y = 1; x \in carrier G; y \in carrier G |] ==> y \otimes x = 1"
```

```
    by (rule Units_inv_comm) auto
lemma (in group) inv_equality:
    "[ly \otimes x = 1; x \in carrier G; y \in carrier Gl] ==> inv x = y"
apply (simp add: m_inv_def)
apply (rule the_equality)
    apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done
lemma (in group) inv_solve_left:
    "\llbracketa c carrier G; b \in carrier G; c \in carrier G | \Longrightarrow a = inv b \otimes c
c = b \otimes a"
    by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
lemma (in group) inv_solve_right:
    "\llbracketa \in carrier G; b \in carrier G; c \in carrier G \rrbracket \Longrightarrow a = b \otimes inv c
\longleftrightarrow b = a \otimes c"
    by (metis inv_equality l_inv_ex l_one m_assoc r_inv)
Power
lemma (in group) int_pow_def2:
    "a (^) (z::int) = (if z < O then inv (a (^) (nat (-z))) else a (^) (nat
z))"
    by (simp add: int_pow_def nat_pow_def Let_def)
lemma (in group) int_pow_0 [simp]:
    "x (^) (0::int) = 1"
    by (simp add: int_pow_def2)
lemma (in group) int_pow_one [simp]:
    "1 (^) (z::int) = 1"
    by (simp add: int_pow_def2)
lemma (in group) int_pow_closed [intro, simp]:
    "x \in carrier G ==> x (^) (i::int) \in carrier G"
    by (simp add: int_pow_def2)
lemma (in group) int_pow_1 [simp]:
    "x \in carrier G \Longrightarrow x (~) (1::int) = x"
    by (simp add: int_pow_def2)
lemma (in group) int_pow_neg:
    "x \in carrier G \Longrightarrow x (^) (-i::int) = inv (x (^) i)"
    by (simp add: int_pow_def2)
lemma (in group) int_pow_mult:
```

```
    "x carrier G \Longrightarrow x (^) (i + j::int) = x (^) i \otimes x (^) j"
proof -
    have [simp]: "-i - j = -j - i" by simp
    assume "x : carrier G" then
    show ?thesis
        by (auto simp add: int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib
[symmetric] nat_pow_mult )
qed
lemma (in group) int_pow_diff:
    "x \in carrier G \Longrightarrow x (^) (n - m :: int) = x (^) n \otimes inv (x (^) m)"
by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg)
lemma (in group) inj_on_multc: "c \in carrier G \Longrightarrow inj_on ( }\lambda\textrm{x}.\textrm{x}\otimes\textrm{c
(carrier G)"
by(simp add: inj_on_def)
lemma (in group) inj_on_cmult: "c \in carrier G \Longrightarrow inj_on ( }\lambda\textrm{x}.\textrm{c}\otimes\textrm{c}\otimes\textrm{x}
(carrier G)"
by(simp add: inj_on_def)
```


6.4 Subgroups

```
locale subgroup =
fixes H and G (structure)
assumes subset: "H \(\subseteq\) carrier G"
and m_closed [intro, simp]: " \(\llbracket x \in H ; y \in H \rrbracket \Longrightarrow x \otimes y \in H "\) and one_closed [simp]: "1 \(\in \mathrm{H} "\) and m_inv_closed [intro,simp]: "x \(\in H \Longrightarrow\) inv \(x \in H "\)
lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)
declare (in subgroup) group.intro [intro]
lemma (in subgroup) mem_carrier [simp]:
" \(x \in H \Longrightarrow x \in\) carrier \(G "\)
using subset by blast
lemma subgroup_imp_subset:
"subgroup \(H \mathrm{G} \Longrightarrow \mathrm{H} \subseteq\) carrier G "
by (rule subgroup.subset)
lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows \("\) group (G(carrier := H|))"
proof -
interpret group G by fact
show ?thesis
```

```
    apply (rule monoid.group_l_invI)
    apply (unfold_locales) [1]
    apply (auto intro: m_assoc l_inv mem_carrier)
    done
qed
```

Since H is nonempty, it contains some element x. Since it is closed under inverse, it contains inv x. Since it is closed under product, it contains $x \otimes$ inv $\mathrm{x}=1$.
lemma (in group) one_in_subset:
" [| $\mathrm{H} \subseteq$ carrier $\mathrm{G} ; \mathrm{H} \neq\{ \} ; \forall \mathrm{a} \in \mathrm{H}$. inv $\mathrm{a} \in \mathrm{H} ; \forall \mathrm{a} \in \mathrm{H} . \forall \mathrm{b} \in \mathrm{H} . \mathrm{a} \otimes \mathrm{b}$ $\in \mathrm{H}$ I]

$$
=\Rightarrow 1 \in H^{\prime \prime}
$$

by force
A characterization of subgroups: closed, non-empty subset.

```
lemma (in group) subgroupI:
    assumes subset: "H \subseteq carrier G" and non_empty: "H \not= {}"
        and inv: "!!a. a }\inH\LongrightarrowH inv a \in H"
        and mult: "!!a b. \llbracketa }\in\textrm{H};\textrm{b}\in\textrm{H}|\Longrightarrow\textrm{a}\otimes\textrm{b}\in\mp@subsup{\textrm{H}}{}{\prime
    shows "subgroup H G"
proof (simp add: subgroup_def assms)
    show "1 \in H" by (rule one_in_subset) (auto simp only: assms)
qed
declare monoid.one_closed [iff] group.inv_closed [simp]
    monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
    "~ subgroup {} G"
    by (blast dest: subgroup.one_closed)
```

lemma (in subgroup) finite_imp_card_positive:
"finite (carrier G) ==> 0 < card H"
proof (rule classical)
assume "finite (carrier G)" and a: "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with is_subgroup a have "subgroup \{\} G" by simp
with subgroup_nonempty show ?thesis by contradiction
qed

6.5 Direct Products

definition

```
    DirProd :: "_ # _ # ('a }\times\mathrm{ 'b) monoid" (infixr " }\times\times\mathrm{ " 80) where
    "G }\times\times\timesH
        \carrier = carrier G }\times\mathrm{ carrier H,
        mult = ( }\lambda(\textrm{g},\textrm{h})(\textrm{g},\textrm{h}').(g\mp@subsup{\otimes}{\textrm{G}}{\prime}\mp@subsup{g}{}{\prime},\textrm{h}\mp@subsup{\otimes}{\textrm{H}}{\prime}\mp@subsup{h}{}{\prime}))
        one = (1 ( },\mp@subsup{1}{H}{\prime})|
```

```
lemma DirProd_monoid:
    assumes "monoid G" and "monoid H"
    shows "monoid (G }\times\times\mathrm{ H)"
proof -
    interpret G: monoid G by fact
    interpret H: monoid H by fact
    from assms
    show ?thesis by (unfold monoid_def DirProd_def, auto)
qed
```

Does not use the previous result because it's easier just to use auto.
lemma DirProd_group:
assumes "group G" and "group H"
shows "group ($\mathrm{G} \times \times \mathrm{H}$)"
proof -
interpret G: group G by fact
interpret H : group H by fact
show ?thesis by (rule groupI)
(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)
qed
lemma carrier_DirProd [simp]:
"carrier ($\mathrm{G} \times \times \mathrm{H}$) $=$ carrier $\mathrm{G} \times$ carrier H^{\prime}
by (simp add: DirProd_def)
lemma one_DirProd [simp]:
$" 1_{G} \times{ }_{H}=\left(\mathbf{1}_{G}, 1_{H}\right) "$
by (simp add: DirProd_def)
lemma mult_DirProd [simp]:
$\left."(\mathrm{~g}, \mathrm{~h}) \otimes_{(\mathrm{G}} \times \times \mathrm{H}\right)(\mathrm{g}, \mathrm{h})=\left(\mathrm{g} \otimes_{\mathrm{G}} \mathrm{g}^{\prime}, \mathrm{h} \otimes_{\mathrm{H}} \mathrm{h}^{\prime}\right) "$
by (simp add: DirProd_def)
lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes $\mathrm{g}: ~ " \mathrm{~g} \in$ carrier $\mathrm{G} "$
and h : " $h \in$ carrier H "
shows "m_inv (G $\times \times \mathrm{H}$) $(\mathrm{g}, \mathrm{h})=\left(\operatorname{inv}_{\mathrm{G}} \mathrm{g}\right.$, $\left.\operatorname{inv}_{\mathrm{H}} \mathrm{h}\right)$ "
proof -
interpret G: group G by fact
interpret H : group H by fact
interpret Prod: group "G $\times \times \mathrm{H}$ "
by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed

6.6 Homomorphisms and Isomorphisms

definition

```
    hom :: "_ => _ => ('a => 'b) set" where
    "hom G H =
        {h. h \in carrier G }->\mathrm{ carrier H &
```


lemma (in group) hom_compose:

by (fastforce simp add: hom_def compose_def)

definition

 iso :: "_ => _ => ('a => 'b) set" (infixr "ミ" 60)
 where \(" \mathrm{G} \cong \mathrm{H}=\left\{\mathrm{h} . \mathrm{h} \in\right.\) hom \(G \mathrm{H} \&\) bij_betw \(^{\mathrm{h}}\) (carrier G) (carrier H) \}"
 lemma iso_refl: " (\%x. x) $\in G \cong G "$
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma (in group) iso_sym:
"h $\in G \cong H \Longrightarrow$ inv_into (carrier G) $h \in H \cong G "$
apply (simp add: iso_def bij_betw_inv_into)
apply (subgoal_tac "inv_into (carrier G) h \in carrier H \rightarrow carrier G")
prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_inv_into])
apply (simp add: hom_def bij_betw_def inv_into_f_eq f_inv_into_f Pi_def)
done
lemma (in group) iso_trans:
" $[|\mathrm{h} \in \mathrm{G} \cong \mathrm{H} ; \mathrm{i} \in \mathrm{H} \cong \mathrm{I}|]=\Rightarrow$ (compose (carrier G) i h) $\in \mathrm{G} \cong \mathrm{I} "$
by (auto simp add: iso_def hom_compose bij_betw_compose)
lemma DirProd_commute_iso:
shows $"(\lambda(x, y) .(y, x)) \in(G \times x H) \cong(H \times \times G) "$
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma DirProd_assoc_iso:
shows " $(\lambda(x, y, z) .(x,(y, z))) \in(G \times \times H \times \times I) \cong(G \times \times(H \times \times I)) "$
by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

Basis for homomorphism proofs: we assume two groups G and H, with a homomorphism h between them
locale group_hom $=$ G?: group G + H?: group H for G (structure) and H (structure) +
fixes h
assumes homh: "h \in hom G H"
lemma (in group_hom) hom_mult [simp]:
" $[|\mathrm{x} \in \operatorname{carrier} \mathrm{G} ; \mathrm{y} \in \operatorname{carrier} \mathrm{G}|]==>h\left(\mathrm{x} \otimes_{\mathrm{G}} \mathrm{y}\right)=\mathrm{h} x \otimes_{\mathrm{H}} \mathrm{h} y "$

```
proof -
    assume "x \in carrier G" "y \in carrier G"
    with homh [unfolded hom_def] show ?thesis by simp
qed
lemma (in group_hom) hom_closed [simp]:
    "x \in carrier G ==> h x \in carrier H"
proof -
    assume "x \in carrier G"
    with homh [unfolded hom_def] show ?thesis by auto
qed
lemma (in group_hom) one_closed [simp]:
    "h 1 carrier H"
    by simp
lemma (in group_hom) hom_one [simp]:
    "h 1 = 1H"
proof -
    have "h 1 \otimes # 1 1 H = h 1 \otimes H h 1"
        by (simp add: hom_mult [symmetric] del: hom_mult)
    then show ?thesis by (simp del: r_one)
qed
lemma (in group_hom) inv_closed [simp]:
    "x \in carrier G ==> h (inv x) \in carrier H"
    by simp
lemma (in group_hom) hom_inv [simp]:
    "x f carrier G ==> h (inv x) = invH (h x)"
proof -
    assume x: "x \in carrier G"
    then have "h x * H h (inv x) = 1H"
        by (simp add: hom_mult [symmetric] del: hom_mult)
    also from x have "... = h x * # invH (h x)"
            by (simp add: hom_mult [symmetric] del: hom_mult)
```



```
    with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed
lemma (in group) int_pow_is_hom:
    "x \in carrier G \Longrightarrow (op(^) x) \in hom \ carrier = UNIV, mult = op +, one
= 0::int D G "
    unfolding hom_def by (simp add: int_pow_mult)
```


6.7 Commutative Structures

Naming convention: multiplicative structures that are commutative are called commutative, additive structures are called Abelian.
locale comm_monoid = monoid +
assumes m_comm: " $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in \operatorname{carrier} \mathrm{G} \rrbracket \Longrightarrow \mathrm{x} \otimes \mathrm{y}=\mathrm{y} \otimes \mathrm{x}$ "
lemma (in comm_monoid) m_lcomm:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} ; \mathrm{z} \in$ carrier $\mathrm{G} \rrbracket \Longrightarrow$ $x \otimes(y \otimes z)=y \otimes(x \otimes z) "$
proof -
assume xyz: "x \in carrier $G " ~ " y \in c a r r i e r ~ G " ~ " z \in c a r r i e r ~ G " ~$
from xyz have $" x \otimes(y \otimes z)=(x \otimes y) \otimes z^{\prime \prime}$ by (simp add: m_assoc)
also from xyz have $" . .=(y \otimes x) \otimes z "$ by (simp add: m_comm)
also from xyz have $" . . .=y \otimes(x \otimes z) "$ by (simp add: m_assoc)
finally show ?thesis .
qed
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x \in carrier $G ; y \in$ carrier $G \mid]=\Rightarrow x \otimes y \in c a r r i e r$
G"
and one_closed: "1 \in carrier G"
and m_assoc:
"!!x y z. [| x \in carrier $G ; y \in \operatorname{carrier} G ; z \in \operatorname{carrier} G \mid]==>$
$(x \otimes y) \otimes z=x \otimes(y \otimes z) "$
and l_one: "!!x. $x \in$ carrier $G==>1 \otimes x=x "$
and m_comm:
"!!x y. [l x \in carrier $G ; y \in \operatorname{carrier~} G 1]==>x \otimes y=y \otimes x "$
shows "comm_monoid G"
using l_one
by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
intro: assms simp: m_closed one_closed m_comm)
lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"!!x y. [| x \in carrier $G ; y \in$ carrier $G \mid]==>x \otimes y=y \otimes x "$
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)
lemma (in comm_monoid) nat_pow_distr:
" [| x \in carrier $G ; y \in$ carrier $G \mid]==>$
$(x \otimes y)\left({ }^{\prime}\right)(n:: n a t)=x(\wedge) n \otimes y(\wedge) n "$

```
    by (induct n) (simp, simp add: m_ac)
locale comm_group = comm_monoid + group
lemma (in group) group_comm_groupI:
    assumes m_comm: "!!x y. [| x \in carrier G; y \in carrier G |] ==>
        x \otimes y = y \otimes x"
    shows "comm_group G"
    by standard (simp_all add: m_comm)
lemma comm_groupI:
    fixes G (structure)
    assumes m_closed:
        "!!x y. [| x \in carrier G; y \in carrier G |] ==> x \otimes y \in carrier
G"
            and one_closed: "1 \in carrier G"
            and m_assoc:
                "!!x y z. [| x \in carrier G; y \in carrier G; z \in carrier G |] ==>
                (x \otimes y) \otimes z = x \otimes (y \otimes z)"
            and m_comm:
            "!!x y. [| x \in carrier G; y \in carrier G l] ==> x \otimes y = y \otimes x"
            and l_one: "!!x. x \in carrier G ==> 1 & x = x"
            and l_inv_ex: "!!x. x \in carrier G ==> \existsy \in carrier G. y \otimes x = 1"
    shows "comm_group G"
    by (fast intro: group.group_comm_groupI groupI assms)
lemma (in comm_group) inv_mult:
    "[| x \in carrier G; y \in carrier G |] ==> inv (x \otimes y) = inv x \otimes inv y"
    by (simp add: m_ac inv_mult_group)
```


6.8 The Lattice of Subgroups of a Group

```
theorem (in group) subgroups_partial_order:
"partial_order (carrier = \{H. subgroup H G\}, eq = op =, le =op \(\subseteq\) )"
by standard simp_all
lemma (in group) subgroup_self:
"subgroup (carrier G) G"
by (rule subgroupI) auto
lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G(|carrier := H|))"
by (erule subgroup.subgroup_is_group) (rule group_axioms)
lemma (in group) is_monoid [intro, simp]:
"monoid G"
by (auto intro: monoid.intro m_assoc)
lemma (in group) subgroup_inv_equality:
```

```
    "[| subgroup H G; x G H |] ==> m_inv (G (carrier := H|) x = inv x"
apply (rule_tac inv_equality [THEN sym])
    apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
    apply (rule subsetD [OF subgroup.subset], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption)
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified],
assumption+)
done
theorem (in group) subgroups_Inter:
    assumes subgr: "(!!H. H \in A ==> subgroup H G)"
        and not_empty: "A ~= {}"
    shows "subgroup (\bigcapA) G"
proof (rule subgroupI)
    from subgr [THEN subgroup.subset] and not_empty
    show "\bigcapA \subseteq carrier G" by blast
next
    from subgr [THEN subgroup.one_closed]
    show "\capA ~= {}" by blast
next
    fix x assume "x \in\bigcapA"
    with subgr [THEN subgroup.m_inv_closed]
    show "inv x \in \bigcapA" by blast
next
    fix x y assume "x }\in\bigcap\A" "y \in\bigcapA
    with subgr [THEN subgroup.m_closed]
    show "x \otimes y \in\bigcapA" by blast
qed
theorem (in group) subgroups_complete_lattice:
    "complete_lattice (carrier = {H. subgroup H G}, eq = op =, le = op \subseteq|)"
        (is "complete_lattice ?L")
proof (rule partial_order.complete_lattice_criterion1)
    show "partial_order ?L" by (rule subgroups_partial_order)
next
    have "greatest ?L (carrier G) (carrier ?L)"
        by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
    then show "\existsG. greatest ?L G (carrier ?L)" ..
next
    fix A
    assume L: "A \subseteq carrier ?L" and non_empty: "A ~= {}"
    then have Int_subgroup: "subgroup (\bigcapA) G"
        by (fastforce intro: subgroups_Inter)
    have "greatest ?L (\bigcapA) (Lower ?L A)" (is "greatest _ ?Int _")
    proof (rule greatest_LowerI)
        fix H
        assume H: "H \in A"
        with L have subgroupH: "subgroup H G" by auto
        from subgroupH have groupH: "group (G (carrier := H|))" (is "group
```

```
?H")
            by (rule subgroup_imp_group)
    from groupH have monoidH: "monoid ?H"
        by (rule group.is_monoid)
    from H have Int_subset: "?Int \subseteq H" by fastforce
    then show "le ?L ?Int H" by simp
    next
        fix H
        assume H: "H \in Lower ?L A"
        with L Int_subgroup show "le ?L H ?Int"
            by (fastforce simp: Lower_def intro: Inter_greatest)
    next
        show "A \subseteq carrier ?L" by (rule L)
    next
        show "?Int \in carrier ?L" by simp (rule Int_subgroup)
    qed
    then show "\existsI. greatest ?L I (Lower ?L A)" ..
qed
end
```

theory FiniteProduct
imports Group
begin

6.9 Product Operator for Commutative Monoids

6.9.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here we have explicit typing rules like $\mathrm{x} \in$ carrier G . We introduce an explicit argument for the domain D.

```
inductive_set
    foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
    for D :: "'a set" and f :: "'b => 'a => 'a" and e :: 'a
    where
        emptyI [intro]: "e \in D ==> ({}, e) \in foldSetD D f e"
    | insertI [intro]: "[l x ~: A; f x y \in D; (A, y) \in foldSetD D f e |]
==>
                            (insert x A, f x y) \in foldSetD D f e"
inductive_cases empty_foldSetDE [elim!]: "({}, x) \in foldSetD D f e"
definition
    foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a"
    where "foldD D f e A = (THE x. (A, x) f foldSetD D f e)"
lemma foldSetD_closed:
```

```
    "[| (A, z) \in foldSetD D f e ; e \in D; !!x y. [| x \in A; y \in D |] ==>
f x y G D
            |] ==> z \in D"
    by (erule foldSetD.cases) auto
lemma Diff1_foldSetD:
    "[| (A - {x}, y) f foldSetD D f e; x \in A; f x y \in D |] ==>
            (A, f x y) \in foldSetD D f e"
    apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
            apply auto
    done
lemma foldSetD_imp_finite [simp]: "(A, x) \in foldSetD D f e ==> finite
A"
    by (induct set: foldSetD) auto
lemma finite_imp_foldSetD:
    "[| finite A; e \in D; !!x y. [| x \in A; y \in D |] ==> f x y \in D |] ==>
    EX x. (A, x) \in foldSetD D f e"
proof (induct set: finite)
    case empty then show ?case by auto
next
    case (insert x F)
    then obtain y where y: "(F, y) \in foldSetD D f e" by auto
    with insert have "y \in D" by (auto dest: foldSetD_closed)
    with y and insert have "(insert x F, f x y) \in foldSetD D f e"
        by (intro foldSetD.intros) auto
    then show ?case ..
qed
Left-Commutative Operations
locale LCD =
    fixes B :: "'b set"
    and D :: "'a set"
    and f :: "'b => 'a => 'a" (infixl "." 70)
    assumes left_commute:
        "[| x G B; y G B; z \in D |] ==> x · (y . z) = y . (x · z)"
    and f_closed [simp, intro!]: "!!x y. [| x \in B; y \in D |] ==> f x y \in
D"
lemma (in LCD) foldSetD_closed [dest]:
    "(A, z) \in foldSetD D f e ==> z \in D"
    by (erule foldSetD.cases) auto
lemma (in LCD) Diff1_foldSetD:
    "[l (A - {x}, y) \in foldSetD D f e; x \in A; A \subseteq B |] ==>
    (A, f x y) G foldSetD D f e"
    apply (subgoal_tac "x \in B")
        prefer 2 apply fast
```

```
    apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
        apply auto
    done
lemma (in LCD) foldSetD_imp_finite [simp]:
    "(A, x) \in foldSetD D f e ==> finite A"
    by (induct set: foldSetD) auto
lemma (in LCD) finite_imp_foldSetD:
    "[l finite A; A \subseteq B; e \in D |] ==> EX x. (A, x) \in foldSetD D f e"
proof (induct set: finite)
    case empty then show ?case by auto
next
    case (insert x F)
    then obtain y where y: "(F, y) \in foldSetD D f e" by auto
    with insert have "y \in D" by auto
    with y and insert have "(insert x F, f x y) f foldSetD D f e"
        by (intro foldSetD.intros) auto
    then show ?case ..
qed
lemma (in LCD) foldSetD_determ_aux:
    "e \in D ==> \forallA x. A \subseteq B & card A < n --> (A, x) \in foldSetD D f e -->
        (\forally. (A, y) \in foldSetD D f e --> y = x)"
    apply (induct n)
        apply (auto simp add: less_Suc_eq)
    apply (erule foldSetD.cases)
        apply blast
    apply (erule foldSetD.cases)
        apply blast
    apply clarify
force simplification of card A < card (insert ...).
    apply (erule rev_mp)
    apply (simp add: less_Suc_eq_le)
    apply (rule impI)
    apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb")
        apply (subgoal_tac "Aa = Ab")
        prefer 2 apply (blast elim!: equalityE)
        apply blast
case xa & xb.
    apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb \in Aa & xa \in Ab")
        prefer 2 apply (blast elim!: equalityE)
    apply clarify
    apply (subgoal_tac "Aa = insert xb Ab - {xa}")
    prefer 2 apply blast
    apply (subgoal_tac "card Aa \leq card Ab")
        prefer 2
```

```
    apply (rule Suc_le_mono [THEN subst])
    apply (simp add: card_Suc_Diff1)
    apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
        apply (blast intro: foldSetD_imp_finite)
        apply best
    apply assumption
    apply (frule (1) Diff1_foldSetD)
    apply best
    apply (subgoal_tac "ya = f xb x")
    prefer 2
    apply (subgoal_tac "Aa \subseteq B")
        prefer 2 apply best
    apply (blast del: equalityCE)
    apply (subgoal_tac "(Ab - {xa}, x) \in foldSetD D f e")
    prefer 2 apply simp
    apply (subgoal_tac "yb = f xa x")
    prefer 2
    apply (blast del: equalityCE dest: Diff1_foldSetD)
    apply (simp (no_asm_simp))
    apply (rule left_commute)
        apply assumption
        apply best
    apply best
    done
lemma (in LCD) foldSetD_determ:
    "[l (A, x) G foldSetD D f e; (A, y) \in foldSetD D f e; e \in D; A \subseteq B
|]
    ==> y = x"
    by (blast intro: foldSetD_determ_aux [rule_format])
lemma (in LCD) foldD_equality:
    "[l (A, y) G foldSetD D f e; e \in D; A \subseteq B I] ==> foldD D f e A = y"
    by (unfold foldD_def) (blast intro: foldSetD_determ)
lemma foldD_empty [simp]:
    "e \in D ==> foldD D f e {} = e"
    by (unfold foldD_def) blast
lemma (in LCD) foldD_insert_aux:
    "[| x ~ : A; x G B; e \in D; A \subseteq B |] ==>
        ((insert x A, v) \in foldSetD D f e) =
        (EX y. (A, y) G foldSetD D f e & v = f x y)"
    apply auto
    apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])
        apply (fastforce dest: foldSetD_imp_finite)
        apply assumption
        apply assumption
    apply (blast intro: foldSetD_determ)
```

done
lemma (in LCD) foldD_insert:

```
    "[| finite A; x ~ : A; x \in B; e \in D; A \subseteq B |] ==>
    foldD D f e (insert x A) = f x (foldD D f e A)"
    apply (unfold foldD_def)
    apply (simp add: foldD_insert_aux)
    apply (rule the_equality)
    apply (auto intro: finite_imp_foldSetD
        cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)
    done
lemma (in LCD) foldD_closed [simp]:
    "[| finite A; e \in D; A \subseteq B |] ==> foldD D f e A \in D"
proof (induct set: finite)
    case empty then show ?case by simp
next
    case insert then show ?case by (simp add: foldD_insert)
qed
lemma (in LCD) foldD_commute:
    "[l finite A; x \in B; e \in D; A \subseteq B |] ==>
        f x (foldD D f e A) = foldD D f (f x e) A"
    apply (induct set: finite)
        apply simp
    apply (auto simp add: left_commute foldD_insert)
    done
lemma Int_mono2:
    "[| A \subseteqC; B \subseteqC |] ==> A Int B \subseteqC"
    by blast
lemma (in LCD) foldD_nest_Un_Int:
    "[| finite A; finite C; e \in D; A \subseteq B; C \subseteq B |] ==>
    foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A
Un C)"
    apply (induct set: finite)
    apply simp
    apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
        Int_mono2)
    done
lemma (in LCD) foldD_nest_Un_disjoint:
    "[| finite A; finite B; A Int B = {}; e \in D; A \subseteq B; C \subseteq B |]
        ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
    by (simp add: foldD_nest_Un_Int)
- Delete rules to do with foldSetD relation.
```

```
declare foldSetD_imp_finite [simp del]
    empty_foldSetDE [rule del]
    foldSetD.intros [rule del]
declare (in LCD)
    foldSetD_closed [rule del]
```

Commutative Monoids
We enter a more restrictive context, with $\mathrm{f}:$: ' $\mathrm{a}=>$ ' a => 'a instead of 'b => 'a => 'a.
locale $\mathrm{ACeD}=$
fixes D :: "'a set" and f :: "'a => 'a => 'a" (infixl "." 70) and e :: 'a
assumes ident [simp]: "x $\in D$ ==> $x \cdot e=x "$ and commute: " $[|\mathrm{x} \in \mathrm{D} ; \mathrm{y} \in \mathrm{D}|]==>\mathrm{x} \cdot \mathrm{y}=\mathrm{y} \cdot \mathrm{x} "$ and assoc: " $[|\mathrm{x} \in \mathrm{D} ; \mathrm{y} \in \mathrm{D} ; \mathrm{z} \in \mathrm{D}|]==>(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}=\mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z}) "$ and e_closed [simp]: "e \in D" and f_closed [simp]: " [| x $\in \mathrm{D} ; \mathrm{y} \in \mathrm{D} \mid]==>\mathrm{x} \cdot \mathrm{y} \in \mathrm{D} "$
lemma (in ACeD) left_commute:
" $[|\mathrm{x} \in \mathrm{D} ; \mathrm{y} \in \mathrm{D} ; \mathrm{z} \in \mathrm{D}|]==>\mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})=\mathrm{y} \cdot(\mathrm{x} \cdot \mathrm{z}) "$
proof -
assume $D: ~ " x \in D " ~ " y \in D " ~ " z \in D "$
then have "x $\cdot(y \cdot z)=(y \cdot z) \cdot x "$ by (simp add: commute)
also from D have $" . . .=y \cdot(z \cdot x) "$ by (simp add: assoc)
also from D have $" z \cdot x=x \cdot z$ " by (simp add: commute)
finally show ?thesis .
qed
lemmas (in ACeD) $\mathrm{AC}=$ assoc commute left_commute
lemma (in ACeD) left_ident [simp]: "x $\in D==>e \cdot x=x "$
proof -
assume " $x \in D "$
then have "x • e $=x$ " by (rule ident)
with $\langle\mathrm{x} \in \mathrm{D}\rangle$ show ?thesis by (simp add: commute)
qed
lemma (in ACeD) foldD_Un_Int:
" [| finite A; finite $\mathrm{B} ; \mathrm{A} \subseteq \mathrm{D} ; \mathrm{B} \subseteq \mathrm{D}$ |] ==> foldD D f e A f foldD D f e B = foldD D f e (A Un B) . foldD D f e (A Int B)"
apply (induct set: finite)
apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])
apply (simp add: AC insert_absorb Int_insert_left LCD.foldD_insert [OF LCD.intro [of D]] LCD.foldD_closed [OF LCD.intro [of D]] Int_mono2)
done
lemma (in ACeD) foldD_Un_disjoint:
" [| finite $A ;$ finite $B ; A$ Int $B=\{ \} ; A \subseteq D ; B \subseteq D \mid]==>$ foldD D f e (A Un B) = foldD D f e A • foldD D f e B"
by (simp add: foldD_Un_Int
left_commute LCD.foldD_closed [OF LCD.intro [of D]])

6.9.2 Products over Finite Sets

```
definition
    finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
    where "finprod G f A =
        (if finite A
            then foldD (carrier G) (mult G o f) 1 1 ( A
            else 1G)"
syntax
    "_finprod" :: "index => idt => 'a set => 'b => 'b"
            ("(3\otimes__\in_. _)" [1000, 0, 51, 10] 10)
translations
    "\bigotimes}\mp@subsup{G}{\textrm{G}}{\textrm{i}\in\textrm{A}. b" \rightleftharpoons "CONST finprod G (%i. b) A"
    - Beware of argument permutation!
lemma (in comm_monoid) finprod_empty [simp]:
    "finprod G f {} = 1"
    by (simp add: finprod_def)
lemma (in comm_monoid) finprod_infinite[simp]:
    "\neg finite A \Longrightarrow finprod G f A = 1"
    by (simp add: finprod_def)
declare funcsetI [intro]
    funcset_mem [dest]
context comm_monoid begin
lemma finprod_insert [simp]:
    "[| finite F; a & F; f \in F -> carrier G; f a \in carrier G |] ==>
        finprod G f (insert a F) = f a \otimes finprod G f F"
    apply (rule trans)
        apply (simp add: finprod_def)
    apply (rule trans)
        apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])
            apply simp
            apply (rule m_lcomm)
                apply fast
                apply fast
                apply assumption
```

```
            apply fastforce
            apply simp+
    apply fast
    apply (auto simp add: finprod_def)
    done
lemma finprod_one [simp]: "(@i\inA. 1) = 1"
proof (induct A rule: infinite_finite_induct)
    case empty show ?case by simp
next
    case (insert a A)
    have "(%i. 1) \in A }->\mathrm{ carrier G" by auto
    with insert show ?case by simp
qed simp
lemma finprod_closed [simp]:
    fixes A
    assumes f: "f \in A -> carrier G"
    shows "finprod G f A \in carrier G"
using f
proof (induct A rule: infinite_finite_induct)
    case empty show ?case by simp
next
    case (insert a A)
    then have a: "f a \in carrier G" by fast
    from insert have A: "f \in A -> carrier G" by fast
    from insert A a show ?case by simp
qed simp
lemma funcset_Int_left [simp, intro]:
    "[|f f A C C; f \in B C C |] ==> f \in A Int B C C"
    by fast
lemma funcset_Un_left [iff]:
    "(f \inA Un B }->\textrm{C})=(f\inA->C&f\inB->C)
    by fast
lemma finprod_Un_Int:
    "[l finite A; finite B; g \in A -> carrier G; g G B }->\mathrm{ carrier G |] ==>
        finprod G g (A Un B) \otimes finprod G g (A Int B) =
        finprod G g A \otimes finprod G g B"
- The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)
    case empty then show ?case by simp
next
    case (insert a A)
    then have a: "g a \in carrier G" by fast
    from insert have A: "g \in A -> carrier G" by fast
    from insert A a show ?case
```

```
    by (simp add: m_ac Int_insert_left insert_absorb Int_mono2)
qed
lemma finprod_Un_disjoint:
    "[l finite A; finite B; A Int B = {};
        g \in A }->\mathrm{ carrier G; g }\in\textrm{B}->\mathrm{ carrier G l]
        =>> finprod G g (A Un B) = finprod G g A \otimes finprod G g B"
    apply (subst finprod_Un_Int [symmetric])
            apply auto
    done
lemma finprod_multf:
    "[| f \in A -> carrier G; g \in A -> carrier G |] ==>
        finprod G (%x. f x \otimes g x) A = (finprod G f A \otimes finprod G g A)"
proof (induct A rule: infinite_finite_induct)
    case empty show ?case by simp
next
    case (insert a A) then
    have fA: "f \inA -> carrier G" by fast
    from insert have fa: "f a \in carrier G" by fast
    from insert have gA: "g \in A }->\mathrm{ carrier G" by fast
    from insert have ga: "g a \in carrier G" by fast
    from insert have fgA: "(%x. f x \otimes g x) \in A -> carrier G"
        by (simp add: Pi_def)
    show ?case
        by (simp add: insert fA fa gA ga fgA m_ac)
qed simp
lemma finprod_cong':
    "[| A = B; g \in B }->\mathrm{ carrier G;
            !!i. i \in B ==> f i = g i l] ==> finprod G f A = finprod G g B"
proof -
    assume prems: "A = B" "g f B -> carrier G"
        "!!i. i \in B ==> f i = g i"
    show ?thesis
    proof (cases "finite B")
        case True
        then have "!!A. [| A = B; g \in B -> carrier G;
            !!i. i \in B ==> f i = g i l] ==> finprod G f A = finprod G g B"
            proof induct
            case empty thus ?case by simp
            next
                case (insert x B)
            then have "finprod G f A = finprod G f (insert x B)" by simp
            also from insert have "... = f x & finprod G f B"
            proof (intro finprod_insert)
                show "finite B" by fact
            next
                show "x ~ : B" by fact
```

```
            next
                    assume "x ~ : B" "!!i. i G insert x B \Longrightarrow f i = g i"
                    "g \in insert x B }->\mathrm{ carrier G"
                    thus "f \in B -> carrier G" by fastforce
            next
                    assume "x ~ : B" "!!i. i \in insert x B \Longrightarrow f i = g i"
                    "g \in insert x B }->\mathrm{ carrier G"
                    thus "f x \in carrier G" by fastforce
            qed
            also from insert have "... = g x & finprod G g B" by fastforce
            also from insert have "... = finprod G g (insert x B)"
            by (intro finprod_insert [THEN sym]) auto
            finally show ?case .
        qed
        with prems show ?thesis by simp
    next
        case False with prems show ?thesis by simp
    qed
qed
lemma finprod_cong:
    "[l A = B; f \in B -> carrier G = True;
        !!i. i }\inB=\mathrm{ simp=> f i = g i l] ==> finprod G f A = finprod G g
B"
    by (rule finprod_cong') (auto simp add: simp_implies_def)
```

Usually, if this rule causes a failed congruence proof error, the reason is that the premise $\mathrm{g} \in \mathrm{B} \rightarrow$ carrier G cannot be shown. Adding Pi_def to the simpset is often useful. For this reason, finprod_cong is not added to the simpset by default.
end

```
declare funcsetI [rule del]
    funcset_mem [rule del]
context comm_monoid begin
lemma finprod_0 [simp]:
    "f \in {0::nat} -> carrier G ==> finprod G f {..0} = f 0"
by (simp add: Pi_def)
lemma finprod_Suc [simp]:
    "f \in {..Suc n} -> carrier G ==>
        finprod G f {..Suc n} = (f (Suc n) \otimes finprod G f {..n})"
by (simp add: Pi_def atMost_Suc)
lemma finprod_Suc2:
    "f \in {..Suc n} }->\mathrm{ carrier G ==>
```

```
    finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \otimes f 0)"
proof (induct n)
    case O thus ?case by (simp add: Pi_def)
next
    case Suc thus ?case by (simp add: m_assoc Pi_def)
qed
lemma finprod_mult [simp]:
    "[| f \in {..n} -> carrier G; g \in {..n} -> carrier G |] ==>
        finprod G (%i. f i \otimesg i) {..n::nat} =
        finprod G f {..n} \otimes finprod G g {..n}"
    by (induct n) (simp_all add: m_ac Pi_def)
lemma finprod_reindex:
    "f : (h ' A) -> carrier G \Longrightarrow
        inj_on h A ==> finprod G f (h ' A) = finprod G (%x. f (h x)) A"
proof (induct A rule: infinite_finite_induct)
    case (infinite A)
    hence "\neg finite (h ' A)"
        using finite_imageD by blast
    with «\neg finite A` show ?case by simp
qed (auto simp add: Pi_def)
lemma finprod_const:
    assumes a [simp]: "a : carrier G"
        shows "finprod G (%x. a) A = a (^) card A"
proof (induct A rule: infinite_finite_induct)
    case (insert b A)
    show ?case
    proof (subst finprod_insert[0F insert(1-2)])
        show "a \otimes ( 囚x\inA. a) = a (^) card (insert b A)"
                by (insert insert, auto, subst m_comm, auto)
    qed auto
qed auto
```

```
lemma finprod_singleton:
    assumes i_in_A: "i \in A" and fin_A: "finite A" and f_Pi: "f \in A ->
carrier G"
    shows "(囚j\inA. if i = j then f j else 1) = f i"
    using i_in_A finprod_insert [of "A - {i}" i "(\lambdaj. if i = j then f j
else 1)"]
        fin_A f_Pi finprod_one [of "A - {i}"]
        finprod_cong [of "A - {i}" "A - {i}" "(\lambdaj. if i = j then f j else
1)" "(\lambdai. 1)"]
    unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)
```

end
end

theory Coset
 imports Group
 begin

7 Cosets and Quotient Groups

```
definition
    r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "#>\imath" 60)
    where "H #>
definition
    l_coset :: "[_, 'a, 'a set] => 'a set" (infixl "<#乙" 60)
    where "a <#G H = (Uh\inH. {a \otimesG h})"
definition
    RCOSETS :: "[_, 'a set] => ('a set)set" ("rcosets\imath _" [81] 80)
    where "rcosets}\mp@subsup{G}{G}{}H=(Ua\incarrier G. {H #> G a})"
definition
    set_mult :: "[_, 'a set ,'a set] => 'a set" (infixl "<#>\imath" 60)
    where "H <#>}\mp@subsup{|}{G}{}K=(\bigcuph\inH.\k\inK.{h \otimesGGk)
definition
    SET_INV :: "[_,'a set] => 'a set" ("set'_inv\imath _" [81] 80)
    where "set_invG H = (Uh\inH. {invg h})"
locale normal = subgroup + group +
    assumes coset_eq: "(\forallx \in carrier G. H #> x = x <# H)"
abbreviation
    normal_rel :: "['a set, ('a, 'b) monoid_scheme] => bool" (infixl "\triangleleft"
60) where
    "H\triangleleftG \equiv normal H G"
```


7.1 Basic Properties of Cosets

```
lemma (in group) coset_mult_assoc:
    "[| M \subseteq carrier G; g \in carrier G; h \in carrier G |]
    ==> (M #> g) #> h = M #> (g \otimes h)"
by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_mult_one [simp]: "M \subseteq carrier G ==> M #> 1 =
```

```
M"
by (force simp add: r_coset_def)
lemma (in group) coset_mult_inv1:
    "[l M #> (x \otimes (inv y)) = M; x f carrier G ; y f carrier G;
        M\subseteq carrier G l] ==> M #> x = M #> y"
apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done
lemma (in group) coset_mult_inv2:
    "[| M #> x = M #> y; x \in carrier G; y \in carrier G; M \subseteq carrier
G I]
    ==> M #> (x \otimes (inv y)) = M "
apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done
lemma (in group) coset_join1:
    "[| H #> x = H; x G carrier G; subgroup H G |] ==> x \in H"
apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done
lemma (in group) solve_equation:
    "\llbracketsubgroup H G; x }\in\textrm{H};\textrm{y}\in\textrm{H}\\Longrightarrow\exists\textrm{h}\in\textrm{H}.\textrm{y}=\textrm{h}\otimes\textrm{x
apply (rule bexI [of _ "y \otimes (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
                                    subgroup.subset [THEN subsetD])
done
lemma (in group) repr_independence:
    "\llbrackety \in H #> x; x \in carrier G; subgroup H G \ \Longrightarrow H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
                        subgroup.subset [THEN subsetD]
                        subgroup.m_closed solve_equation)
lemma (in group) coset_join2:
                            "\llbracketx carrier G; subgroup H G; x 
    - Alternative proof is to put x = 1 in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in monoid) r_coset_subset_G:
    "[| H \subseteq carrier G; x \in carrier G | | ==> H #> x \subseteq carrier G"
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
    "[l h G H; H \subseteq carrier G; x \in carrier Gl] ==> h \otimes x \in H #> x"
```

```
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
    "\llbracketH\subseteq carrier G; x \in carrier G\rrbracket \Longrightarrow H #> x \in rcosets H"
by (auto simp add: RCOSETS_def)
Really needed?
lemma (in group) transpose_inv:
    "[| x \otimes y = z; x \in carrier G; y \in carrier G; z \in carrier G |]
    ==> (inv x) \otimes z = y"
by (force simp add: m_assoc [symmetric])
lemma (in group) rcos_self: "[| x \in carrier G; subgroup H G |] ==> x
\in H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
                                subgroup.one_closed)
done
Opposite of "repr_independence"
lemma (in group) repr_independenceD:
    assumes "subgroup H G"
    assumes ycarr: "y \in carrier G"
        and repr: "H #> x = H #> y"
    shows "y \in H #> x"
proof -
    interpret subgroup H G by fact
    show ?thesis apply (subst repr)
    apply (intro rcos_self)
        apply (rule ycarr)
        apply (rule is_subgroup)
    done
qed
```

Elements of a right coset are in the carrier

```
lemma (in subgroup) elemrcos_carrier:
    assumes "group G"
    assumes acarr: "a \(\in\) carrier \(G\) "
        and a': "a' \(\in H\) \#> \(a "\)
    shows "a' \(\in\) carrier G"
proof -
    interpret group G by fact
    from subset and acarr
    have "H \#> a \(\subseteq\) carrier G" by (rule r_coset_subset_G)
    from this and a'
    show "a' \(\in\) carrier G"
        by fast
qed
```

```
lemma (in subgroup) rcos_const:
    assumes "group G"
    assumes hH: "h \inH"
    shows "H #> h = H"
proof -
    interpret group G by fact
    show ?thesis apply (unfold r_coset_def)
        apply rule
        apply rule
        apply clarsimp
        apply (intro subgroup.m_closed)
        apply (rule is_subgroup)
        apply assumption
        apply (rule hH)
        apply rule
        apply simp
    proof -
        fix h'
        assume h'H: "h' \in H"
        note carr = hH[THEN mem_carrier] h'H[THEN mem_carrier]
        from carr
        have a: "h' = (h' \otimes inv h) \otimes h" by (simp add: m_assoc)
        from h'H hH
        have "h' \otimes inv h \in H" by simp
        from this and a
        show " \existsx\inH. h' = x \otimes h" by fast
    qed
qed
Step one for lemma rcos_module
lemma (in subgroup) rcos_module_imp:
    assumes "group G"
    assumes xcarr: "x \in carrier G"
        and x'cos: "x' \in H #> x"
    shows "(x' \otimes inv x) \in H"
proof -
    interpret group G by fact
    from xcarr x'cos
        have x'carr: "x' \in carrier G"
        by (rule elemrcos_carrier[OF is_group])
    from xcarr
        have ixcarr: "inv x \in carrier G"
        by simp
    from x'cos
        have " }\exists\textrm{h}\in\textrm{H}.\textrm{x}'=h\mp@code{x"
        unfolding r_coset_def
        by fast
    from this
        obtain h
```

```
            where hH: "h \(\in H^{\prime \prime}\)
            and x : \(\mathrm{"x}^{\prime}=\mathrm{h} \otimes \mathrm{x} "\)
        by auto
    from hH and subset
        have hcarr: "h \(\in\) carrier G" by fast
    note carr = xcarr x'carr hcarr
    from \(x\) ' and carr
        have \(" x\) ' \(\otimes(i n v x)=(h \otimes x) \otimes(i n v x) "\) by fast
    also from carr
    have \(" . . .=h \otimes(x \otimes i n v \operatorname{x})\) " by (simp add: m_assoc)
    also from carr
        have "... = h \(\otimes 1\) " by simp
    also from carr
        have "... = h" by simp
    finally
        have " \(x\) ' \(\otimes\) (inv \(x\) ) = h" by simp
    from hH this
    show "x' \(\otimes(i n v x) \in H\) " by simp
qed
Step two for lemma rcos_module
lemma (in subgroup) rcos_module_rev:
    assumes "group G"
    assumes carr: "x \(\in\) carrier \(G "\) "x' \(\in\) carrier \(G "\)
        and xixH: " (x' \(\otimes\) inv \(x) \in H^{\prime}\)
    shows "x' \(\in H\) \#> x"
proof -
    interpret group G by fact
    from xixH
        have \(" \exists \mathrm{~h} \in \mathrm{H} . \mathrm{x}\) ' \(\otimes(\) inv x\()=\mathrm{h}\) " by fast
    from this
        obtain h
            where \(\mathrm{hH}:\) " \(h \in \mathrm{H}^{\prime}\)
            and hsym: "x' \(\otimes\) (inv \(x\) ) = h"
        by fast
    from hH subset have hcarr: "h \(\in\) carrier G" by simp
    note carr = carr hcarr
    from hsym [symmetric] have " \(\mathrm{h} \otimes \mathrm{x}=\mathrm{x}\) ' \(\otimes\) (inv x\() \otimes \mathrm{x}\) " by fast
    also from carr
        have "... = x' \(\otimes((i n v x) \otimes x) "\) by (simp add: m_assoc)
    also from carr
        have "... = x' \(\otimes 1 "\) by simp
    also from carr
        have "... = x'" by simp
    finally
        have \(\mathrm{h} \| \mathrm{x}=\mathrm{x}\) '" by simp
    from this[symmetric] and hH
        show " \(x\) ' \(\in H\) \#> \(x\) "
        unfolding \(r_{-}\)coset_def
```

```
        by fast
qed
Module property of right cosets
lemma (in subgroup) rcos_module:
    assumes "group G"
    assumes carr: "x \in carrier G" "x' \in carrier G"
    shows "(x' \in H #> x) = (x' \otimes inv x \in H)"
proof -
    interpret group G by fact
    show ?thesis proof assume "x' \in H #> x"
            from this and carr
            show "x' \otimes inv x \in H"
                by (intro rcos_module_imp[OF is_group])
    next
        assume " }\textrm{x}\mathrm{ ' }\otimes\mathrm{ inv }\textrm{x}\in\textrm{H
        from this and carr
        show "x' \in H #> x"
                by (intro rcos_module_rev[OF is_group])
    qed
qed
Right cosets are subsets of the carrier.
lemma (in subgroup) rcosets_carrier:
    assumes "group G"
    assumes XH: "X \in rcosets H"
    shows "X \subseteq carrier G"
proof -
    interpret group G by fact
    from XH have " }\exists\textrm{x}\in\mathrm{ carrier G. X = H #> x"
        unfolding RCOSETS_def
        by fast
    from this
        obtain x
            where xcarr: "x\in carrier G"
            and X: "X = H #> x"
            by fast
    from subset and xcarr
            show "X \subseteq carrier G"
            unfolding X
            by (rule r_coset_subset_G)
qed
Multiplication of general subsets
```

```
lemma (in monoid) set_mult_closed:
```

lemma (in monoid) set_mult_closed:
assumes Acarr: "A \subseteq carrier G"
assumes Acarr: "A \subseteq carrier G"
and Bcarr: "B \subseteq carrier G"
and Bcarr: "B \subseteq carrier G"
shows "A <\#> B \subseteq carrier G"
shows "A <\#> B \subseteq carrier G"
apply rule apply (simp add: set_mult_def, clarsimp)

```
apply rule apply (simp add: set_mult_def, clarsimp)
```

```
proof -
    fix a b
    assume "a \in A"
    from this and Acarr
        have acarr: "a \in carrier G" by fast
    assume "b \in B"
    from this and Bcarr
        have bcarr: "b \in carrier G" by fast
    from acarr bcarr
        show "a \otimes b \in carrier G" by (rule m_closed)
qed
lemma (in comm_group) mult_subgroups:
    assumes subH: "subgroup H G"
        and subK: "subgroup K G"
    shows "subgroup (H <#> K) G"
apply (rule subgroup.intro)
    apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF
subK])
    apply (simp add: set_mult_def) apply clarsimp defer 1
    apply (simp add: set_mult_def) defer 1
    apply (simp add: set_mult_def, clarsimp) defer 1
proof -
    fix ha hb ka kb
    assume haH: "ha \in H" and hbH: "hb \inH" and kaK: "ka \in K" and kbK:
"kb \in K"
    note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF
subH]]
                    kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF
subK]]
    from carr
            have "(ha \otimes ka) \otimes (hb \otimes kb) = ha \otimes (ka \otimes hb) \otimes kb" by (simp add:
m_assoc)
    also from carr
        have "... = ha \otimes (hb & ka) \otimes kb" by (simp add: m_comm)
    also from carr
        have "... = (ha \otimes hb) \otimes (ka \otimes kb)" by (simp add: m_assoc)
    finally
            have eq: "(ha \otimes ka) \otimes (hb \otimes kb) = (ha \otimes hb) \otimes (ka \otimes kb)".
    from haH hbH have hH: "ha \otimes hb \in H" by (simp add: subgroup.m_closed[OF
subH])
    from kaK kbK have kK: "ka \otimes kb \in K" by (simp add: subgroup.m_closed[OF
subK])
    from hH and kK and eq
        show " \existsh'\inH. \existsk'\inK. (ha \otimes ka) \otimes (hb \otimes kb) = h' \otimes k'" by fast
```

```
next
    have "1 = 1\otimes1" by simp
    from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this
        show "\existsh\inH. \existsk\inK. 1 = h \otimes k" by fast
next
    fix h k
    assume hH: "h \in H"
        and kK: "k \in K"
    from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF
subK]]
    have "inv (h \otimes k) = inv h \otimes inv k" by (simp add: inv_mult_group
m_comm)
    from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF
subK kK] and this
            show "\existsha\inH. \existska\inK. inv (h \otimes k) = ha \otimes ka" by fast
qed
lemma (in subgroup) lcos_module_rev:
    assumes "group G"
    assumes carr: "x \in carrier G" "x' \in carrier G"
        and xixH: "(inv x \otimes x') \in H"
    shows "x' \in x <# H"
proof -
    interpret group G by fact
    from xixH
        have "\existsh\inH. (inv x) \otimes x' = h" by fast
    from this
        obtain h
            where hH: "h \in H"
            and hsym: "(inv x) \otimes x' = h"
        by fast
    from hH subset have hcarr: "h \in carrier G" by simp
    note carr = carr hcarr
    from hsym[symmetric] have "x \otimes h = x \otimes ((inv x) \otimes x')" by fast
    also from carr
        have "... = (x \otimes (inv x)) \otimes x'" by (simp add: m_assoc[symmetric])
    also from carr
        have "... = 1 & x'" by simp
    also from carr
        have "... = x'" by simp
    finally
        have "x \otimes h = x'" by simp
    from this[symmetric] and hH
        show "x' \in x <# H"
        unfolding l_coset_def
```

by fast
qed

7.2 Normal subgroups

```
lemma normal_imp_subgroup: "H \triangleleftG \Longrightarrow subgroup H G"
    by (simp add: normal_def subgroup_def)
lemma (in group) normalI:
    "subgroup H G \Longrightarrow (\forallx c carrier G. H #> x = x <# H) \Longrightarrow H \triangleleft G"
    by (simp add: normal_def normal_axioms_def is_group)
lemma (in normal) inv_op_closed1:
    "\llbracketx \in carrier G; h G H\rrbracket \Longrightarrow (inv x) \otimes h \otimes x \in H"
apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done
lemma (in normal) inv_op_closed2:
    "\llbracketx \in carrier G; h G H\rrbracket \Longrightarrow x \otimes h \otimes (inv x) \in H"
apply (subgoal_tac "inv (inv x) \otimes h \otimes (inv x) \in H")
apply (simp add: )
apply (blast intro: inv_op_closed1)
done
```

Alternative characterization of normal subgroups

```
lemma (in group) normal_inv_iff:
    " (N\triangleleftG) =
            (subgroup N G & ( }\forall\textrm{x}\in\operatorname{carrier G. }\forall\textrm{h}\in\textrm{N}.\textrm{x}\otimes\textrm{h}\otimes(inv x)\inN))
            (is "_ = ?rhs")
proof
    assume N: "N \triangleleft G"
    show ?rhs
        by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
    assume ?rhs
    hence sg: "subgroup N G"
        and closed: "\x. x\incarrier G \Longrightarrow \forallh\inN. x \otimes h \otimes inv x }\inN" by aut
    hence sb: "N \subseteq carrier G" by (simp add: subgroup.subset)
    show "N \triangleleft G"
    proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
        fix x
        assume x: "x \in carrier G"
        show "(\bigcuph\inN. {h \otimes x}) = (\bigcuph\inN. {x \otimes h})"
        proof
```

```
            show "(Uh\inN. {h \otimes x}) \subseteq(Uh\inN. {x \otimesh})"
            proof clarify
                    fix n
                    assume n: "n \inN"
                    show "n \otimes x f (Uh\inN. {x \otimesh})"
                    proof
                    from closed [of "inv x"]
                        show "inv x \otimes n \otimes x \in N" by (simp add: x n)
                        show "n \otimes x \in {x \otimes (inv x \otimes n \otimes x)}"
                        by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
                    qed
                qed
        next
            show "(\bigcuph\inN. {x \otimesh}) \subseteq(\bigcuph\inN. {h \otimes x})"
            proof clarify
                fix n
                    assume n: "n \in N"
                        show "x \otimes n \in (\bigcuph\inN. {h \otimes x})"
                    proof
                    show "x \otimes n \otimes inv x f N" by (simp add: x n closed)
                    show "x \otimes n \in {x \otimes n \otimes inv x \otimes x}"
                        by (simp add: x n m_assoc sb [THEN subsetD])
                    qed
            qed
        qed
    qed
qed
```


7.3 More Properties of Cosets

lemma (in group) lcos_m_assoc:
" [l M \subseteq carrier $G ; g \in$ carrier $G ; h \in$ carrier $G 1]$
==> g <\# (h <\# M) = ($g \otimes h$) <\# M"
by (force simp add: l_{-}coset_def m_assoc)
lemma (in group) lcos_mult_one: "M \subseteq carrier G ==> 1 <\# M = M"
by (force simp add: l_coset_def)
lemma (in group) l_coset_subset_G:
" $[\mid \mathrm{H} \subseteq$ carrier $G ; x \in$ carrier $G \mid]==>x<\# H \subseteq$ carrier $G "$
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_swap:
" $\llbracket \mathrm{y} \in \mathrm{x}<\# \mathrm{H} ; \mathrm{x} \in$ carrier $\mathrm{G} ;$ subgroup $\mathrm{H} \mathrm{G} \rrbracket \Longrightarrow \mathrm{x} \in \mathrm{y}<\# \mathrm{H} "$
proof (simp add: l_coset_def)
assume $" \exists \mathrm{~h} \in \mathrm{H} . \mathrm{y}=\mathrm{x} \otimes \mathrm{h} "$
and $\mathrm{x}: ~ " \mathrm{x} \in$ carrier $\mathrm{G} "$
and sb: "subgroup H G"
then obtain h^{\prime} where $h^{\prime}: ~ " h ' \in H \& x \otimes h^{\prime}=y "$ by blast

```
    show "\existsh\inH. x = y \otimes h"
    proof
        show "x = y \otimes inv h'" using h' x sb
        by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
    show "inv h' \in H" using h' sb
        by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
    qed
qed
lemma (in group) l_coset_carrier:
    "[| y \in x <# H; x \in carrier G; subgroup H G |] ==> y f carrier
G"
by (auto simp add: l_coset_def m_assoc
    subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_repr_imp_subset:
    assumes y: "y \in x <# H" and x: "x f carrier G" and sb: "subgroup H
G"
    shows "y <# H \subseteq x <# H"
proof -
    from y
    obtain h' where "h' \in H" "x \otimes h' = y" by (auto simp add: l_coset_def)
    thus ?thesis using x sb
        by (auto simp add: l_coset_def m_assoc
                            subgroup.subset [THEN subsetD] subgroup.m_closed)
qed
lemma (in group) l_repr_independence:
    assumes y: "y \in x <# H" and x: "x \in carrier G" and sb: "subgroup H
G"
    shows "x <# H = y <# H"
proof
        show "x <# H \subseteq y <# H"
            by (rule l_repr_imp_subset,
                (blast intro: l_coset_swap l_coset_carrier y x sb)+)
        show "y <# H \subseteq x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed
lemma (in group) setmult_subset_G:
        "\llbracketH\subseteq carrier G; K \subseteq carrier G\rrbracket \Longrightarrow H <#> K \subseteq carrier G"
by (auto simp add: set_mult_def subsetD)
lemma (in group) subgroup_mult_id: "subgroup H G \Longrightarrow H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "1"])
apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])
done
```


7.3.1 Set of Inverses of an r_coset.

```
lemma (in normal) rcos_inv:
    assumes x: "x f carrier G"
    shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
    fix h
    assume h: "h \in H"
    show "inv x }\otimes\mathrm{ inv h G ( }\j\inH.{j & inv x})"
    proof
        show "inv x & inv h & x \in H"
                by (simp add: inv_op_closed1 h x)
            show "inv x }\otimes\mathrm{ inv h G {inv x }\otimes\mathrm{ inv h Q x Q inv x}"
                by (simp add: h x m_assoc)
    qed
    show "h \otimes inv x G (Uj\inH. {inv x }\otimes\mathrm{ inv j})"
    proof
        show "x \otimes inv h & inv x \in H"
            by (simp add: inv_op_closed2 h x)
            show "h }\otimes\mathrm{ inv x }\in{\mp@code{inv x }\otimes\mathrm{ inv (x }\otimes\mathrm{ inv h }\otimes\mathrm{ inv x)}"
                by (simp add: h x m_assoc [symmetric] inv_mult_group)
    qed
qed
```


7.3.2 Theorems for <\#> with \#> or <\#.

lemma (in group) setmult_rcos_assoc:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket$ $\Longrightarrow H$ <\#> (K \#> x) = (H <\#> K) \#> x"
by (force simp add: r_coset_def set_mult_def m_assoc)
lemma (in group) rcos_assoc_lcos:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket$ \Longrightarrow (H \#> x) <\#> K = H <\#> (x <\# K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
lemma (in normal) rcos_mult_step1:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} \rrbracket$ \Longrightarrow (H \#> x) <\#> (H \#> y) = (H <\#> (x <\# H)) \#> y"
by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} \rrbracket$
$\Longrightarrow(\mathrm{H}<\#>(\mathrm{x}<\# \mathrm{H}))$ \#> $\mathrm{y}=(\mathrm{H}$ <\#> ($\mathrm{H} \#>\mathrm{x})$) \#> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $G \rrbracket$ $\Longrightarrow(H$ <\#> ($\mathrm{H} \#>\mathrm{x}$)) \#> $\mathrm{y}=\mathrm{H} \#>(\mathrm{x} \otimes \mathrm{y}) "$

```
by (simp add: setmult_rcos_assoc coset_mult_assoc
    subgroup_mult_id normal.axioms subset normal_axioms)
```

lemma (in normal) rcos_sum:
" $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $\mathrm{G} \rrbracket$
\Longrightarrow (H \#> x) <\#> (H \#> y) = H \#> (x $\otimes y$)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: " $M \in \operatorname{rcosets} H \Longrightarrow H<\#>M=M "$
- generalizes subgroup_mult_id
by (auto simp add: RCOSETS_def subset
setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms)

7.3.3 An Equivalence Relation

definition

```
    r_congruent :: "[('a,'b)monoid_scheme, 'a set] => ('a*'a)set" ("rcong\imath
_")
```



```
y \in H}"
```

lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"
proof -
interpret group G by fact
show ?thesis
proof (intro equivI)
show "refl_on (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_on_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x \in carrier G" "y \in carrier G"
and "inv $\mathrm{x} \otimes \mathrm{y} \in \mathrm{H}$ "
hence "inv (inv $x \otimes y$) $\in H$ " by simp
thus "inv $\mathrm{y} \otimes \mathrm{x} \in \mathrm{H}^{\prime}$ by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x \in carrier $G "$ " $y \in \operatorname{carrier~G"~"z~} \in$ carrier G"
and "inv $x \otimes y \in H "$ and "inv $y \otimes z \in H "$
hence " (inv $x \otimes y$) \otimes (inv $y \otimes z) \in H "$ by simp
hence "inv $x \otimes(y \otimes i n v y) ~ \otimes z \in H "$
by (simp add: m_assoc del: r_inv Units_r_inv)

```
                thus "inv x }\otimes\textrm{z}\in\textrm{H}"\mathrm{ by simp
        qed
    qed
qed
```

Equivalence classes of rcong correspond to left cosets. Was there a mistake in the definitions? I'd have expected them to correspond to right cosets.

```
lemma (in subgroup) l_coset_eq_rcong:
    assumes "group G"
    assumes a: "a \in carrier G"
    shows "a <# H = rcong H "، {a}"
proof -
    interpret group G by fact
    show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc
[symmetric] a )
qed
```


7.3.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:
assumes "subgroup H G"

"ha \in H" "hb $\in H "$
shows "hb $\otimes a \in(\bigcup h \in H .\{h \otimes b\}) "$
proof -
interpret subgroup H G by fact
from p show ?thesis apply (rule_tac UN_I [of "hb $\otimes((i n v h a) \otimes h) "])$
apply (simp add:)
apply (simp add: m_assoc transpose_inv)
done
qed
lemma (in group) rcos_disjoint:
assumes "subgroup H G"
assumes p: "a \in rcosets H " "b $\in \operatorname{rcosets} H "$ " $a \neq b "$
shows "a $\cap \mathrm{b}=\{ \}$ "
proof -
interpret subgroup H G by fact
from p show ?thesis
apply (simp add: RCOSETS_def r_coset_def)
apply (blast intro: rcos_equation assms sym)
done
qed

7.4 Further lemmas for r_congruent

The relation is a congruence

```
lemma (in normal) congruent_rcong:
    shows "congruent2 (rcong H) (rcong H) (\lambdaa b. a \otimes b <# H)"
```

```
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
    fix a b c
    assume abrcong: "(a, b) \in rcong H"
        and ccarr: "c \in carrier G"
    from abrcong
        have acarr: "a \in carrier G"
            and bcarr: "b \in carrier G"
                and abH: "inv a }\otimes\textrm{b}\in\textrm{H
            unfolding r_congruent_def
            by fast+
    note carr = acarr bcarr ccarr
    from ccarr and abH
        have "inv c \otimes (inv a \otimes b) \otimes c \in H" by (rule inv_op_closed1)
    moreover
        from carr and inv_closed
        have "inv c & (inv a \otimes b) & c = (inv c \otimes inv a) \otimes (b & c)"
        by (force cong: m_assoc)
    moreover
        from carr and inv_closed
        have "...= (inv (a \otimes c)) \otimes (b \otimes c)"
        by (simp add: inv_mult_group)
    ultimately
        have "(inv (a \otimes c)) \otimes (b \otimes c) \in H" by simp
    from carr and this
        have "(b \otimes c) \in (a \otimes c) <# H"
        by (simp add: lcos_module_rev[OF is_group])
    from carr and this and is_subgroup
        show "(a \otimes c) <# H = (b \otimes c) <# H" by (intro l_repr_independence,
simp+)
next
    fix a b c
    assume abrcong: "(a, b) \in rcong H"
        and ccarr: "c \in carrier G"
    from ccarr have "c \in Units G" by simp
    hence cinvc_one: "inv c & c = 1" by (rule Units_l_inv)
    from abrcong
        have acarr: "a \in carrier G"
        and bcarr: "b \in carrier G"
        and abH: "inv a }\otimes\textrm{b}\in\textrm{H
        by (unfold r_congruent_def, fast+)
    note carr = acarr bcarr ccarr
    from carr and inv_closed
```

```
    have "inv a & b = inv a \otimes (1 & b)" by simp
    also from carr and inv_closed
    have "... = inv a }\otimes(inv c \otimes c) \otimes b" by simp
    also from carr and inv_closed
    have "... = (inv a \otimes inv c) \otimes (c \otimes b)" by (force cong: m_assoc)
    also from carr and inv_closed
    have "... = inv (c \otimes a) \otimes (c \otimes b)" by (simp add: inv_mult_group)
    finally
    have "inv a & b = inv (c \otimes a) \otimes (c \otimes b)".
    from abH and this
    have "inv (c \otimes a) \otimes (c \otimes b) \in H" by simp
    from carr and this
        have "(c \otimes b) \in (c \otimes a) <# H"
        by (simp add: lcos_module_rev[OF is_group])
    from carr and this and is_subgroup
        show "(c \otimes a) <# H = (c \otimes b) <# H" by (intro l_repr_independence,
simp+)
qed
```


7.5 Order of a Group and Lagrange's Theorem

definition

 order :: "('a, 'b) monoid_scheme \(\Rightarrow\) nat"
 where "order S = card (carrier S)"
 lemma (in monoid) order_gt_0_iff_finite: " $0<$ order $G \longleftrightarrow$ finite (carrier
G) "
by (auto simp add: order_def card_gt_0_iff)
lemma (in group) rcosets_part_G:
assumes "subgroup H G"
shows $" \bigcup$ (rcosets H) = carrier G "
proof -
interpret subgroup H G by fact
show ?thesis
apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self assms)
done
qed
lemma (in group) cosets_finite:
$" \llbracket c \in$ rcosets $H ; \quad H \subseteq$ carrier $G ;$ finite (carrier $G) \rrbracket \Longrightarrow$ finite
c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done

The next two lemmas support the proof of card_cosets_equal.

```
lemma (in group) inj_on_f:
    "\llbracketH \subseteq carrier G; a \in carrier G\rrbracket\Longrightarrow inj_on ( }\lambda\textrm{y}.\textrm{y}\otimes\mathrm{ ( inv a) (H #>
a)"
apply (rule inj_onI)
apply (subgoal_tac "x \in carrier G & y \in carrier G")
    prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
apply (simp add: subsetD)
done
lemma (in group) inj_on_g:
    "\llbracketH\subseteq carrier G; a \in carrier G\rrbracket \Longrightarrow inj_on ( \lambday. y \otimes a) H"
by (force simp add: inj_on_def subsetD)
lemma (in group) card_cosets_equal:
    "\llbracketc \in rcosets H; H \subseteq carrier G; finite(carrier G)\rrbracket
    C card c = card H"
apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)
    apply (rule inj_on_f, assumption+)
    apply (force simp add: m_assoc subsetD r_coset_def)
    apply (rule inj_on_g, assumption+)
    apply (force simp add: m_assoc subsetD r_coset_def)
The sets H \#> a and H are finite.
    apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done
lemma (in group) rcosets_subset_PowG:
    "subgroup H G \Longrightarrow rcosets H \subseteq Pow(carrier G)"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done
theorem (in group) lagrange:
    "\llbracketfinite(carrier G); subgroup H G\rrbracket
    card(rcosets H) * card(H) = order(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult.commute)
apply (rule card_partition)
    apply (simp add: rcosets_subset_PowG [THEN finite_subset])
    apply (simp add: rcosets_part_G)
    apply (simp add: card_cosets_equal subgroup.subset)
apply (simp add: rcos_disjoint)
done
```


7.6 Quotient Groups: Factorization of a Group

definition

FactGroup :: "[('a,'b) monoid_scheme, 'a set] \Rightarrow ('a set) monoid" (infixl "Mod" 65)

- Actually defined for groups rather than monoids
where "FactGroup G H $=$ (carrier $=\operatorname{rcosets}_{G} H$, mult $=$ set_mult G, one $=\mathrm{H} \mid) "$
lemma (in normal) setmult_closed:
"【K1 \in roosets $H ; K 2 \in \operatorname{rcosets} H \rrbracket \Longrightarrow K 1<\#>K 2 \in \operatorname{Kcosets} H "$
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
" $\mathrm{K} \in$ rcosets $\mathrm{H} \Longrightarrow$ set_inv $K \in$ rcosets $H "$
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc: " $\llbracket \mathrm{M} 1 \in \operatorname{rcosets} \mathrm{H} ; \mathrm{M} 2 \in \operatorname{rcosets} \mathrm{H} ; \mathrm{M} 3 \in \operatorname{rcosets} \mathrm{H} \rrbracket$ — M1 <\#> M2 <\#> M3 = M1 <\#> (M2 <\#> M3)"
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
lemma (in subgroup) subgroup_in_rcosets:
assumes "group G"
shows "H \in rcosets H "
proof -
interpret group G by fact
from _ subgroup_axioms have "H \#> 1 = H"
by (rule coset_join2) auto
then show ?thesis by (auto simp add: RCOSETS_def)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M \in rcosets $H \Longrightarrow$ set_inv $M<\#>M=H "$
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms normal_axioms)
theorem (in normal) factorgroup_is_group:
"group (G Mod H)"
apply (simp add: FactGroup_def)
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup
subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)

done

lemma mult_FactGroup [simp]: $\mathrm{X} \otimes_{(\mathrm{G} \operatorname{Mod} \mathrm{H})} \mathrm{X},=\mathrm{X}\langle \#\rangle_{\mathrm{G}} \mathrm{X}{ }^{\prime} "$ by (simp add: FactGroup_def)

```
lemma (in normal) inv_FactGroup:
    "X \in carrier (G Mod H) \Longrightarrow invG Mod H X = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done
```

The coset map is a homomorphism from G to the quotient group G Mod H
lemma (in normal) r_coset_hom_Mod:
" ($\lambda \mathrm{a}$. H \#> a) \in hom $G(G \operatorname{Mod} H) "$
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)

7.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range of that homomorphism.

definition

```
    kernel :: "('a, 'm) monoid_scheme = ('b, 'n) monoid_scheme = ('a
# 'b) # 'a set"
            - the kernel of a homomorphism
    where "kernel G H h = {x. x \in carrier G & h x = 1H
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro is_group)
done
```

The kernel of a homomorphism is a normal subgroup

```
lemma (in group_hom) normal_kernel: "(kernel G H h) \triangleleft G"
apply (simp add: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done
lemma (in group_hom) FactGroup_nonempty:
    assumes X: "X \in carrier (G Mod kernel G H h)"
    shows "X f {}"
proof -
    from X
    obtain g where "g \in carrier G"
                    and "X = kernel G H h #> g"
        by (auto simp add: FactGroup_def RCOSETS_def)
    thus ?thesis
        by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
```

lemma (in group_hom) FactGroup_the_elem_mem:
assumes X: "X \in carrier (G Mod (kernel G H h))"

```
    shows "the_elem (h'X) \in carrier H"
proof -
    from X
    obtain g where g: "g \in carrier G"
                and "X = kernel G H h #> g"
            by (auto simp add: FactGroup_def RCOSETS_def)
    hence "h ' X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!:
imageI)
    thus ?thesis by (auto simp add: g)
qed
lemma (in group_hom) FactGroup_hom:
            "(\lambdaX. the_elem (h`X)) \in hom (G Mod (kernel G H h)) H"
apply (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group
[OF normal_kernel] group.axioms monoid.m_closed)
proof (intro ballI)
    fix }X\mathrm{ and X'
    assume X: "X \in carrier (G Mod kernel G H h)"
        and X': "X' G carrier (G Mod kernel G H h)"
    then
    obtain g and g'
                where "g \in carrier G" and "g' \in carrier G"
                    and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
        by (auto simp add: FactGroup_def RCOSETS_def)
    hence all: "\forallx\inX. h x = h g" "\forallx\inX'. h x = h g'"
        and Xsub: "X \subseteq carrier G" and X'sub: "X' \subseteq carrier G"
        by (force simp add: kernel_def r_coset_def image_def)+
    hence "h ' (X <#> X') = {h g \otimes H h g'}" using X X'
        by (auto dest!: FactGroup_nonempty intro!: image_eqI
                                    simp add: set_mult_def
                                    subsetD [OF Xsub] subsetD [OF X'sub])
    then show "the_elem (h ' (X <#> X')) = the_elem (h ' X) \otimesH the_elem
(h ' X')"
        by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
qed
Lemma for the following injectivity result
```

```
lemma (in group_hom) FactGroup_subset:
```

lemma (in group_hom) FactGroup_subset:
"\llbracketg \in carrier G; g' \in carrier G; h g = h g'\rrbracket
"\llbracketg \in carrier G; g' \in carrier G; h g = h g'\rrbracket
\Longrightarrow kernel G H h \#> g \subseteq kernel G H h \#> g'"
\Longrightarrow kernel G H h \#> g \subseteq kernel G H h \#> g'"
apply (clarsimp simp add: kernel_def r_coset_def)
apply (clarsimp simp add: kernel_def r_coset_def)
apply (rename_tac y)
apply (rename_tac y)
apply (rule_tac x="y \otimesg \otimes inv g'" in exI)
apply (rule_tac x="y \otimesg \otimes inv g'" in exI)
apply (simp add: G.m_assoc)
apply (simp add: G.m_assoc)
done
done
lemma (in group_hom) FactGroup_inj_on:
lemma (in group_hom) FactGroup_inj_on:
"inj_on (\lambdaX. the_elem (h ' X)) (carrier (G Mod kernel G H h))"
"inj_on (\lambdaX. the_elem (h ' X)) (carrier (G Mod kernel G H h))"
proof (simp add: inj_on_def, clarify)

```
proof (simp add: inj_on_def, clarify)
```

```
fix }X\mathrm{ and }X\mathrm{ ',
assume X: "X \in carrier (G Mod kernel G H h)"
    and X': "X' \in carrier (G Mod kernel G H h)"
then
obtain g and g'
                    where gX: "g \in carrier G" "g' \in carrier G"
                    "X = kernel G H h #> g" "X' = kernel G H h #> g'"
    by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "\forallx\inX. h x = h g" "\forallx\inX'. h x = h g'"
    by (force simp add: kernel_def r_coset_def image_def)+
assume "the_elem (h ' X) = the_elem (h ' X')"
hence h: "h g = h g'"
    by (simp add: all FactGroup_nonempty X X' the_elem_image_unique)
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
```


qed

If the homomorphism h is onto H, then so is the homomorphism from the quotient group

```
lemma (in group_hom) FactGroup_onto:
    assumes h: "h ' carrier G = carrier H"
    shows "(\lambdaX. the_elem (h ' X)) ' carrier (G Mod kernel G H h) = carrier
H"
proof
    show "(\lambdaX. the_elem (h ' X)) ' carrier (G Mod kernel G H h) \subseteq carrier
H"
            by (auto simp add: FactGroup_the_elem_mem)
    show "carrier H \subseteq ( }\lambda\textrm{X}\mathrm{ . the_elem (h' X)) ' carrier (G Mod kernel G
H h)"
    proof
        fix y
        assume y: "y \in carrier H"
        with h obtain g where g: "g \in carrier G" "h g = y"
            by (blast elim: equalityE)
        hence "(\x\inkernel G H h #> g. {h x}) = {y}"
            by (auto simp add: y kernel_def r_coset_def)
        with g show "y \in ( }\lambda\textrm{X}
H h)"
            apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def)
            apply (subst the_elem_image_unique)
            apply auto
            done
    qed
qed
```

If h is a homomorphism from G onto H, then the quotient group G Mod kernel
GH h is isomorphic to H .
theorem (in group_hom) FactGroup_iso:
" h ' carrier $\mathrm{G}=$ carrier H

```
    \Longrightarrow(\lambdaX. the_elem (h'X)) \in (G Mod (kernel G H h)) \cong H"
```

by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)
end

```
theory Exponent
imports Main "HOL-Computational_Algebra.Primes"
begin
```


8 Sylow's Theorem

The Combinatorial Argument Underlying the First Sylow Theorem
needed in this form to prove Sylow's theorem

```
corollary (in algebraic_semidom) div_combine:
    "\llbracketprime_elem p; ᄀ p ^ Suc r dvd n; p ^ (a + r) dvd n * k\rrbracket \Longrightarrow p ^a
dvd k"
    by (metis add_Suc_right mult.commute prime_elem_power_dvd_cases)
lemma exponent_p_a_m_k_equation:
    fixes p :: nat
    assumes "0 < m" "0 < k" "p f 0" "k < p^a"
        shows "multiplicity p (p^a * m - k) = multiplicity p (p^a - k)"
proof (rule multiplicity_cong [OF iffI])
    fix r
    assume *: "p ^ r dvd p ^ a * m - k"
    show "p ^ r dvd p ` a - k"
    proof -
        have "k \leq p ^ a * m" using assms
            by (meson nat_dvd_not_less dvd_triv_left leI mult_pos_pos order.strict_trans)
        then have "r \leq a"
            by (meson "*" 〈0 < k\rangle\langlek < p^a> dvd_diffD1 dvd_triv_left leI less_imp_le_nat
nat_dvd_not_less power_le_dvd)
            then have "p^r dvd p^a * m" by (simp add: le_imp_power_dvd)
            thus ?thesis
                by (meson <k \leq p ^ a * m < r \leq a * dvd_diffD1 dvd_diff_nat le_imp_power_dvd)
    qed
next
    fix r
    assume *: "p ^ r dvd p ^ a - k"
    with assms have "r\leqa"
            by (metis diff_diff_cancel less_imp_le_nat nat_dvd_not_less nat_le_linear
power_le_dvd zero_less_diff)
    show "p ^ r dvd p ^ a * m - k"
    proof -
        have "p^r dvd p^a*m"
```

```
        by (simp add: \r \leq a` le_imp_power_dvd)
        then show ?thesis
            by (meson assms * dvd_diffD1 dvd_diff_nat le_imp_power_dvd less_imp_le_nat
<r \leq a )
    qed
qed
lemma p_not_div_choose_lemma:
    fixes p :: nat
    assumes eeq: "\i. Suc i < K \Longrightarrow multiplicity p (Suc i) = multiplicity
p (Suc (j + i))"
            and "k < K" and p: "prime p"
        shows "multiplicity p (j + k choose k) = 0"
    using <k < K>
proof (induction k)
    case 0 then show ?case by simp
next
    case (Suc k)
    then have *: "(Suc (j+k) choose Suc k) > 0" by simp
    then have "multiplicity p ((Suc (j+k) choose Suc k) * Suc k) = multiplicity
p (Suc k)"
        by (subst Suc_times_binomial_eq [symmetric], subst prime_elem_multiplicity_mult_distrib
                    (insert p Suc.prems, simp_all add: eeq [symmetric] Suc.IH)
    with p * show ?case
        by (subst (asm) prime_elem_multiplicity_mult_distrib) simp_all
qed
```

The lemma above, with two changes of variables
lemma p_not_div_choose:
assumes " $k<K "$ and $" k \leq n "$
and eeq: " $\bigwedge j . \llbracket 0<j ; j<K \rrbracket \Longrightarrow$ multiplicity $p(n-k+(K-j))=$
multiplicity p (K - j)" "prime p"
shows "multiplicity p (n choose k) = 0"
apply (rule p_not_div_choose_lemma [of K p "n-k" k, simplified assms nat_minus_add_max
max_absorb1])
apply (metis add_Suc_right eeq diff_diff_cancel order_less_imp_le zero_less_Suc
zero_less_diff)
apply (rule TrueI) +
done
proposition const_p_fac:
assumes " $m>0$ " and prime: "prime p "
shows "multiplicity p (p^a * m choose p^a) = multiplicity p m"
proof-
from assms have p: "0 < p ^ a" " $0<p^{\wedge} a * m "$ "p^a $\leq p^{\wedge} a * m "$
by (auto simp: prime_gt_0_nat)
have *: "multiplicity p ((p^a * m - 1) choose (p^a - 1)) = 0"
apply (rule p_not_div_choose [where $\mathrm{K}=\mathrm{m}^{\mathrm{p}} \mathrm{a}^{\mathrm{a}} \mathrm{]}$)
using p exponent_p_a_m_k_equation by (auto simp: diff_le_mono prime)

```
    have "multiplicity p ((p ^ a * m choose p ^ a) * p ^ a) = a + multiplicity
p m"
    proof -
    have "(p ^ a * m choose p ^ a) * p ^ a = p ^ a * m * (p ^ a * m -
1 choose (p ^ a - 1))"
            (is "_ = ?rhs") using prime
            by (subst times_binomial_minus1_eq [symmetric]) (auto simp: prime_gt_0_nat)
        also from p have "p ^ a - Suc 0 \leq p ^ a * m - Suc 0" by linarith
        with prime * p have "multiplicity p ?rhs = multiplicity p (p ` a
* m)"
            by (subst prime_elem_multiplicity_mult_distrib) auto
            also have "... = a + multiplicity p m"
            using prime p by (subst prime_elem_multiplicity_mult_distrib) simp_all
            finally show ?thesis .
    qed
    then show ?thesis
    using prime p by (subst (asm) prime_elem_multiplicity_mult_distrib)
simp_all
qed
end
```

```
theory Sylow
    imports Coset Exponent
begin
```

See also [3].

The combinatorial argument is in theory Exponent.

```
lemma le_extend_mult: "\llbracket0 < c; a \leq b\rrbracket \Longrightarrowa a b * c"
    for c :: nat
    by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less
zero_less_iff_neq_zero)
locale sylow = group +
    fixes }p\mathrm{ and a and m and calM and RelM
    assumes prime_p: "prime p"
        and order_G: "order G = (p^a) * m"
        and finite_G[iff]: "finite (carrier G)"
    defines "calM \equiv{s. s \subseteq carrier G ^ card s = p^a}"
        and "RelM \equiv{(N1, N2). N1 \in calM }\wedge N2 \in calM ^ (\existsg \in carrier G
N1 = N2 #> g)}"
begin
lemma RelM_refl_on: "refl_on calM RelM"
    by (auto simp: refl_on_def RelM_def calM_def) (blast intro!: coset_mult_one
[symmetric])
lemma RelM_sym: "sym RelM"
```

```
proof (unfold sym_def RelM_def, clarify)
    fix y g
    assume "y \in calM"
        and g: "g \in carrier G"
    then have "y = y #> g #> (inv g)"
        by (simp add: coset_mult_assoc calM_def)
    then show "\existsg'\incarrier G. y = y #> g #> g'"
        by (blast intro: g)
qed
lemma RelM_trans: "trans RelM"
    by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
lemma RelM_equiv: "equiv calM RelM"
    unfolding equiv_def by (blast intro: RelM_refl_on RelM_sym RelM_trans)
lemma M_subset_calM_prep: "M' \in calM // RelM \Longrightarrow M' \subseteq calM"
    unfolding RelM_def by (blast elim!: quotientE)
end
```


8.1 Main Part of the Proof

```
locale sylow_central = sylow +
    fixes H and M1 and M
    assumes M_in_quot: "M \in calM // RelM"
        and not_dvd_M: "\neg (p ^ Suc (multiplicity p m) dvd card M)"
        and M1_in_M: "M1 \in M"
    defines "H \equiv {g. g \in carrier G ^ M1 #> g = M1}"
begin
lemma M_subset_calM: "M \subseteq calM"
    by (rule M_in_quot [THEN M_subset_calM_prep])
lemma card_M1: "card M1 = p`a"
    using M1_in_M M_subset_calM calM_def by blast
lemma exists_x_in_M1: "\existsx. x \in M1"
    using prime_p [THEN prime_gt_Suc_0_nat] card_M1
    by (metis Suc_lessD card_eq_O_iff empty_subsetI equalityI gr_implies_not0
nat_zero_less_power_iff subsetI)
lemma M1_subset_G [simp]: "M1 \subseteq carrier G"
    using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast
lemma M1_inj_H: "\existsf \in H->M1. inj_on f H"
proof -
    from exists_x_in_M1 obtain m1 where m1M: "m1 \in M1"..
    have m1: "m1 \in carrier G"
```

```
        by (simp add: m1M M1_subset_G [THEN subsetD])
    show ?thesis
    proof
        show "inj_on ( }\lambda\textrm{z}\in\textrm{H}.\textrm{m}1\otimes\textrm{z})\textrm{H}
        by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def
m1)
        show "restrict (op \otimesm1) H \in H }->\mathrm{ M1"
        proof (rule restrictI)
            fix z
            assume zH: "z \in H"
        show "m1 \otimes z G M1"
        proof -
            from zH
            have zG: "z \in carrier G" and M1zeq: "M1 #> z = M1"
                        by (auto simp add: H_def)
                show ?thesis
                        by (rule subst [OF M1zeq]) (simp add: m1M zG rcosI)
        qed
        qed
    qed
qed
end
```


8.2 Discharging the Assumptions of sylow_central

context sylow
begin
lemma EmptyNotInEquivSet: "\{\} \notin calM // RelM"
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
lemma existsM1inM: "M calM // RelM $\Longrightarrow \exists \mathrm{M} 1 . \mathrm{M} 1 \in \mathrm{M} "$
using RelM_equiv equiv_Eps_in by blast
lemma zero_less_o_G: "0 < order G"
by (simp add: order_def card_gt_0_iff carrier_not_empty)
lemma zero_less_m: "m > 0"
using zero_less_o_G by (simp add: order_G)
lemma card_calM: "card calM $=\left(p^{\wedge} a\right) * m$ choose p^a"
by (simp add: calM_def n_subsets order_G [symmetric] order_def)
lemma zero_less_card_calM: "card calM > 0"
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
lemma max_p_div_calM: " $\neg(p$ ~ Suc (multiplicity p m) dvd card calM)"
proof

```
    assume "p ` Suc (multiplicity p m) dvd card calM"
    with zero_less_card_calM prime_p
    have "Suc (multiplicity p m) \leq multiplicity p (card calM)"
    by (intro multiplicity_geI) auto
    then have "multiplicity p m < multiplicity p (card calM)" by simp
    also have "multiplicity p m = multiplicity p (card calM)"
        by (simp add: const_p_fac prime_p zero_less_m card_calM)
    finally show False by simp
qed
lemma finite_calM: "finite calM"
    unfolding calM_def by (rule finite_subset [where B = "Pow (carrier
G)"]) auto
lemma lemma_A1: "\existsM G calM // RelM. \neg (p ^ Suc (multiplicity p m) dvd
card M)"
    using RelM_equiv equiv_imp_dvd_card finite_calM max_p_div_calM by blast
end
```


8.2.1 Introduction and Destruct Rules for H

```
context sylow_central
```

begin
lemma H_I: " $\llbracket \mathrm{g} \in$ carrier $G ;$ M1 \#> g $=\mathrm{M} 1 \rrbracket \Longrightarrow \mathrm{~g} \in \mathrm{H} "$
by (simp add: H_def)
lemma H_into_carrier_G: "x $\in H \Longrightarrow \mathrm{x} \in$ carrier $\mathrm{G} "$
by (simp add: H_def)
lemma in_H_imp_eq: "g $\in \mathrm{H} \Longrightarrow \mathrm{M} 1$ \#> g = M1"
by (simp add: H_def)
lemma $H_{\text {_m_closed }}$ " $\llbracket \mathrm{x} \in \mathrm{H} ; \mathrm{y} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{x} \otimes \mathrm{y} \in \mathrm{H}$ "
by (simp add: H_def coset_mult_assoc [symmetric])
lemma H_not_empty: "H $\neq\{ \}$ "
apply (simp add: H_def)
apply (rule exI [of _ 1])
apply simp
done
lemma H_is_subgroup: "subgroup H G"
apply (rule subgroupI)
apply (rule subsetI)
apply (erule H_into_carrier_G)
apply (rule H_not_empty)
apply (simp add: H_def)

```
    apply clarify
    apply (erule_tac P = "\lambdaz. lhs z = M1" for lhs in subst)
    apply (simp add: coset_mult_assoc )
    apply (blast intro: H_m_closed)
    done
lemma rcosetGM1g_subset_G: "\llbracketg \in carrier G; x \in M1 #> g\rrbracket\Longrightarrow x \in carrier
G"
    by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
lemma finite_M1: "finite M1"
    by (rule finite_subset [OF M1_subset_G finite_G])
lemma finite_rcosetGM1g: "g \in carrier G \Longrightarrow finite (M1 #> g)"
    using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI
by blast
lemma M1_cardeq_rcosetGM1g: "g \in carrier G \Longrightarrow card (M1 #> g) = card
M1"
    by (simp add: card_cosets_equal rcosetsI)
lemma M1_RelM_rcosetGM1g: "g \in carrier G \Longrightarrow (M1, M1 #> g) \in RelM"
    apply (simp add: RelM_def calM_def card_M1)
    apply (rule conjI)
        apply (blast intro: rcosetGM1g_subset_G)
    apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
    apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
    done
end
```


8.3 Equal Cardinalities of M and the Set of Cosets

Injections between M and $\operatorname{rcosets}_{G} H$ show that their cardinalities are equal.

```
lemma ElemClassEquiv: "\llbracketequiv A r; C \in A // r\rrbracket \Longrightarrow \forallx C C. \forally f C. (x,
y) \in r"
    unfolding equiv_def quotient_def sym_def trans_def by blast
context sylow_central
begin
lemma M_elem_map: "M2 \in M \Longrightarrow \existsg. g \in carrier G ^ M1 #> g = M2"
    using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
    by (simp add: RelM_def) (blast dest!: bspec)
lemmas M_elem_map_carrier = M_elem_map [THEN someI_ex, THEN conjunct1]
lemmas M_elem_map_eq = M_elem_map [THEN someI_ex, THEN conjunct2]
```

```
lemma M_funcset_rcosets_H:
    "(\lambdax\inM. H #> (SOME g. g \in carrier G ^ M1 #> g = x)) \in M -> rcosets
H"
    by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI
subgroup_imp_subset)
lemma inj_M_GmodH: "\existsf \in M }->\mathrm{ rcosets H. inj_on f M"
    apply (rule bexI)
        apply (rule_tac [2] M_funcset_rcosets_H)
    apply (rule inj_onI, simp)
    apply (rule trans [OF _ M_elem_map_eq])
        prefer 2 apply assumption
    apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
    apply (rule coset_mult_inv1)
        apply (erule_tac [2] M_elem_map_carrier)+
        apply (rule_tac [2] M1_subset_G)
    apply (rule coset_join1 [THEN in_H_imp_eq])
        apply (rule_tac [3] H_is_subgroup)
    prefer 2 apply (blast intro: M_elem_map_carrier)
    apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
    done
```

end

8.3.1 The Opposite Injection

context sylow_central
begin
lemma H_elem_map: "H1 $\in \operatorname{rcosets~} \mathrm{H} \Longrightarrow \exists \mathrm{g} . \mathrm{g} \in \operatorname{carrier} \mathrm{G} \wedge \mathrm{H} \#>\mathrm{g}=$ H1" by (auto simp: RCOSETS_def)
lemmas H_elem_map_carrier = H_elem_map [THEN someI_ex, THEN conjunct1]
lemmas H_elem_map_eq = H_elem_map [THEN someI_ex, THEN conjunct2]
lemma rcosets_H_funcset_M:
" $(\lambda \mathrm{C} \in \operatorname{rcosets} \mathrm{H} . \mathrm{M} 1$ \#> ($\mathrm{Og} . \mathrm{g} \in \operatorname{carrier} \mathrm{G} \wedge \mathrm{H} \#>\mathrm{g}=\mathrm{C})$) $\in \operatorname{rcosets}$
$\mathrm{H} \rightarrow \mathrm{M} "$
apply (simp add: RCOSETS_def)
apply (fast intro: someI2
intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot
_ M1_RelM_rcosetGM1g])
done
Close to a duplicate of inj_M_GmodH.
lemma inj_GmodH_M: " $\exists \mathrm{g} \in \operatorname{rcosets} \mathrm{H} \rightarrow \mathrm{M}$. inj_on g (rcosets H)"

```
    apply (rule bexI)
    apply (rule_tac [2] rcosets_H_funcset_M)
    apply (rule inj_onI)
    apply (simp)
    apply (rule trans [OF _ H_elem_map_eq])
    prefer 2 apply assumption
    apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
    apply (rule coset_mult_inv1)
        apply (erule_tac [2] H_elem_map_carrier)+
    apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
    apply (rule coset_join2)
        apply (blast intro: H_elem_map_carrier)
    apply (rule H_is_subgroup)
    apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
    done
lemma calM_subset_PowG: "calM \subseteq Pow (carrier G)"
    by (auto simp: calM_def)
lemma finite_M: "finite M"
    by (metis M_subset_calM finite_calM rev_finite_subset)
lemma cardMeqIndexH: "card M = card (rcosets H)"
    apply (insert inj_M_GmodH inj_GmodH_M)
    apply (blast intro: card_bij finite_M H_is_subgroup
        rcosets_subset_PowG [THEN finite_subset]
        finite_Pow_iff [THEN iffD2])
    done
lemma index_lem: "card M * card H = order G"
    by (simp add: cardMeqIndexH lagrange H_is_subgroup)
lemma lemma_leq1: "p^a \leq card H"
    apply (rule dvd_imp_le)
        apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
        prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
    apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd
zero_less_m)
    done
lemma lemma_leq2: "card H \leq p^a"
    apply (subst card_M1 [symmetric])
    apply (cut_tac M1_inj_H)
    apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset
[OF _ finite_G])
    done
lemma card_H_eq: "card H = p^a"
```

```
by (blast intro: le_antisym lemma_leq1 lemma_leq2)
end
```

```
lemma (in sylow) sylow_thm: "\existsH. subgroup H G ^ card H = p^a"
```

lemma (in sylow) sylow_thm: "\existsH. subgroup H G ^ card H = p^a"
using lemma_A1
using lemma_A1
apply clarify
apply clarify
apply (frule existsM1inM, clarify)
apply (frule existsM1inM, clarify)
apply (subgoal_tac "sylow_central G p a m M1 M")
apply (subgoal_tac "sylow_central G p a m M1 M")
apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms
apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms
calM_def RelM_def)
calM_def RelM_def)
done

```
    done
```

Needed because the locale's automatic definition refers to semigroup G and Group.group_axioms G rather than simply to Group.group G.

```
lemma sylow_eq: "sylow G p a m \longleftrightarrow group G ^ sylow_axioms G p a m"
    by (simp add: sylow_def group_def)
```


8.4 Sylow's Theorem

theorem sylow_thm:
"【prime p; group G; order $G=\left(p^{\wedge} a\right) * m ;$ finite (carrier G)】
$\Longrightarrow \exists \mathrm{H}$. subgroup $\mathrm{H} G \wedge$ card $H=\mathrm{p}^{\wedge} \mathrm{a}^{\prime \prime}$
by (rule sylow.sylow_thm [of G p a m]) (simp add: sylow_eq sylow_axioms_def)
end
theory Bij
imports Group
begin

9 Bijections of a Set, Permutation and Automorphism Groups

definition
Bij :: "'a set \Rightarrow ('a \Rightarrow 'a) set"

- Only extensional functions, since otherwise we get too many.
where "Bij S = extensional S \cap \{f. bij_betw f S S\}"
definition
BijGroup :: "'a set \Rightarrow ('a \Rightarrow 'a) monoid"
where "BijGroup $\mathrm{S}=$
(carrier = Bij S,
mult $=\lambda \mathrm{g} \in \operatorname{Bij} \mathrm{S} . \lambda \mathrm{f} \in \operatorname{Bij} \mathrm{S}$. compose S g f ,
one $=\lambda \mathrm{x} \in \mathrm{S} . \mathrm{x} \mid) \mid$

```
declare Id_compose [simp] compose_Id [simp]
lemma Bij_imp_extensional: " \(f \in \operatorname{Bij} S \Longrightarrow f \in\) extensional \(S "\)
    by (simp add: Bij_def)
lemma Bij_imp_funcset: "f \(\in \operatorname{Bij} S \Longrightarrow f \in S \rightarrow S "\)
    by (auto simp add: Bij_def bij_betw_imp_funcset)
```


9.1 Bijections Form a Group

```
lemma restrict_inv_into_Bij: "f \in Bij S \Longrightarrow ( }\\textrm{x}\in\textrm{S}\mathrm{ . (inv_into S f)
x) \in Bij S"
    by (simp add: Bij_def bij_betw_inv_into)
lemma id_Bij: "(\lambdax\inS. x) \in Bij S "
    by (auto simp add: Bij_def bij_betw_def inj_on_def)
lemma compose_Bij: "\llbracketx \in Bij S; y \in Bij S\rrbracket \Longrightarrow compose S x y \in Bij S"
    by (auto simp add: Bij_def bij_betw_compose)
lemma Bij_compose_restrict_eq:
            "f \in Bij S \Longrightarrow compose S (restrict (inv_into S f) S) f = ( }\lambda\textrm{x}\in\textrm{S}
x)"
    by (simp add: Bij_def compose_inv_into_id)
theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
apply (rule groupI)
        apply (simp add: compose_Bij)
        apply (simp add: id_Bij)
        apply (simp add: compose_Bij)
        apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
    apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
done
```


9.2 Automorphisms Form a Group

lemma Bij_inv_into_mem: "【f $\in \operatorname{Bij} S ; x \in S \rrbracket \Longrightarrow$ inv_into $S f x \in S "$ by (simp add: Bij_def bij_betw_def inv_into_into)
lemma Bij_inv_into_lemma:
assumes eq: " $\bigwedge x \mathrm{y} . \llbracket \mathrm{x} \in \mathrm{S} ; \mathrm{y} \in \mathrm{S} \rrbracket \Longrightarrow \mathrm{h}(\mathrm{g} x \mathrm{y})=\mathrm{g}(\mathrm{h} x)(\mathrm{h} y) "$
shows " $\llbracket \mathrm{h} \in \mathrm{Bij} \mathrm{S} ; \mathrm{g} \in \mathrm{S} \rightarrow \mathrm{S} \rightarrow \mathrm{S} ; \mathrm{x} \in \mathrm{S} ; \mathrm{y} \in \mathrm{S} \rrbracket$
\Longrightarrow inv_into $S h(g x y)=g$ (inv_into $S h x$) (inv_into $S h y) "$
apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac $\left.{ }^{\prime} \exists x^{\prime} \in S . \exists y \prime \in S . x=h x^{\prime} \& y=h y \prime ", ~ c l a r i f y\right)$
apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)

done

definition

```
    auto :: "('a, 'b) monoid_scheme \(\Rightarrow\) ('a \(\Rightarrow\) 'a) set"
```

 where "auto G = hom G G \(\cap\) Bij (carrier G)"

definition

AutoGroup :: "('a, 'c) monoid_scheme \Rightarrow ('a \Rightarrow 'a) monoid" where "AutoGroup G = BijGroup (carrier G) (carrier := auto G|"

```
lemma (in group) id_in_auto: "( \(\lambda \mathrm{x} \in\) carrier G. x) \(\in\) auto G"
```

 by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
 lemma (in group) mult_funcset: "mult $G \in \operatorname{carrier} G \rightarrow$ carrier $G \rightarrow$ carrier
G"
by (simp add: Pi_I group.axioms)
lemma (in group) restrict_inv_into_hom:
" $\llbracket \mathrm{h} \in$ hom G G; h \in Bij (carrier G) \rrbracket
\Longrightarrow restrict (inv_into (carrier G) h) (carrier G) \in hom G G"
by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
group.axioms Bij_inv_into_lemma)
lemma inv_BijGroup:
"f $\in \operatorname{Bij} S \Longrightarrow m_{\text {_ }}$ inv (BijGroup S) $f=(\lambda x \in S$. (inv_into S f) x)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
done
lemma (in group) subgroup_auto:
"subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
show "auto $G \subseteq$ carrier (BijGroup (carrier G))"
by (force simp add: auto_def BijGroup_def)
next
fix x y
assume "x \in auto G " "y \in auto G "
thus "x $\otimes_{\text {BijGroup (carrier }}$) $y \in$ auto G "
by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset
group.hom_compose compose_Bij)
next
show "1 $1_{\text {BijGroup (carrier }}$) \in auto G" by (simp add: BijGroup_def id_in_auto)
next
fix x
assume " $\mathrm{x} \in$ auto G "
thus "inv ${ }_{\text {BijGroup }}$ (carrier G) $\mathrm{x} \in$ auto $\mathrm{G} "$
by (simp del: restrict_apply
add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)
qed
theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto group_BijGroup)
end

```
theory Ring
imports FiniteProduct
begin
```


10 The Algebraic Hierarchy of Rings

10.1 Abelian Groups

```
record 'a ring = "'a monoid" +
    zero :: 'a ("0\imath")
    add :: "['a, 'a] => 'a" (infixl "\oplus\imath" 65)
```

Derived operations.

definition

a_inv :: "[(’a, 'm) ring_scheme, 'a] => 'a" ("Өて _" [81] 80)
where "a_inv $R=m_{\text {_inv }}$ (carrier = carrier R, mult $=$ add R, one = zero
R()"

definition

a_minus :: "[('a, ’m) ring_scheme, 'a, 'a] => 'a" (infixl " \ominus_{\imath} " 65)

locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid: "comm_monoid (carrier = carrier G, mult = add G, one = zero G|)"
definition
finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b" where
"finsum G = finprod (carrier = carrier G, mult = add G, one = zero G|)"
syntax
"_finsum" :: "index => idt => 'a set => 'b => 'b"

translations

$" \bigoplus_{G} i \in A . b " \rightleftharpoons$ "CONST finsum $G(\% i . b) A "$

- Beware of argument permutation!

```
locale abelian_group = abelian_monoid +
    assumes a_comm_group:
        "comm_group (carrier = carrier G, mult = add G, one = zero G|)"
```


10.2 Basic Properties

lemma abelian_monoidI:
fixes R (structure)
assumes a_closed:

```
"!!x y. [| x \in carrier R; y \in carrier R |] ==> x \oplus y \in carrier
```

R"
and zero_closed: "0 \in carrier R"
and a_assoc:
"!!x y z. [| x \in carrier R; $y \in \operatorname{carrier~} R$; $z \in$ carrier R l] ==>
($\mathrm{x} \oplus \mathrm{y}$) $\oplus \mathrm{z}=\mathrm{x} \oplus(\mathrm{y} \oplus \mathrm{z}){ }^{\prime \prime}$
and l_zero: "!!x. $x \in$ carrier $R==>0 \times x=x "$
and a_comm:
"!!x y. [| x \in carrier R; $y \in \operatorname{carrier~} R$ l] ==> $x \oplus y=y \oplus x "$
shows "abelian_monoid R"
by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)
lemma abelian_groupI:
fixes R (structure)
assumes a_closed:
"!!x y. [| x \in carrier R; y \in carrier R l] ==> x \oplus y carrier
R"
and zero_closed: "zero $R \in$ carrier R"
and a_assoc:
"!!x y z. [| x \in carrier R; y \in carrier R; $z \in \operatorname{carrier~} R$ |] ==>
$(x \oplus y) \oplus z=x \oplus(y \oplus z) "$
and a_comm:
"!!x y. [| x \in carrier R; $y \in \operatorname{carrier~} R \quad \mid]==>x \oplus y=y \oplus x "$
and l_zero: "!!x. $x \in$ carrier $R==>0 \times x=x "$
and l_inv_ex: "!!x. x \in carrier $R==>E X \quad y \quad$: carrier $R . y \oplus x=0 "$
shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI
abelian_group_axioms.intro comm_monoidI comm_groupI
intro: assms)
lemma (in abelian_monoid) a_monoid:
"monoid (|carrier = carrier G, mult = add G, one = zero G|)"
by (rule comm_monoid.axioms, rule a_comm_monoid)
lemma (in abelian_group) a_group:
"group (carrier = carrier G, mult = add G, one = zero G|)"
by (simp add: group_def a_monoid)
(simp add: comm_group.axioms group.axioms a_comm_group)

lemmas monoid_record_simps = partial_object.simps monoid.simps

Transfer facts from multiplicative structures via interpretation.

```
sublocale abelian_monoid <
    add: monoid "(carrier = carrier G, mult = add G, one = zero G|)"
    rewrites "carrier (carrier = carrier G, mult = add G, one = zero G|)
= carrier G"
        and "mult (carrier = carrier G, mult = add G, one = zero G|) = add
G"
        and "one (carrier = carrier G, mult = add G, one = zero G| = zero
G"
    by (rule a_monoid) auto
context abelian_monoid begin
lemmas a_closed = add.m_closed
lemmas zero_closed = add.one_closed
lemmas a_assoc = add.m_assoc
lemmas l_zero = add.l_one
lemmas r_zero = add.r_one
lemmas minus_unique = add.inv_unique
end
```

sublocale abelian_monoid <
add: comm_monoid "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (carrier = carrier G, mult = add G, one = zero G|)
= carrier G"
and "mult (|carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid$) $=$ add
G"
and "one (|carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid$) zero
G"
and "finprod (carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid$) = finsum
G"
by (rule a_comm_monoid) (auto simp: finsum_def)
context abelian_monoid begin
lemmas a_comm = add.m_comm
lemmas a_lcomm = add.m_lcomm
lemmas a_ac = a_assoc a_comm a_lcomm
lemmas finsum_empty = add.finprod_empty
lemmas finsum_insert = add.finprod_insert
lemmas finsum_zero = add.finprod_one
lemmas finsum_closed = add.finprod_closed
lemmas finsum_Un_Int = add.finprod_Un_Int
lemmas finsum_Un_disjoint = add.finprod_Un_disjoint
lemmas finsum_addf = add.finprod_multf

```
lemmas finsum_cong' = add.finprod_cong'
lemmas finsum_0 = add.finprod_0
lemmas finsum_Suc = add.finprod_Suc
lemmas finsum_Suc2 = add.finprod_Suc2
lemmas finsum_add = add.finprod_mult
lemmas finsum_infinite = add.finprod_infinite
lemmas finsum_cong = add.finprod_cong
```

Usually, if this rule causes a failed congruence proof error, the reason is that the premise $\mathrm{g} \in \mathrm{B} \rightarrow$ carrier G cannot be shown. Adding Pi_def to the simpset is often useful.

```
lemmas finsum_reindex = add.finprod_reindex
```

lemmas finsum_singleton = add.finprod_singleton
end
sublocale abelian_group <
add: group "(|carrier = carrier G, mult = add G, one = zero G|)"
rewrites "carrier (carrier = carrier G, mult = add G, one = zero G)
= carrier G"
and "mult (|carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid$) = add
G"
and "one (|carrier $=$ carrier G, mult $=$ add G, one $=$ zero G | $=$ zero
G"
and "m_inv (carrier = carrier G, mult = add G, one = zero G|) = a_inv
G"
by (rule a_group) (auto simp: m_inv_def a_inv_def)
context abelian_group
begin
lemmas a_inv_closed = add.inv_closed
lemma minus_closed [intro, simp]:
" [I x \in carrier $G ; y \in \operatorname{carrier~G~I]~}==>x \ominus y \in \operatorname{carrier~G"~}$
by (simp add: a_minus_def)
lemmas a_l_cancel = add.l_cancel
lemmas a_r_cancel = add.r_cancel
lemmas l_neg = add.l_inv [simp del]
lemmas r_neg = add.r_inv [simp del]
lemmas minus_zero = add.inv_one
lemmas minus_minus = add.inv_inv
lemmas a_inv_inj = add.inv_inj
lemmas minus_equality = add.inv_equality
end

```
sublocale abelian_group <
    add: comm_group "(carrier = carrier G, mult = add G, one = zero G|"
    rewrites "carrier (carrier = carrier G, mult = add G, one = zero G)
= carrier G"
        and "mult (|carrier = carrier G, mult = add G, one = zero G|) = add
G"
        and "one (carrier = carrier G, mult = add G, one = zero G| = zero
G"
        and "m_inv (carrier = carrier G, mult = add G, one = zero G|) = a_inv
G"
        and "finprod (carrier = carrier G, mult = add G, one = zero G|) = finsum
G"
    by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def)
```

lemmas (in abelian_group) minus_add = add.inv_mult
Derive an abelian_group from a comm_group
lemma comm_group_abelian_groupI:
fixes G (structure)
assumes cg: "comm_group (carrier = carrier G, mult = add G, one = zero
G|)"
shows "abelian_group G"
proof -
interpret comm_group "(carrier $=$ carrier G, mult $=$ add G, one $=$ zero
G()"
by (rule cg)
show "abelian_group G" ..
qed

10.3 Rings: Basic Definitions

locale semiring = abelian_monoid $R+$ monoid R for R (structure) +
assumes l_distr: " [| x \in carrier R; $y \in \operatorname{carrier~} R ; z \in \operatorname{carrier} R$ |]
$==>(x \oplus y) \otimes z=x \otimes z \oplus y \otimes z^{\prime \prime}$
and r_distr: " [| x \in carrier R; $y \in$ carrier $R ; z \in$ carrier $R \quad \mid]$
$==>z \otimes(x \oplus y)=z \otimes x \oplus z \otimes y "$
and l_null [simp]: "x \in carrier $R==>0 \otimes x=0 "$
and r_null[simp]: "x \in carrier $R==>x \otimes 0=0 "$
locale ring = abelian_group $R+$ monoid R for R (structure) +
assumes "[| x \in carrier R; $y \in \operatorname{carrier} R ; z \in$ carrier R |]
$==>(x \oplus y) \otimes z=x \otimes z \oplus y \otimes z^{\prime \prime}$
and " $[\mid \mathrm{x} \in$ carrier $\mathrm{R} ; \mathrm{y} \in$ carrier $\mathrm{R} ; \mathrm{z} \in$ carrier R l]
$==>z \otimes(x \oplus y)=z \otimes x \oplus z \otimes y "$
locale cring $=$ ring + comm_monoid R

```
locale "domain" = cring +
    assumes one_not_zero [simp]: "1 ~= 0"
        and integral: "[l a \otimes b = 0; a \in carrier R; b \in carrier R |] ==>
                        a = 0 | b = 0"
locale field = "domain" +
    assumes field_Units: "Units R = carrier R - {0}"
```


10.4 Rings

```
lemma ringI:
fixes \(R\) (structure)
assumes abelian_group: "abelian_group R"
and monoid: "monoid R"
and l_distr: "!!x y z. [| x \(\in\) carrier \(R\); \(y \in \operatorname{carrier~} R\); \(z \in\) carrier
R |]
\(==>(x \oplus y) \otimes z=x \otimes z \oplus y \otimes z^{\prime \prime}\)
and r_distr: "!!x y z. [| x \(\in\) carrier \(R\); \(y \in \operatorname{carrier~R;~z~} \in\) carrier
R |]
\[
=\Rightarrow z \otimes(x \oplus y)=z \otimes x \oplus z \otimes y \prime
\]
shows "ring R"
by (auto intro: ring.intro
abelian_group.axioms ring_axioms.intro assms)
context ring begin
lemma is_abelian_group: "abelian_group R" ..
lemma is_monoid: "monoid R"
by (auto intro!: monoidI m_assoc)
lemma is_ring: "ring R"
by (rule ring_axioms)
end
lemmas ring_record_simps = monoid_record_simps ring.simps
lemma cringI:
fixes \(R\) (structure)
assumes abelian_group: "abelian_group R"
and comm_monoid: "comm_monoid R"
and l_distr: "!!x y z. [| x \(\in\) carrier \(R\); \(y \in \operatorname{carrier~} R\); \(z \in\) carrier
R |]
\[
=\Rightarrow(x \oplus y) \otimes z=x \otimes z \oplus y \otimes z^{\prime \prime}
\]
shows "cring R"
proof (intro cring.intro ring.intro)
show "ring_axioms R"
```

- Right-distributivity follows from left-distributivity and commutativity.
proof (rule ring_axioms.intro)
fix $x y z$
assume R: "x \in carrier $R "$ " $y \in \operatorname{carrier} R$ " "z \in carrier R"
note [simp] = comm_monoid.axioms [OF comm_monoid]
abelian_group.axioms [OF abelian_group]
abelian_monoid.a_closed
from R have $" z \otimes(x \oplus y)=(x \oplus y) \otimes z^{\prime \prime}$
by (simp add: comm_monoid.m_comm [0F comm_monoid.intro])
also from R have $" \ldots=x \otimes z \oplus y \otimes z$ " by (simp add: l_distr)
also from R have "... $=\mathrm{z} \otimes \mathrm{x} \oplus \mathrm{z} \otimes \mathrm{y}$ "
by (simp add: comm_monoid.m_comm [0F comm_monoid.intro])
finally show " $z \otimes(x \oplus y)=z \otimes x \oplus z \otimes y "$.
qed (rule l_distr)
qed (auto intro: cring.intro
abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)
lemma (in cring) is_cring:
"cring R" by (rule cring_axioms)

10.4.1 Normaliser for Rings

```
lemma (in abelian_group) r_neg2:
    "[| x \in carrier G; y \in carrier G |] ==> x }\oplus(\ominus x \oplus y) = y"
proof -
    assume G: "x \in carrier G" "y \in carrier G"
    then have "(x \oplus\ominus x)\oplusy=y"
        by (simp only: r_neg l_zero)
    with G show ?thesis
        by (simp add: a_ac)
qed
lemma (in abelian_group) r_neg1:
    "[| x f carrier G; y \in carrier G |] ==> \ominus x \oplus (x \oplus y) = y"
proof -
    assume G: "x \in carrier G" "y \in carrier G"
    then have "(\ominus x \oplus x) \oplus y = y"
        by (simp only: l_neg l_zero)
    with G show ?thesis by (simp add: a_ac)
qed
```

context ring begin

The following proofs are from Jacobson, Basic Algebra I, pp. 88-89.
sublocale semiring
proof -

```
    note [simp] = ring_axioms[unfolded ring_def ring_axioms_def]
    show "semiring R"
    proof (unfold_locales)
        fix x
        assume R: "x \in carrier R"
        then have "0 \otimes x @ 0 \otimes x = (0 @ 0) \otimes x"
            by (simp del: l_zero r_zero)
    also from R have "... = 0 \otimes x \oplus 0" by simp
    finally have "0 \otimes x }\oplus0\otimes\textrm{x}=0.0\textrm{x}\oplus0"
    with R show "0 \otimes x = 0" by (simp del: r_zero)
    from R have "x \otimes 0 ¢ x \otimes 0 = x \otimes (0 \oplus 0)"
        by (simp del: l_zero r_zero)
    also from R have "... = x \otimes 0 \oplus 0" by simp
    finally have "x \otimes 0 ¢ x \otimes 0 = x \otimes 0 ¢ 0".
    with R show "x \otimes 0 = 0" by (simp del: r_zero)
    qed auto
qed
lemma l_minus:
    "[| x \in carrier R; y G carrier R |] ==> \ominus x \otimes y = \ominus (x \otimes y)"
proof -
    assume R: "x \in carrier R" "y \in carrier R"
    then have " (\ominus x) \otimes y \oplus x \otimes y = ( }\ominus\textrm{x}\oplus\textrm{x})\otimes\textrm{y}|\mp@code{by (simp add: l_distr)
    also from R have "... = 0" by (simp add: l_neg)
    finally have " (\ominus x) \otimes y \oplus x \otimes y = 0" .
    with R have " ( }\ominus\textrm{x})\otimes\textrm{y}\oplus\textrm{x}\otimes\textrm{m}|\ominus\ominus(\textrm{x}\otimes\textrm{y})=\mathbf{0}\oplus\ominus(\textrm{x}\otimes\textrm{y})"\mp@code{by
simp
    with R show ?thesis by (simp add: a_assoc r_neg)
qed
lemma r_minus:
    "[| x f carrier R; y \in carrier R |] ==> x \otimes \ominus y = \ominus (x \otimes y)"
proof -
    assume R: "x \in carrier R" "y \in carrier R"
    then have "x \otimes (\ominus y) \oplus x \otimes y = x \otimes (\ominus y \oplus y)" by (simp add: r_distr)
    also from R have "... = 0" by (simp add: l_neg)
    finally have "x \otimes (\ominus y) }\oplus\textrm{x}\otimes\textrm{y}=0\mathrm{ " .
    with R have "x }\otimes(\ominusy)\oplus\textrm{x}\otimes\textrm{y}|\ominus\ominus(\textrm{x}\otimes\textrm{y})=\mathbf{0}\oplus\ominus(\textrm{f}\otimes|)" b
simp
    with R show ?thesis by (simp add: a_assoc r_neg )
qed
end
lemma (in abelian_group) minus_eq:
    "[| x \in carrier G; y \in carrier G |] ==> x \ominus y = x }\oplus\ominus y
    by (simp only: a_minus_def)
```

Setup algebra method: compute distributive normal form in locale contexts

```
ML_file "ringsimp.ML"
attribute_setup algebra = <
    Scan.lift ((Args.add >> K true || Args.del >> K false) --| Args.colon
|| Scan.succeed true)
            -- Scan.lift Args.name -- Scan.repeat Args.term
            >> (fn ((b, n), ts) => if b then Ringsimp.add_struct (n, ts) else
Ringsimp.del_struct (n, ts))
, "theorems controlling algebra method"
method_setup algebra = <
    Scan.succeed (SIMPLE_METHOD' o Ringsimp.algebra_tac)
, "normalisation of algebraic structure"
lemmas (in semiring) semiring_simprules
    [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]
=
    a_closed zero_closed m_closed one_closed
    a_assoc l_zero a_comm m_assoc l_one l_distr r_zero
    a_lcomm r_distr l_null r_null
lemmas (in ring) ring_simprules
    [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]
=
    a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
    a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
    r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
    a_lcomm r_distr l_null r_null l_minus r_minus
lemmas (in cring)
    [algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] =
    -
lemmas (in cring) cring_simprules
    [algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] =
    a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
    a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
    r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
    a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus
lemma (in semiring) nat_pow_zero:
    "(n::nat) ~= 0 ==> 0 (^) n = 0"
    by (induct n) simp_all
context semiring begin
lemma one_zeroD:
```

```
    assumes onezero: "1 = 0"
    shows "carrier R = {0}"
proof (rule, rule)
    fix x
    assume xcarr: "x \in carrier R"
    from xcarr have "x = x \otimes 1" by simp
    with onezero have "x = x \otimes 0" by simp
    with xcarr have " }\textrm{x}=0\mathrm{ " by simp
    then show "x \in {0}" by fast
qed fast
lemma one_zeroI:
    assumes carrzero: "carrier R = {0}"
    shows "1 = 0"
proof -
    from one_closed and carrzero
        show "1 = 0" by simp
qed
lemma carrier_one_zero: "(carrier R = {0}) = (1 = 0)"
    apply rule
    apply (erule one_zeroI)
    apply (erule one_zeroD)
    done
lemma carrier_one_not_zero: "(carrier R f= {0}) = (1 = 0)"
    by (simp add: carrier_one_zero)
end
Two examples for use of method algebra
```

```
lemma
```

lemma
fixes R (structure) and S (structure)
fixes R (structure) and S (structure)
assumes "ring R" "cring S"
assumes "ring R" "cring S"
assumes RS: "a \in carrier R" "b \in carrier R" "c \in carrier S" "d \in carrier
assumes RS: "a \in carrier R" "b \in carrier R" "c \in carrier S" "d \in carrier
S"
S"
shows "a \oplus \ominus (a \oplus \ominus b) = b \& c \otimes S d = d \otimes S c"
shows "a \oplus \ominus (a \oplus \ominus b) = b \& c \otimes S d = d \otimes S c"
proof -
proof -
interpret ring R by fact
interpret ring R by fact
interpret cring S by fact
interpret cring S by fact
from RS show ?thesis by algebra
from RS show ?thesis by algebra
qed
qed
lemma
lemma
fixes R (structure)
fixes R (structure)
assumes "ring R"
assumes "ring R"
assumes R: "a \in carrier R" "b \in carrier R"
assumes R: "a \in carrier R" "b \in carrier R"
shows "a \ominus (a \ominus b) = b"
shows "a \ominus (a \ominus b) = b"
proof -

```
proof -
```

interpret ring R by fact
from R show ?thesis by algebra
qed

10.4.2 Sums over Finite Sets

lemma (in semiring) finsum_ldistr:
"[| finite A; a \in carrier $R ; f \in A \rightarrow$ carrier $R \mid]==>$
finsum $R f A \otimes a=$ finsum $R(\% i . f i \otimes a) A "$
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)
qed
lemma (in semiring) finsum_rdistr:
" [| finite A; a \in carrier $R ; f \in A \rightarrow$ carrier $R \mid]==>$
$a \otimes$ finsum $R f A=$ finsum $R(\% i . a \otimes f i) A "$
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert x F) then show ?case by (simp add: Pi_def r_distr)
qed

10.5 Integral Domains

context "domain" begin
lemma zero_not_one [simp]:
" 0 ~ $=1 "$
by (rule not_sym) simp
lemma integral_iff:
" [| a \in carrier $R ; b \in$ carrier $R \mid]==>(a \otimes b=0)=(a=0 \mid b=$
0)"
proof
assume "a \in carrier R " "b \in carrier $R "$ "a $\otimes b=0 "$
then show "a $=0 \mid \mathrm{b}=0$ " by (simp add: integral)
next
assume "a \in carrier $R "$ "b \in carrier $R "$ "a $=0 \mid b=0 "$
then show "a $\otimes \mathrm{b}=0$ " by auto
qed
lemma m_lcancel:
assumes prem: "a ~= 0"
and R : "a \in carrier R " "b \in carrier $R "$ "c \in carrier R"
shows " $(\mathrm{a} \otimes \mathrm{b}=\mathrm{a} \otimes \mathrm{c})=(\mathrm{b}=\mathrm{c})$ "
proof
assume eq: "a $\otimes \mathrm{b}=\mathrm{a} \otimes \mathrm{c}$ "
with R have "a $\otimes(b \ominus c)=0$ " by algebra

```
    with R have "a=0 | (b \ominus c) = 0" by (simp add: integral_iff)
    with prem and R have "b \ominus c = 0" by auto
    with R have "b = b \ominus (b \ominus c)" by algebra
    also from R have "b \ominus (b \ominus c) = c" by algebra
    finally show "b = c" .
next
    assume "b = c" then show "a \otimes b = a \otimes c" by simp
qed
lemma m_rcancel:
    assumes prem: "a ~}=0
        and R: "a \in carrier R" "b \in carrier R" "c \in carrier R"
    shows conc: "(b & a = c \otimes a) = (b = c)"
proof -
    from prem and R have " (a \otimes b = a \otimes c) = (b = c)" by (rule m_lcancel)
    with R show ?thesis by algebra
qed
end
```


10.6 Fields

Field would not need to be derived from domain, the properties for domain follow from the assumptions of field

```
lemma (in cring) cring_fieldI:
    assumes field_Units: "Units R = carrier R - {0}"
    shows "field R"
proof
    from field_Units have "0 & Units R" by fast
    moreover have "1 \in Units R" by fast
    ultimately show "1 = 0" by force
next
    fix a b
    assume acarr: "a \in carrier R"
        and bcarr: "b \in carrier R"
        and ab: "a \otimes b = 0"
    show "a = 0 \vee b = 0"
    proof (cases "a = 0", simp)
        assume "a f= 0"
        with field_Units and acarr have aUnit: "a \in Units R" by fast
        from bcarr have "b = 1 \otimes b" by algebra
        also from aUnit acarr have "... = (inv a \otimes a) \otimes b" by simp
        also from acarr bcarr aUnit[THEN Units_inv_closed]
        have "... = (inv a) \otimes (a \otimes b)" by algebra
        also from ab and acarr bcarr aUnit have "... = (inv a) \otimes 0" by simp
        also from aUnit[THEN Units_inv_closed] have "... = 0" by algebra
        finally have "b = 0" .
        then show "a = 0 \vee b = 0" by simp
    qed
```

qed (rule field_Units)
Another variant to show that something is a field

```
lemma (in cring) cring_fieldI2:
    assumes notzero: "0 = 1"
    and invex: "\a. \llbracketa \in carrier R; a }\not=0\rrbracket\Longrightarrow\Longrightarrow\exists\textrm{b}\in\mathrm{ carrier R. a }\otimes\textrm{b}
1"
    shows "field R"
    apply (rule cring_fieldI, simp add: Units_def)
    apply (rule, clarsimp)
    apply (simp add: notzero)
proof (clarsimp)
    fix x
    assume xcarr: "x \in carrier R"
        and "x = 0"
    then have "\existsy\incarrier R. x \otimes y = 1" by (rule invex)
    then obtain y where ycarr: "y \in carrier R" and xy: "x \otimes y = 1" by
fast
    from xy xcarr ycarr have "y \otimes x = 1" by (simp add: m_comm)
    with ycarr and xy show "\existsy\incarrier R. y \otimes x = 1 ^ x \otimes y = 1" by
fast
qed
```


10.7 Morphisms

```
definition
    ring_hom :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme] => ('a =>
'b) set"
    where "ring_hom R S =
        {h. h \in carrier R }->\mathrm{ carrier S &
            (ALL x y. x \in carrier R & y \in carrier R -->
```



```
        h 1 1R = 1S }'
lemma ring_hom_memI:
    fixes R (structure) and S (structure)
    assumes hom_closed: "!!x. x \in carrier R ==> h x f carrier S"
        and hom_mult: "!!x y. [| x \in carrier R; y \in carrier R |] ==>
            h (x & y) = h x & S h y"
        and hom_add: "!!x y. [| x \in carrier R; y \in carrier R |] ==>
            h (x }\oplus\textrm{y})=\textrm{h}x\mp@subsup{\oplus}{S}{}h\mp@subsup{\textrm{y}}{}{\prime\prime
        and hom_one: "h 1 = 1s"
    shows "h \in ring_hom R S"
    by (auto simp add: ring_hom_def assms Pi_def)
lemma ring_hom_closed:
    "[| h \in ring_hom R S; x \in carrier R |] ==> h x f carrier S"
    by (auto simp add: ring_hom_def funcset_mem)
```

```
lemma ring_hom_mult:
    fixes R (structure) and S (structure)
    shows
        "[l h \in ring_hom R S; x \in carrier R; y \in carrier R l] ==>
        h (x & y) = h x }\mp@subsup{|}{S}{\prime}h\mp@code{y"
        by (simp add: ring_hom_def)
lemma ring_hom_add:
    fixes R (structure) and S (structure)
    shows
        "[l h \in ring_hom R S; x \in carrier R; y \in carrier R l] ==>
        h (x }\oplus\textrm{y})=\textrm{h}x\mp@subsup{\oplus}{\textrm{S}}{\textrm{h}}\mp@subsup{\textrm{y}}{}{\prime\prime
        by (simp add: ring_hom_def)
lemma ring_hom_one:
    fixes R (structure) and S (structure)
    shows "h \in ring_hom R S ==> h 1 = 1S"
    by (simp add: ring_hom_def)
locale ring_hom_cring = R?: cring R + S?: cring S
        for R (structure) and S (structure) +
    fixes h
    assumes homh [simp, intro]: "h \in ring_hom R S"
    notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
        and hom_mult [simp] = ring_hom_mult [OF homh]
        and hom_add [simp] = ring_hom_add [OF homh]
        and hom_one [simp] = ring_hom_one [OF homh]
lemma (in ring_hom_cring) hom_zero [simp]:
    "h 0 = 0S"
proof -
    have "h 0 }\mp@subsup{\oplus}{S}{\prime}\textrm{h}0=\textrm{h}0\mp@subsup{\oplus}{\textrm{S}}{0}
        by (simp add: hom_add [symmetric] del: hom_add)
    then show ?thesis by (simp del: S.r_zero)
qed
lemma (in ring_hom_cring) hom_a_inv [simp]:
    "x \in carrier R ==> h ( }\ominus\textrm{x})=\mp@subsup{\ominus}{\textrm{S}}{\textrm{h}}\textrm{x
proof -
    assume R: "x \in carrier R"
    then have "h x }\mp@subsup{\oplus}{S}{}\textrm{h}(\ominus\textrm{x})=\textrm{h}x\mp@subsup{|}{\textrm{S}}{(}(\mp@subsup{\ominus}{\textrm{S}}{\primeh}\textrm{x})
        by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
    with R show ?thesis by simp
qed
lemma (in ring_hom_cring) hom_finsum [simp]:
    "f \in A -> carrier R ==>
    h (finsum R f A) = finsum S (h o f) A"
    by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
```

```
lemma (in ring_hom_cring) hom_finprod:
    "f \in A -> carrier R ==>
    h (finprod R f A) = finprod S (h O f) A"
    by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
declare ring_hom_cring.hom_finprod [simp]
lemma id_ring_hom [simp]:
    "id \in ring_hom R R"
    by (auto intro!: ring_hom_memI)
end
```


11 More on groups

```
theory More_Group
imports
    Ring
begin
```

Show that the units in any monoid give rise to a group.
The file Residues.thy provides some infrastructure to use facts about the unit group within the ring locale.

```
definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where
    "units_of G == (| carrier = Units G,
        Group.monoid.mult = Group.monoid.mult G,
        one = one G |)"
lemma (in monoid) units_group: "group(units_of G)"
    apply (unfold units_of_def)
    apply (rule groupI)
    apply auto
    apply (subst m_assoc)
    apply auto
    apply (rule_tac x = "inv x" in bexI)
    apply auto
    done
lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
    apply (rule group.group_comm_groupI)
    apply (rule units_group)
    apply (insert comm_monoid_axioms)
    apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
    apply auto
    done
lemma units_of_carrier: "carrier (units_of G) = Units G"
```

```
    unfolding units_of_def by auto
lemma units_of_mult: "mult(units_of G) = mult G"
    unfolding units_of_def by auto
lemma units_of_one: "one(units_of G) = one G"
    unfolding units_of_def by auto
lemma (in monoid) units_of_inv: "x : Units G ==> m_inv (units_of G) x
= m_inv G x"
    apply (rule sym)
    apply (subst m_inv_def)
    apply (rule the1_equality)
    apply (rule ex_ex1I)
    apply (subst (asm) Units_def)
    apply auto
    apply (erule inv_unique)
    apply auto
    apply (rule Units_closed)
    apply (simp_all only: units_of_carrier [symmetric])
    apply (insert units_group)
    apply auto
    apply (subst units_of_mult [symmetric])
    apply (subst units_of_one [symmetric])
    apply (erule group.r_inv, assumption)
    apply (subst units_of_mult [symmetric])
    apply (subst units_of_one [symmetric])
    apply (erule group.l_inv, assumption)
    done
lemma (in group) inj_on_const_mult: "a: (carrier G) ==> inj_on (%x. a
\otimes x) (carrier G)"
    unfolding inj_on_def by auto
lemma (in group) surj_const_mult: "a : (carrier G) ==> (%x. a \otimes x) '
(carrier G) = (carrier G)"
    apply (auto simp add: image_def)
    apply (rule_tac x = "(m_inv G a) \otimes x" in bexI)
    apply auto
    apply (subst m_assoc [symmetric])
    apply auto
    done
lemma (in group) l_cancel_one [simp]:
            "x : carrier G C a : carrier G \Longrightarrow (x \otimes a = x) = (a = one G)"
    apply auto
    apply (subst l_cancel [symmetric])
    prefer 4
```

```
    apply (erule ssubst)
    apply auto
    done
lemma (in group) r_cancel_one [simp]: "x : carrier G \Longrightarrow a : carrier
G \Longrightarrow
    (a \otimes x = x) = (a = one G)"
    apply auto
    apply (subst r_cancel [symmetric])
    prefer 4
    apply (erule ssubst)
    apply auto
    done
lemma (in group) l_cancel_one' [simp]: "x : carrier G \Longrightarrow a : carrier
G \Longrightarrow
    (x = x \otimes a) = (a = one G)"
    apply (subst eq_commute)
    apply simp
    done
lemma (in group) r_cancel_one' [simp]: "x : carrier G \Longrightarrow a : carrier
G \Longrightarrow
    (x = a \otimes x) = (a = one G)"
    apply (subst eq_commute)
    apply simp
    done
```

lemma (in comm_group) power_order_eq_one:
assumes fin [simp]: "finite (carrier G)"
and a [simp]: "a : carrier G"
shows "a (^) card(carrier G) = one G"
proof -
have " $(\bigotimes x \in$ carrier G. $x)=(\bigotimes x \in$ carrier $G . a \otimes x) "$
by (subst (2) finprod_reindex [symmetric],
auto simp add: Pi_def inj_on_const_mult surj_const_mult)
also have $" . . .=(\otimes x \in$ carrier $G . a) \otimes(\otimes x \in$ carrier $G . x) "$
by (auto simp add: finprod_multf Pi_def)
also have " ($(x \in$ carrier G. a) = a (^) card (carrier G)"
by (auto simp add: finprod_const)
finally show ?thesis
by auto
qed
end

12 More on finite products

```
theory More_Finite_Product
imports
    More_Group
begin
lemma (in comm_monoid) finprod_UN_disjoint:
    "finite I \Longrightarrow (ALL i:I. finite (A i)) \longrightarrow (ALL i:I. ALL j:I. i ~= j
\longrightarrow
            (A i) Int (A j) = {}) }
            (ALL i:I. ALL x: (A i). g x : carrier G) }
                finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
    apply (induct set: finite)
    apply force
    apply clarsimp
    apply (subst finprod_Un_disjoint)
    apply blast
    apply (erule finite_UN_I)
    apply blast
    apply (fastforce)
    apply (auto intro!: funcsetI finprod_closed)
    done
lemma (in comm_monoid) finprod_Union_disjoint:
    "[l finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
        (ALL A:C. ALL B:C. A ~}= B --> A Int B = {}) |] 
        =>> finprod G f (UC) = finprod G (finprod G f) C"
    apply (frule finprod_UN_disjoint [of C id f])
    apply auto
    done
lemma (in comm_monoid) finprod_one:
        "finite A \Longrightarrow (\x. x:A \Longrightarrow f x = 1) \Longrightarrow finprod G f A = 1"
    by (induct set: finite) auto
```

lemma (in cring) sum_zero_eq_neg: "x : carrier $R \Longrightarrow y ~: ~ c a r r i e r ~ R ~ \Longrightarrow ~$
$\mathrm{x} \oplus \mathrm{y}=\mathbf{0} \Longrightarrow \mathrm{x}=\ominus \mathrm{y}{ }^{\prime \prime}$
by (metis minus_equality)
lemma (in domain) square_eq_one:
fixes x
assumes [simp]: "x : carrier R"
and $" x \otimes x=1 "$
shows " $\mathrm{x}=1 \mid \mathrm{x}=\ominus 1$ "

```
proof -
    have "(x \oplus 1) \otimes (x }\oplus\ominus1)= x \otimes x ¢ \ominus 1"
        by (simp add: ring_simprules)
    also from }\langle\textrm{x}\otimes\textrm{x}=1\mathrm{ ) have "... = 0"
        by (simp add: ring_simprules)
    finally have "(x }\oplus1)\otimes(x\oplus\ominus1)=0"
    then have "(x \oplus 1) = 0 | (x \oplus \ominus 1) = 0"
        by (intro integral, auto)
    then show ?thesis
        apply auto
        apply (erule notE)
        apply (rule sum_zero_eq_neg)
        apply auto
        apply (subgoal_tac "x = \ominus (\ominus 1)")
        apply (simp add: ring_simprules)
        apply (rule sum_zero_eq_neg)
        apply auto
        done
qed
```

lemma (in Ring.domain) inv_eq_self: "x : Units $R \Longrightarrow x=i n v x \Longrightarrow x$
$=1 \vee \mathrm{x}=\ominus \mathbf{1 "}^{\prime \prime}$
by (metis Units_closed Units_l_inv square_eq_one)

The following translates theorems about groups to the facts about the units of a ring. (The list should be expanded as more things are needed.)

```
lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R)
 finite (Units R)"
    by (rule finite_subset) auto
lemma (in monoid) units_of_pow:
    fixes n :: nat
    shows "x 㐿its G \Longrightarrow x (^) units_of G n = x (^)G n"
    apply (induct n)
    apply (auto simp add: units_group group.is_monoid
        monoid.nat_pow_O monoid.nat_pow_Suc units_of_one units_of_mult)
    done
lemma (in cring) units_power_order_eq_one: "finite (Units R) \Longrightarrow a :
Units R
    "a (^) card(Units R) = 1"
    apply (subst units_of_carrier [symmetric])
    apply (subst units_of_one [symmetric])
    apply (subst units_of_pow [symmetric])
    apply assumption
    apply (rule comm_group.power_order_eq_one)
    apply (rule units_comm_group)
    apply (unfold units_of_def, auto)
    done
```

end

```
theory Module
imports Ring
begin
```


13 Modules over an Abelian Group

13.1 Definitions

```
record ('a, 'b) module = "'b ring" +
    smult :: "['a, 'b] => 'b" (infixl "\odot\imath" 70)
locale module = R?: cring + M?: abelian_group M for M (structure) +
    assumes smult_closed [simp, intro]:
            "[| a \in carrier R; x \in carrier M |] ==> a }\mp@subsup{\odot}{M}{M}x\incarrier M"
        and smult_l_distr:
            "[| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
```



```
        and smult_r_distr:
            "[| a \in carrier R; x \in carrier M; y \in carrier M |] ==>
```



```
        and smult_assoc1:
            "[| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
            (a \otimes b) }\mp@subsup{\odot}{M}{}x=a \mp@subsup{ }{M}{M}(b\mp@subsup{\odot}{M}{}x)
        and smult_one [simp]:
            "x \in carrier M ==> 1 }\mp@subsup{\odot}{M}{M}= x
locale algebra = module + cring M +
    assumes smult_assoc2:
            "[| a \in carrier R; x \in carrier M; y \in carrier M |] ==>
            (a }\mp@subsup{\odot}{M}{}x) \mp@subsup{\otimes}{M}{}y=a \mp@subsup{ }{M}{M}(x \mp@subsup{\otimes}{M}{M}y)
lemma moduleI:
    fixes R (structure) and M (structure)
    assumes cring: "cring R"
        and abelian_group: "abelian_group M"
        and smult_closed:
```



```
M"
        and smult_l_distr:
            "!!a b x. [| a \in carrier R; b \in carrier R; x \in carrier M |] ==>
            (a \oplus b) }\mp@subsup{\odot}{M}{}\textrm{x}=(\textrm{a}\mp@subsup{\odot}{M}{\prime}\textrm{x})\mp@subsup{\oplus}{M}{M}(b)\mp@subsup{\odot}{M}{}\textrm{x})
        and smult_r_distr:
            "!!a x y. [l a \in carrier R; x \in carrier M; y \in carrier M |] ==>
```



```
        and smult_assoc1:
```

```
        "!!a b x. [| a G carrier R; b \in carrier R; x \in carrier M |] ==>
        (a \otimes b) }\mp@subsup{\odot}{M}{M}x=a \mp@subsup{\odot}{M}{\prime}(b\mp@subsup{\odot}{M}{
        and smult_one:
    "!!x. x \in carrier M ==> 1 \odotm x = x"
    shows "module R M"
    by (auto intro: module.intro cring.axioms abelian_group.axioms
        module_axioms.intro assms)
lemma algebraI:
    fixes R (structure) and M (structure)
    assumes R_cring: "cring R"
        and M_cring: "cring M"
        and smult_closed:
            "!!a x. [l a \in carrier R; x \in carrier M |] ==> a }\mp@subsup{\odot}{M}{M}x\incarrier
M"
        and smult_l_distr:
            "!!a b x. [l a \in carrier R; b \in carrier R; x \in carrier M |] ==>
            (a \oplus b) }\mp@subsup{\odot}{M}{}x=(a \mp@subsup{\odot}{M}{}x) \mp@subsup{\oplus}{M}{M}(b \mp@subsup{\odot}{M}{\prime}x)
        and smult_r_distr:
            "!!a x y. [l a \in carrier R; x \in carrier M; y \in carrier M |] ==>
```



```
        and smult_assoc1:
            "!!a b x. [l a G carrier R; b G carrier R; x \in carrier M |] ==>
            (a \otimes b) }\mp@subsup{\odot}{M}{M}x=a \mp@subsup{ }{M}{M}(b\mp@subsup{\odot}{M}{
        and smult_one:
            "!!x. x \in carrier M ==> (one R) \odot M x = x"
        and smult_assoc2:
            "!!a x y. [| a \in carrier R; x \in carrier M; y \in carrier M |] ==>
            (a }\mp@subsup{\odot}{M}{}x)\mp@subsup{\otimes}{M}{}y=a \mp@subsup{ }{M}{M}(x \mp@subsup{\otimes}{M}{\prime}y)
    shows "algebra R M"
apply intro_locales
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule module_axioms.intro)
    apply (simp add: smult_closed)
    apply (simp add: smult_l_distr)
    apply (simp add: smult_r_distr)
    apply (simp add: smult_assoc1)
    apply (simp add: smult_one)
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule algebra_axioms.intro)
    apply (simp add: smult_assoc2)
done
lemma (in algebra) R_cring:
    "cring R"
    ..
```

```
lemma (in algebra) M_cring:
    "cring M"
    ..
lemma (in algebra) module:
    "module R M"
    by (auto intro: moduleI R_cring is_abelian_group
        smult_l_distr smult_r_distr smult_assoc1)
```


13.2 Basic Properties of Algebras

lemma (in algebra) smult_l_null [simp]:
" $\mathrm{x} \in$ carrier $\mathrm{M}=\mathbf{0} \odot_{\mathrm{M}} \mathrm{x}=\mathbf{0}_{\mathrm{M}}$ "
proof -
assume M: "x \in carrier M"
note facts $=M$ smult_closed [OF R.zero_closed]
from facts have $\mathbf{0} 0 \odot_{M} x=\left(0 \odot_{M} x \oplus_{M} \mathbf{0} \odot_{M} x\right) \oplus_{M} \ominus_{M}\left(0 \odot_{M} x\right) "$ by
algebra
also from M have $" . . .=(0 \oplus \mathbf{0}) \odot_{M} x \oplus_{M} \ominus_{M}\left(0 \odot_{M} x\right) "$
by (simp add: smult_l_distr del: R.l_zero R.r_zero)
also from facts have "... = 0_{M} " apply algebra apply algebra done
finally show ?thesis.
qed
lemma (in algebra) smult_r_null [simp]:
"a \in carrier $R==>$ a $\odot_{M} 0_{M}=0_{M} "$
proof -
assume R : "a \in carrier R "
note facts $=R$ smult_closed
from facts have $\mathrm{a} \odot_{\mathrm{M}} \mathbf{0}_{\mathrm{M}}=\left(\mathrm{a} \odot_{\mathrm{M}} \mathbf{0}_{\mathrm{M}} \oplus_{\mathrm{M}} \mathrm{a} \odot_{\mathrm{M}} \mathbf{0}_{\mathrm{M}}\right) \oplus_{\mathrm{M}} \ominus_{\mathrm{M}}\left(\mathrm{a} \odot_{\mathrm{M}} \mathbf{0}_{\mathrm{M}}\right)$ " by algebra
also from R have $" . . .=a \odot_{M}\left(0_{M} \oplus_{M} \mathbf{0}_{M}\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} \mathbf{0}_{M}\right) "$
by (simp add: smult_r_distr del: M.l_zero M.r_zero)
also from facts have "... $=0_{\mathrm{M}}$ " by algebra
finally show ?thesis.
qed
lemma (in algebra) smult_l_minus:
" [| $a \in \operatorname{carrier} R ; x \in \operatorname{carrier} M \mid]=\Rightarrow(\ominus a) \odot_{M} x=\ominus_{M}\left(a \odot_{M} x\right) "$
proof -
assume RM: "a \in carrier $R "$ "x \in carrier $M^{\prime \prime}$
from $R M$ have a_smult: "a $\odot_{M} x \in$ carrier M " by simp
from RM have ma_smult: " \ominus a $\odot_{\mathrm{M}} \mathrm{x} \in$ carrier M " by simp
note facts $=$ RM a_smult ma_smult
from facts have " $\left(\ominus_{a}\right) \odot_{M} x=\left(\ominus^{2} \odot_{M} x \oplus_{M} a \odot_{M} x\right) \oplus_{M} \ominus_{M}\left(a \odot_{M} x\right) "$ by algebra
also from $R M$ have $" . .=(\ominus a \quad a) \odot_{M} x \oplus_{M} \ominus_{M}\left(a \odot_{M} x\right) "$
by (simp add: smult_l_distr)
also from facts smult_1_null have "... = $\ominus_{M}\left(a \odot_{M} x\right)$ "

```
            apply algebra apply algebra done
    finally show ?thesis .
qed
lemma (in algebra) smult_r_minus:
    "[| a \in carrier R; x \in carrier M |] ==> a }\mp@subsup{\odot}{M}{\prime}(\mp@subsup{\ominus}{M}{\prime})=\mp@subsup{\ominus}{M}{\prime}(a \mp@subsup{\odot}{M}{}x)
proof -
    assume RM: "a \in carrier R" "x \in carrier M"
    note facts = RM smult_closed
    from facts have "a }\mp@subsup{\odot}{M}{\prime}(\mp@subsup{\ominus}{M}{}x)=(a \mp@subsup{\odot}{M}{}\mp@subsup{\ominus}{M}{\prime
        by algebra
    also from RM have "... = a }\mp@subsup{\odot}{M}{\prime}(\mp@subsup{\ominus}{M}{}\textrm{x} \mp@subsup{\oplus}{M}{}\textrm{x})\mp@subsup{\oplus}{M}{}\mp@subsup{\ominus}{M}{}(a\mp@subsup{\odot}{M}{}\textrm{x})
            by (simp add: smult_r_distr)
    also from facts smult_r_null have "... = Ө
    finally show ?thesis.
qed
end
```

theory AbelCoset
imports Coset Ring
begin

13.3 More Lifting from Groups to Abelian Groups

13.3.1 Definitions

Hiding <+> from Sum_Type until I come up with better syntax here

```
no_notation Sum_Type.Plus (infixr "<+>" 65)
```


definition

```
    a_r_coset :: "[_, 'a set, 'a] \(\Rightarrow\) 'a set" (infixl "+> " 60)
    where "a_r_coset \(G=r_{\text {_coset }}\) (carrier \(=\) carrier \(G\), mult \(=\) add \(G\), one
\(=\) zero G|)"
```

definition
a_l_coset $::$ " [_, 'a, 'a set] \Rightarrow 'a set" (infixl "<+ " " 60)
where "a_l_coset $G=l_{\text {_coset }}$ (carrier $=$ carrier G, mult $=$ add G, one
= zero G|)"

definition

 A_RCOSETS :: "[_, ’a set] \(\Rightarrow\) (’a set)set" ("a'_rcosets \(\left.\imath ~ _" ~[81] ~ 80\right) ~\)
 where "A_RCOSETS G H = RCOSETS (carrier \(=\) carrier G, mult = add G,
 one $=$ zero G|) H"
definition

```
    set_add :: "[_, 'a set ,'a set] \(\Rightarrow\) 'a set" (infixl "<+> " " 60)
```

 where "set_add \(G=\) set_mult (carrier \(=\) carrier \(G\), mult \(=\) add \(G\), one
    ```
= zero G|"
definition
    A_SET_INV :: "[_,'a set] => 'a set" ("a'_set'_inv\imath _" [81] 80)
    where "A_SET_INV G H = SET_INV (carrier = carrier G, mult = add G,
one = zero G\) H"
definition
    a_r_congruent :: "[('a,'b)ring_scheme, 'a set] => ('a*'a)set" ("racong\imath")
    where "a_r_congruent G = r_congruent |carrier = carrier G, mult = add
G, one = zero G|"
```

```
definition
    A_FactGroup :: "[('a,'b) ring_scheme, 'a set] => ('a set) monoid" (in-
fixl "A'_Mod" 65)
            - Actually defined for groups rather than monoids
    where "A_FactGroup G H = FactGroup (carrier = carrier G, mult = add
G, one = zero G| ) H"
```

```
definition
    a_kernel :: "('a, 'm) ring_scheme # ('b, 'n) ring_scheme = ('a = 
'b) = 'a set"
            - the kernel of a homomorphism (additive)
    where "a_kernel G H h =
        kernel (carrier = carrier G, mult = add G, one = zero G|)
            (carrier = carrier H, mult = add H, one = zero H|) h"
locale abelian_group_hom = G?: abelian_group G + H?: abelian_group H
            for G (structure) and H (structure) +
            fixes h
    assumes a_group_hom: "group_hom (|carrier = carrier G, mult = add G,
one = zero G|
                                    |carrier = carrier H, mult = add H,
one = zero H() h"
lemmas a_r_coset_defs =
    a_r_coset_def r_coset_def
lemma a_r_coset_def':
    fixes G (structure)
    shows "H +> a \equiv\ h\inH. {h \oplus a}"
unfolding a_r_coset_defs
by simp
lemmas a_l_coset_defs =
    a_l_coset_def l_coset_def
lemma a_l_coset_def':
    fixes G (structure)
```

```
    shows "a <+ H \equiv\ h\inH. {a \oplus h}"
unfolding a_l_coset_defs
by simp
lemmas A_RCOSETS_defs =
    A_RCOSETS_def RCOSETS_def
lemma A_RCOSETS_def':
    fixes G (structure)
    shows "a_rcosets H \equiv \a\incarrier G. {H +> a}"
unfolding A_RCOSETS_defs
by (fold a_r_coset_def, simp)
lemmas set_add_defs =
    set_add_def set_mult_def
lemma set_add_def':
    fixes G (structure)
    shows "H <+> K \equiv \bigcuph h H. \k\inK. {h \oplus k}"
unfolding set_add_defs
by simp
lemmas A_SET_INV_defs =
    A_SET_INV_def SET_INV_def
lemma A_SET_INV_def':
    fixes G (structure)
    shows "a_set_inv H \equiv\h\inH. {\ominus h}"
unfolding A_SET_INV_defs
by (fold a_inv_def)
```


13.3.2 Cosets

```
lemma (in abelian_group) a_coset_add_assoc:
    "[| M \subseteq carrier G; g \in carrier G; h \in carrier G |]
    ==> (M +> g) +> h = M +> (g \oplus h)"
by (rule group.coset_mult_assoc [OF a_group,
        folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_zero [simp]:
    "M \subseteq carrier G ==> M +> 0 = M"
by (rule group.coset_mult_one [OF a_group,
        folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_add_inv1:
        "[| M +> (x \oplus (\ominus y)) = M; x \in carrier G ; y \in carrier G;
                M \subseteq carrier G l] ==> M +> x = M +> y"
by (rule group.coset_mult_inv1 [OF a_group,
        folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
```

lemma (in abelian_group) a_coset_add_inv2:
" [l M +> $x=M+>y ; x \in \operatorname{carrier} G ; y \in$ carrier $G ; M \subseteq$ carrier
G I]
$==>\mathrm{M}+>(\mathrm{x} \oplus(\ominus \mathrm{y}))=\mathrm{M}^{\prime \prime}$
by (rule group.coset_mult_inv2 [OF a_group, folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_join1: " [l H +> $\mathrm{x}=\mathrm{H} ; \mathrm{x} \in$ carrier G ; subgroup H (carrier = carrier G ,
mult $=$ add G, one $=$ zero $G \mid$ |] $==>x \in H^{\prime \prime}$
by (rule group.coset_join1 [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_solve_equation:
"【subgroup H (carrier = carrier G, mult = add G, one = zero G|; x
$\in \mathrm{H} ; \mathrm{y} \in \mathrm{H} \rrbracket \Longrightarrow \exists \mathrm{h} \in \mathrm{H} . \mathrm{y}=\mathrm{h} \oplus \mathrm{x}{ }^{\prime \prime}$
by (rule group.solve_equation [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_repr_independence:
" $\llbracket \mathrm{y} \in \mathrm{H}+>\mathrm{x}$; $\mathrm{x} \in$ carrier G; subgroup H (|carrier = carrier G, mult
$=$ add G, one $=$ zero $G \mid \rrbracket \Longrightarrow H+>x=H+>y "$
by (rule group.repr_independence [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_coset_join2:
" $\llbracket \mathrm{x} \in$ carrier G ; subgroup H (|carrier $=$ carrier G , mult $=$ add G,
one $=$ zero $G \mid$; $x \in H \rrbracket \Longrightarrow H+>x=H "$
by (rule group.coset_join2 [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_monoid) a_r_coset_subset_G:
" [| H \subseteq carrier $G ; x \in$ carrier $G \mid]=\Rightarrow H+>x \subseteq$ carrier $G "$
by (rule monoid.r_coset_subset_G [OF a_monoid, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosI:
" $[\mid \mathrm{h} \in \mathrm{H} ; \mathrm{H} \subseteq$ carrier $\mathrm{G} ; \mathrm{x} \in \operatorname{carrier} \mathrm{G} \mid]==>\mathrm{h} \oplus \mathrm{x} \in \mathrm{H}+>\mathrm{x} "$
by (rule group.rcosI [OF a_group, folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcosetsI: " $\llbracket \mathrm{H} \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket \Longrightarrow H+>x \in a _r o s e t s H "$
by (rule group.rcosetsI [OF a_group, folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

Really needed?
lemma (in abelian_group) a_transpose_inv:

```
    "[| x \oplus y = z; x \in carrier G; y \in carrier G; z \in carrier G |]
    ==> (\ominus x) \oplus z = y"
by (rule group.transpose_inv [OF a_group,
    folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
```


13.3.3 Subgroups

```
locale additive_subgroup =
    fixes H and G (structure)
    assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,
one = zero G\"
lemma (in additive_subgroup) is_additive_subgroup:
    shows "additive_subgroup H G"
by (rule additive_subgroup_axioms)
lemma additive_subgroupI:
    fixes G (structure)
    assumes a_subgroup: "subgroup H (|arrier = carrier G, mult = add G,
one = zero G|"
    shows "additive_subgroup H G"
by (rule additive_subgroup.intro) (rule a_subgroup)
lemma (in additive_subgroup) a_subset:
    "H \subseteq carrier G"
by (rule subgroup.subset[OF a_subgroup,
    simplified monoid_record_simps])
lemma (in additive_subgroup) a_closed [intro, simp]:
        "\llbracketx }\in\textrm{H};\textrm{y}\in\textrm{H}\rrbracket\Longrightarrow\textrm{x}\oplus\textrm{y}\in\textrm{H
by (rule subgroup.m_closed[OF a_subgroup,
    simplified monoid_record_simps])
lemma (in additive_subgroup) zero_closed [simp]:
        "0 \in H"
by (rule subgroup.one_closed[OF a_subgroup,
        simplified monoid_record_simps])
lemma (in additive_subgroup) a_inv_closed [intro,simp]:
        "x }\in\textrm{H}\Longrightarrow\ominus\textrm{x}\in\textrm{H
by (rule subgroup.m_inv_closed[OF a_subgroup,
        folded a_inv_def, simplified monoid_record_simps])
```


13.3.4 Additive subgroups are normal

Every subgroup of an abelian_group is normal
locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (carrier $=$ carrier G, mult $=$ add G, one
= zero G|)"

```
lemma (in abelian_subgroup) is_abelian_subgroup:
    shows "abelian_subgroup H G"
by (rule abelian_subgroup_axioms)
lemma abelian_subgroupI:
    assumes a_normal: "normal H |carrier = carrier G, mult = add G, one
= zero G|)"
            and a_comm: "!!x y. [| x \in carrier G; y \in carrier G |] ==> x \oplus G
y = y }\mp@subsup{\oplus}{\textrm{G}}{}\mp@subsup{\textrm{x}}{}{\prime\prime
    shows "abelian_subgroup H G"
proof -
    interpret normal "H" "(|carrier = carrier G, mult = add G, one = zero
G|)"
        by (rule a_normal)
    show "abelian_subgroup H G"
        by standard (simp add: a_comm)
qed
lemma abelian_subgroupI2:
    fixes G (structure)
    assumes a_comm_group: "comm_group (carrier = carrier G, mult = add
G, one = zero G|)"
            and a_subgroup: "subgroup H (carrier = carrier G, mult = add G,
one = zero G|"
    shows "abelian_subgroup H G"
proof -
    interpret comm_group "(carrier = carrier G, mult = add G, one = zero
G|)"
        by (rule a_comm_group)
    interpret subgroup "H" "(carrier = carrier G, mult = add G, one = zero
G()"
        by (rule a_subgroup)
    show "abelian_subgroup H G"
            apply unfold_locales
    proof (simp add: r_coset_def l_coset_def, clarsimp)
            fix x
            assume xcarr: "x \in carrier G"
            from a_subgroup have Hcarr: "H \subseteq carrier G"
                unfolding subgroup_def by simp
            from xcarr Hcarr show " (Uh\inH. {h \oplusG x}) = (Uh\inH. {x \oplus (U h})"
                using m_comm [simplified] by fastforce
    qed
qed
lemma abelian_subgroupI3:
    fixes G (structure)
```

assumes asg: "additive_subgroup H G"
and ag: "abelian_group G"
shows "abelian_subgroup H G"
apply (rule abelian_subgroupI2)
apply (rule abelian_group.a_comm_group[OF ag])
apply (rule additive_subgroup.a_subgroup [OF asg])
done
lemma (in abelian_subgroup) a_coset_eq: " $(\forall \mathrm{x} \in$ carrier $G . \mathrm{H}+>\mathrm{x}=\mathrm{x}<+\mathrm{H})$ "
by (rule normal.coset_eq[0F a_normal, folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed1:
shows $" \llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{h} \in \mathrm{H} \rrbracket \Longrightarrow(\ominus \mathrm{x}) \oplus \mathrm{h} \oplus \mathrm{x} \in \mathrm{H} "$
by (rule normal.inv_op_closed1 [OF a_normal, folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_inv_op_closed2:
shows " $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{h} \in \mathrm{H} \rrbracket \Longrightarrow \mathrm{x} \oplus \mathrm{h} \oplus(\ominus \mathrm{x}) \in \mathrm{H} "$
by (rule normal.inv_op_closed2 [OF a_normal, folded a_inv_def, simplified monoid_record_simps])

Alternative characterization of normal subgroups
lemma (in abelian_group) a_normal_inv_iff:
" $(\mathrm{N} \triangleleft$ (carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid)=$
(subgroup N (carrier = carrier G, mult $=$ add G, one $=$ zero $G \mid$) \&
$(\forall \mathrm{x} \in$ carrier $\mathrm{G} . \forall \mathrm{h} \in \mathrm{N} . \mathrm{x} \oplus \mathrm{h} \oplus(\ominus \mathrm{x}) \in \mathrm{N}))$ " (is "_ = ?rhs")
by (rule group.normal_inv_iff [OF a_group, folded a_inv_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_m_assoc: " [l M \subseteq carrier $G ; \mathrm{g} \in$ carrier $\mathrm{G} ; \mathrm{h} \in$ carrier $G 1]$ ==> g <+ (h <+ M) = (g $\oplus \mathrm{h}$) <+ M"
by (rule group.lcos_m_assoc [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_lcos_mult_one: " $\mathrm{M} \subseteq$ carrier $G==>0<+M=M "$
by (rule group.lcos_mult_one [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_subset_G: " [| H \subseteq carrier G; $x \in$ carrier $G 1]==>x<+H \subseteq$ carrier G"
by (rule group.l_coset_subset_G [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_swap:
" $\llbracket \mathrm{y} \in \mathrm{x}<+\mathrm{H} ; \mathrm{x} \in$ carrier $\mathrm{G} ;$ subgroup H (carrier $=$ carrier G, mult $=$ add G, one $=$ zero $G \mid] \Longrightarrow \mathrm{x} \in \mathrm{y}<+\mathrm{H}^{\prime \prime}$
by (rule group.l_coset_swap [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_carrier:
" [l y $\in \mathrm{x}<+\mathrm{H} ; \mathrm{x} \in$ carrier G ; subgroup H (carrier $=$ carrier G, mult = add G, one = zero G|) |] ==> y \in carrier G"
by (rule group.l_coset_carrier [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_repr_imp_subset:
assumes $y: ~ " y \in x<+H "$ and $x: ~ " x \in c a r r i e r ~ G " ~ a n d ~ s b: ~ " s u b g r o u p ~ H ~$
(|carrier = carrier G, mult = add G, one = zero G|)"
shows "y <+ H $\subseteq x$ <+ H"
apply (rule group.l_repr_imp_subset [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done
lemma (in abelian_group) a_l_repr_independence:
assumes $y: ~ " y \in x<+H "$ and $x: ~ " x \in c a r r i e r ~ G " ~ a n d ~ s b: ~ " s u b g r o u p ~ H ~$
(|carrier = carrier G, mult = add G, one = zero G|)"
shows "x <+ H = y <+ H"
apply (rule group.l_repr_independence [OF a_group, folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done
lemma (in abelian_group) setadd_subset_G:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G \rrbracket \Longrightarrow H<+>K \subseteq$ carrier $G "$
by (rule group.setmult_subset_G [OF a_group, folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_group) subgroup_add_id: "subgroup H (|carrier = carrier G, mult = add G, one = zero $G \mid) \Longrightarrow H<+>H=H "$
by (rule group.subgroup_mult_id [OF a_group, folded set_add_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_inv:
assumes $\mathrm{x}: \quad \mathrm{x} \in$ carrier $G "$
shows "a_set_inv (H +> x) = H +> (\ominus x)"
by (rule normal.rcos_inv [OF a_normal,
folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps]) (rule x)
lemma (in abelian_group) a_setmult_rcos_assoc:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket$
$\Longrightarrow H$ <+> (K +> x) = (H <+> K) +> x"
by (rule group.setmult_rcos_assoc [OF a_group, folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_rcos_assoc_lcos:
$" \llbracket H \subseteq$ carrier $G ; K \subseteq$ carrier $G ; x \in$ carrier $G \rrbracket$
\Longrightarrow (H +> x) <+> K = H <+> (x <+ K)"
by (rule group.rcos_assoc_lcos [OF a_group, folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_sum: " $\llbracket \mathrm{x} \in$ carrier $\mathrm{G} ; \mathrm{y} \in$ carrier $G \rrbracket$ $\Longrightarrow(H+>x)<+>(H+>y)=H+>(x \oplus y) "$
by (rule normal.rcos_sum [OF a_normal, folded set_add_def a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) rcosets_add_eq:
"M \in a_rcosets $H \Longrightarrow H<+>M=M "$

- generalizes subgroup_mult_id
by (rule normal.rcosets_mult_eq [OF a_normal, folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

13.3.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"
by (rule subgroup.equiv_rcong [OF a_subgroup a_group, folded a_r_congruent_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a \in carrier G"
shows "a <+ H = racong H " \{a\}"
by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group, folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])
(rule a)
lemma (in abelian_subgroup) a_rcos_equation:
shows
" $\lfloor\mathrm{ha} \oplus \mathrm{a}=\mathrm{h} \oplus \mathrm{b} ; \mathrm{a} \in$ carrier $\mathrm{G} ; \mathrm{b} \in$ carrier $\mathrm{G} ;$
$\mathrm{h} \in \mathrm{H} ; \mathrm{ha} \in \mathrm{H} ; \mathrm{hb} \in \mathrm{H} \rrbracket$
$\Longrightarrow \mathrm{hb} \oplus \mathrm{a} \in(\bigcup \mathrm{h} \in \mathrm{H} .\{\mathrm{h} \oplus \mathrm{b}\}) \mathrm{l}$
by (rule group.rcos_equation [OF a_group a_subgroup, folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

```
lemma (in abelian_subgroup) a_rcos_disjoint:
    shows "\llbracketa \in a_rcosets H; b \in a_rcosets H; a\not=b\rrbracket\Longrightarrow a \cap b = {}"
by (rule group.rcos_disjoint [OF a_group a_subgroup,
        folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_self:
    shows "x f carrier G \Longrightarrow x \in H +> x"
by (rule group.rcos_self [OF a_group _ a_subgroup,
        folded a_r_coset_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcosets_part_G:
    shows "\(a_rcosets H) = carrier G"
by (rule group.rcosets_part_G [OF a_group a_subgroup,
        folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_cosets_finite:
        "\llbracketc \in a_rcosets H; H \subseteq carrier G; finite (carrier G)\rrbracket \Longrightarrow finite
c"
by (rule group.cosets_finite [OF a_group,
        folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_group) a_card_cosets_equal:
        "\llbracketc \in a_rcosets H; H \subseteq carrier G; finite(carrier G)\rrbracket
        card c = card H"
by (rule group.card_cosets_equal [OF a_group,
        folded A_RCOSETS_def, simplified monoid_record_simps])
lemma (in abelian_group) rcosets_subset_PowG:
        "additive_subgroup H G \Longrightarrow a_rcosets H \subseteq Pow(carrier G)"
by (rule group.rcosets_subset_PowG [OF a_group,
        folded A_RCOSETS_def, simplified monoid_record_simps],
        rule additive_subgroup.a_subgroup)
theorem (in abelian_group) a_lagrange:
        "\llbracketfinite(carrier G); additive_subgroup H G\rrbracket
        card(a_rcosets H) * card(H) = order(G)"
by (rule group.lagrange [OF a_group,
        folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded
order_def])
        (fast intro!: additive_subgroup.a_subgroup)+
```


13.3.6 Factorization

```
lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def
lemma A_FactGroup_def':
    fixes G (structure)
    shows "G A_Mod H \equiv (carrier = a_rcosetsG H, mult = set_add G, one =
H()"
```

unfolding A＿FactGroup＿defs
by（fold A＿RCOSETS＿def set＿add＿def）
lemma（in abelian＿subgroup）a＿setmult＿closed：
＂【K1 \in a＿rcosets $H ; K 2 \in$ a＿rcosets $H \rrbracket \Longrightarrow$ K1＜＋＞K2 \in a＿rcosets H＂
by（rule normal．setmult＿closed［OF a＿normal， folded A＿RCOSETS＿def set＿add＿def，simplified monoid＿record＿simps］）
lemma（in abelian＿subgroup）a＿setinv＿closed：
＂K \in a＿rcosets $H \Longrightarrow$ a＿set＿inv $K \in a _r c o s e t s ~ H " ~$
by（rule normal．setinv＿closed［OF a＿normal， folded A＿RCOSETS＿def A＿SET＿INV＿def，simplified monoid＿record＿simps］）
lemma（in abelian＿subgroup）a＿rcosets＿assoc： ＂【M1 \in a＿rcosets H；M2 \in a＿rcosets H；M3 \in a＿rcosets H】 \Longrightarrow M1＜＋＞M2＜＋＞M3＝M1＜＋＞（M2＜＋＞M3）＂
by（rule normal．rcosets＿assoc［OF a＿normal， folded A＿RCOSETS＿def set＿add＿def，simplified monoid＿record＿simps］）
lemma（in abelian＿subgroup）a＿subgroup＿in＿rcosets： ＂H \in a＿rcosets H＂
by（rule subgroup．subgroup＿in＿rcosets［OF a＿subgroup a＿group， folded A＿RCOSETS＿def，simplified monoid＿record＿simps］）
lemma（in abelian＿subgroup）a＿rcosets＿inv＿mult＿group＿eq： ＂M \in a＿rcosets $H \Longrightarrow$ a＿set＿inv $M<+>M=H "$
by（rule normal．rcosets＿inv＿mult＿group＿eq［OF a＿normal， folded A＿RCOSETS＿def A＿SET＿INV＿def set＿add＿def，simplified monoid＿record＿simps］）
theorem（in abelian＿subgroup）a＿factorgroup＿is＿group：
＂group（G A＿Mod H）＂
by（rule normal．factorgroup＿is＿group［OF a＿normal， folded A＿FactGroup＿def，simplified monoid＿record＿simps］）

Since the Factorization is based on an abelian subgroup，is results in a commutative group
theorem（in abelian＿subgroup）a＿factorgroup＿is＿comm＿group：
＂comm＿group（G A＿Mod H）＂
apply（intro comm＿group．intro comm＿monoid．intro）prefer 3
apply（rule a＿factorgroup＿is＿group）
apply（rule group．axioms［0F a＿factorgroup＿is＿group］）
apply（rule comm＿monoid＿axioms．intro）
apply（unfold A＿FactGroup＿def FactGroup＿def RCOSETS＿def，fold set＿add＿def
a＿r＿coset＿def，clarsimp）
apply（simp add：a＿rcos＿sum a＿comm）
done


```
by (simp add: A_FactGroup_def set_add_def)
lemma (in abelian_subgroup) a_inv_FactGroup:
        "X \in carrier (G A_Mod H) \Longrightarrow invG A_Mod H X = a_set_inv X"
by (rule normal.inv_FactGroup [OF a_normal,
    folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])
```

The coset map is a homomorphism from G to the quotient group G Mod H

```
lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
    "(\lambdaa. H +> a) \in hom (carrier = carrier G, mult = add G, one = zero G|)
(G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal,
        folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])
```

The isomorphism theorems have been omitted from lifting, at least for now

13.3.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range of that homomorphism.

```
lemmas a_kernel_defs =
    a_kernel_def kernel_def
lemma a_kernel_def':
    "a_kernel R S h = {x G carrier R. h x = 0
by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])
```


13.3.8 Homomorphisms

```
lemma abelian_group_homI:
    assumes "abelian_group G"
    assumes "abelian_group H"
    assumes a_group_hom: "group_hom (|carrier = carrier G, mult = add G,
one = zero G|
                                    |carrier = carrier H, mult = add H,
one = zero H() h"
    shows "abelian_group_hom G H h"
proof -
    interpret G: abelian_group G by fact
    interpret H: abelian_group H by fact
    show ?thesis
        apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)
            apply fact
            apply fact
        apply (rule a_group_hom)
        done
qed
```

```
lemma (in abelian_group_hom) is_abelian_group_hom:
    "abelian_group_hom G H h"
    ..
lemma (in abelian_group_hom) hom_add [simp]:
    "[l x : carrier G; y : carrier G |]
        => h (x }\mp@subsup{\oplus}{G}{}y)=h x (\mp@subsup{\oplus}{H}{}h>y
by (rule group_hom.hom_mult[OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) hom_closed [simp]:
    "x \in carrier G \Longrightarrow h x f carrier H"
by (rule group_hom.hom_closed[OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) zero_closed [simp]:
    "h 0 E carrier H"
by (rule group_hom.one_closed[OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) hom_zero [simp]:
    "h 0 = 0HH"
by (rule group_hom.hom_one[OF a_group_hom,
        simplified ring_record_simps])
lemma (in abelian_group_hom) a_inv_closed [simp]:
    "x \in carrier G ==> h ( }\ominus\textrm{x})\in\mp@code{carrier H"
by (rule group_hom.inv_closed[OF a_group_hom,
        folded a_inv_def, simplified ring_record_simps])
lemma (in abelian_group_hom) hom_a_inv [simp]:
    "x f carrier G ==> h ( }\ominus\textrm{x})=\mp@subsup{\ominus}{\textrm{H}}{(h x)"
by (rule group_hom.hom_inv[OF a_group_hom,
        folded a_inv_def, simplified ring_record_simps])
lemma (in abelian_group_hom) additive_subgroup_a_kernel:
    "additive_subgroup (a_kernel G H h) G"
apply (rule additive_subgroup.intro)
apply (rule group_hom.subgroup_kernel[OF a_group_hom,
        folded a_kernel_def, simplified ring_record_simps])
done
The kernel of a homomorphism is an abelian subgroup
```

```
lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
```

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"
"abelian_subgroup (a_kernel G H h) G"
apply (rule abelian_subgroupI)
apply (rule abelian_subgroupI)
apply (rule group_hom.normal_kernel[OF a_group_hom,
apply (rule group_hom.normal_kernel[OF a_group_hom,
folded a_kernel_def, simplified ring_record_simps])
folded a_kernel_def, simplified ring_record_simps])
apply (simp add: G.a_comm)

```
apply (simp add: G.a_comm)
```


done

lemma (in abelian_group_hom) A_FactGroup_nonempty: assumes $X:$ "X \in carrier (G A_Mod a_kernel G H h)" shows "X $\neq\{ \}$ "
by (rule group_hom.FactGroup_nonempty[0F a_group_hom, folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule X)
lemma (in abelian_group_hom) FactGroup_the_elem_mem: assumes X: "X \in carrier (G A_Mod (a_kernel G H h))"
shows "the_elem (h'X) \in carrier H"
by (rule group_hom.FactGroup_the_elem_mem[OF a_group_hom, folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule X)
lemma (in abelian_group_hom) A_FactGroup_hom:
" ($\lambda \mathrm{X}$. the_elem ($h^{\prime} \mathrm{X}$)) \in hom (G_{A} Mod (a_kernel G H h)) (carrier $=$ carrier H, mult $=$ add H, one $=$ zero $H \mid$)"
by (rule group_hom.FactGroup_hom[OF a_group_hom, folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
lemma (in abelian_group_hom) A_FactGroup_inj_on: "inj_on ($\lambda \mathrm{X}$. the_elem (h ' X)) (carrier (G A_Mod a_kernel G H h))"
by (rule group_hom. FactGroup_inj_on[OF a_group_hom, folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

If the homomorphism h is onto H, then so is the homomorphism from the quotient group
lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h : "h ' carrier $G=$ carrier $H "$
shows " (λ X. the_elem (h ' X)) ' carrier (G A_Mod a_kernel G H h) =
carrier $\mathrm{H}^{\prime \prime}$
by (rule group_hom.FactGroup_onto[0F a_group_hom, folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule h)
If h is a homomorphism from G onto H , then the quotient group G Mod kernel
G H h is isomorphic to H.

```
theorem (in abelian_group_hom) A_FactGroup_iso:
    "h ' carrier G = carrier H
        \Longrightarrow(\lambdaX. the_elem (h'X)) \in (G A_Mod (a_kernel G H h)) \cong
                        (carrier = carrier H, mult = add H, one = zero H|)"
by (rule group_hom.FactGroup_iso[OF a_group_hom,
    folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
```


13.3.9 Cosets

Not eveything from CosetExt.thy is lifted here.

```
lemma (in additive_subgroup) a_Hcarr [simp]:
    assumes hH: "h \in H"
    shows "h \in carrier G"
by (rule subgroup.mem_carrier [OF a_subgroup,
        simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_elemrcos_carrier:
    assumes acarr: "a \in carrier G"
        and a': "a' \in H +> a"
    shows "a' \in carrier G"
by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
        folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,
rule a')
lemma (in abelian_subgroup) a_rcos_const:
    assumes hH: "h \in H"
    shows "H +> h = H"
by (rule subgroup.rcos_const [OF a_subgroup a_group,
        folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)
lemma (in abelian_subgroup) a_rcos_module_imp:
    assumes xcarr: "x \in carrier G"
        and x'cos: "x' \in H +> x"
    shows "(x' }\oplus\ominusx)\inH
by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
        folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule
xcarr, rule x'cos)
lemma (in abelian_subgroup) a_rcos_module_rev:
    assumes "x \in carrier G" "x' \in carrier G"
        and "(x' }\oplus\ominusx)\inH
    shows "x' \in H +> x"
using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,
        folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
lemma (in abelian_subgroup) a_rcos_module:
    assumes "x \in carrier G" "x' \in carrier G"
    shows "(x' \in H +> x) = (x' }\oplus\ominusx\inH)
using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,
        folded a_r_coset_def a_inv_def, simplified monoid_record_simps])
- variant
lemma (in abelian_subgroup) a_rcos_module_minus:
    assumes "ring G"
    assumes carr: "x \in carrier G" "x' \in carrier G"
    shows "(x' \in H +> x) = (x' }\ominus x \in H)"
```

```
proof -
    interpret G: ring G by fact
    from carr
    have "(x' \in H +> x) = (x' \oplus \ominusx \in H)" by (rule a_rcos_module)
    with carr
    show "(x' \in H +> x) = (x' }\ominus x \in H)"
        by (simp add: minus_eq)
qed
lemma (in abelian_subgroup) a_repr_independence':
    assumes y: "y \in H +> x"
        and xcarr: "x \in carrier G"
    shows "H +> x = H +> y"
    apply (rule a_repr_independence)
        apply (rule y)
        apply (rule xcarr)
    apply (rule a_subgroup)
    done
lemma (in abelian_subgroup) a_repr_independenceD:
    assumes ycarr: "y \in carrier G"
        and repr: "H +> x = H +> y"
    shows "y \in H +> x"
by (rule group.repr_independenceD [OF a_group a_subgroup,
        folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr,
rule repr)
lemma (in abelian_subgroup) a_rcosets_carrier:
    "X \in a_rcosets H \Longrightarrow X \subseteq carrier G"
by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,
        folded A_RCOSETS_def, simplified monoid_record_simps])
```


13.3.10 Addition of Subgroups

```
lemma (in abelian_monoid) set_add_closed:
assumes Acarr: "A \(\subseteq\) carrier G" and Bcarr: "B \(\subseteq\) carrier G"
shows "A <+> B \(\subseteq\) carrier G"
by (rule monoid.set_mult_closed [OF a_monoid, folded set_add_def, simplified monoid_record_simps]) (rule Acarr, rule Bcarr)
lemma (in abelian_group) add_additive_subgroups:
assumes subH: "additive_subgroup H G"
and subK: "additive_subgroup K G"
shows "additive_subgroup (H <+> K) G"
apply (rule additive_subgroup.intro)
apply (unfold set_add_def)
```

```
apply (intro comm_group.mult_subgroups)
    apply (rule a_comm_group)
    apply (rule additive_subgroup.a_subgroup[OF subH])
apply (rule additive_subgroup.a_subgroup[OF subK])
done
```

end
theory Ideal
imports Ring AbelCoset
begin

14 Ideals

14.1 Definitions

14.1.1 General definition

```
locale ideal = additive_subgroup I R + ring R for I and R (structure) +
    assumes I_l_closed: "\llbracketa \in I; x \in carrier R\rrbracket \Longrightarrow x \otimes a \in I"
        and I_r_closed: "\llbracketa \in I; x \in carrier R\rrbracket\Longrightarrowa a x \in I"
sublocale ideal \subseteq abelian_subgroup I R
    apply (intro abelian_subgroupI3 abelian_group.intro)
        apply (rule ideal.axioms, rule ideal_axioms)
        apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
    apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
    done
lemma (in ideal) is_ideal: "ideal I R"
    by (rule ideal_axioms)
lemma idealI:
    fixes R (structure)
    assumes "ring R"
    assumes a_subgroup: "subgroup I (carrier = carrier R, mult = add R,
one = zero R|"
            and I_l_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket \Longrightarrow x \otimes a \in I"
            and I_r_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket\Longrightarrowa \otimes x \in I"
    shows "ideal I R"
proof -
    interpret ring R by fact
    show ?thesis apply (intro ideal.intro ideal_axioms.intro additive_subgroupI)
            apply (rule a_subgroup)
            apply (rule is_ring)
            apply (erule (1) I_l_closed)
```

```
    apply (erule (1) I_r_closed)
    done
qed
```


14.1.2 Ideals Generated by a Subset of carrier R

definition genideal : : "_ \Rightarrow 'a set \Rightarrow 'a set" ("Idlı _" [80] 79) where "genideal $R S=\bigcap\{I$. ideal I $R \wedge S \subseteq I\} "$

14.1.3 Principal Ideals

```
locale principalideal = ideal +
    assumes generate: "\existsi \in carrier R. I = Idl {i}"
lemma (in principalideal) is_principalideal: "principalideal I R"
    by (rule principalideal_axioms)
lemma principalidealI:
    fixes R (structure)
    assumes "ideal I R"
        and generate: "\existsi \in carrier R. I = Idl {i}"
    shows "principalideal I R"
proof -
    interpret ideal I R by fact
    show ?thesis
        by (intro principalideal.intro principalideal_axioms.intro)
            (rule is_ideal, rule generate)
qed
```


14.1.4 Maximal Ideals

locale maximalideal = ideal +
assumes I_notcarr: "carrier R \neq I"
and I_maximal: "【ideal J R; I $\subseteq \mathrm{J} ; \mathrm{J} \subseteq$ carrier $\mathrm{R} \rrbracket \Longrightarrow \mathrm{J}=\mathrm{I} \vee \mathrm{J}=$
carrier R"
lemma (in maximalideal) is_maximalideal: "maximalideal I R"
by (rule maximalideal_axioms)
lemma maximalidealI:
fixes R
assumes "ideal I R"
and I_notcarr: "carrier $R \neq I "$
and I_maximal: " $\bigwedge \mathrm{J} . \llbracket i d e a l ~ J ~ R ; ~ I ~ \subseteq ~ J ; ~ J ~ \subseteq ~ c a r r i e r ~ R \rrbracket ~ \Longrightarrow ~ J ~=~ I ~$
V J = carrier R"
shows "maximalideal I R"
proof -
interpret ideal I R by fact
show ?thesis
by (intro maximalideal.intro maximalideal_axioms.intro)

```
(rule is_ideal, rule I_notcarr, rule I_maximal)
```

qed

14.1.5 Prime Ideals

```
locale primeideal = ideal + cring +
    assumes I_notcarr: "carrier R f I"
        and I_prime: "\llbracketa < carrier R; b \in carrier R; a }\otimes\textrm{b}\inI\rrbracket\Longrightarrowa
I V b \in I"
lemma (in primeideal) primeideal: "primeideal I R"
    by (rule primeideal_axioms)
lemma primeidealI:
    fixes R (structure)
    assumes "ideal I R"
        and "cring R"
        and I_notcarr: "carrier R f= I"
        and I_prime: "\a b. \llbracketa \in carrier R; b \in carrier R; a \otimes b \in I\rrbracket \Longrightarrow
a \in I V b \in I"
    shows "primeideal I R"
proof -
    interpret ideal I R by fact
    interpret cring R by fact
    show ?thesis
        by (intro primeideal.intro primeideal_axioms.intro)
            (rule is_ideal, rule is_cring, rule I_notcarr, rule I_prime)
qed
lemma primeidealI2:
    fixes R (structure)
    assumes "additive_subgroup I R"
        and "cring R"
        and I_l_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket\Longrightarrow x @ a \in I"
        and I_r_closed: "\a x. \llbracketa \in I; x \in carrier R\rrbracket\Longrightarrow a \otimes x \in I"
        and I_notcarr: "carrier R f I"
        and I_prime: " \a b. \llbracketa \in carrier R; b \in carrier R; a \otimes b \in I\rrbracket \Longrightarrow
a \in I V b \in I"
    shows "primeideal I R"
proof -
    interpret additive_subgroup I R by fact
    interpret cring R by fact
    show ?thesis apply (intro_locales)
        apply (intro ideal_axioms.intro)
        apply (erule (1) I_l_closed)
        apply (erule (1) I_r_closed)
        apply (intro primeideal_axioms.intro)
        apply (rule I_notcarr)
        apply (erule (2) I_prime)
```

done
qed

14.2 Special Ideals

```
lemma (in ring) zeroideal: "ideal {0} R"
    apply (intro idealI subgroup.intro)
            apply (rule is_ring)
            apply simp+
        apply (fold a_inv_def, simp)
        apply simp+
    done
```

lemma (in ring) oneideal: "ideal (carrier R) R"
by (rule idealI) (auto intro: is_ring add.subgroupI)
lemma (in "domain") zeroprimeideal: "primeideal \{0\} R"
apply (intro primeidealI)
apply (rule zeroideal)
apply (rule domain.axioms, rule domain_axioms)
defer 1
apply (simp add: integral)
proof (rule ccontr, simp)
assume "carrier $R=\{0\}$ "
then have "1 = 0" by (rule one_zeroI)
with one_not_zero show False by simp
qed

14.3 General Ideal Properies

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 \in I"
shows "I = carrier R"
apply (rule)
apply (rule)
apply (rule a_Hcarr, simp)
proof
fix x
assume xcarr: "x \in carrier R "
with I_one_closed have "x $\otimes 1 \in I$ " by (intro I_l_closed)
with xcarr show "x \in I" by simp
qed
lemma (in ideal) Icarr:
assumes iI: "i \in I"
shows "i \in carrier R"
using iI by (rule a_Hcarr)

14.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again an ideal in R

```
lemma (in ring) i_intersect:
    assumes "ideal I R"
    assumes "ideal J R"
    shows "ideal (I \cap J) R"
proof -
    interpret ideal I R by fact
    interpret ideal J R by fact
    show ?thesis
        apply (intro idealI subgroup.intro)
                    apply (rule is_ring)
                apply (force simp add: a_subset)
            apply (simp add: a_inv_def[symmetric])
            apply simp
            apply (simp add: a_inv_def[symmetric])
            apply (clarsimp, rule)
            apply (fast intro: ideal.I_l_closed ideal.intro assms)+
        apply (clarsimp, rule)
            apply (fast intro: ideal.I_r_closed ideal.intro assms)+
        done
qed
```

The intersection of any Number of Ideals is again an Ideal in R

```
lemma (in ring) i_Intersect:
    assumes Sideals: "\I. I \in S \Longrightarrow ideal I R"
        and notempty: "S \not= {}"
    shows "ideal (\bigcapS) R"
    apply (unfold_locales)
    apply (simp_all add: Inter_eq)
        apply rule unfolding mem_Collect_eq defer 1
        apply rule defer 1
        apply rule defer 1
        apply (fold a_inv_def, rule) defer 1
        apply rule defer 1
        apply rule defer 1
proof -
    fix x y
    assume "\forallI\inS. x \in I"
    then have xI: "^I. I \in S \Longrightarrow x \in I" by simp
    assume "\forallI\inS. y \in I"
    then have yI: "\I. I \in S \Longrightarrow y \in I" by simp
    fix J
    assume JS: "J \in S"
    interpret ideal J R by (rule Sideals[OF JS])
    from xI[OF JS] and yI[OF JS] show "x }\oplus\textrm{y}\in\textrm{J}|\mp@code{by (rule a_closed)
```

```
next
    fix J
    assume JS: "J \in S"
    interpret ideal J R by (rule Sideals[OF JS])
    show "0 \in J" by simp
next
    fix x
    assume "\forallI\inS. x \in I"
    then have xI: "\I. I \in S \Longrightarrow x \in I" by simp
    fix J
    assume JS: "J \in S"
    interpret ideal J R by (rule Sideals[OF JS])
    from xI[OF JS] show "}\ominus\textrm{x}\in\textrm{J}" by (rule a_inv_closed
next
    fix x y
    assume "\forallI\inS. x \in I"
    then have xI: "^I. I \in S \Longrightarrow x \in I" by simp
    assume ycarr: "y \in carrier R"
    fix J
    assume JS: "J \in S"
    interpret ideal J R by (rule Sideals[OF JS])
    from xI[OF JS] and ycarr show "y \otimes x \in J" by (rule I_l_closed)
next
    fix x y
    assume "\forallI\inS. x \in I"
    then have xI: "\I. I \inS C x \in I" by simp
    assume ycarr: "y \in carrier R"
    fix J
    assume JS: "J \in S"
    interpret ideal J R by (rule Sideals[OF JS])
    from xI[OF JS] and ycarr show "x \otimes y \in J" by (rule I_r_closed)
next
    fix x
    assume "\forallI\inS. x \in I"
    then have xI: "^I. I }\inS\Longrightarrowx\inI" by sim
    from notempty have "\existsI0. IO \in S" by blast
    then obtain IO where IOS: "IO \in S" by auto
    interpret ideal IO R by (rule Sideals[OF IOS])
    from xI[OF IOS] have "x \in IO" .
    with a_subset show "x \in carrier R" by fast
```

next
qed

14.5 Addition of Ideals

lemma (in ring) add_ideals:
assumes idealI: "ideal I R" and idealJ: "ideal J R"
shows "ideal (I <+> J) R"
apply (rule ideal.intro) apply (rule add_additive_subgroups)
apply (intro ideal.axioms[OF idealI])
apply (intro ideal.axioms[OF idealJ])
apply (rule is_ring)
apply (rule ideal_axioms.intro)
apply (simp add: set_add_defs, clarsimp) defer 1
apply (simp add: set_add_defs, clarsimp) defer 1
proof -
fix x i j
assume xcarr: "x \in carrier R"
and iI: "i $\in I "$
and $\mathrm{jJ}: ~ " j \in J "$
from xcarr ideal.Icarr[0F idealI iI] ideal.Icarr[OF idealJ jJ]
have $\mathrm{c}: ~ "(i \oplus j) \otimes \mathrm{x}=(\mathrm{i} \otimes \mathrm{x}) \oplus(\mathrm{j} \otimes \mathrm{x})$ " by algebra
from xcarr and iI have a: "i $\otimes x \in I "$
by (simp add: ideal.I_r_closed[OF idealI])
from xcarr and $j J$ have $b: ~ " j \otimes x \in J "$
by (simp add: ideal.I_r_closed[0F idealJ])
from a b c show $" \exists h a \in I . \exists k a \in J .(i \oplus j) \otimes x=h a \oplus k a "$ by fast
next
fix x i j
assume xcarr: "x \in carrier $R "$ and iI: "i $\in I "$ and $\mathrm{jJ}: ~ " j \in J "$
from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr [OF idealJ jJ]
have $c: ~ " x \otimes(i \oplus j)=(x \otimes i) \oplus(x \otimes j) "$ by algebra
from xcarr and iI have $a: ~ " x \otimes i \in I "$
by (simp add: ideal.I_l_closed[0F idealI])
from xcarr and $j J$ have $b: ~ " x \otimes j \in J "$ by (simp add: ideal.I_l_closed[0F idealJ])
from a b c show $" \exists h a \in I . \exists k a \in J . x \otimes(i \oplus j)=h a \oplus k a "$ by fast
qed

14.6 Ideals generated by a subset of carrier R

```
genideal generates an ideal
lemma (in ring) genideal_ideal:
    assumes Scarr: "S \subseteq carrier R"
    shows "ideal (Idl S) R"
unfolding genideal_def
proof (rule i_Intersect, fast, simp)
    from oneideal and Scarr
    show "\existsI. ideal I R }\wedge S \leq I" by fas
qed
lemma (in ring) genideal_self:
    assumes "S \subseteq carrier R"
    shows "S \subseteq Idl S"
    unfolding genideal_def by fast
lemma (in ring) genideal_self':
    assumes carr: "i \in carrier R"
    shows "i \in Idl {i}"
proof -
    from carr have "{i} \subseteq Idl {i}" by (fast intro!: genideal_self)
    then show "i \in Idl {i}" by fast
qed
genideal generates the minimal ideal
lemma (in ring) genideal_minimal:
    assumes a: "ideal I R"
        and b: "S \subseteqI"
    shows "Idl S \subseteq I"
    unfolding genideal_def by rule (elim InterD, simp add: a b)
Generated ideals and subsets
lemma (in ring) Idl_subset_ideal:
    assumes Iideal: "ideal I R"
        and Hcarr: "H \subseteq carrier R"
    shows "(Idl H\subseteqI) = (H\subseteqI)"
proof
    assume a: "Idl H \subseteq I"
    from Hcarr have "H \subseteq Idl H" by (rule genideal_self)
    with a show "H\subseteqI" by simp
next
    fix x
    assume "H \subseteq I"
    with Iideal have "I \in {I. ideal I R ^ H\subseteqI}" by fast
    then show "Idl H\subseteq I" unfolding genideal_def by fast
qed
lemma (in ring) subset_Idl_subset:
```

```
    assumes Icarr: "I \subseteq carrier R"
        and HI: "H \subseteq I"
    shows "Idl H \subseteq Idl I"
proof -
    from HI and genideal_self[OF Icarr] have HIdlI: "H \subseteq Idl I"
        by fast
    from Icarr have Iideal: "ideal (Idl I) R"
        by (rule genideal_ideal)
    from HI and Icarr have "H\subseteq carrier R"
        by fast
    with Iideal have "(H \subseteq Idl I) = (Idl H \subseteq Idl I)"
        by (rule Idl_subset_ideal[symmetric])
    with HIdlI show "Idl H \subseteq Idl I" by simp
qed
lemma (in ring) Idl_subset_ideal':
    assumes acarr: "a \in carrier R" and bcarr: "b \in carrier R"
    shows "(Idl {a} \subseteq Idl {b}) = (a \in Idl {b})"
    apply (subst Idl_subset_ideal[OF genideal_ideal[of "{b}"], of "{a}"])
        apply (fast intro: bcarr, fast intro: acarr)
    apply fast
    done
lemma (in ring) genideal_zero: "Idl {0} = {0}"
    apply rule
        apply (rule genideal_minimal[OF zeroideal], simp)
    apply (simp add: genideal_self')
    done
lemma (in ring) genideal_one: "Idl {1} = carrier R"
proof -
    interpret ideal "Idl {1}" "R" by (rule genideal_ideal) fast
    show "Idl {1} = carrier R"
    apply (rule, rule a_subset)
    apply (simp add: one_imp_carrier genideal_self')
    done
qed
Generation of Principal Ideals in Commutative Rings
```

```
definition cgenideal :: "_ # 'a # 'a set" ("PIdl\imath _" [80] 79)
```

definition cgenideal :: "_ \# 'a \# 'a set" ("PIdl\imath _" [80] 79)
where "cgenideal R a = {x \otimes | a | x. x \in carrier R}"
where "cgenideal R a = {x \otimes | a | x. x \in carrier R}"
genhideal (?) really generates an ideal
lemma (in cring) cgenideal_ideal:
assumes acarr: "a \in carrier R"
shows "ideal (PIdl a) R"
apply (unfold cgenideal_def)

```
```

 apply (rule idealI[OF is_ring])
 apply (rule subgroup.intro)
 apply simp_all
 apply (blast intro: acarr)
 apply clarsimp defer 1
 defer 1
 apply (fold a_inv_def, clarsimp) defer 1
 apply clarsimp defer 1
 apply clarsimp defer 1
 proof -
fix x y
assume xcarr: "x \in carrier R"
and ycarr: "y \in carrier R"
note carr = acarr xcarr ycarr
from carr have "x \& a }\oplus\textrm{y}\otimes\textrm{a}=(\textrm{x}\oplus\textrm{y})\otimes\textrm{a
by (simp add: l_distr)
with carr show "\existsz. x \otimes a }\oplus\textrm{y}\otimes\textrm{a}=\textrm{z}\otimes\textrm{a}\wedge \ z \in carrier R"
by fast
next
from l_null[OF acarr, symmetric] and zero_closed
show "\existsx. 0 = x \otimes a ^ x f carrier R" by fast
next
fix x
assume xcarr: "x \in carrier R"
note carr = acarr xcarr
from carr have "\ominus (x \otimes a) = (
by (simp add: l_minus)
with carr show "\existsz. \ominus(x \otimes a) = z \otimes a ^ z \in carrier R"
by fast
next
fix x y
assume xcarr: "x \in carrier R"
and ycarr: "y \in carrier R"
note carr = acarr xcarr ycarr
from carr have "y \otimesa Q x = (y \otimes x) \otimes a"
by (simp add: m_assoc) (simp add: m_comm)
with carr show "\existsz. y \otimes a \otimes x = z \otimes a ^ z \in carrier R"
by fast
next
fix x y
assume xcarr: "x \in carrier R"
and ycarr: "y \in carrier R"
note carr = acarr xcarr ycarr
from carr have "x \otimes (y \otimes a) = (x \otimes y) \otimesa"
by (simp add: m_assoc)

```
```

 with carr show "\existsz. x \otimes (y \otimes a) = z \otimes a ^ z \in carrier R"
 by fast
 qed
lemma (in ring) cgenideal_self:
assumes icarr: "i G carrier R"
shows "i \in PIdl i"
unfolding cgenideal_def
proof simp
from icarr have "i = 1 \& i"
by simp
with icarr show "\existsx. i = x \otimes i ^ x \in carrier R"
by fast
qed
cgenideal is minimal
lemma (in ring) cgenideal_minimal:
assumes "ideal J R"
assumes aJ: "a \in J"
shows "PIdl a \subseteq J"
proof -
interpret ideal J R by fact
show ?thesis
unfolding cgenideal_def
apply rule
apply clarify
using aJ
apply (erule I_l_closed)
done
qed
lemma (in cring) cgenideal_eq_genideal:
assumes icarr: "i \in carrier R"
shows "PIdl i = Idl {i}"
apply rule
apply (intro cgenideal_minimal)
apply (rule genideal_ideal, fast intro: icarr)
apply (rule genideal_self', fast intro: icarr)
apply (intro genideal_minimal)
apply (rule cgenideal_ideal [OF icarr])
apply (simp, rule cgenideal_self [OF icarr])
done
lemma (in cring) cgenideal_eq_rcos: "PIdl i = carrier R \#> i"
unfolding cgenideal_def r_coset_def by fast
lemma (in cring) cgenideal_is_principalideal:
assumes icarr: "i \in carrier R"
shows "principalideal (PIdl i) R"

```
```

 apply (rule principalidealI)
 apply (rule cgenideal_ideal [OF icarr])
 proof -
from icarr have "PIdl i = Idl {i}"
by (rule cgenideal_eq_genideal)
with icarr show "\existsi'\incarrier R. PIdl i = Idl {i'}"
by fast
qed

```

\subsection*{14.7 Union of Ideals}
lemma (in ring) union_genideal:
assumes idealI: "ideal I R"
        and idealJ: "ideal J R"
    shows "Idl (I U J) = I <+> J"
    apply rule
        apply (rule ring.genideal_minimal)
            apply (rule is_ring)
            apply (rule add_ideals[OF idealI idealJ])
            apply (rule)
            apply (simp add: set_add_defs) apply (elim disjE) defer 1 defer 1
            apply (rule) apply (simp add: set_add_defs genideal_def) apply clarsimp
defer 1
proof -
    fix x
    assume xI: "x \(\in\) I"
    have ZJ: "0 \(\in\) J"
        by (intro additive_subgroup.zero_closed) (rule ideal.axioms[OF idealJ])
    from ideal. Icarr[OF ideall \(x I\) ] have " \(\mathrm{x}=\mathrm{x} \oplus 0\) "
        by algebra
    with \(x I\) and \(Z J\) show \(" \exists h \in I . \exists k \in J . x=h \oplus k "\)
        by fast
next
    fix \(x\)
    assume \(\mathrm{xJ}: ~ " \mathrm{x} \in \mathrm{J}\) "
    have ZI: "0 \(\in\) I"
        by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealI])
    from ideal.Icarr[0F idealJ xJ ] have \(\mathrm{x}=\mathbf{0} \oplus \mathrm{x}\) "
        by algebra
    with ZI and xJ show \(" \exists \mathrm{~h} \in \mathrm{I} . \exists \mathrm{k} \in \mathrm{J} . \mathrm{x}=\mathrm{h} \oplus \mathrm{k} "\)
        by fast
next
    fix i j K
    assume iI: "i \(\in\) I"
        and \(\mathrm{jJ}: ~ " j \in \mathrm{~J} "\)
        and idealK: "ideal K R"
        and \(I K: ~ " I \subseteq K "\)
        and \(\mathrm{JK}: ~ " J \subseteq K "\)
    from iI and IK have iK: "i \(\in K\) " by fast
```

 from jJ and JK have jK: "j f K" by fast
 from iK and jK show "i }\oplusj\inK
 by (intro additive_subgroup.a_closed) (rule ideal.axioms[0F idealK])
 qed

```

\subsection*{14.8 Properties of Principal Ideals}

0 generates the zero ideal
```

lemma (in ring) zero_genideal: "Idl {0} = {0}"
apply rule
apply (simp add: genideal_minimal zeroideal)
apply (fast intro!: genideal_self)
done

```

1 generates the unit ideal
```

lemma (in ring) one_genideal: "Idl {1} = carrier R"
proof -
have "1 \in Idl {1}"
by (simp add: genideal_self')
then show "Idl {1} = carrier R"
by (intro ideal.one_imp_carrier) (fast intro: genideal_ideal)
qed

```

The zero ideal is a principal ideal
```

corollary (in ring) zeropideal: "principalideal {0} R"
apply (rule principalidealI)
apply (rule zeroideal)
apply (blast intro!: zero_genideal[symmetric])
done

```

The unit ideal is a principal ideal
```

corollary (in ring) onepideal: "principalideal (carrier R) R"
apply (rule principalidealI)
apply (rule oneideal)
apply (blast intro!: one_genideal[symmetric])
done

```

Every principal ideal is a right coset of the carrier
lemma (in principalideal) rcos_generate:
assumes "cring R"
shows " \(\exists \mathrm{x} \in \mathrm{I}\). \(\mathrm{I}=\) carrier R \#> x "
proof -
interpret cring \(R\) by fact
from generate obtain \(i\) where icarr: "i \(\in\) carrier R" and I1: "I = Idl
\{i\}"
by fast+
from icarr and genideal_self[of "\{i\}"] have "i \(\in \operatorname{Idl}\{i\} "\)
```

 by fast
 then have iI: "i \in I" by (simp add: I1)
 from I1 icarr have I2: "I = PIdl i"
 by (simp add: cgenideal_eq_genideal)
 have "PIdl i = carrier R #> i"
 unfolding cgenideal_def r_coset_def by fast
 with I2 have "I = carrier R #> i"
 by simp
 with iI show "\existsx\inI. I = carrier R #> x"
 by fast
 qed

```

\subsection*{14.9 Prime Ideals}
```

lemma (in ideal) primeidealCD:
assumes "cring R"
assumes notprime: " ${ }^{\text {primeideal I R" }}$
shows "carrier $R=I \vee$ ($\exists \mathrm{a} b$. a \in carrier $R \wedge b \in \operatorname{carrier} R \wedge a \otimes$
$\mathrm{b} \in \mathrm{I} \wedge \mathrm{a} \notin \mathrm{I} \wedge \mathrm{b} \notin \mathrm{I}) "$
proof (rule ccontr, clarsimp)
interpret cring R by fact
assume InR: "carrier R $\neq \mathrm{I} "$
and $" \forall \mathrm{a} . \mathrm{a} \in \operatorname{carrier~} \mathrm{R} \longrightarrow(\forall \mathrm{b} . \mathrm{a} \otimes \mathrm{b} \in \mathrm{I} \longrightarrow \mathrm{b} \in \operatorname{carrier} \mathrm{R} \longrightarrow$
$a \in I \vee b \in I) "$
then have I_prime: " $\bigwedge \mathrm{a} \mathrm{b}$. $\llbracket \mathrm{a} \in \operatorname{carrier~} \mathrm{R} ; \mathrm{b} \in \operatorname{carrier} \mathrm{R} ; \mathrm{a} \otimes \mathrm{b} \in$ $\mathrm{I} \rrbracket \Longrightarrow \mathrm{a} \in \mathrm{I} \vee \mathrm{b} \in \mathrm{I}{ }^{\prime \prime}$ by simp
have "primeideal I R"
apply (rule primeideal.intro [OF is_ideal is_cring])
apply (rule primeideal_axioms.intro)
apply (rule InR)
apply (erule (2) I_prime)
done
with notprime show False by simp
qed
lemma (in ideal) primeidealCE:
assumes "cring R"
assumes notprime: " \neg primeideal I R"
obtains "carrier R = I"
| " $\exists \mathrm{a}$ b. a \in carrier $R \wedge \mathrm{~b} \in$ carrier $\mathrm{R} \wedge \mathrm{a} \otimes \mathrm{b} \in \mathrm{I} \wedge \mathrm{a} \notin \mathrm{I} \wedge \mathrm{b}$ $\notin I^{\prime \prime}$
proof -
interpret R : cring R by fact
assume "carrier $R=1$ ==> thesis"

```
```

 and "\existsa b. a \in carrier R ^ b \in carrier R ^ a \otimes b \in I ^ a & I ^
 b}\not\inI\Longrightarrow thesis
then show thesis using primeidealCD [OF R.is_cring notprime] by blast
qed

```

If \(\{0\}\) is a prime ideal of a commutative ring, the ring is a domain
lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal \{0\} R"
shows "domain R"
apply (rule domain.intro, rule is_cring)
apply (rule domain_axioms.intro)
proof (rule ccontr, simp)
interpret primeideal "\{0\}" "R" by (rule pi)
assume "1 = 0"
then have "carrier \(R=\{0\}\) " by (rule one_zeroD)
from this [symmetric] and I_notcarr show False
by simp
next
interpret primeideal "\{0\}" "R" by (rule pi)
fix a b
assume \(\mathrm{ab}: ~ " \mathrm{a} \otimes \mathrm{b}=0\) " and carr: "a \(\in \operatorname{carrier~R"~"b\in carrier~R"~}\)
from ab have abI: "a \(\otimes b \in\{0\}\) "
by fast
with carr have "a \(\in\{0\} \vee b \in\{0\}\) "
by (rule I_prime)
then show "a \(=0 \vee b=0\) " by simp
qed
corollary (in cring) domain_eq_zeroprimeideal: "domain \(R=\) primeideal \{0\} R"
apply rule
apply (erule domain.zeroprimeideal)
apply (erule zeroprimeideal_domainI)
done

\subsection*{14.10 Maximal Ideals}
lemma (in ideal) helper_I_closed:
assumes carr: "a \(\in\) carrier \(R "\) " \(x \in\) carrier \(R "\) " \(y \in \operatorname{carrier~R"~}\)
and axI: "a \(\otimes \mathrm{x} \in \mathrm{I} "\)
shows "a \(\otimes(x \otimes y) \in I "\)
proof -
from axI and carr have \("(a \otimes x) \otimes y \in I "\)
by (simp add: I_r_closed)
also from carr have \("(a \otimes x) \otimes y=a \otimes(x \otimes y) "\)
by (simp add: m_assoc)
finally show "a \(\otimes(x \otimes y) \in I "\).
qed
```

lemma (in ideal) helper_max_prime:
assumes "cring R"
assumes acarr: "a \in carrier R"
shows "ideal {x\incarrier R. a \otimes x \in I} R"
proof -
interpret cring R by fact
show ?thesis apply (rule idealI)
apply (rule cring.axioms[OF is_cring])
apply (rule subgroup.intro)
apply (simp, fast)
apply clarsimp apply (simp add: r_distr acarr)
apply (simp add: acarr)
apply (simp add: a_inv_def[symmetric], clarify) defer 1
apply clarsimp defer 1
apply (fast intro!: helper_I_closed acarr)
proof -
fix x
assume xcarr: "x \in carrier R"
and ax: "a \otimes x \in I"
from ax and acarr xcarr
have "\ominus(a \otimes x) \in I" by simp
also from acarr xcarr
have " }\ominus(\textrm{a}\otimes\textrm{x})=\textrm{a}\otimes(\ominus\textrm{x})"\mathrm{ " by algebra
finally show "a \otimes (}\otimes\textrm{x})\inI"
from acarr have "a \otimes 0 = 0" by simp
next
fix x y
assume xcarr: "x \in carrier R"
and ycarr: "y \in carrier R"
and ayI: "a \otimes y \in I"
from ayI and acarr xcarr ycarr have "a \otimes (y \otimes x) \in I"
by (simp add: helper_I_closed)
moreover
from xcarr ycarr have "y \otimes x = x \& y"
by (simp add: m_comm)
ultimately
show "a \otimes (x \otimes y) \in I" by simp
qed
qed

```

In a cring every maximal ideal is prime
```

lemma (in cring) maximalideal_prime:
assumes "maximalideal I R"
shows "primeideal I R"
proof -
interpret maximalideal I R by fact
show ?thesis apply (rule ccontr)
apply (rule primeidealCE)
apply (rule is_cring)

```
```

 apply assumption
 apply (simp add: I_notcarr)
 proof -
 assume "\existsa b. a \in carrier R ^ b \in carrier R ^ a \otimes b \in I ^ a \not\in
 I ^ b \& I"
then obtain a b where
acarr: "a \in carrier R" and
bcarr: "b \in carrier R" and
abI: "a \otimes b \in I" and
anI: "a \& I" and
bnI: "b \& I" by fast
define J where "J = {x\incarrier R. a \otimes x \in I}"
from is_cring and acarr have idealJ: "ideal J R"
unfolding J_def by (rule helper_max_prime)
have IsubJ: "I \subseteq J"
proof
fix x
assume xI: "x \in I"
with acarr have "a \otimes x \in I"
by (intro I_l_closed)
with xI[THEN a_Hcarr] show "x G J"
unfolding J_def by fast
qed
from abI and acarr bcarr have "b \in J"
unfolding J_def by fast
with bnI have JnI: "J \not= I" by fast
from acarr
have "a = a \& 1" by algebra
with anI have "a \otimes 1 \& I" by simp
with one_closed have "1 \& J"
unfolding J_def by fast
then have Jncarr: "J f= carrier R" by fast
interpret ideal J R by (rule idealJ)
have "J = I V J = carrier R"
apply (intro I_maximal)
apply (rule idealJ)
apply (rule IsubJ)
apply (rule a_subset)
done
with JnI and Jncarr show False by simp
qed
qed

```

\subsection*{14.11 Derived Theorems}
- A non-zero cring that has only the two trivial ideals is a field lemma (in cring) trivialideals_fieldI:
assumes carrnzero: "carrier \(R \neq\{0\}\) " and haveideals: "\{I. ideal I R\} = \{\{0\}, carrier R\}"
shows "field R"
apply (rule cring_fieldI)
apply (rule, rule, rule)
apply (erule Units_closed)
defer 1 apply rule
defer 1
proof (rule ccontr, simp)
assume zUnit: "0 \(\in\) Units R"
then have a: "0 \(\otimes\) inv \(0=1 "\) by (rule Units_r_inv)
from zUnit have " \(0 \otimes\) inv \(0=0 "\) by (intro l_null) (rule Units_inv_closed)
with a[symmetric] have "1 = 0" by simp
then have "carrier \(R=\{0\}\) " by (rule one_zeroD)
with carrnzero show False by simp
next
fix \(x\)
assume xcarr': "x \(\in\) carrier \(R-\{0\} "\)
then have xcarr: "x \(\in\) carrier \(R\) " by fast
from xcarr' have \(x n Z\) : " \(x \neq 0\) " by fast
from xcarr have xIdl: "ideal (PIdl x) R" by (intro cgenideal_ideal) fast
from xcarr have "x \(\in\) PIdl \(x\) " by (intro cgenideal_self) fast
with \(x n Z\) have "PIdl \(x \neq\{0\} "\) by fast
with haveideals have "PIdl \(\mathrm{x}=\) carrier R " by (blast intro!: xIdl)
then have " \(1 \in\) PIdl \(x\) " by simp
then have \(" \exists \mathrm{y} .1=\mathrm{y} \otimes \mathrm{x} \wedge \mathrm{y} \in\) carrier \(\mathrm{R} "\)
unfolding cgenideal_def by blast
then obtain \(y\) where ycarr: " \(y \in\) carrier \(R "\) and \(y l i n v: ~ " 1=y \otimes x "\) by fast+
from ylinv and xcarr ycarr have yrinv: "1 = x \(\otimes \mathrm{y} "\) by (simp add: m_comm)
from ycarr and ylinv[symmetric] and yrinv[symmetric]
have " \(\exists \mathrm{y} \in\) carrier \(R . \mathrm{y} \otimes \mathrm{x}=1 \wedge \mathrm{x} \otimes \mathrm{y}=1\) " by fast
with xcarr show " \(\mathrm{x} \in\) Units \(R\) " unfolding Units_def by fast
qed
lemma (in field) all_ideals: "\{I. ideal I R\} = \{\{0\}, carrier R\}" apply (rule, rule)
proof -
```

fix I
assume a: "I \in {I. ideal I R}"
then interpret ideal I R by simp
show "I \in {{0}, carrier R}"
proof (cases "\existsa. a \in I - {0}")
case True
then obtain a where aI: "a \in I" and anZ: "a f=0"
by fast+
from aI[THEN a_Hcarr] anZ have aUnit: "a \in Units R"
by (simp add: field_Units)
then have a: "a \otimes inv a = 1" by (rule Units_r_inv)
from aI and aUnit have "a \otimes inv a \in I"
by (simp add: I_r_closed del: Units_r_inv)
then have oneI: "1 \in I" by (simp add: a[symmetric])
have "carrier R\subseteq I"
proof
fix x
assume xcarr: "x \in carrier R"
with oneI have "1 \otimes x \in I" by (rule I_r_closed)
with xcarr show "x f I" by simp
qed
with a_subset have "I = carrier R" by fast
then show "I \in {{0}, carrier R}" by fast
next
case False
then have IZ: "^a. a \in I \Longrightarrowa = 0" by simp
have a: "I \subseteq{0}"
proof
fix x
assume "x \in I"
then have "x = 0" by (rule IZ)
then show "x\in{0}" by fast
qed
have "0 \in I" by simp
then have "{0}\subseteq I" by fast
with a have "I = {0}" by fast
then show "I \in {{0}, carrier R}" by fast
qed
qed (simp add: zeroideal oneideal)

```
- Jacobson Theorem 2.2
lemma (in cring) trivialideals_eq_field:
    assumes carrnzero: "carrier \(R \neq\{0\}\) "
    shows " (\{I. ideal I R\} = \{\{0\}, carrier R\}) = field R"
```

by (fast intro!: trivialideals_fieldI[OF carrnzero] field.all_ideals)

```

Like zeroprimeideal for domains
```

lemma (in field) zeromaximalideal: "maximalideal {0} R"
apply (rule maximalidealI)
apply (rule zeroideal)
proof-
from one_not_zero have "1 }\not\in{0}" by sim
with one_closed show "carrier R \not= {0}" by fast
next
fix J
assume Jideal: "ideal J R"
then have "J \in {I. ideal I R}" by fast
with all_ideals show "J = {0} V J = carrier R"
by simp
qed
lemma (in cring) zeromaximalideal_fieldI:
assumes zeromax: "maximalideal {0} R"
shows "field R"
apply (rule trivialideals_fieldI, rule maximalideal.I_notcarr[OF zeromax])
apply rule apply clarsimp defer 1
apply (simp add: zeroideal oneideal)
proof -
fix J
assume Jn0: "J \not= {0}"
and idealJ: "ideal J R"
interpret ideal J R by (rule idealJ)
have "{0} \subseteq J" by (rule ccontr) simp
from zeromax and idealJ and this and a_subset
have "J = {0} V J = carrier R"
by (rule maximalideal.I_maximal)
with Jn0 show "J = carrier R"
by simp
qed
lemma (in cring) zeromaximalideal_eq_field: "maximalideal {0} R = field
R"
apply rule
apply (erule zeromaximalideal_fieldI)
apply (erule field.zeromaximalideal)
done

```
end
theory RingHom
imports Ideal
begin

\section*{15 Homomorphisms of Non-Commutative Rings}

Lifting existing lemmas in a ring_hom_ring locale
```

locale ring_hom_ring = R?: ring R + S?: ring S
for R (structure) and S (structure) +
fixes h
assumes homh: "h \in ring_hom R S"
notes hom_mult [simp] = ring_hom_mult [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]
sublocale ring_hom_cring \subseteq ring: ring_hom_ring
by standard (rule homh)

```
sublocale ring_hom_ring \(\subseteq\) abelian_group?: abelian_group_hom R S
apply (rule abelian_group_homI)
    apply (rule R.is_abelian_group)
    apply (rule S.is_abelian_group)
apply (intro group_hom.intro group_hom_axioms.intro)
    apply (rule R.a_group)
    apply (rule S.a_group)
apply (insert homh, unfold hom_def ring_hom_def)
apply simp
done
lemma (in ring_hom_ring) is_ring_hom_ring:
    "ring_hom_ring R S h"
    by (rule ring_hom_ring_axioms)
lemma ring_hom_ringI:
    fixes \(R\) (structure) and \(S\) (structure)
    assumes "ring R" "ring S"
    assumes
                hom_closed: "!!x. x \(\in\) carrier \(R==>h\) x \(\in\) carrier \(S "\)
        and compatible_mult: "!!x y. [l x : carrier R; y : carrier R l]
\(==>h(x \otimes y)=h x S_{S} h y^{\prime \prime}\)
            and compatible_add: "!!x y. [| x : carrier R; y : carrier R |] ==>
\(h(x \oplus y)=h x \oplus_{S} h y^{\prime \prime}\)
            and compatible_one: "h \(1=1_{S}\) "
    shows "ring_hom_ring R S h"
proof -
    interpret ring \(R\) by fact
    interpret ring \(S\) by fact
    show ?thesis apply unfold_locales
apply (unfold ring_hom_def, safe)
    apply (simp add: hom_closed Pi_def)
    apply (erule (1) compatible_mult)
    apply (erule (1) compatible_add)
apply (rule compatible_one)
done

\section*{qed}
```

lemma ring_hom_ringI2:
assumes "ring R" "ring S"
assumes h: "h \in ring_hom R S"
shows "ring_hom_ring R S h"
proof -
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)
apply (rule R.is_ring)
apply (rule S.is_ring)
apply (rule h)
done
qed
lemma ring_hom_ringI3:
fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"
assumes compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]
==> h (x \otimes y) = h x \otimesS h y"
and compatible_one: "h 1 = 1S"
shows "ring_hom_ring R S h"
proof -
interpret abelian_group_hom R S h by fact
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro,
rule R.is_ring, rule S.is_ring)
apply (insert group_hom.homh[OF a_group_hom])
apply (unfold hom_def ring_hom_def, simp)
apply safe
apply (erule (1) compatible_mult)
apply (rule compatible_one)
done
qed
lemma ring_hom_cringI:
assumes "ring_hom_ring R S h" "cring R" "cring S"
shows "ring_hom_cring R S h"
proof -
interpret ring_hom_ring R S h by fact
interpret R: cring R by fact
interpret S: cring S by fact
show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)
(rule R.is_cring, rule S.is_cring, rule homh)
qed

```

\subsection*{15.1 The Kernel of a Ring Homomorphism}
- the kernel of a ring homomorphism is an ideal
lemma (in ring_hom_ring) kernel_is_ideal:
shows "ideal (a_kernel R S h) R"
apply (rule idealI)
apply (rule R.is_ring)
apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
apply (unfold a_kernel_def', simp+)
done
Elements of the kernel are mapped to zero
lemma (in abelian_group_hom) kernel_zero [simp]:
"i \(\in\) a_kernel R S h \(\Longrightarrow \mathrm{h} i=0_{\mathrm{S}}\) "
by (simp add: a_kernel_defs)

\subsection*{15.2 Cosets}

Cosets of the kernel correspond to the elements of the image of the homomorphism
```

lemma (in ring_hom_ring) rcos_imp_homeq:
assumes acarr: "a \in carrier R"
and xrcos: "x \in a_kernel R S h +> a"
shows "h x = h a"
proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
from xrcos
have " $\exists \mathrm{i} \in$ a_kernel R S h. x = i \oplus a" by (simp add: a_r_coset_defs)
from this obtain i
where iker: "i \in a_kernel R S h"
and $\mathrm{x}: ~ " \mathrm{x}=\mathrm{i} \oplus \mathrm{a}$ "
by fast+
note carr = acarr iker[THEN a_Hcarr]
from x
have "h x = h (i \oplus a)" by simp
also from carr
have "... = h i $\oplus_{S} h$ a" by simp
also from iker
have "... $=0_{\mathrm{S}} \oplus_{\mathrm{S}} \mathrm{h}$ a" by simp
also from carr
have "... = h a" by simp
finally
show "h x = h a" .
qed
lemma (in ring_hom_ring) homeq_imp_rcos:
assumes acarr: "a \in carrier R"

```
```

 and xcarr: "x \in carrier R"
 and hx: "h x = h a"
 shows "x \in a_kernel R S h +> a"
 proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
note carr = acarr xcarr
note hcarr = acarr [THEN hom_closed] xcarr [THEN hom_closed]
from hx and hcarr
have a: "h x }\mp@subsup{\oplus}{S}{}\mp@subsup{\ominus}{Sh}{}\textrm{a}=\mp@subsup{0}{S}{}" by algebra
from carr
have "h x }\mp@subsup{\oplus}{S}{}\mp@subsup{\ominus}{Sh}{}\textrm{a}=\textrm{h}(\textrm{x}\oplus\ominus\textrm{a})"\mathrm{ " by simp
from a and this
have b: "h (x \oplus \ominusa) = 0
from carr have "x }\oplus\ominusa\incarrier R" by sim
from this and b
have "x \oplus \ominusa \in a_kernel R S h"
unfolding a_kernel_def,
by fast
from this and carr
show "x \in a_kernel R S h +> a" by (simp add: a_rcos_module_rev)
qed
corollary (in ring_hom_ring) rcos_eq_homeq:
assumes acarr: "a \in carrier R"
shows "(a_kernel R S h) +> a = {x \in carrier R. h x = h a}"
apply rule defer 1
apply clarsimp defer 1
proof
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
fix x
assume xrcos: "x \in a_kernel R S h +> a"
from acarr and this
have xcarr: "x \in carrier R"
by (rule a_elemrcos_carrier)
from xrcos
have "h x = h a" by (rule rcos_imp_homeq[OF acarr])
from xcarr and this
show "x \in {x \in carrier R. h x = h a}" by fast
next
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
fix x
assume xcarr: "x \in carrier R"

```
```

 and hx: "h x = h a"
 from acarr xcarr hx
 show "x \in a_kernel R S h +> a" by (rule homeq_imp_rcos)
 qed
end
theory UnivPoly
imports Module RingHom
begin

```

\section*{16 Univariate Polynomials}

Polynomials are formalised as modules with additional operations for extracting coefficients from polynomials and for obtaining monomials from coefficients and exponents (record up_ring). The carrier set is a set of bounded functions from Nat to the coefficient domain. Bounded means that these functions return zero above a certain bound (the degree). There is a chapter on the formalisation of polynomials in the PhD thesis [1], which was implemented with axiomatic type classes. This was later ported to Locales.

\subsection*{16.1 The Constructor for Univariate Polynomials}

Functions with finite support.
```

locale bound =
fixes z :: 'a
and n :: nat
and f :: "nat => 'a"
assumes bound: "!!m. n < m \Longrightarrow f m = z"
declare bound.intro [intro!]
and bound.bound [dest]
lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n f= z" shows "n \leqm"
proof (rule classical)
assume "~ ?thesis"
then have "m < n" by arith
with bound have "f n = z" ..
with nonzero show ?thesis by contradiction
qed
record ('a, 'p) up_ring = "('a, 'p) module" +
monom :: "['a, nat] => 'p"
coeff :: "['p, nat] => 'a"

```

\section*{definition}
```

 up :: "('a, 'm) ring_scheme => (nat => 'a) set"
 where "up R = {f. f \in UNIV }->\mathrm{ carrier R & (EX n. bound 0}\mp@subsup{0}{R}{}nf)}
 definition UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring"
where "UP R = (
carrier = up R,
mult = (}\lambda\textrm{p}\inup R. \lambdaq\inup R. \lambdan. Ө అ Ri \in {..n}. p i \otimes |R q (n-i)),
one = (}\lambda\mathrm{ i. if i=0 then 1 1R else 0}\mp@subsup{\mathbf{0}}{R}{}\mathrm{),
zero = (\lambdai. 0 0
add = (}\lambda\textrm{p}\inup R. \lambdaq\inup R. \lambdai. p i \oplus ¢ q q i)
smult = (}\lambda\textrm{a}\in\mathrm{ carrier R. }\lambda\textrm{p}\inup R. \lambdai. a * \otimesR p i),
monom = (}\lambda\textrm{a}\in\mathrm{ carrier R. \n i. if i=n then a else 0}\mp@subsup{0}{R}{})\mathrm{ ,
coeff = (}
textrm{p}\inup R. \lambdan. p n)|"

```

Properties of the set of polynomials up.
```

lemma mem_upI [intro]:
"[l !!n. f n \in carrier R; EX n. bound (zero R) n f l] ==> f \in up R"
by (simp add: up_def Pi_def)
lemma mem_upD [dest]:
"f \in up R ==> f n \in carrier R"
by (simp add: up_def Pi_def)
context ring
begin
lemma bound_upD [dest]: "f \in up R ==> EX n. bound 0 n f" by (simp add:
up_def)
lemma up_one_closed: "(}\lambda\mathrm{ n. if n = 0 then 1 else 0) G up R" using up_def
by force
lemma up_smult_closed: "[| a \in carrier R; p \in up R |] ==> (\lambdai. a \otimes p
i) \in up R" by force
lemma up_add_closed:
"[| p \inup R; q \inup R |] ==> (\lambdai. p i }\oplus\textrm{q}i)\inupR
proof
fix n
assume "p \in up R" and "q \in up R"
then show "p n \oplus q n \in carrier R"
by auto
next
assume UP: "p \in up R" "q \in up R"
show "EX n. bound 0 n (}\lambda\textrm{i}.\textrm{p}\mathrm{ i }\oplus\textrm{q}i)
proof -
from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast

```
```

 have "bound 0 (max n m) (\lambdai. p i \oplus q i)"
 proof
 fix i
 assume "max n m < i"
 with boundn and boundm and UP show "p i }\oplus q i = 0" by fastforc
 qed
 then show ?thesis ..
 qed
 qed
lemma up_a_inv_closed:
"p fup R ==> (\lambdai. \ominus (p i)) \in up R"
proof
assume R: "p \in up R"
then obtain n where "bound 0 n p" by auto
then have "bound 0 n (}\lambda\textrm{i}.\ominus\textrm{p}\mathrm{ i)" by auto
then show "EX n. bound 0 n (}\lambda\textrm{i}.\ominus\rho\textrm{p i)" by auto
qed auto
lemma up_minus_closed:
"[| p Gup R; q G up R |] ==> (\lambdai. p i }\ominus q i) \in up R"
using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed
a_minus_def [of _ R]
by auto
lemma up_mult_closed:
"[| p G up R; q G up R |] ==>
(\lambdan. \bigoplusi \in {..n}. p i \otimes q(n-i)) \in up R"
proof
fix n
assume "p \in up R" "q \in up R"
then show "(\bigoplusi \in {..n}. p i \otimes q (n-i)) \in carrier R"
by (simp add: mem_upD funcsetI)
next
assume UP: "p \in up R" "q \in up R"
show "EX n. bound 0 n (\lambdan. \bigoplusi \in {..n}. p i \otimes q (n-i))"
proof -
from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (n + m) (\lambdan. \bigoplusi \in {..n}. p i \otimes q (n - i))"
proof
fix k assume bound: "n + m < k"
{
fix i
have "p i \& q (k-i) = 0"
proof (cases "n < i")
case True
with boundn have "p i = 0" by auto
moreover from UP have "q (k-i) \in carrier R" by auto

```
```

 ultimately show ?thesis by simp
 next
 case False
 with bound have "m < k-i" by arith
 with boundm have "q (k-i) = 0" by auto
 moreover from UP have "p i \in carrier R" by auto
 ultimately show ?thesis by simp
 qed
 }
 then show "(\bigoplusi \in {..k}. p i \otimes q (k-i)) = 0"
 by (simp add: Pi_def)
 qed
 then show ?thesis by fast
 qed
 qed
end

```

\subsection*{16.2 Effect of Operations on Coefficients}
locale UP =
fixes \(R\) (structure) and \(P\) (structure)
defines P_def: "P == UP R"
locale UP_ring \(=\) UP + R?: ring \(R\)
locale UP_cring \(=U P+R\) ?: cring \(R\)
sublocale UP_cring < UP_ring
by intro_locales [1] (rule P_def)
locale UP_domain = UP + R?: "domain" \(R\)
sublocale UP_domain < UP_cring
by intro_locales [1] (rule P_def)
context UP
begin
Temporarily declare \(P \equiv\) UP \(R\) as simp rule.
declare P_def [simp]
lemma up_eqI:
assumes prem: "!!n. coeff \(P\) p \(n=\) coeff \(P q n "\) and \(R\) : " \(p \in\) carrier
P" "q \(\in\) carrier P"
shows "p = q"
proof
fix \(x\)
from prem and \(R\) show " \(\mathrm{p}=\mathrm{q}\) x" by (simp add: UP_def)

\section*{qed}
lemma coeff_closed [simp]:
" \(\mathrm{p} \in\) carrier \(\mathrm{P}==>\) coeff P p \(\mathrm{n} \in\) carrier \(R\) " by (auto simp add: UP_def)
end
context UP_ring
begin
```

lemma coeff_monom [simp]:
"a \in carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"
proof -
assume R: "a \in carrier R"
then have "(}\lambda\textrm{n}\mathrm{ . if n = m then a else 0) f up R"
using up_def by force
with R show ?thesis by (simp add: UP_def)
qed
lemma coeff_zero [simp]: "coeff P 0P n = 0" by (auto simp add: UP_def)
lemma coeff_one [simp]: "coeff P 1p n = (if n=0 then 1 else 0)"
using up_one_closed by (simp add: UP_def)
lemma coeff_smult [simp]:
"[| a \in carrier R; p G carrier P |] ==> coeff P (a \odotp p) n = a \otimes coeff
P p n"
by (simp add: UP_def up_smult_closed)
lemma coeff_add [simp]:
"[| p \in carrier P; q \in carrier P |] ==> coeff P (p \oplusp q) n = coeff
P p n @ coeff P q n"
by (simp add: UP_def up_add_closed)
lemma coeff_mult [simp]:
"[| p \in carrier P; q \in carrier P |] ==> coeff P (p \otimesp q) n = (\bigoplusi }
{..n}. coeff P p i \& coeff P q (n-i))"
by (simp add: UP_def up_mult_closed)
end

```

\subsection*{16.3 Polynomials Form a Ring.}
```

context UP_ring

```
begin

Operations are closed over P.
```

lemma UP_mult_closed [simp]:
"[| p \in carrier P; q \in carrier P | | ==> p \otimesp q \in carrier P" by (simp
add: UP_def up_mult_closed)
lemma UP_one_closed [simp]:
"1P 隹 carrier P" by (simp add: UP_def up_one_closed)
lemma UP_zero_closed [intro, simp]:
"0p \in carrier P" by (auto simp add: UP_def)
lemma UP_a_closed [intro, simp]:
"[| p \in carrier P; q \in carrier P |] ==> p \oplusp q \in carrier P" by (simp
add: UP_def up_add_closed)
lemma monom_closed [simp]:
"a \in carrier R ==> monom P a n \in carrier P" by (auto simp add: UP_def
up_def Pi_def)
lemma UP_smult_closed [simp]:
"[| a \in carrier R; p \in carrier P |] ==> a \odotp p \in carrier P" by (simp
add: UP_def up_smult_closed)
end
declare (in UP) P_def [simp del]
Algebraic ring properties
context UP_ring
begin
lemma UP_a_assoc:
assumes R: "p \in carrier P" "q \in carrier P" "r f carrier P"

```

```

a_assoc R, simp_all add: R)
lemma UP_l_zero [simp]:
assumes R: "p \in carrier P"
shows "0}\mp@subsup{0}{P}{}\mp@subsup{\oplus}{P}{P}p=p" by (rule up_eqI, simp_all add: R
lemma UP_l_neg_ex:
assumes R: "p \in carrier P"
shows "EX q : carrier P. q \oplusp p = 0
proof -
let ?q = "\lambdai. \ominus (p i)"
from R have closed: "?q \in carrier P"
by (simp add: UP_def P_def up_a_inv_closed)
from R have coeff: "!!n. coeff P ?q n = \ominus (coeff P p n)"
by (simp add: UP_def P_def up_a_inv_closed)
show ?thesis

```
```

 proof
 show "?q \oplusp p = 0p"
 by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)
 qed (rule closed)
 qed
lemma UP_a_comm:
assumes R: "p \in carrier P" "q \in carrier P"
shows "p \oplusp q = q \oplus p p" by (rule up_eqI, simp add: a_comm R, simp_all
add: R)
lemma UP_m_assoc:
assumes R: "p \in carrier P" "q \in carrier P" "r f carrier P"
shows "(p \& \& q) }\mp@subsup{\otimes}{p}{}r=p,\mp@subsup{\otimes}{p}{}(q\mp@subsup{\otimes}{p}{}r)
proof (rule up_eqI)
fix n
{
fix k and a b c :: "nat=>'a"
assume R: "a \in UNIV }->\mathrm{ carrier R" "b }\in\mathrm{ UNIV }->\mathrm{ carrier R"
"c \in UNIV }->\mathrm{ carrier R"
then have "k <= n ==>
(\bigoplusj \in{..k}. (\bigoplusi \in{..j}. a i \otimes b (j-i)) \otimesc(n-j)) =
(\bigoplusj \in{..k}.a j \otimes (\bigoplusi \in{..k-j}. b i \otimes c (n-j-i)))"
(is "_ \Longrightarrow ?eq k")
proof (induct k)
case 0 then show ?case by (simp add: Pi_def m_assoc)
next
case (Suc k)
then have "k <= n" by arith
from this R have "?eq k" by (rule Suc)
with R show ?case
by (simp cong: finsum_cong
add: Suc_diff_le Pi_def l_distr r_distr m_assoc)
(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc)
qed
}
with R show "coeff P ((p \otimesp q) \otimes | r) n = coeff P (p \otimes | (q \& | r))
n"
by (simp add: Pi_def)
qed (simp_all add: R)
lemma UP_r_one [simp]:
assumes R: "p \in carrier P" shows "p \otimesp 1p = p"
proof (rule up_eqI)
fix n
show "coeff P (p \otimesp 1P) n = coeff P p n"
proof (cases n)
case 0
{

```
```

 with R show ?thesis by simp
 }
 next
 case Suc
 {
 fix nn assume Succ: "n = Suc nn"
 have "coeff P (p \otimes P 1 1) (Suc nn) = coeff P p (Suc nn)"
 proof -
 have "coeff P (p \otimesP 1 1) (Suc nn) = (\bigoplusi\in{..Suc nn}. coeff P
 p i }\otimes\mathrm{ (if Suc nn < i then 1 else 0))" using R by simp
also have "...= coeff P p (Suc nn) \otimes (if Suc nn \leq Suc nn then
1 else 0) }\oplus(\bigoplusi\in{..nn}. coeff P p i \otimes (if Suc nn \leqi then 1 else 0))"
using finsum_Suc [of "(\lambdai::nat. coeff P p i \otimes (if Suc nn \leq
i then 1 else 0))" "nn"] unfolding Pi_def using R by simp
also have "...= coeff P p (Suc nn) \otimes (if Suc nn \leq Suc nn then
1 else 0)"
proof -
have "(\bigoplusi\in{..nn}. coeff P p i \otimes (if Suc nn \leq i then 1 else
0)) = (\bigoplusi\in{..nn}. 0)"
using finsum_cong [of "{..nn}" "{..nn}" "(\lambdai::nat. coeff P
p i \otimes (if Suc nn \leq i then 1 else 0))" "(\lambdai::nat. 0)"] using R
unfolding Pi_def by simp
also have "... = 0" by simp
finally show ?thesis using r_zero R by simp
qed
also have "... = coeff P p (Suc nn)" using R by simp
finally show ?thesis by simp
qed
then show ?thesis using Succ by simp
}
qed
qed (simp_all add: R)
lemma UP_l_one [simp]:
assumes R: "p \in carrier P"
shows "1p \otimesp p = p"
proof (rule up_eqI)
fix n
show "coeff P (1p \& p p) n = coeff P p n"
proof (cases n)
case O with R show ?thesis by simp
next
case Suc with R show ?thesis
by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)
qed
qed (simp_all add: R)
lemma UP_l_distr:

```
```

 assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"
 shows "(p \oplusp q) \otimesp r = (p \otimesp r) }\mp@subsup{\otimes}{p}{}(q)\mp@subsup{|}{p}{
 by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)
 lemma UP_r_distr:
assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"

```

```

 by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)
 theorem UP_ring: "ring P"
by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)
(auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)
end

```

\subsection*{16.4 Polynomials Form a Commutative Ring.}
context UP_cring
begin
lemma UP_m_comm:
    assumes R1: "p \(\in\) carrier \(P\) " and \(R 2: ~ " q \in \operatorname{carrier~} P\) " shows "p \(\otimes p q\)
\(=q \otimes_{p} p^{\prime \prime}\)
proof (rule up_eqI)
    fix \(n\)
    \(\{\)
        fix \(k\) and \(a \operatorname{b}:\) : "nat=>' \(a\) "
        assume \(\mathrm{R}: ~ " a \in \operatorname{UNIV} \rightarrow\) carrier \(\mathrm{R} " \mathrm{"b} \in\) UNIV \(\rightarrow\) carrier \(R "\)
        then have \(" \mathrm{k}<=\mathrm{n}==>\)
            \((\bigoplus i \in\{. . k\} . a i \otimes b(n-i))=(\bigoplus i \in\{. . k\} . a(k-i) \otimes b(i+n-k)) "\)
                (is "_ \(\Longrightarrow\) ?eq k")
        proof (induct k)
            case 0 then show ?case by (simp add: Pi_def)
        next
                case (Suc k) then show ?case
                            by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+
        qed
    \}
    note \(1=\) this
    from R1 R2 show "coeff \(P\left(p \otimes_{p} q\right) n=\operatorname{coeff} P\left(q \otimes_{p} p\right) n "\)
        unfolding coeff_mult [OF R1 R2, of \(n\) ]
        unfolding coeff_mult [OF R2 R1, of n]
        using 1 [of "( \(\lambda i . \operatorname{coeff} \mathrm{P}\) p i)" "( \(\lambda i . \operatorname{coeff} \mathrm{P}\) q i)" "n"] by (simp
add: Pi_def m_comm)
qed (simp_all add: R1 R2)
```

16.5 Polynomials over a commutative ring for a commutative
ring
theorem UP_cring:
"cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI
UP_m_assoc UP_m_comm)
end
context UP_ring
begin
lemma UP_a_inv_closed [intro, simp]:
"p \in carrier P ==> Өp p \in carrier P"
by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]])
lemma coeff_a_inv [simp]:
assumes R: "p \in carrier P"
shows "coeff P (}\mp@subsup{\ominus}{P}{P
proof -
from R coeff_closed UP_a_inv_closed have
"coeff P (}\mp@subsup{|}{\textrm{P}}{\textrm{p}
n)"
by algebra
also from R have "... = \ominus (coeff P p n)"
by (simp del: coeff_add add: coeff_add [THEN sym]
abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]])
finally show ?thesis .
qed
end
sublocale UP_ring < P?: ring P using UP_ring .
sublocale UP_cring < P?: cring P using UP_cring .

```

\subsection*{16.6 Polynomials Form an Algebra}
```

context UP_ring
begin
lemma UP_smult_l_distr:
"[| a \in carrier R; b \in carrier R; p \in carrier P |] ==>
(a \oplus b) }\mp@subsup{\odot}{p}{p}=\textrm{a}\mp@subsup{\odot}{p}{
by (rule up_eqI) (simp_all add: R.l_distr)
lemma UP_smult_r_distr:
"[| a \in carrier R; p \in carrier P; q \in carrier P |] ==>
a }\mp@subsup{\odot}{p}{}(p\mp@subsup{\oplus}{p}{\prime}q)=a \mp@subsup{ }{p}{\prime}p\mp@subsup{\oplus}{p}{}\mathrm{ a }\mp@subsup{\odot}{p}{\prime}\mp@subsup{q}{}{\prime\prime
by (rule up_eqI) (simp_all add: R.r_distr)

```
```

lemma UP_smult_assoc1:
"[| a \in carrier R; b \in carrier R; p \in carrier P |] ==>
(a \otimes b) }\mp@subsup{\odot}{p}{
by (rule up_eqI) (simp_all add: R.m_assoc)
lemma UP_smult_zero [simp]:
"p f carrier P ==> 0 \odotp p = 0p"
by (rule up_eqI) simp_all
lemma UP_smult_one [simp]:
"p \in carrier P ==> 1 \odotp p = p"
by (rule up_eqI) simp_all
lemma UP_smult_assoc2:
"[| a \in carrier R; p \in carrier P; q \in carrier P |] ==>
(a }\mp@subsup{\odot}{p}{
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)
end
Interpretation of lemmas from algebra.
lemma (in cring) cring:
"cring R" ..
lemma (in UP_cring) UP_algebra:
"algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr
UP_smult_r_distr
UP_smult_assoc1 UP_smult_assoc2)
sublocale UP_cring < algebra R P using UP_algebra .

```

\subsection*{16.7 Further Lemmas Involving Monomials}
```

context UP_ring
begin
lemma monom_zero [simp]:
"monom P 0 n = 0p" by (simp add: UP_def P_def)
lemma monom_mult_is_smult:
assumes R: "a \in carrier R" "p \in carrier P"
shows "monom P a 0 \otimesp p = a \odotp p"
proof (rule up_eqI)
fix n
show "coeff P (monom P a 0 \otimesp p) n = coeff P (a @p p) n"
proof (cases n)
case O with R show ?thesis by simp
next
case Suc with R show ?thesis

```
```

 using R.finsum_Suc2 by (simp del: R.finsum_Suc add: Pi_def)
 qed
 qed (simp_all add: R)
lemma monom_one [simp]:
"monom P 1 0 = 1p"
by (rule up_eqI) simp_all
lemma monom_add [simp]:
"[| a \in carrier R; b \in carrier R |] ==>
monom P (a }\oplus\textrm{b})\textrm{n}=\mp@code{monom P a n }\mp@subsup{\oplus}{\textrm{P}}{}\mathrm{ monom P b n"
by (rule up_eqI) simp_all
lemma monom_one_Suc:
"monom P 1 (Suc n) = monom P 1 n \otimesp monom P 1 1"
proof (rule up_eqI)
fix k
show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n \otimesp monom
P 1 1) k"
proof (cases "k = Suc n")
case True show ?thesis
proof -
fix m
from True have less_add_diff:
"!!i. [l n < i; i <= n + m l] ==> n + m - i < m" by arith
from True have "coeff P (monom P 1 (Suc n)) k = 1" by simp
also from True
have "... = (\bigoplusi \in{..<n} \cup {n}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: Pi_def)
also have "... = (\bigoplusi \in {..n}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp only: ivl_disj_un_singleton)
also from True
have "... = (\bigoplusi G {..n} \cup {n<..k}. coeff P (monom P 1 n) i \otimes
coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
order_less_imp_not_eq Pi_def)
also from True have "... = coeff P (monom P 1 n \otimesp monom P 1 1)
k"
by (simp add: ivl_disj_un_one)
finally show ?thesis .
qed
next
case False
note neq = False
let ?s =
"\lambdai. (if n = i then 1 else 0) \& (if Suc 0 = k - i then 1 else 0)"
from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp

```
```

 also have "...= (\bigoplusi ¢ {..k}. ?s i)"
 proof -
 have f1: "(\bigoplusi \in {..<n}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: Pi_def)
 from neq have f2: "(\bigoplusi \in {n}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: Pi_def) arith
 have f3: "n < k ==> (\bigoplusi \in {n<..k}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)
 show ?thesis
 proof (cases "k < n")
 case True then show ?thesis by (simp cong: R.finsum_cong add:
 Pi_def)
next
case False then have n_le_k: "n <= k" by arith
show ?thesis
proof (cases "n = k")
case True
then have "0=(\bigoplusi \in {..<n} \cup{n}. ?s i)"
by (simp cong: R.finsum_cong add: Pi_def)
also from True have "... = (\bigoplusi \in {..k}. ?s i)"
by (simp only: ivl_disj_un_singleton)
finally show ?thesis.
next
case False with n_le_k have n_less_k: "n < k" by arith
with neq have "0 = (\bigoplusi \in {..<n} \cup{n}. ?s i)"
by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right)
also have "... = (\bigoplusi \in {..n}. ?s i)"
by (simp only: ivl_disj_un_singleton)
also from n_less_k neq have "... = (\bigoplusi \in {..n} \cup{n<..k}.
?s i)"
by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)
also from n_less_k have "... = (\bigoplusi \in {..k}. ?s i)"
by (simp only: ivl_disj_un_one)
finally show ?thesis .
qed
qed
qed
also have "... = coeff P (monom P 1 n \otimesp monom P 1 1) k" by simp
finally show ?thesis .
qed
qed (simp_all)
lemma monom_one_Suc2:
"monom P 1 (Suc n) = monom P 1 1 \otimesp monom P 1 n"
proof (induct n)
case 0 show ?case by simp
next
case Suc
{

```
```

 fix k:: nat
 assume hypo: "monom P 1 (Suc k) = monom P 1 1 \otimesp monom P 1 k"
 then show "monom P 1 (Suc (Suck)) = monom P 1 1 & monom P 1 (Suc
 k)"
proof -
have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 \& m monom P 1 k
\otimesp monom P 1 1"
unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
note cl = monom_closed [OF R.one_closed, of 1]
note clk = monom_closed [OF R.one_closed, of k]
have rhs: "monom P 1 1 \& monom P 1 (Suc k) = monom P 1 1 \& monom
P 1 k \otimesP monom P 1 1"
unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF
cl clk cl]] ..
from lhs rhs show ?thesis by simp
qed
}
qed
The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P
1 ?n \& monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 \& monom P
1 ?n, and is trivial in UP_cring
corollary monom_one_comm: shows "monom P 1 k }\mp@subsup{\otimes}{P}{}\mathrm{ monom P 1 1 = monom P
1 1 \otimesp monom P 1 k"
unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..
lemma monom_mult_smult:
"[| a G carrier R; b \in carrier R | | ==> monom P (a \otimes b) n = a \odotp monom
P b n"
by (rule up_eqI) simp_all
lemma monom_one_mult:
"monom P 1 (n + m) = monom P 1 n \otimesp monom P 1 m"
proof (induct n)
case 0 show ?case by simp
next
case Suc then show ?case
unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps
using m_assoc monom_one_comm [of m] by simp
qed
lemma monom_one_mult_comm: "monom P 1 n \otimesp monom P 1 m = monom P 1 m
\& monom P 1 n"
unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all
lemma monom_mult [simp]:
assumes a_in_R: "a \in carrier R" and b_in_R: "b \in carrier R"
shows "monom P (a \otimes b) (n + m) = monom P a n }\mp@subsup{\otimes}{\textrm{P}}{\textrm{P}}\mathrm{ monom P b m"
proof (rule up_eqI)

```
```

 fix k
 show "coeff P (monom P (a \otimes b) (n + m)) k = coeff P (monom P a n \otimes P
 monom P b m) k"
proof (cases "n + m = k")
case True
{
show ?thesis
unfolding True [symmetric]
coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF
b_in_R, of m], of "n + m"]
coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m]
using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(\lambdai. (if n
= i then a else 0) \otimes (if m=n + m - i then b else 0))"
"(\lambdai. if n = i then a }\otimes\textrm{b}\mathrm{ else 0)"]
a_in_R b_in_R
unfolding simp_implies_def
using R.finsum_singleton [of n "{.. n + m}" "(\lambdai. a \otimes b)"]
unfolding Pi_def by auto
}
next
case False
{
show ?thesis
unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n

+ m" k] apply (simp add: False)
unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed
[OF b_in_R, of m], of k]
unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom
[OF b_in_R, of m] using False
using R.finsum_cong [of "{..k}" "{..k}" "(\lambdai. (if n = i then a
else 0) \otimes (if m = k - i then b else 0))" "(\lambdai. 0)"]
unfolding Pi_def simp_implies_def using a_in_R b_in_R by force
}
qed
qed (simp_all add: a_in_R b_in_R)
lemma monom_a_inv [simp]:
"a \in carrier R ==> monom P (}\ominus\mathrm{ a) n = }\mp@subsup{\ominus}{\textrm{p}}{\prime}\mathrm{ monom P a n"
by (rule up_eqI) simp_all
lemma monom_inj:
"inj_on (\lambdaa. monom P a n) (carrier R)"
proof (rule inj_onI)
fix x y
assume R: "x \in carrier R" "y \in carrier R" and eq: "monom P x n = monom
P y n"
then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp
with R show "x = y" by simp
qed

```
end

\subsection*{16.8 The Degree Function}
```

definition
deg :: "[('a, 'm) ring_scheme, nat => 'a] => nat"
where "deg R p = (LEAST n. bound 0}\mp@subsup{\mathbf{0}}{R}{}\textrm{n}(\operatorname{coeff (UP R) p))"
context UP_ring
begin
lemma deg_aboveI:
"[| (!!m. n < m ==> coeff P p m = 0); p \in carrier P |] ==> deg R p <=
n"
by (unfold deg_def P_def) (fast intro: Least_le)
lemma deg_aboveD:
assumes "deg R p < m" and "p \in carrier P"
shows "coeff P p m = 0"
proof -
from <p \in carrier P>obtain n where "bound 0 n (coeff P p)"
by (auto simp add: UP_def P_def)
then have "bound 0 (deg R p) (coeff P p)"
by (auto simp: deg_def P_def dest: LeastI)
from this and <deg R p < m> show ?thesis ..
qed
lemma deg_belowI:
assumes non_zero: "n ~= 0 ==> coeff P p n ~= 0"
and R: "p \in carrier P"
shows "n <= deg R p"

- Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")
case True then show ?thesis by simp
next
case False then have "coeff P p n ~= 0" by (rule non_zero)
then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R)
then show ?thesis by arith
qed
lemma lcoeff_nonzero_deg:
assumes deg: "deg R p ~}=0" and R: "p \in carrier P"
shows "coeff P p (deg R p) ~= 0"
proof -
from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~}
0"

```
```

 proof -
 have minus: "!!(n::nat) m. n ~= 0 =>> (n - Suc 0<m) = (n <= m)"
 by arith
 from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"
 by (unfold deg_def P_def) simp
 then have "~ bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_Least)
 then have "EX m. deg R p - 1 < m & coeff P p m ~= 0"
 by (unfold bound_def) fast
 then have "EX m. deg R p <= m & coeff P p m ~= 0" by (simp add: deg
 minus)
then show ?thesis by (auto intro: that)
qed
with deg_belowI R have "deg R p = m" by fastforce
with m_coeff show ?thesis by simp
qed
lemma lcoeff_nonzero_nonzero:
assumes deg: "deg R p = 0" and nonzero: "p ~= 00" and R: "p \in carrier
P"
shows "coeff P p 0 ~ = 0"
proof -
have "EX m. coeff P p m ~}=0
proof (rule classical)
assume "~ ?thesis"
with R have "p = 0p" by (auto intro: up_eqI)
with nonzero show ?thesis by contradiction
qed
then obtain m where coeff: "coeff P p m ~= 0" ..
from this and R have "m <= deg R p" by (rule deg_belowI)
then have "m = 0" by (simp add: deg)
with coeff show ?thesis by simp
qed
lemma lcoeff_nonzero:
assumes neq: "p ~}=0\mp@subsup{0}{P}{\prime}"\mathrm{ and R: "p }\in\mathrm{ carrier P"
shows "coeff P p (deg R p) ~= 0"
proof (cases "deg R p = 0")
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)
next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)
qed
lemma deg_eqI:
"[l !!m. n < m ==> coeff P p m = 0;
!!n. n ~= 0 ==> coeff P p n ~= 0; p G carrier P l] ==> deg R p =
n"
by (fast intro: le_antisym deg_aboveI deg_belowI)

```

Degree and polynomial operations
```

lemma deg_add [simp]:
"p \in carrier P \Longrightarrow q \in carrier P \Longrightarrow
deg R (p \oplusp q) <= max (deg R p) (deg R q)"
by(rule deg_aboveI)(simp_all add: deg_aboveD)
lemma deg_monom_le:
"a \in carrier R ==> deg R (monom P a n) <= n"
by (intro deg_aboveI) simp_all
lemma deg_monom [simp]:
"[| a ~= 0; a \in carrier R |] ==> deg R (monom P a n) = n"
by (fastforce intro: le_antisym deg_aboveI deg_belowI)
lemma deg_const [simp]:
assumes R: "a \in carrier R" shows "deg R (monom P a 0) = 0"
proof (rule le_antisym)
show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add:
R)
next
show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add:
R)
qed
lemma deg_zero [simp]:
"deg R 0P = 0"
proof (rule le_antisym)
show "deg R 0P <= 0" by (rule deg_aboveI) simp_all
next
show "0 <= deg R 0}\mp@subsup{\mathbf{P}}{P}{}\mathrm{ " by (rule deg_belowI) simp_all
qed
lemma deg_one [simp]:
"deg R 1P = 0"
proof (rule le_antisym)
show "deg R 1P <= 0" by (rule deg_aboveI) simp_all
next
show "0 <= deg R 1P" by (rule deg_belowI) simp_all
qed
lemma deg_uminus [simp]:
assumes R: "p carrier P" shows "deg R (}\mp@subsup{|}{p}{\prime}p)=\operatorname{deg R p"
proof (rule le_antisym)
show "deg R (}\mp@subsup{\ominus}{\textrm{p}}{\prime}\textrm{p}\mathrm{) <= deg R p" by (simp add: deg_aboveI deg_aboveD
R)
next
show "deg R p <= deg R (}\vartheta\mathrm{ p p)"
by (simp add: deg_belowI lcoeff_nonzero_deg
inj_on_eq_iff [OF R.a_inv_inj, of _ "0", simplified] R)
qed

```

The following lemma is later overwritten by the most specific one for domains, deg_smult.
```

lemma deg_smult_ring [simp]:
"[| a \in carrier R; p \in carrier P |] ==>
deg R (a \odotp p) <= (if a = 0 then O else deg R p)"
by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+

```
end
context UP_domain
begin
lemma deg_smult [simp]:
    assumes \(R\) : "a \(\in\) carrier \(R "\) " \(p \in\) carrier \(P "\)
    shows "deg \(R\left(a \odot_{p} p\right)=(i f a=0\) then 0 else \(\operatorname{deg} R p) "\)
proof (rule le_antisym)
    show "deg \(R\left(a \odot_{p} p\right)<=(i f a=0\) then 0 else \(\operatorname{deg} R p)\) "
        using \(R\) by (rule deg_smult_ring)
next
    show " (if a \(=0\) then 0 else \(\operatorname{deg} R\) p) \(<=\operatorname{deg} R\left(a \quad \rho_{p} p\right) "\)
    proof (cases "a = 0")
    qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)
qed
end
context UP_ring
begin
lemma deg_mult_ring:
    assumes \(R\) : " \(p \in\) carrier \(P "\) "q \(\in\) carrier \(P "\)
    shows "deg \(R(p \otimes p q)<=\operatorname{deg} R p+\operatorname{deg} R q "\)
proof (rule deg_aboveI)
    fix m
    assume boundm: "deg R p + deg R q < m"
    \{
            fix ki
            assume boundk: "deg R p + deg R q < k"
            then have "coeff P p i \(\otimes \operatorname{coeff} \mathrm{P} q(\mathrm{k}-\mathrm{i})=0 "\)
            proof (cases "deg R p < i")
                case True then show ?thesis by (simp add: deg_aboveD R)
            next
                case False with boundk have "deg \(R ~ q<k-i "\) by arith
                then show ?thesis by (simp add: deg_aboveD R)
            qed
        \}
    with boundm \(R\) show "coeff \(P(p \otimes p q) m=0 "\) by simp
qed (simp add: R)

\section*{end}

\section*{context UP_domain}
begin
```

lemma deg_mult [simp]:

```

```

 \(\operatorname{deg} R\left(p \otimes_{p} q\right)=\operatorname{deg} R p+\operatorname{deg} R q^{\prime \prime}\)
 proof (rule le_antisym)
assume "p \in carrier P" " q \in carrier P"
then show "deg $R(p \otimes p q)<=\operatorname{deg} R p+\operatorname{deg} R q " b y$ (rule deg_mult_ring)
next

```

```

 assume \(R\) : " \(p \in\) carrier \(P\) " "q \(\in\) carrier \(P\) " and \(n z: ~ " p ~ \sim ~=~ 0 p " ~ " q ~ ~=~\)
 $0{ }^{\prime \prime}$
have less_add_diff: "!! (k: nat) n m. k < n ==> m < n + m - k" by arith
show $" \operatorname{deg} R p+\operatorname{deg} R q<=\operatorname{deg} R(p \otimes p q) "$
proof (rule deg_belowI, simp add: R)
have " $(\bigoplus i \in\{. . \operatorname{deg} R p+\operatorname{deg} R q\}$. ?s i)
$=(\bigoplus i \in\{. .<\operatorname{deg} R p\} \cup\{\operatorname{deg} R p \ldots \operatorname{deg} R p+\operatorname{deg} R q\} . ? s i) "$
by (simp only: ivl_disj_un_one)
also have "... = ($\bigoplus i \in\{\operatorname{deg} R p \ldots \operatorname{deg} R p+\operatorname{deg} R q\} . ? s i) "$
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD less_add_diff R Pi_def)
also have "...= ($\bigoplus i \in\{\operatorname{deg} R p\} \cup\{\operatorname{deg} R p<. . \operatorname{deg} R p+\operatorname{deg} R q\}$.
?s i)"
by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p (deg R p) $\otimes \operatorname{coeff}$ P q (deg R q)"
by (simp cong: R.finsum_cong add: deg_aboveD R Pi_def)
finally have " $(\bigoplus i \in\{. . \operatorname{deg} R p+\operatorname{deg} R q\}$. ?s i)
$=\operatorname{coeff} P \mathrm{p}(\operatorname{deg} R \mathrm{p}) \otimes \operatorname{coeff} \mathrm{P} q(\operatorname{deg} R \mathrm{q})$ ".
with $n z$ show " $\left(\bigoplus i \in\{. . \operatorname{deg} R p+\operatorname{deg} R q\}\right.$. ?s i) ${ }^{\sim}=0 "$
by (simp add: integral_iff lcoeff_nonzero R)
qed (simp add: R)
qed
end

```

The following lemmas also can be lifted to UP_ring.
```

context UP_ring
begin
lemma coeff_finsum:
assumes fin: "finite A"
shows "p \in A }->\mathrm{ carrier P ==>
coeff P (finsum P p A) k = (\bigoplusi G A. coeff P (p i) k)"
using fin by induct (auto simp: Pi_def)

```
lemma up_repr:
```

 assumes R: "p \in carrier P"
 shows "(\bigoplusp i \in {..deg R p}. monom P (coeff P p i) i) = p"
 proof (rule up_eqI)
let ?s = "(\lambdai. monom P (coeff P p i) i)"
fix k
from R have RR: "!!i. (if i = k then coeff P p i else 0) f carrier
R"
by simp
show "coeff P (\bigoplusp i G {..deg R p}. ?s i) k = coeff P p k"
proof (cases "k <= deg R p")
case True
hence "coeff P (\bigoplusp i \in {..deg R p}. ?s i) k =
coeff P (\bigoplusp i }\in{..k} \cup{k<..deg R p}. ?s i) k"
by (simp only: ivl_disj_un_one)
also from True
have "... = coeff P (\bigoplusp i \in {..k}. ?s i) k"
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint
ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def)
also
have "... = coeff P (\bigoplusp i \in {..<k} \cup {k}. ?s i) k"
by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p k"
by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R RR Pi_def)
finally show ?thesis .
next
case False
hence "coeff P (Өp i \in {..deg R p}. ?s i) k =
coeff P (\bigoplusp i \in {..<deg R p} U {deg R p}. ?s i) k"
by (simp only: ivl_disj_un_singleton)
also from False have "... = coeff P p k"
by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R Pi_def)
finally show ?thesis.
qed
qed (simp_all add: R Pi_def)
lemma up_repr_le:
"[l deg R p <= n; p G carrier P l] ==>
(\bigoplusp i \in {..n}. monom P (coeff P p i) i) = p"
proof -
let ?s = "(\lambdai. monom P (coeff P p i) i)"
assume R: "p \in carrier P" and "deg R p <= n"
then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} U {deg R p<..n})"
by (simp only: ivl_disj_un_one)
also have "... = finsum P ?s {..deg R p}"
by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD R Pi_def)
also have "... = p" using R by (rule up_repr)
finally show ?thesis.
qed

```
end

\subsection*{16.9 Polynomials over Integral Domains}
```

lemma domainI:
assumes cring: "cring R"
and one_not_zero: "one R ~= zero R"
and integral: "!!a b. [| mult R a b = zero R; a \in carrier R;
b \in carrier R |] ==> a = zero R | b = zero R"
shows "domain R"
by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms
del: disjCI)
context UP_domain
begin
lemma UP_one_not_zero:
"1P ~ = 0
proof
assume "1 1P = 0
hence "coeff P 1P 0 = (coeff P 0 O O)" by simp
hence "1 = 0" by simp
with R.one_not_zero show "False" by contradiction
qed
lemma UP_integral:
"[| p \otimesp q = 0 0p; p \in carrier P; q \in carrier P | | ==> p = 0p | q = 0 0
proof -
fix p q
assume pq: "p \otimesp q = 0p" and R: "p \in carrier P" "q \in carrier P"
show "p = 0
proof (rule classical)
assume c: "~ (p = 0
with R have "deg R p + deg R q = deg R (p \otimesp q)" by simp
also from pq have "... = 0" by simp
finally have "deg R p + deg R q = 0" .
then have f1: "deg R p = 0 \& deg R q = 0" by simp
from f1 R have "p = (Ө P i \in {..0}. monom P (coeff P p i) i)"
by (simp only: up_repr_le)
also from R have "... = monom P (coeff P p 0) 0" by simp
finally have p: "p = monom P (coeff P p 0) 0" .
from f1 R have "q = (\bigoplusp i \in {..0}. monom P (coeff P q i) i)"
by (simp only: up_repr_le)
also from R have "... = monom P (coeff P q 0) 0" by simp
finally have q: "q = monom P (coeff P q 0) 0" .
from R have "coeff P p 0 \otimes coeff P q 0 = coeff P (p \otimesp q) 0" by
simp
also from pq have "... = 0" by simp

```
```

 finally have "coeff P p 0 & coeff P q 0 = 0" .
 with R have "coeff P p 0=0 | coeff P q 0 = 0"
 by (simp add: R.integral_iff)
 with p q show "p = 0p | q = 0 P" by fastforce
 qed
 qed
theorem UP_domain:
"domain P"
by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)
end
Interpretation of theorems from domain.
sublocale UP_domain < "domain" P
by intro_locales (rule domain.axioms UP_domain)+

```

\subsection*{16.10 The Evaluation Homomorphism and Universal Property}
```

lemma (in abelian_monoid) boundD_carrier:
"[| bound $0 \mathrm{n} f ; \mathrm{n}<\mathrm{m} \mid]==>\mathrm{f} \in$ carrier G "
by auto
context ring
begin
theorem diagonal_sum:
" [|f $f \in\{. n+m:$ nat $\} \rightarrow$ carrier $R ; g \in\{. . n+m\} \rightarrow$ carrier $R \mid]==>$
$(\bigoplus k \in\{. . n+m\} . \bigoplus i \in\{. . k\} . f i \otimes g(k-i))=$
$(\bigoplus k \in\{. . n+m\} . \bigoplus i \in\{\ldots n+m-k\} . f k \otimes g i) "$
proof -
assume Rf: "f $\in\{. . n+m\} \rightarrow$ carrier $R "$ and $R g: " g \in\{. . n+m\} \rightarrow$
carrier R"
{
fix j
have "j <= n + m ==>
(\oplusk\in{..j}. \oplusi\in{..k}.fi }\otimes\textrm{g}(\textrm{k}-\textrm{i}))
(\oplusk \in{..j}. \oplusi f {..j-k}.f k \otimesgi)"
proof (induct j)
case O from Rf Rg show ?case by (simp add: Pi_def)
next
case (Suc j)
have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i G carrier
R"
using Suc by (auto intro!: funcset_mem [OF Rg])
have R8: "!!i k. [| k <= Suc j; i <= k l] ==> g (k - i) E carrier
R"
using Suc by (auto intro!: funcset_mem [OF Rg])

```
```

 have R9: "!!i k. [| k <= Suc j |] ==> f k \in carrier R"
 using Suc by (auto intro!: funcset_mem [OF Rf])
 have R10: "!!i k. [l k <= Suc j; i <= Suc j - k l] ==> g i \in carrier
 R"
using Suc by (auto intro!: funcset_mem [OF Rg])
have R11: "g 0 E carrier R"
using Suc by (auto intro!: funcset_mem [OF Rg])
from Suc show ?case
by (simp cong: finsum_cong add: Suc_diff_le a_ac
Pi_def R6 R8 R9 R10 R11)
qed
}
then show ?thesis by fast
qed
theorem cauchy_product:
assumes bf: "bound 0 n f" and bg: "bound 0 m g"
and Rf: "f \in {..n} -> carrier R" and Rg: "g \in {..m} -> carrier R"
shows "(\bigoplusk \in{..n + m}. \bigoplusi \in {..k}. f i \otimes g (k - i)) =
(\bigoplusi\in{..n}. f i) \otimes (\bigoplusi \in {..m}.g i)"
proof -
have f: "!!x. f x \in carrier R"
proof -
fix x
show "f x \in carrier R"
using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)
qed
have g: "!!x. g x \in carrier R"
proof -
fix x
show "g x \in carrier R"
using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)
qed
from f g have "(\bigoplusk G {..n + m}. \bigoplusi \in{..k}.f i \otimesg(k - i)) =
(\bigoplusk\in{..n + m}. \bigoplusi \in {..n + m - k}. f k \otimes g i)"
by (simp add: diagonal_sum Pi_def)
also have "... = (\bigoplusk \in {..n} \cup{n<..n + m}. \bigoplusi \in {..n + m - k}.
f k \& g i)"
by (simp only: ivl_disj_un_one)
also from f g have "... = (\bigoplusk \in {..n}. \bigoplusi \in {..n + m - k}.f k \otimes
g i)"
by (simp cong: finsum_cong
add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)
also from f g
have "... = (\bigoplusk \in {..n}. \bigoplusi \in {..m} U {m<..n + m - k}. f k \otimes g i)"
by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def)
also from f g have "... = (\bigoplus k \in {..n}. \bigoplusi \in {..m}. f k \otimesg i)"
by (simp cong: finsum_cong
add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)

```
```

 also from f g have "... = (\bigoplusi \in {..n}. f i) \otimes (\bigoplusi\in {..m}. g i)"
 by (simp add: finsum_ldistr diagonal_sum Pi_def,
 simp cong: finsum_cong add: finsum_rdistr Pi_def)
 finally show ?thesis .
 qed
end
lemma (in UP_ring) const_ring_hom:
"(\lambdaa. monom P a 0) \in ring_hom R P"
by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)

```
```

definition
eval :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme,
'a => 'b, 'b, nat => 'a] => 'b"
where "eval R S phi s = (}\lambda\textrm{p}\in\mathrm{ carrier (UP R).
\bigoplus\mp@code{i}}\in{\mp@code{{.deg R p}. phi (coeff (UP R) p i) }\mp@subsup{\otimes}{S}{
context UP
begin
lemma eval_on_carrier:
fixes S (structure)
shows "p \in carrier P ==>
eval R S phi s p = (}\mp@subsup{|}{S}{
i)"
by (unfold eval_def, fold P_def) simp
lemma eval_extensional:
"eval R S phi p G extensional (carrier P)"
by (unfold eval_def, fold P_def) simp
end
The universal property of the polynomial ring
locale UP_pre_univ_prop = ring_hom_cring + UP_cring
locale UP_univ_prop = UP_pre_univ_prop +
fixes s and Eval
assumes indet_img_carrier [simp, intro]: "s \in carrier S"
defines Eval_def: "Eval == eval R S h s"

```

JE: I have moved the following lemma from Ring.thy and lifted then to the locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not hold for non commutative rings, so maybe it is not that necessary.
```

lemma (in ring_hom_ring) hom_finsum [simp]:
"f \in A -> carrier R ==>

```
```

 h (finsum R f A) = finsum S (h o f) A"
 by (induct A rule: infinite_finite_induct, auto simp: Pi_def)
 context UP_pre_univ_prop
begin
theorem eval_ring_hom:
assumes S: "s \in carrier S"
shows "eval R S h s \in ring_hom P S"
proof (rule ring_hom_memI)
fix p
assume R: "p \in carrier P"
then show "eval R S h s p \in carrier S"
by (simp only: eval_on_carrier) (simp add: S Pi_def)
next
fix p q
assume R: "p \in carrier P" "q \in carrier P"
then show "eval R S h s (p \oplusp q) = eval R S h s p }\mp@subsup{\oplus}{S}{}\mathrm{ eval R S h s
q"
proof (simp only: eval_on_carrier P.a_closed)
from S R have
"(}\mp@subsup{\bigoplus}{S}{}i\in{..deg R (p \oplusp q)}. h (coeff P (p \oplusp q) i) *S s (^)S i)
=
(అs i\in{..deg R (p \oplusp q)} U {deg R (p \oplusp q)<..max (deg R p) (deg
R q)}.
h (coeff P (p \oplusp q) i) }\mp@subsup{\otimes}{S}{S
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del:
coeff_add)
also from R have "... =
(}\mp@subsup{\bigoplus}{S}{}i\in{..max (deg R p) (deg R q)}
h (coeff P (p }\mp@subsup{\oplus}{P}{\primeq
by (simp add: ivl_disj_un_one)
also from R S have "... =
(© Si\in{..max (deg R p) (deg R q)}. h (coeff P p i) }\mp@subsup{\otimes}{S}{S
\oplusS
(}\mp@subsup{\bigoplus}{S}{}i\in{..max (deg R p) (deg R q)}. h (coeff P q i) *S s (^)S i)"
by (simp cong: S.finsum_cong
add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def)
also have "... =
(\bigoplusS i }\in{...deg R p} \cup {deg R p<..max (deg R p) (deg R q)}.
h (coeff P p i) }\mp@subsup{\otimes}{S}{}s(\mp@subsup{}{}{(}\mp@subsup{)}{S}{} i) \mp@subsup{\oplus}{S}{
(\bigopluss i \in {..deg R q} \cup {deg R q<..max (deg R p) (deg R q)}.
h (coeff P q i) *S s (`)S i)" by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2) also from R S have "... = (}\mp@subsup{\bigoplus}{S i }{\mathrm{ i {..deg R p}. h (coeff P p i) }\mp@subsup{\otimes}{S}{S}s(^) (}\mp@subsup{\bigoplus}{S}{}i\in{..deg R q}. h (coeff P q i) 的 s (`)S i)"
by (simp cong: S.finsum_cong

```
```

 add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)
 finally show
    ```

```

i) =

```

```

 (\bigoplussi \in {..deg R q}. h (coeff P q i) }\mp@subsup{\otimes}{S}{
 qed
 next
show "eval R S h s 1P = 1S"
by (simp only: eval_on_carrier UP_one_closed) simp
next
fix p q
assume R: "p \in carrier P" "q \in carrier P"
then show "eval R S h s (p \otimesp q) = eval R S h s p | | eval R S h s
q"
proof (simp only: eval_on_carrier UP_mult_closed)
from R S have

```

```

i) =

```

```

R q}.
h (coeff P (p \otimesp q) i) }\mp@subsup{\otimes}{S}{S
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def
del: coeff_mult)
also from R have "... =
(\bigoplusS i \in {..deg R p + deg R q}. h (coeff P (p \otimesp q) i) }\mp@subsup{\otimes}{S}{
i)"
by (simp only: ivl_disj_un_one deg_mult_ring)
also from R S have "... =
(\mp@subsup{\bigoplus}{S}{} i }\in{..\operatorname{deg}R\textrm{p}+\operatorname{deg}R\textrm{q}}
\# k \in {..i}.
h (coeff P p k) }\mp@subsup{\otimes}{S}{S}h(coeff P q (i - k)) *S
(s (^)S k \& S s (^)S (i - k)))"
by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def
S.m_ac S.finsum_rdistr)
also from R S have "... =
(\bigoplusS i\in{..deg R p}. h (coeff P p i) }\mp@subsup{\otimes}{S}{

```

```

 by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD
 S.m_ac
Pi_def)
finally show
"(అS i f {..deg R (p \otimesp q)}. h (coeff P (p \otimesp q) i) }\mp@subsup{\otimes}{S}{S
i) =

```

```

 (}\mp@subsup{\bigoplus}{S i }{\mathrm{ i {..deg R q}. h (coeff P q i) }\mp@subsup{\otimes}{S}{} s (`)S i)".
 qed
 qed

```

The following lemma could be proved in UP_cring with the additional assumption that h is closed.
```

lemma (in UP_pre_univ_prop) eval_const:
"[| s \in carrier S; r f carrier R |] ==> eval R S h s (monom P r 0) =
h r"
by (simp only: eval_on_carrier monom_closed) simp

```

Further properties of the evaluation homomorphism.
The following proof is complicated by the fact that in arbitrary rings one might have \(\mathbf{1}=\mathbf{0}\).
lemma (in UP_pre_univ_prop) eval_monom1:
assumes S: "s \(\in\) carrier \(S "\)
shows "eval R S h s (monom P 1 1) = s"
proof (simp only: eval_on_carrier monom_closed R.one_closed)
from \(S\) have
\("\left(\oplus_{S} i \in\left\{. . \operatorname{deg} R(\right.\right.\) monom \(P 1\) 1) \(\}\). h (coeff P (monom P 1 1) i) \(\otimes_{S} s\)
()\(_{S}\) i) \(=\)
\(\left(\oplus_{\mathrm{s}} \mathrm{i} \in\{. . \operatorname{deg} \mathrm{R}\right.\) (monom P 1 1)\} \(\cup\{\operatorname{deg} \mathrm{R}\) (monom P 1 1)<... 1\(\}\). h (coeff P (monom P 1 1) i) \(\otimes_{\mathrm{S}} \mathrm{s}\left({ }^{( }\right)_{\mathrm{S}}\) i)"
by (simp cong: S.finsum_cong del: coeff_monom add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)
also have "... =
\(\left(\oplus_{S} \mathrm{i} \in\{. .1\} . \mathrm{h}(\right.\) coeff \(\mathrm{P}(\) monom \(P 11) \mathrm{i}) \otimes_{\mathrm{S}} \mathrm{s}\left({ }^{( }\right)_{\mathrm{S}}\) i) \()\)
by (simp only: ivl_disj_un_one deg_monom_le R.one_closed)
also have "... = s"
proof (cases "s \(=0_{\mathrm{S}}\) ")
case True then show ?thesis by (simp add: Pi_def)
next
case False then show ?thesis by (simp add: S Pi_def)
qed
finally show " \(\left(\bigoplus_{\mathrm{S}} \mathrm{i} \in\{\ldots \operatorname{deg} \mathrm{R}\right.\) (monom P 11\(\left.)\right\}\). \(h\left(\right.\) coeff \(P\left(\right.\) monom P 1 1) i) \(\otimes_{S} s\left({ }^{\circ}\right)_{S}\) i) \(=s "\).
qed
end
Interpretation of ring homomorphism lemmas.
```

sublocale UP_univ_prop < ring_hom_cring P S Eval
unfolding Eval_def
by unfold_locales (fast intro: eval_ring_hom)
lemma (in UP_cring) monom_pow:
assumes R: "a \in carrier R"
shows "(monom P a n) (`)P m = monom P (a (`) m) (n * m)"
proof (induct m)
case 0 from R show ?case by simp
next

```
```

 case Suc with R show ?case
 by (simp del: monom_mult add: monom_mult [THEN sym] add.commute)
 qed
lemma (in ring_hom_cring) hom_pow [simp]:
"x \in carrier R ==> h (x (^) n) = h x (`)S (n::nat)"
by (induct n) simp_all
lemma (in UP_univ_prop) Eval_monom:
"r carrier R ==> Eval (monom P r n) = h r * S s (^)S n"
proof -
assume R: "r \in carrier R"
from R have "Eval (monom P r n) = Eval (monom P r 0 \& p (monom P 1 1)
(^)p n)"
by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)
also
from R eval_monom1 [where s = s, folded Eval_def]
have "... = h r * S s (^) S n"
by (simp add: eval_const [where s = s, folded Eval_def])
finally show ?thesis.
qed
lemma (in UP_pre_univ_prop) eval_monom:
assumes R: "r \in carrier R" and S: "s \in carrier S"
shows "eval R S h s (monom P r n) = h r * S s (^)S n"
proof -
interpret UP_univ_prop R S h P s "eval R S h s"
using UP_pre_univ_prop_axioms P_def R S
by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)
from R
show ?thesis by (rule Eval_monom)
qed
lemma (in UP_univ_prop) Eval_smult:
"[| r f carrier R; p G carrier P |] ==> Eval (r \odotp p) = h r * S Eval
p"
proof -
assume R: "r f carrier R" and P: "p \in carrier P"
then show ?thesis
by (simp add: monom_mult_is_smult [THEN sym]
eval_const [where s = s, folded Eval_def])
qed
lemma ring_hom_cringI:
assumes "cring R"
and "cring S"
and "h \in ring_hom R S"
shows "ring_hom_cring R S h"
by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro

```
```

 cring.axioms assms)
 context UP_pre_univ_prop
begin
lemma UP_hom_unique:
assumes "ring_hom_cring P S Phi"
assumes Phi: "Phi (monom P 1 (Suc 0)) = s"
"!!r. r \in carrier R ==> Phi (monom P r 0) = h r"
assumes "ring_hom_cring P S Psi"
assumes Psi: "Psi (monom P 1 (Suc 0)) = s"
"!!r. r G carrier R ==> Psi (monom P r 0) = h r"
and P: "p \in carrier P" and S: "s \in carrier S"
shows "Phi p = Psi p"
proof -
interpret ring_hom_cring P S Phi by fact
interpret ring_hom_cring P S Psi by fact
have "Phi p =
Phi (\bigoplusp i \in {..deg R p}. monom P (coeff P p i) 0 \otimesp monom P 1
1 (^)P i)"
by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
also
have "... =
Psi (Өp i\in{..deg R p}. monom P (coeff P p i) 0 \otimesp monom P 1 1
(^)P i)"
by (simp add: Phi Psi P Pi_def comp_def)
also have "... = Psi p"
by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
finally show ?thesis .
qed
lemma ring_homD:
assumes Phi: "Phi G ring_hom P S"
shows "ring_hom_cring P S Phi"
by unfold_locales (rule Phi)
theorem UP_universal_property:
assumes S: "s \in carrier S"
shows "\exists!Phi. Phi \in ring_hom P S \cap extensional (carrier P) \&
Phi (monom P 1 1) = s \&
(ALL r : carrier R. Phi (monom P r 0) = h r)"
using S eval_monom1
apply (auto intro: eval_ring_hom eval_const eval_extensional)
apply (rule extensionalityI)
apply (auto intro: UP_hom_unique ring_homD)
done
end

```

JE: The following lemma was added by me; it might be even lifted to a
simpler locale

\section*{context monoid}
begin
lemma nat_pow_eone[simp]: assumes x_in_G: "x \(\in\) carrier \(G\) " shows "x (^) (1::nat) = x"
using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one [OF x_in_G] by simp
end
context UP_ring
begin
abbreviation lcoeff : : " (nat =>'a) => 'a" where "lcoeff p == coeff P p ( \(\operatorname{deg} R\) p)"
lemma lcoeff_nonzero2: assumes p_in_R: "p \(\in\) carrier P" and p_not_zero: " \(p \neq 0_{P}\) " shows "lcoeff \(p \neq 0\) " using lcoeff_nonzero [OF p_not_zero p_in_R] .

\subsection*{16.11 The long division algorithm: some previous facts.}
```

lemma coeff_minus [simp]:
assumes p: "p \in carrier P" and q: "q \in carrier P" shows "coeff P (p
\ominusp q) n = coeff P p n \ominus coeff P q n"
unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed
[OF q]] unfolding coeff_a_inv [OF q]
using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra
lemma lcoeff_closed [simp]: assumes p: "p \in carrier P" shows "lcoeff
p \in carrier R"
using coeff_closed [OF p, of "deg R p"] by simp
lemma deg_smult_decr: assumes a_in_R: "a \in carrier R" and f_in_P: "f
\epsilon carrier P" shows "deg R (a \odotp f) \leq deg R f"
using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)
lemma coeff_monom_mult: assumes R: "c \in carrier R" and P: "p \in carrier
P"
shows "coeff P (monom P c n \otimes P p) (m + n) = c \otimes (coeff P p m)"
proof -
have "coeff P (monom P c n \otimesp p) (m + n) = (\bigoplusi\in{..m + n}. (if n =
i then c else 0) \otimes coeff P p (m + n - i))"
unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"]
unfolding coeff_monom [OF R, of n] by simp
also have "(\bigoplusi\in{..m + n}. (if n = i then c else 0) \otimes coeff P p (m

+ n - i)) =
(\bigoplusi\in{..m + n}. (if n = i then c \otimes coeff P p (m + n - i) else 0))"

```
using R.finsum_cong [of "\{..m + n\}" "\{..m + n\}" "( \(\lambda \mathrm{i}:\) : nat. (if n
\(=i\) then \(c\) else 0\() \otimes\) coeff \(P\) p ( \(m+n-i)\) )"
" ( \(\lambda\) i: : nat. (if \(\mathrm{n}=\mathrm{i}\) then \(\mathrm{c} \otimes\) coeff P p ( \(\mathrm{m}+\mathrm{n}-\mathrm{i}\) ) else 0\()\) )"] using coeff_closed [OF P] unfolding Pi_def simp_implies_def using \(R\) by auto
also have "... = c \(\otimes\) coeff \(P\) p m" using R.finsum_singleton [of \(n\) "\{..m
+ n\}" "( \(\lambda\) i. c \(\otimes\) coeff P p (m + n - i) )"]
unfolding Pi_def using coeff_closed [OF P] using P R by auto
finally show ?thesis by simp
qed
lemma deg_lcoeff_cancel:
assumes p_in_P: "p \(\in\) carrier \(P "\) and \(q_{-} i n_{-} P: ~ " q \in c a r r i e r ~ P " ~ a n d ~ r \_i n \_P: ~\)
" \(r \in\) carrier P"
and deg_r_nonzero: "deg R r \(\neq 0\) "
and deg_R_p: "deg R p \(\leq \operatorname{deg} R r "\) and \(\operatorname{deg}_{-} R_{-} q: ~ " d e g R ~ q \leq \operatorname{deg} R r "\)
and coeff_R_p_eq_q: "coeff P p (deg R r) \(=\ominus_{R}(\operatorname{coeff} P \mathrm{q}(\operatorname{deg} R r)) "\)
shows "deg R ( \(p \oplus p q\) ) < deg R r"
proof -
have deg_le: "deg \(R\left(p \oplus_{p} q\right) \leq \operatorname{deg} R r "\)
proof (rule deg_aboveI)
fix m
assume deg_r_le: "deg R r m"
show "coeff P (p \(\oplus_{p} q\) ) m = 0"
proof -
have slp: "deg \(R \quad p<m "\) and "deg \(R ~ q ~<~ m " ~ u s i n g ~ d e g \_R-p ~ d e g \_R \_q ~\)
using deg_r_le by auto
then have max_sl: "max ( \(\operatorname{deg} R p\) ) ( \(\operatorname{deg} R q\) ) < m" by simp
then have "deg \(R\left(p \oplus_{p} q\right)<m "\) using deg_add [OF p_in_P q_in_P]
by arith
with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P, of \(m]\)
using deg_aboveD [of "p \(\oplus_{p}\) q" m] using p_in_P q_in_P by simp
qed
qed (simp add: p_in_P q_in_P)
moreover have deg_ne: \(\operatorname{deg} R\left(p \oplus_{p} q\right) \neq \operatorname{deg} R r "\)
proof (rule ccontr)
assume nz: " \(\neg \operatorname{deg} R\left(p \oplus_{p} q\right) \neq \operatorname{deg} R r "\) then have deg_eq: "deg
\(R(p \oplus p q)=\operatorname{deg} R r "\) by simp
from deg_r_nonzero have \(r\) _nonzero: \(" r \neq 0_{P}\) " by (cases \(" r=0_{P}\) ", simp_all)
have "coeff \(P\left(p \oplus_{P} q\right.\) ) (deg \(\left.R \quad r\right)=\mathbf{0}_{R}\) " using coeff_add [OF p_in_P
q_in_P, of "deg R r"] using coeff_R_p_eq_q
using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P,
of "deg R r"] by algebra
with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False
using lcoeff_nonzero [of "p \(\oplus_{p} q\) "] using p_in_P q_in_P using deg_r_nonzero by (cases "p \(\oplus \mathrm{p} q \neq \mathbf{0}_{\mathrm{P}}\) ", auto)
qed
```

 ultimately show ?thesis by simp
 qed
lemma monom_deg_mult:
assumes f_in_P: "f \in carrier P" and g_in_P: "g \in carrier P" and deg_le:
"deg R g \leq deg R f"
and a_in_R: "a \in carrier R"
shows "deg R (g \otimesp monom P a (deg R f - deg R g)) S deg R f"
using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f

- deg R g"]]
apply (cases "a = 0") using g_in_P apply simp
using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by
simp
lemma deg_zero_impl_monom:
assumes f_in_P: "f \in carrier P" and deg_f: "deg R f = 0"
shows "f = monom P (coeff P f 0) 0"
apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P],
of 0 0]
using f_in_P deg_f using deg_aboveD [of f _] by auto
end

```

\subsection*{16.12 The long division proof for commutative rings}
context UP_cring
begin
lemma exI3: assumes exist: "Pred x y z"
shows " \(\exists \mathrm{x}\) y z. Pred x y \(\mathrm{z} "\)
using exist by blast
Jacobson's Theorem 2.14
```

lemma long_div_theorem:
assumes g_in_P [simp]: "g \in carrier P" and f_in_P [simp]: "f \in carrier
P"
and g_not_zero: "g $\neq 0_{\mathrm{P}}$ "
shows " \exists q r (k: nat). ($q \in$ carrier $P) \wedge(r \in \operatorname{carrier} P) \wedge$ (lcoeff
$\mathrm{g})\left({ }^{\wedge}\right)_{\mathrm{R}} \mathrm{k} \odot_{\mathrm{p}} \mathrm{f}=\mathrm{g} \otimes_{\mathrm{p}} \mathrm{q} \oplus_{\mathrm{p}} \mathrm{r} \wedge\left(\mathrm{r}=\mathbf{0}_{\mathrm{P}} \mid \operatorname{deg} \mathrm{R} \mathrm{r}<\operatorname{deg} \mathrm{R} \mathrm{g}\right) "$
using f_in_P
proof (induct "deg R f" arbitrary: "f" rule: nat_less_induct)
case (1 f)
note f_in_P [simp] = "1.prems"
let ?pred $=$ " λ q r (k: nat).
$(\mathrm{q} \in$ carrier P$) \wedge(\mathrm{r} \in$ carrier P$)$
$\wedge(\operatorname{lcoeff} \mathrm{g})\left({ }^{\wedge}\right)_{\mathrm{R}} \mathrm{k} \odot_{\mathrm{p}} \mathrm{f}=\mathrm{g} \otimes_{\mathrm{p}} \mathrm{q} \oplus_{\mathrm{p}} \mathrm{r} \wedge\left(\mathrm{r}=\mathbf{0}_{\mathrm{p}} \mid \operatorname{deg} \mathrm{R} \mathrm{r}<\operatorname{deg} \mathrm{R}\right.$
g))"
let $3 \mathrm{lg}=$ "lcoeff $\mathrm{g} "$ and $? \mathrm{lf}=$ "lcoeff $\mathrm{f} "$
show ?case

```
```

 proof (cases "deg R f < deg R g")
 case True
 have "?pred 0p f 0" using True by force
 then show ?thesis by blast
 next
 case False then have deg_g_le_deg_f: "deg R g \leq deg R f" by simp
 {
 let ?k = "1::nat"
 let ?f1 = "(g \otimesp (monom P (?lf) (deg R f - deg R g))) }\mp@subsup{\oplus}{P}{}\mp@subsup{|}{P}{\prime}\mp@subsup{\ominus}{P}{\prime}(?l
 \odotp f)"
let ?q = "monom P (?lf) (deg R f - deg R g)"
have f1_in_carrier: "?f1 \in carrier P" and q_in_carrier: "?q \in carrier
P" by simp_all
show ?thesis
proof (cases "deg R f = 0")
case True
{
have deg_g: "deg R g = 0" using True using deg_g_le_deg_f by
simp
have "?pred f 0p 1"
using deg_zero_impl_monom [OF g_in_P deg_g]
using sym [OF monom_mult_is_smult [OF coeff_closed [OF g_in_P,
of 0] f_in_P]]
using deg_g by simp
then show ?thesis by blast
}
next
case False note deg_f_nzero = False
{
have exist: "lcoeff g (^) ?k }\mp@subsup{\odot}{\textrm{p}}{\textrm{f}}=\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{\prime
by (simp add: minus_add r_neg sym [
OF a_assoc [of "g \otimesp ?q" " }\mp@subsup{\ominus}{p}{\prime}(\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{\prime
have deg_remainder_l_f: "deg R (}\mp@subsup{\rho}{p}{\prime}\mathrm{ ?f1) < deg R f"
proof (unfold deg_uminus [OF f1_in_carrier])
show "deg R ?f1 < deg R f"
proof (rule deg_lcoeff_cancel)
show "deg R (}\mp@subsup{\ominus}{P}{\prime}(?lg \mp@subsup{ }{p}{\prime}f)) \leq deg R f"
using deg_smult_ring [of ?lg f]
using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp
show "deg R (g \otimesp ?q)
by (simp add: monom_deg_mult [OF f_in_P g_in_P deg_g_le_deg_f,
of ?lf])
show "coeff P (g \otimesp ?q) (deg R f) = \ominus coeff P (}\mp@subsup{\ominus}{P}{\prime}(?l
\odotp f)) (deg R f)"
unfolding coeff_mult [OF g_in_P monom_closed
[OF lcoeff_closed [OF f_in_P],
of "deg R f - deg R g"], of "deg R f"]
unfolding coeff_monom [OF lcoeff_closed
[OF f_in_P], of "(deg R f - deg R g)"]

```
```

 using R.finsum_cong' [of "{..deg R f}" "{..deg R f}"
 "(\lambdai. coeff P g i \otimes (if deg R f - deg R g = deg R f
 - i then ?lf else 0))"
"(\lambdai. if deg R g = i then coeff P g i \otimes ?lf else 0)"]
using R.finsum_singleton [of "deg R g" "{.. deg R f}"
"(\lambdai. coeff P g i \otimes ?lf)"]
unfolding Pi_def using deg_g_le_deg_f by force
qed (simp_all add: deg_f_nzero)
qed
then obtain q' r' k'
where rem_desc: "?lg (^) (k'::nat) }\mp@subsup{\odot}{\textrm{p}}{(}(\mp@subsup{\ominus}{\textrm{p}}{}\mathrm{ ?f1) = g \& | q'
\oplusp r'"
and rem_deg: "(r' = 0}\mp@subsup{\mathbf{0}}{P}{}\vee\operatorname{deg R r' < deg R g)"
and q'_in_carrier: "q' \in carrier P" and r'_in_carrier: "r'
\epsilon carrier P"
using "1.hyps" using f1_in_carrier by blast
show ?thesis
proof (rule exI3 [of _ "((?lg (^) k') \odotp ?q \oplusp q')" r' "Suc
k'"], intro conjI)
show "(?lg (^) (Suc k')) }\mp@subsup{\odot}{\textrm{p}}{}\textrm{f}=\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{\prime}((?lg(^) k') \odot \odot ?q
\oplusp q') \oplusp r'"
proof -
have "(?lg (^) (Suc k')) \odotp f = (?lg (^) k') \odotp (g \otimesp
?q \oplusp Өp ?f1)"
using smult_assoc1 [OF _ _ f_in_P] using exist by simp
also have "... = (?lg (^) k') }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\otimes\textrm{p
k') }\mp@subsup{\odot}{p}{\prime}(\mp@subsup{\ominus}{p}{\prime} ?f1))
using UP_smult_r_distr by simp
also have '... = (?lg (^) k') }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\mp@subsup{\otimes}{\textrm{p}}{
\oplusp r')"
unfolding rem_desc ..
also have "... = (?lg (^) k') }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\otimes\textrm{p
r'"
using sym [OF a_assoc [of "?lg (^) k' }\mp@subsup{\odot}{\textrm{p}}{(}(\textrm{g}\otimes\textrm{P} ?q)" "
\otimesp q'" "r'"]]
using r'_in_carrier q'_in_carrier by simp

```

```

r'"
using q'_in_carrier by (auto simp add: m_comm)
also have "... = (((?lg (^) k') }\mp@subsup{\odot}{\textrm{p}}{(
\oplusp r'"
using smult_assoc2 q'_in_carrier "1.prems" by auto
also have "...= ((?lg (^) k') }\mp@subsup{\odot}{\textrm{p}}{
using sym [OF l_distr] and q'_in_carrier by auto
finally show ?thesis using m_comm q'_in_carrier by auto
qed
qed (simp_all add: rem_deg q'_in_carrier r'_in_carrier)
}
qed

```
```

 }
 qed
 qed
end

```

The remainder theorem as corollary of the long division theorem.
```

context UP_cring
begin
lemma deg_minus_monom:
assumes a: "a \in carrier R"
and R_not_trivial: "(carrier R f {0})"
shows "deg R (monom P 1 1R 1 Өp monom P a 0) = 1"
(is "deg R ?g = 1")
proof -
have "deg R ?g \leq 1"
proof (rule deg_aboveI)
fix m
assume "(1::nat) < m"
then show "coeff P ?g m = 0"
using coeff_minus using a by auto algebra
qed (simp add: a)
moreover have "deg R ?g \geq 1"
proof (rule deg_belowI)
show "coeff P ?g 1 = 0"
using a using R.carrier_one_not_zero R_not_trivial by simp algebra
qed (simp add: a)
ultimately show ?thesis by simp
qed
lemma lcoeff_monom:
assumes a: "a \in carrier R" and R_not_trivial: "(carrier R f= {0})"
shows "lcoeff (monom P 1 1 }
using deg_minus_monom [OF a R_not_trivial]
using coeff_minus a by auto algebra
lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p f=0"
shows "p f= 0
using deg_zero deg_p_nzero by auto
lemma deg_monom_minus:
assumes a: "a \in carrier R"
and R_not_trivial: "carrier R \not= {0}"
shows "deg R (monom P 1 1 1 }1\mp@subsup{\ominus}{p}{}\mathrm{ monom P a 0) = 1"
(is "deg R ?g = 1")
proof -
have "deg R ?g \leq 1"

```
```

 proof (rule deg_aboveI)
 fix m::nat assume "1 < m" then show "coeff P ?g m = 0"
 using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
 [OF a, of 0], of m]
using coeff_monom [OF R.one_closed, of 1 m] using coeff_monom [OF
a, of 0 m] by auto algebra
qed (simp add: a)
moreover have "1\leq deg R ?g"
proof (rule deg_belowI)
show "coeff P ?g 1 = 0"
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
[OF a, of 0], of 1]
using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF
a, of 0 1]
using R_not_trivial using R.carrier_one_not_zero
by auto algebra
qed (simp add: a)
ultimately show ?thesis by simp
qed
lemma eval_monom_expr:
assumes a: "a \in carrier R"
shows "eval R R id a (monom P 1 1 1 }
(is "eval R R id a ?g = _")
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
have eval_ring_hom: "eval R R id a G ring_hom P R" using eval_ring_hom
[OF a] by simp
interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule
eval_ring_hom)
have mon1_closed: "monom P 1 1R 1 \in carrier P"
and mon0_closed: "monom P a 0 \in carrier P"
and min_mon0_closed: "Өp monom P a 0 f carrier P"
using a R.a_inv_closed by auto
have "eval R R id a ?g = eval R R id a (monom P 1 1) \ominus eval R R id
a (monom P a 0)"
unfolding P.minus_eq [OF mon1_closed mon0_closed]
unfolding hom_add [OF mon1_closed min_mon0_closed]
unfolding hom_a_inv [OF mon0_closed]
using R.minus_eq [symmetric] mon1_closed mon0_closed by auto
also have "... = a \ominus a"
using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a
a, of 0] using a by simp
also have "... = 0"
using a by algebra
finally show ?thesis by simp
qed
lemma remainder_theorem_exist:

```
```

 assumes f: "f \in carrier P" and a: "a \in carrier R"
 and R_not_trivial: "carrier R \not= {0}"
 shows " }\exists\textrm{q}\mathrm{ r. (q G carrier P) ^ (r f carrier P) }\wedge f = (monom P 1 1
 1 Өp monom P a 0) }\otimes\textrm{p}q\textrm{q}\oplus\textrm{p
(is "\exists q r. (q G carrier P) ^ (r f carrier P) ^ f = ?g \otimesp q \oplusp r ^
(deg R r = 0)")
proof -
let ?g = "monom P 1 1R 1 Өp monom P a 0"
from deg_minus_monom [OF a R_not_trivial]
have deg_g_nzero: "deg R ?g f= 0" by simp
have "\existsq r (k::nat). q \in carrier P ^ r f carrier P ^

```

```

?g)"
using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a
by auto
then show ?thesis
unfolding lcoeff_monom [OF a R_not_trivial]
unfolding deg_monom_minus [OF a R_not_trivial]
using smult_one [OF f] using deg_zero by force
qed
lemma remainder_theorem_expression:
assumes f [simp]: "f \in carrier P" and a [simp]: "a \in carrier R"
and q [simp]: "q \in carrier P" and r [simp]: "r \in carrier P"
and R_not_trivial: "carrier R \not= {0}"

```


```

 and deg_r_0: "deg R r = 0"
 shows "r = monom P (eval R R id a f) 0"
 proof -
interpret UP_pre_univ_prop R R id P by standard simp
have eval_ring_hom: "eval R R id a G ring_hom P R"
using eval_ring_hom [OF a] by simp
have "eval R R id a f = eval R R id a ?gq }\mp@subsup{\oplus}{R}{}\mathrm{ eval R R id a r"
unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto
also have "... = ((eval R R id a ?g) \otimes (eval R R id a q)) }\mp@subsup{\oplus}{R}{}\mathrm{ eval R
R id a r"
using ring_hom_mult [OF eval_ring_hom] by auto
also have "... = 0 \oplus eval R R id a r"
unfolding eval_monom_expr [OF a] using eval_ring_hom
unfolding ring_hom_def using q unfolding Pi_def by simp
also have "... = eval R R id a r"
using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def
by simp
finally have eval_eq: "eval R R id a f = eval R R id a r" by simp
from deg_zero_impl_monom [OF r deg_r_0]
have "r = monom P (coeff P r 0) 0" by simp
with eval_const [OF a, of "coeff P r O"] eval_eq
show ?thesis by auto

```
```

qed
corollary remainder_theorem:
assumes f [simp]: "f \in carrier P" and a [simp]: "a \in carrier R"
and R_not_trivial: "carrier R \not= {0}"
shows " \exists q r. (q \in carrier P) ^ (r f carrier P) ^

```

```

f) 0"
(is "\exists q r. (q G carrier P) ^ (r f carrier P) ^ f = ?g \otimesp q \oplusp monom
P (eval R R id a f) 0")
proof -
from remainder_theorem_exist [OF f a R_not_trivial]
obtain q r
where q_r: "q \in carrier P ^ r \in carrier P ^ f = ?g \otimesp q \oplusp r"
and deg_r: "deg R r = 0" by force
with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]
show ?thesis by auto
qed
end

```

\subsection*{16.13 Sample Application of Evaluation Homomorphism}
```

lemma UP_pre_univ_propI:
assumes "cring R"
and "cring S"
and "h \in ring_hom R S"
shows "UP_pre_univ_prop R S h"
using assms
by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro
ring_hom_cring_axioms.intro UP_cring.intro)
definition
INTEG :: "int ring"
where "INTEG = (carrier = UNIV, mult = op *, one = 1, zero = 0, add
= op +|)"
lemma INTEG_cring: "cring INTEG"
by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI
left_minus distrib_right)
lemma INTEG_id_eval:
"UP_pre_univ_prop INTEG INTEG id"
by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

```

Interpretation now enables to import all theorems and lemmas valid in the context of homomorphisms between INTEG and UP INTEG globally.
interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
using INTEG_id_eval by simp_all
```

lemma INTEG_closed [intro, simp]:
"z \in carrier INTEG"
by (unfold INTEG_def) simp
lemma INTEG_mult [simp]:
"mult INTEG z w = z * w"
by (unfold INTEG_def) simp
lemma INTEG_pow [simp]:
"pow INTEG z n = z ` n"
by (induct n) (simp_all add: INTEG_def nat_pow_def)
lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
by (simp add: INTEG.eval_monom)
end
theory Multiplicative_Group
imports
Complex_Main
Group
More_Group
More_Finite_Product
Coset
UnivPoly
begin

```

\section*{17 Simplification Rules for Polynomials}
```

lemma (in ring_hom_cring) hom_sub[simp]:
assumes "x \in carrier R" "y \in carrier R"
shows "h (x \ominus y) = h x }\ominus\textrm{S}h\textrm{h}
using assms by (simp add: R.minus_eq S.minus_eq)
context UP_ring begin
lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p \not= 0"
shows "p f= 0
using deg_zero deg_p_nzero by auto
lemma deg_add_eq:
assumes c: "p \in carrier P" "q \in carrier P"
assumes "deg R q }==\operatorname{deg}R\textrm{p}
shows "deg R (p \oplusp q) = max (deg R p) (deg R q)"
proof -
let ?m = "max (deg R p) (deg R q)"

```
```

 from assms have "coeff P p ?m = 0 \longleftrightarrow coeff P q ?m \not= 0"
 by (metis deg_belowI lcoeff_nonzero[OF deg_nzero_nzero] linear max.absorb_iff2
 max.absorb1)
then have "coeff P (p \oplusp q) ?m \not= 0"
using assms by auto
then have "deg R (p \oplusp q) \geq ?m"
using assms by (blast intro: deg_belowI)
with deg_add[OF c] show ?thesis by arith
qed
lemma deg_minus_eq:
assumes "p \in carrier P" "q \in carrier P" "deg R q \# deg R p"
shows "deg R (p Өp q) = max (deg R p) (deg R q)"
using assms by (simp add: deg_add_eq a_minus_def)
end
context UP_cring begin
lemma evalRR_add:
assumes "p \in carrier P" "q \in carrier P"
assumes x:"x \in carrier R"
shows "eval R R id x (p \oplusp q) = eval R R id x p \oplus eval R R id x q"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[OF x])
show ?thesis using assms by simp
qed
lemma evalRR_sub:
assumes "p \in carrier P" "q \in carrier P"
assumes x:"x \in carrier R"
shows "eval R R id x (p Өp q) = eval R R id x p \ominus eval R R id x q"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[OF x])
show ?thesis using assms by simp
qed
lemma evalRR_mult:
assumes "p \in carrier P" "q \in carrier P"
assumes x:"x \in carrier R"
shows "eval R R id x (p \otimesp q) = eval R R id x p \otimes eval R R id x q"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[0F x])

```
```

 show ?thesis using assms by simp
 qed
lemma evalRR_monom:
assumes a: "a \in carrier R" and x: "x \in carrier R"
shows "eval R R id x (monom P a d) = a \otimes x (^) d"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
show ?thesis using assms by (simp add: eval_monom)
qed
lemma evalRR_one:
assumes x: "x \in carrier R"
shows "eval R R id x 1P = 1"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[0F x])
show ?thesis using assms by simp
qed
lemma carrier_evalRR:
assumes x: "x \in carrier R" and "p \in carrier P"
shows "eval R R id x p \in carrier R"
proof -
interpret UP_pre_univ_prop R R id by unfold_locales simp
interpret ring_hom_cring P R "eval R R id x" by unfold_locales (rule
eval_ring_hom[0F x])
show ?thesis using assms by simp
qed
lemmas evalRR_simps = evalRR_add evalRR_sub evalRR_mult evalRR_monom
evalRR_one carrier_evalRR
end

```

\section*{18 Properties of the Euler \(\varphi\)-function}

In this section we prove that for every positive natural number the equation \(\sum_{d \mid n}^{n} \varphi(d)=n\) holds.
lemma dvd_div_ge_1 :
fixes a b :: nat
assumes "a \(\geq 1\) " "b dvd a"
shows "a div b \(\geq 1\) "
proof -
from (b dvd a) obtain c where "a = b * c"..
with \(\langle\mathrm{a} \geq 1\) ) show ?thesis by simp
qed
```

lemma dvd_nat_bounds :
fixes n p :: nat
assumes "p > 0" "n dvd p"
shows "n > 0 ^ n \leq p"
using assms by (simp add: dvd_pos_nat dvd_imp_le)
definition phi' :: "nat => nat"
where "phi' m = card {x. 1 \leq x ^ x \leqm \ gcd x m = 1}"
notation (latex output)
phi' ("\varphi _")
lemma phi'_nonzero :
assumes "m > 0"
shows "phi' m > 0"
proof -
have "1 \in{x. 1 \leq x ^ x \leqm ^ gcd x m=1}" using assms by simp
hence "card {x. 1 \leq x ^ x \leq m ^ gcd x m = 1} > 0" by (auto simp: card_gt_0_iff)
thus ?thesis unfolding phi'_def by simp
qed
lemma dvd_div_eq_1:
fixes a b c :: nat
assumes "c dvd a" "c dvd b" "a div c = b div c"
shows "a = b" using assms dvd_mult_div_cancel[OF 'c dvd a'] dvd_mult_div_cancel[OF
'c dvd b']
by presburger
lemma dvd_div_eq_2:
fixes a b c :: nat
assumes "c>0" "a dvd c" "b dvd c" "c div a = c div b"
shows "a = b"
proof -
have "a > 0" "a \leq c" using dvd_nat_bounds[0F assms(1-2)] by auto
have "a*(c div a) = c" using assms dvd_mult_div_cancel by fastforce
also have "... = b*(c div a)" using assms dvd_mult_div_cancel by fastforce
finally show "a = b" using 'c>0' dvd_div_ge_1[OF _ 'a dvd c'] by fastforce
qed
lemma div_mult_mono:
fixes a b c :: nat
assumes "a > 0" "a\leqd"
shows "a * b div d \leq b"
proof -
have "a*b div d \leq b*a div a" using assms div_le_mono2 mult.commute[of
a b] by presburger
thus ?thesis using assms by force

```

\section*{qed}

We arrive at the main result of this section: For every positive natural number the equation \(\sum_{d \mid n}^{n} \varphi(d)=n\) holds.
The outline of the proof for this lemma is as follows: We count the \(n\) fractions \(1 / n, \ldots,(n-1) / n, n / n\). We analyze the reduced form \(a / d=m / n\) for any of those fractions. We want to know how many fractions \(m / n\) have the reduced form denominator \(d\). The condition \(1 \leq m \leq n\) is equivalent to the condition \(1 \leq a \leq d\). Therefore we want to know how many \(a\) with \(1 \leq a \leq d\) exist, s.t. coprime a d. This number is exactly \(\varphi\) d.
Finally, by counting the fractions \(m / n\) according to their reduced form denominator, we get:
\(\left(\sum \mathrm{d} \mid \mathrm{d} \operatorname{dvd} \mathrm{n} . \varphi \mathrm{d}\right)=\mathrm{n}\)
. To formalize this proof in Isabelle, we analyze for an arbitrary divisor \(d\) of \(n\)
- the set of reduced form numerators \(\{\mathrm{a} .1 \leq \mathrm{a} \wedge \mathrm{a} \leq \mathrm{d} \wedge\) coprime a d\}
- the set of numerators \(m\), for which \(m / n\) has the reduced form denominator \(d\), i.e. the set \(\{m \in\{1 . . \mathrm{n}\} . \mathrm{n}\) div \(\operatorname{gcd} \mathrm{m} \mathrm{n}=\mathrm{d}\}\)

We show that \(\lambda \mathrm{a}\). \(\mathrm{a} * \mathrm{n}\) div d with the inverse \(\lambda \mathrm{a}\). a div \(\operatorname{gcd} \mathrm{a} \mathrm{n}\) is a bijection between theses sets, thus yielding the equality
\(\varphi \mathrm{d}=\operatorname{card}\{\mathrm{m} \in\{1 . . \mathrm{n}\} . \mathrm{n} \operatorname{div} \operatorname{gcd} \mathrm{m} \mathrm{n}=\mathrm{d}\}\)
This gives us
\(\left(\sum \mathrm{d} \mid \mathrm{d} \operatorname{dvd} \mathrm{n} . \varphi \mathrm{d}\right)=\operatorname{card}\left(\bigcup_{\mathrm{d} \in\{\mathrm{d} . \operatorname{d} \operatorname{dvd} \mathrm{n}\}}\{\mathrm{m} \in\{1 . . \mathrm{n}\} . \mathrm{n} \operatorname{div} \operatorname{gcd} \mathrm{m}\right.\) \(\mathrm{n}=\mathrm{d}\}\) )
and by showing \(\{1 . . \mathrm{n}\} \subseteq\left(\bigcup_{\mathrm{d} \in\{\mathrm{d} . \mathrm{d} \operatorname{dvd} \mathrm{n}\}}\{\mathrm{m} \in\{1 . . \mathrm{n}\}\right.\). n div gcd m n \(=d\}\) ) (this is our counting argument) the thesis follows.
```

lemma sum_phi'_factors :
fixes n :: nat
assumes "n > 0"
shows "(\sumd | d dvd n. phi' d) = n"
proof -
{ fix d assume "d dvd n" then obtain q where q: "n = d * q" ..
have "card {a. 1 \leq a ^ a \leq d ^ coprime a d} = card {m \in {1 .. n}.
n div gcd m n = d}"
(is "card ?RF = card ?F")
proof (rule card_bij_eq)
{ fix a b assume "a * n div d = b * n div d"

```
hence "a * ( \(\mathrm{n} \operatorname{div} \mathrm{d}\) ) = b * ( \(\mathrm{n} \operatorname{div} \mathrm{d}\) )"
using dvd_div_mult [OF 'd dvd n'] by (fastforce simp add: mult.commute)
hence " \(\mathrm{a}=\mathrm{b}\) " using dvd_div_ge_1[0F _ 'd dvd n'] ' \(\mathrm{n}>0\) '
by (simp add: mult.commute nat_mult_eq_cancel1)
\} thus "inj_on ( \(\lambda\) a. a*n div d) ?RF" unfolding inj_on_def by blast
\{ fix a assume a:"a \(\in\) ?RF"
hence " \(\mathrm{a} *(\mathrm{n} \operatorname{div} \mathrm{d}) \geq 1\) " using ' \(\mathrm{n}>0\) ' dvd_div_ge_1[0F _ 'd dvd
n'] by simp
hence ge_1:"a * n div \(\mathrm{d} \geq 1\) " by (simp add: 'd dvd n' div_mult_swap)
have le_n:"a * n div d \(\leq \mathrm{n}\) " using div_mult_mono a by simp
have "gcd (a * n div d) \(\mathrm{n}=\mathrm{n}\) div \(\mathrm{d} * \operatorname{gcd} \mathrm{a} \mathrm{d} "\)
by (simp add: gcd_mult_distrib_nat q ac_simps)
hence "n div gcd (a*n div \(d\) ) \(n=d * n \operatorname{div}(d *(n \operatorname{div} d))\) " us-
ing a by simp
hence "a * n div \(\mathrm{d} \in\) ? F "
using ge_1 le_n by (fastforce simp add: 'd dvd n' dvd_mult_div_cancel)
\} thus "( \(\lambda \mathrm{a} . \mathrm{a}\) n div d ) ' ?RF \(\subseteq\) ? F " by blast
\{ fix \(m\) l assume A: "m \(\in\) ?F" "l \(\in\) ? \(F\) " "m div gcd \(m \mathrm{n}=1\) div gcd
1 n"
hence "gcd m \(\mathrm{n}=\) gcd 1 n " using dvd_div_eq_2[0F assms] by fastforce
hence "m = l" using dvd_div_eq_1[of "gcd m n" m l] A(3) by fastforce
\} thus "inj_on ( \(\lambda\) a. a div gcd a n) ?F" unfolding inj_on_def by
blast
\{ fix m assume "m \(\in\) ?F"
hence "m div gcd m \(n \in\) ?RF" using dvd_div_ge_1
by (fastforce simp add: div_le_mono div_gcd_coprime)
\} thus "( \(\lambda\) a. a div gcd a n) ' ? \(F \subseteq\) ?RF" by blast
qed force+
\(\}\) hence phi'_eq:" \(\bigwedge\) d. \(d \operatorname{dvd} n \Longrightarrow\) phi' \(d=\operatorname{card}\{m \in\{1 \ldots n\} . n \operatorname{div}\) \(\operatorname{gcd} m \mathrm{n}=\mathrm{d}\}\) "
unfolding phi'_def by presburger
have fin:"finite \{d. d dvd \(n\) \}" using dvd_nat_bounds[OF ' \(n>0\) '] by force
have " ( \(\sum \mathrm{d} \mid \mathrm{d}\) dvd n. phi' d)
\(=\operatorname{card}(\bigcup d \in\{d . d \operatorname{dvd} n\} .\{m \in\{1 \ldots n\} . n \operatorname{div} \operatorname{gcd}\)
\(\mathrm{m} n=\mathrm{d}\}\) )"
using card_UN_disjoint[0F fin, of " \((\lambda d .\{m \in\{1 . . n\} . n\) div gcd m
n = d\})"] phi'_eq
by fastforce
also have " \((\bigcup d \in\{d . d \operatorname{dvd} n\} .\{m \in\{1 \ldots n\} . n \operatorname{div} \operatorname{gcd} m n=d\})=\) \{1 .. n\}" (is "?L = ?R")
proof
\[
\text { show "?L } \supseteq ? R "
\]
proof
fix m assume m: "m \(\in\) ? \({ }^{2}\)
thus "m \(\in\) ?L" using dvd_triv_right[of "n div gcd m n" "gcd m n"]
by (simp add: dvd_mult_div_cancel)
qed
qed fastforce
finally show ?thesis by force
qed

\section*{19 Order of an Element of a Group}
context group begin
```

lemma pow_eq_div2 :
fixes m n :: nat
assumes x_car: "x \in carrier G"
assumes pow_eq: "x (^) m = x (^) n"
shows "x (^) (m - n) = 1"
proof (cases "m < n")
case False
have "1 \otimes x (^) m = x (^) m" by (simp add: x_car)
also have "... = x (^) (m - n) \otimes x (^) n"
using False by (simp add: nat_pow_mult x_car)
also have "... = x (^) (m - n) \otimes x (^) m"
by (simp add: pow_eq)
finally show ?thesis by (simp add: x_car)
qed simp

```
definition ord where "ord \(\mathrm{a}=\operatorname{Min}\{\mathrm{d} \in\{1 \ldots\) order \(G\} . a(\sim) d=1\} "\)
lemma
    assumes finite:"finite (carrier G)"
    assumes a:"a \(\in\) carrier G"
    shows ord_ge_1: "1 \(\leq\) ord a" and ord_le_group_order: "ord a \(\leq\) order
G"
        and pow_ord_eq_1: "a (^) ord a = 1"
proof -
    have " \(\neg\) inj_on ( \(\lambda \mathrm{x} . \mathrm{a}(\wedge) \mathrm{x}\) ) \(\{0\).. order G\(\}\) "
    proof (rule notI)
        assume A: "inj_on ( \(\lambda \mathrm{x} . \mathrm{a}\left({ }^{( }\right) \mathrm{x}\) ) \(\{0\).. order G\(\}\) "
        have "order \(G+1=\) card \(\{0 \ldots\) order \(G\} "\) by simp
        also have "... = card (( \(\lambda \mathrm{x} . \mathrm{a}(\wedge) \mathrm{x})\) ' \{0 .. order G\})" (is "_ = card
?S")
            using A by (simp add: card_image)
            also have "?S = \{a (^) x | x. x \(\in\{0\).. order G\}\}" by blast
            also have "... \(\subseteq\) carrier G" (is "?S \(\subseteq\) _") using a by blast
            then have "card ?S \(\leq\) order G" unfolding order_def
                by (rule card_mono[0F finite])
            finally show False by arith
    qed
then obtain x y where \(\mathrm{x}-\mathrm{y}: \mathrm{x} \neq \mathrm{y}\) " "x \(\in\{0 \ldots\) order G\(\}\) " "y \(\in\{0 \ldots\)
order G\}"
                            "a (^) \(\mathrm{x}=\mathrm{a}\left({ }^{\wedge}\right) \mathrm{y}\) " unfolding inj_on_def by blast
    obtain d where "1 \(\leq \mathrm{d}\) " "a ( \(\left.{ }^{( }\right) \mathrm{d}=1\) " "d \(\leq\) order G"
    proof cases
```

 assume "y < x" with x_y show ?thesis
 by (intro that[where d="x - y"]) (auto simp add: pow_eq_div2[OF
 a])
next
assume "\negy < x" with x_y show ?thesis
by (intro that[where d="y - x"]) (auto simp add: pow_eq_div2[OF
a])
qed
hence "ord a }\in{d\in{1...order G} . a (~) d = 1}"
unfolding ord_def using Min_in[of "{d \in {1 .. order G} . a (^) d =
1}"]
by fastforce
then show "1 \leq ord a" and "ord a \leq order G" and "a (^) ord a = 1"
by (auto simp: order_def)
qed
lemma finite_group_elem_finite_ord :
assumes "finite (carrier G)" "x \in carrier G"
shows "\exists d::nat. d \geq 1 ^ x (^) d = 1"
using assms ord_ge_1 pow_ord_eq_1 by auto
lemma ord_min:
assumes "finite (carrier G)" "1 \leq d" "a \in carrier G" "a (^) d = 1"
shows "ord a \leq d"
proof -
def Ord \equiv "{d \in {1..order G}. a (^) d = 1}"
have fin: "finite Ord" by (auto simp: Ord_def)
have in_ord: "ord a \in Ord"
using assms pow_ord_eq_1 ord_ge_1 ord_le_group_order by (auto simp:
Ord_def)
then have "Ord }\not={}"\mathrm{ by auto
show ?thesis
proof (cases "d \leq order G")
case True
then have "d \in Ord" using assms by (auto simp: Ord_def)
with fin in_ord show ?thesis
unfolding ord_def Ord_def[symmetric] by simp
next
case False
then show ?thesis using in_ord by (simp add: Ord_def)
qed
qed
lemma ord_inj :
assumes finite: "finite (carrier G)"
assumes a: "a \in carrier G"
shows "inj_on (}\lambda\mathrm{ x . a (^) x) {0 .. ord a - 1}"
proof (rule inj_onI, rule ccontr)

```
fix x y assume A: "x \(\in\{0\).. ord \(\mathrm{a}-1\} " \mathrm{y} \in\{0 \ldots\).. ord \(\mathrm{a}-1\} "\) "a (^) \(x=a(\wedge) ~ y " ~ " x \neq y "\)
have "finite \(\left\{d \in\left\{1\right.\right.\). .order G\}. a ( \(\left.\left.{ }^{( }\right) \mathrm{d}=1\right\}\) " by auto
\{ fix \(\mathrm{x} y\) assume \(\mathrm{A}: ~ " \mathrm{x}<\mathrm{y} " \mathrm{k} \in\{0 \ldots\) ord \(\mathrm{a}-1\} " \mathrm{y} \in\{0 \ldots\) ord a - 1\}"
"a (^) \(\mathrm{x}=\mathrm{a}\left({ }^{\wedge}\right) \mathrm{y} "\)
hence "y - x < ord a" by auto
also have "... \(\leq\) order G" using assms by (simp add: ord_le_group_order)
finally have y_x_range:"y - \(x \in\{1\).. order G\}" using A by force
have "a (^) ( \(\mathrm{y}-\mathrm{x}\) ) = 1" using a A by (simp add: pow_eq_div2)
hence \(y \_x: " y-x \in\{d \in\{1 .\). order \(G\} . a(\wedge) d=1\} "\) using \(y \_x \_r a n g e\) by blast
have "min ( \(y-x\) ) (ord a) = ord a"
using Min.in_idem[0F 'finite \(\{d \in\{1\).. order G\} . a (^) d = 1\}'
y_x] ord_def by auto
with ' \(y-x\) < ord \(a\) ' have False by linarith
\}
note \(X=\) this
\{ assume "x < y" with A X have False by blast \}
moreover
\{ assume "x > y" with A X have False by metis \}
moreover
\{ assume " \(\mathrm{x}=\mathrm{y}\) " then have False using A by auto\}
ultimately
show False by fastforce
qed
lemma ord_inj' :
assumes finite: "finite (carrier G)"
assumes a: "a \(\in\) carrier G"
shows "inj_on ( \(\lambda\) x . a ( \() ~ x\) ) \{1 .. ord a\}"
proof (rule inj_onI, rule ccontr)
fix \(x\) y : : nat
assume \(A: " x \in\{1 \ldots\) ord \(a\} " ~ " y \in\{1 \ldots\) ord \(a\} "\) "a (^) \(x=a(\wedge) y "\) " \(\mathrm{x}=\mathrm{y}\) "
\{ assume "x < ord a" "y < ord a"
hence False using ord_inj[0F assms] A unfolding inj_on_def by fastforce
\}
moreover
\{ assume "x = ord a" "y < ord a"
hence "a (^) y = a (^) (0::nat)" using pow_ord_eq_1[0F assms] A by auto
hence " \(\mathrm{y}=0\) " using ord_inj[0F assms] ' y < ord \(\mathrm{a}^{\prime}\) unfolding inj_on_def by force
hence False using A by fastforce
```

 }
 moreover
 { assume "y = ord a" "x < ord a"
 hence "a (^) x = a (^) (0::nat)" using pow_ord_eq_1[OF assms] A by
 auto
hence "x=0" using ord_inj[OF assms] 'x < ord a' unfolding inj_on_def
by force
hence False using A by fastforce
}
ultimately show False using A by force
qed
lemma ord_elems :
assumes "finite (carrier G)" "a \in carrier G"
shows "{a(`)x | x. x ((UNIV :: nat set)} = {a(`) x | x. x f {0 .. ord
a - 1}}" (is "?L = ?R")
proof
show "?R\subseteq ?L" by blast
{ fix y assume "y \in ?L"
then obtain x::nat where x:"y = a(`)x" by auto def r \equiv "x mod ord a" then obtain q where q:"x = q * ord a + r" using mod_eqD by atomize_elim presburger hence "y = (a(`)ord a)(`)q & a(`)r"
using x assms by (simp add: mult.commute nat_pow_mult nat_pow_pow)
hence "y = a(`)r" using assms by (simp add: pow_ord_eq_1) have "r < ord a" using ord_ge_1[0F assms] by (simp add: r_def) hence "r f {0 .. ord a - 1}" by (force simp: r_def) hence "y \in{a(`)x | x. x \in {0 .. ord a - 1}}" using 'y=a(`)r` by
blast
}
thus "?L \subseteq ?R" by auto
qed
lemma ord_dvd_pow_eq_1 :
assumes "finite (carrier G)" "a e carrier G" "a (`) k = 1" shows "ord a dvd k" proof - def r \equiv "k mod ord a" then obtain q where q:"k = q*ord a + r" using mod_eqD by atomize_elim presburger hence "a(`)k = (a(`)ord a)(`)q \& a(`)r" using assms by (simp add: mult.commute nat_pow_mult nat_pow_pow) hence "a(`)k = a(`)r" using assms by (simp add: pow_ord_eq_1) hence "a(`)r = 1" using assms(3) by simp
have "r < ord a" using ord_ge_1[0F assms(1-2)] by (simp add: r_def)
hence "r = 0" using 'a(`)r = 1' ord_def[of a] ord_min[of r a] assms(1-2)
by linarith
thus ?thesis using q by simp

```

\section*{qed}
lemma dvd_gcd :
fixes a b :: nat
obtains \(q\) where "a * (b div gcd a b) = b*q"
proof
have " \(\mathrm{a} *(\mathrm{~b}\) div gcd a b) = (a div gcd a b) * b" by (simp add: div_mult_swap dvd_div_mult)
also have "... = b * (a div gcd a b)" by simp
finally show "a * (b div gcd a b) = b * (a div gcd a b) ".
qed
lemma ord_pow_dvd_ord_elem :
assumes finite[simp]: "finite (carrier G)"
assumes a[simp]:"a \(\in\) carrier G"
shows "ord (a(^)n) = ord a div gcd n (ord a)"
proof -
have " (a(^)n) (^) ord \(\mathrm{a}=(\mathrm{a}(\wedge)\) ord a\()\left({ }^{\wedge}\right) \mathrm{n} "\)
by (simp add: mult.commute nat_pow_pow)
hence " (a(^)n) (^) ord a = 1" by (simp add: pow_ord_eq_1)
obtain q where " n * (ord a div gcd n (ord a)) = ord a * q" by (rule
dvd_gcd)
hence " (a(^)n) (^) (ord a div gcd \(n(o r d a))=(a(\wedge)\) ord \(a)(\wedge) q "\) by (simp add : nat_pow_pow)
hence pow_eq_1: "(a(^)n) (^) (ord a div gcd n (ord a)) = 1"
by (auto simp add : pow_ord_eq_1[of a])
have "ord a \(\geq 1\) " using ord_ge_1 by simp
have ge_1:"ord a div gcd n (ord a) \(\geq 1 "\)
proof -
have "gcd \(n\) (ord a) dvd ord a" by blast
thus ?thesis by (rule dvd_div_ge_1[0F 'ord a \(\geq\) 1'])
qed
have "ord a \(\leq\) order G" by (simp add: ord_le_group_order)
have "ord a div gcd n (ord a) \(\leq\) order \(\mathrm{G} "\)
proof -
have "ord a div gcd n (ord a) \(\leq\) ord a" by simp
thus ?thesis using 'ord a \(\leq\) order \(G\) ' by linarith
qed
hence ord_gcd_elem:"ord a div gcd n (ord a) \(\in\{d \in\{1 .\). order G\}. (a(^)n)
\(\left.\left(^{\wedge}\right) \mathrm{d}=1\right\}\) "
using ge_1 pow_eq_1 by force
\{ fix d : : nat
assume d_elem:"d \(\in\{d \in\{1 .\). order \(G\} .(a(\wedge) n)(\wedge) d=1\} "\)
assume d_lt:"d < ord a div gcd n (ord a)"
hence pow_nd:"a(^) (n*d) = 1" using d_elem
by (simp add : nat_pow_pow)
hence "ord a dvd n*d" using assms by (auto simp add : ord_dvd_pow_eq_1)
then obtain q where "ord \(\mathrm{a} * \mathrm{q}=\mathrm{n} * \mathrm{~d}\) " by (metis dvd_mult_div_cancel)
hence prod_eq:"(ord a div gcd n (ord a)) * \(\mathrm{q}=(\mathrm{n} \operatorname{div} \operatorname{gcd} \mathrm{n}\) (ord a))
* \({ }^{\prime \prime}\)
by (simp add: dvd_div_mult)
have cp:"coprime (ord a div gcd \(n\) (ord a)) ( \(n\) div gcd \(n\) (ord a))"
proof -
have "coprime ( \(n\) div gcd \(n\) (ord a)) (ord a div gcd \(n\) (ord a))"
using div_gcd_coprime[of n "ord a"] ge_1 by fastforce
thus ?thesis by (simp add: gcd.commute)
qed
have dvd_d:"(ord a div gcd n (ord a)) dvd d"
proof -
have "ord a div gcd n (ord a) dvd (n div gcd n (ord a)) * d" us-
ing prod_eq by (metis dvd_triv_right mult.commute)
hence "ord a div gcd \(n\) (ord a) dvd \(d *(n\) div gcd \(n\) (ord a))" by (simp add: mult.commute)
thus ?thesis using coprime_dvd_mult[0F cp, of d] by fastforce
qed
have "d > 0" using d_elem by simp
hence "ord a div gcd \(n\) (ord a) \(\leq \mathrm{d}\) " using dvd_d by (simp add : Nat.dvd_imp_le)
hence False using d_lt by simp
\(\}\) hence ord_gcd_min: " \(\bigwedge \mathrm{d} . \mathrm{d} \in\{d \in\{1 . . \operatorname{order} \mathrm{G}\}\). (a(^)n) (^) \(d=\) 1\}
\(\Longrightarrow \mathrm{d} \geq\) ord a div gcd n (ord a)" by fastforce
have fin:"finite \(\{d \in\{1\)..order \(G\} .(a(\wedge) n)(\wedge) d=1\} "\) by auto
thus ?thesis using Min_eqI[OF fin ord_gcd_min ord_gcd_elem]
unfolding ord_def by simp
qed
lemma ord_1_eq_1 :
assumes "finite (carrier G)"
shows "ord 1 = 1 "
using assms ord_ge_1 ord_min[of 1 1] by force
theorem lagrange_dvd:
assumes "finite(carrier G)" "subgroup H G" shows "(card H) dvd (order G) "
using assms by (simp add: lagrange[symmetric])
lemma element_generates_subgroup:
assumes finite[simp]: "finite (carrier G)"
assumes a[simp]: "a \(\in\) carrier G"
shows "subgroup \{a (^) i | i. i \(\in\{0\).. ord a - 1\}\} G"
proof
show "\{a(^)i | i. i \(\in\{0 \ldots\) ord \(a-1\}\} \subseteq\) carrier \(G "\) by auto
next
fix \(x y\)
assume \(A: ~ " x \in\{a(\wedge) i \mid i . i \in\{0 \ldots\) ord \(a-1\}\} "\) "y \(\in\{a(\wedge) i \mid i\).
\(i \in\{0\).. ord a - 1\}\}"
obtain i::nat where \(i: " x=a(\wedge) i "\) and \(i 2: " i \in U N I V "\) using A by auto
obtain \(\mathrm{j}:\) :nat where \(\mathrm{j}: \mathrm{y}=\mathrm{a}\left({ }^{\wedge}\right) \mathrm{j} "\) and \(\mathrm{j} 2: \mathrm{j} \mathrm{j} \in\) UNIV" using A by auto have "a(^) \((\mathrm{i}+\mathrm{j}) \in\{\mathrm{a}(\stackrel{\wedge}{ }) \mathrm{i} \mid \mathrm{i} . \mathrm{i} \in\{0 \ldots\) ord \(\mathrm{a}-1\}\}\) " using ord_elems[0F assms] A by auto
thus \(\mathrm{x} \boldsymbol{x} \otimes \mathrm{y} \in\left\{\mathrm{a}\left({ }^{\wedge}\right) \mathrm{i} \mid\right.\) i. \(\mathrm{i} \in\{0 \ldots\) ord \(\left.\mathrm{a}-1\}\right\}\) "
using i \(j\) a ord_elems assms by (auto simp add: nat_pow_mult)
next
show "1 \(\in\left\{a\left({ }^{\wedge}\right)\right.\) i \(\mid\) i. i \(\in\{0 \ldots\).. ord a - 1\}\}" by force
next
fix \(x\) assume \(x: ~ " x \in\{a(\wedge) i \mid i . i \in\{0 \ldots\) ord \(a-1\}\} "\)
hence \(x_{-} n_{n} c a r r i e r: ~ " x \in c a r r i e r ~ G " ~ b y ~ a u t o ~\)
then obtain \(d:\) nat where \(d: " x(\wedge) d=1 "\) and \(" d \geq 1 "\)
using finite_group_elem_finite_ord by auto
have inv_1:" \(\mathrm{x}\left({ }^{\wedge}\right)(\mathrm{d}-1) \otimes \mathrm{x}=1 "\) using ' \(\mathrm{d} \geq 1^{\prime} \mathrm{d}\) nat_pow_Suc[of x " d
- 1"] by simp
have elem:"x (^) (d-1) \(\in\{a(\wedge) i \mid i . i \in\{0 \ldots\) ord \(a-1\}\} "\)
proof -
obtain i::nat where i:"x = a(^)i" using \(x\) by auto
hence " \(x(\wedge)(d-1) \in\{a(\wedge) i \mid\) i. i \(\in\) (UNIV::nat set) \(\}\) " by (auto simp add: nat_pow_pow)
thus ?thesis using ord_elems[of a] by auto
qed
have inv:"inv \(x=x(\wedge)(d-1) "\) using inv_equality[0F inv_1] x_in_carrier by blast
thus "inv \(x \in\{a(\wedge) i \mid\) i. i \(\in\{0 \ldots\). ord a - 1\}\}" using elem inv by auto
qed
lemma ord_dvd_group_order :
assumes finite[simp]: "finite (carrier G)"
assumes a[simp]: "a \(\in\) carrier G"
shows "ord a dvd order G"
proof -
have card_dvd:"card \{a(^)i | i. i \(\in\{0\).. ord a - 1\}\} dvd card (carrier G) "
using lagrange_dvd element_generates_subgroup unfolding order_def by simp
have "inj_on ( \(\lambda\) i . a(^)i) \{0..ord a - 1\}" using ord_inj by simp
hence cards_eq:"card ( ( \(\lambda\) i . a(^)i) ' \{0..ord a - 1\}) = card \{0...ord
a - 1\}"
using card_image[of " \(\lambda\) i . a(^)i" "\{0..ord a - 1\}"] by auto
have "( \(\lambda\) i . a(^)i) ' \{0...ord \(a-1\}=\{a(\wedge) i \mid i . i \in\{0 .\). ord \(a-\)
1\}\}" by auto
hence "card \{a(^)i | i. i \(\in\{0 .\). ord a - 1\}\} = card \{0..ord a - 1\}" using cards_eq by simp
also have "... = ord a" using ord_ge_1[of a] by simp
finally show ?thesis using card_dvd by (simp add: order_def) qed
end

\section*{20 Number of Roots of a Polynomial}
```

definition mult_of :: "('a, 'b) ring_scheme }=>\mathrm{ 'a monoid" where
"mult_of R \equiv (carrier = carrier R - {0 (
lemma carrier_mult_of: "carrier (mult_of R) = carrier R - {0 (0, }"
by (simp add: mult_of_def)
lemma mult_mult_of: "mult (mult_of R) = mult R"
by (simp add: mult_of_def)
lemma nat_pow_mult_of: "op (^)mult_of R = (op (^)
by (simp add: mult_of_def fun_eq_iff nat_pow_def)
lemma one_mult_of: "1 mult_of R = 1
by (simp add: mult_of_def)
lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of
context field begin
lemma field_mult_group :
shows "group (mult_of R)"
apply (rule groupI)
apply (auto simp: mult_of_simps m_assoc dest: integral)
by (metis Diff_iff Units_inv_Units Units_l_inv field_Units singletonE)
lemma finite_mult_of: "finite (carrier R) \Longrightarrow finite (carrier (mult_of
R))"
by (auto simp: mult_of_simps)
lemma order_mult_of: "finite (carrier R) \Longrightarrow order (mult_of R) = order
R - 1"
unfolding order_def carrier_mult_of by (simp add: card.remove)
end
lemma (in monoid) Units_pow_closed :
fixes d :: nat
assumes "x \in Units G"
shows "x (^) d \in Units G"
by (metis assms group.is_monoid monoid.nat_pow_closed units_group
units_of_carrier units_of_pow)
lemma (in comm_monoid) is_monoid:
shows "monoid G" by unfold_locales

```
```

declare comm_monoid.is_monoid[intro?]
lemma (in ring) r_right_minus_eq[simp]:
assumes "a \in carrier R" "b \in carrier R"
shows "a \ominus b = 0 \longleftrightarrow a = b"
using assms by (metis a_minus_def add.inv_closed minus_equality r_neg)
context UP_cring begin
lemma is_UP_cring:"UP_cring R" by (unfold_locales)
lemma is_UP_ring :
shows "UP_ring R" by (unfold_locales)
end
context UP_domain begin
lemma roots_bound:
assumes f [simp]: "f \in carrier P"
assumes f_not_zero: "f f= 0p"
assumes finite: "finite (carrier R)"
shows "finite {a \in carrier R . eval R R id a f = 0} ^
card {a \in carrier R . eval R R id a f = 0} S deg R f" using
f f_not_zero
proof (induction "deg R f" arbitrary: f)
case 0
have "\x. eval R R id x f = 0"
proof -
fix x
have "(\bigoplusi\in{..deg R f}. id (coeff P f i) \otimes x (`) i) }\not=
using 0 lcoeff_nonzero_nonzero[where p = f] by simp
thus "eval R R id x f == 0" using O unfolding eval_def P_def by simp
qed
then have *: "{a \in carrier R. eval R R (\lambdaa. a) a f = 0} = {}"
by (auto simp: id_def)
show ?case by (simp add: *)
next
case (Suc x)
show ?case
proof (cases " }\exists\textrm{a}\in\mathrm{ carrier R . eval R R id a f = 0")
case True
then obtain a where a_carrier[simp]: "a \in carrier R" and a_root:"eval
R R id a f = 0" by blast
have R_not_triv: "carrier R \not= {0}"
by (metis R.one_zeroI R.zero_not_one)
obtain q where q:"(q \in carrier P)" and
f:"f = (monom P 1 1 1 Ө p monom P a 0) \otimesp q © | monom P (eval R R
id a f) 0"

```
```

 using remainder_theorem[OF Suc.prems(1) a_carrier R_not_triv] by
 auto

```

```

by (simp add: a_root)
have deg:"deg R (monom P 1 1R 1 }\ominus P monom P a 0) = 1"
using a_carrier by (simp add: deg_minus_eq)
hence mon_not_zero:"(monom P 1 1R 1 \ominus p monom P a 0) f= 0p"
by (fastforce simp del: r_right_minus_eq)
have q_not_zero:"q}\not==\mp@subsup{0}{P}{\prime}" using Suc by (auto simp add : lin_fac
hence "deg R q = x" using Suc deg deg_mult[OF mon_not_zero q_not_zero
_ q]
by (simp add : lin_fac)
hence q_IH:"finite {a \in carrier R . eval R R id a q = 0}
^card {a \in carrier R . eval R R id a q = 0} \leq x" us-
ing Suc q q_not_zero by blast
have subs:"{a \in carrier R . eval R R id a f = 0}
\subseteq{a \in carrier R . eval R R id a q = 0} U {a}" (is "?L
\subseteq ?R \cup {a}")
using a_carrier 'q \in _'
by (auto simp: evalRR_simps lin_fac R.integral_iff)
have "{a \in carrier R . eval R R id a f = 0} \subseteq insert a {a \in carrier
R . eval R R id a q = 0}"
using subs by auto
hence "card {a \in carrier R . eval R R id a f = 0} S
card (insert a {a \in carrier R . eval R R id a q = 0})" us-
ing q_IH by (blast intro: card_mono)
also have "... S deg R f" using q_IH 'Suc x = _'
by (simp add: card_insert_if)
finally show ?thesis using q_IH 'Suc x = _' using finite by force
next
case False
hence "card {a G carrier R. eval R R id a f = 0} = 0" using finite
by auto
also have "... \leq deg R f" by simp
finally show ?thesis using finite by auto
qed
qed
end
lemma (in domain) num_roots_le_deg :
fixes p d :: nat
assumes finite:"finite (carrier R)"
assumes d_neq_zero : "d f= 0"
shows "card {x \in carrier R. x (^) d = 1} \leq d"
proof -
let ?f = "monom (UP R) 1 1R d \ominus (UP R) monom (UP R) 1 1R 0"
have one_in_carrier:"1 \in carrier R" by simp
interpret R: UP_domain R "UP R" by (unfold_locales)

```
```

 have "deg R ?f = d"
 using d_neq_zero by (simp add: R.deg_minus_eq)
 hence f_not_zero:"?f }\not=\mp@subsup{0}{UP}{}R\mathrm{ R" using d_neq_zero by (auto simp add :
 R.deg_nzero_nzero)
have roots_bound:"finite {a \in carrier R . eval R R id a ?f = 0} ^
card {a \in carrier R . eval R R id a ?f = 0} S deg
R ?f"
using finite by (intro R.roots_bound[OF _ f_not_zero])
simp
have subs:"{x \in carrier R. x (`) d = 1} \subseteq {a \in carrier R . eval R R
id a ?f = 0}"
by (auto simp: R.evalRR_simps)
then have "card {x carrier R. x (^) d = 1} \leq
card {a \in carrier R. eval R R id a ?f = 0}" using finite by (simp
add : card_mono)
thus ?thesis using 'deg R ?f = d' roots_bound by linarith
qed

```

\section*{21 The Multiplicative Group of a Field}

In this section we show that the multiplicative group of a finite field is generated by a single element, i.e. it is cyclic. The proof is inspired by the first proof given in the survey [?].
```

lemma (in group) pow_order_eq_1:
assumes "finite (carrier G)" "x \in carrier G" shows "x (^) order G =
1"
using assms by (metis nat_pow_pow ord_dvd_group_order pow_ord_eq_1 dvdE
nat_pow_one)

```
lemma nat_div_eq: \(" \mathrm{a} \neq 0 \Longrightarrow\) ( \(\mathrm{a}::\) nat) \(\operatorname{div} \mathrm{b}=\mathrm{a} \longleftrightarrow \mathrm{b}=1 "\)
    apply rule
    apply (cases "b = 0")
    apply simp_all
    apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
    done
lemma (in group)
    assumes finite': "finite (carrier G)"
    assumes "a \(\in\) carrier G"
    shows pow_ord_eq_ord_iff: "group.ord G (a ( \() ~ k)=\) ord \(a \longleftrightarrow\) coprime
k (ord a)" (is "?L \(\longleftrightarrow\) ?R")
proof
    assume A: ?L then show ?R
        using assms ord_ge_1[0F assms] by (auto simp: nat_div_eq ord_pow_dvd_ord_elem)
next
    assume ?R then show ?L
        using ord_pow_dvd_ord_elem[0F assms, of k] by auto

\section*{qed}

\section*{context field begin}
```

lemma num_elems_of_ord_eq_phi':
assumes finite: "finite (carrier R)" and dvd: "d dvd order (mult_of
R)"
and exists: "\existsa\incarrier (mult_of R). group.ord (mult_of R) a =
d"
shows "card {a \in carrier (mult_of R). group.ord (mult_of R) a = d}
= phi' d"
proof -
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule
finite_mult_of)

```

\(\Rightarrow\) nat \(\Rightarrow\) _)" and "1 \(1_{\text {mult_of }} \mathrm{R}=1 "\)
            by (rule field_mult_group) simp_all
    from exists
    obtain a where a:"a \(\in\) carrier (mult_of R)" and ord_a: "group.ord (mult_of
R) \(a=d "\)
            by (auto simp add: card_gt_0_iff)
    have set_eq1:"\{a(^)n| n. \(n \in\{1 \ldots d\}\}=\{x \in\) carrier (mult_of \(R\) ).
\(\left.x \quad\left({ }^{-}\right) d=1\right\} "\)
    proof (rule card_seteq)
        show "finite \(\{x \in\) carrier (mult_of \(R\) ). \(x(\wedge) d=1\} "\) using finite
by auto
        show "\{a(^)n| n. \(n \in\{1 \ldots \mathrm{~d}\}\} \subseteq\left\{\mathrm{x} \in\right.\) carrier (mult_of \(R\) ). \(\mathrm{x}\left({ }^{\wedge}\right) \mathrm{d}\)
= 1\(\}\) "
        proof
            fix \(x\) assume \(" x \in\{a(\wedge) n \mid n . n \in\{1 \ldots d\}\} "\)
            then obtain \(n\) where \(n: " x=a(\wedge) n \wedge n \in\{1 \ldots d\} "\) by auto
            have \(\mathrm{x}\left({ }^{\wedge}\right) \mathrm{d}=\left(\mathrm{a}\left({ }^{\wedge}\right) \mathrm{d}\right)\left({ }^{\wedge}\right) \mathrm{n}\) " using n a ord_a by (simp add:nat_pow_pow
mult. commute)
            hence "x(^)d = 1" using ord_a G.pow_ord_eq_1[0F finite' a] by fastforce
            thus " \(x \in\{x \in\) carrier (mult_of \(R\) ). \(x(\wedge) d=1\} "\) using G.nat_pow_closed[0F
a] n by blast
        qed
        show "card \(\{x \in\) carrier (mult_of \(R\) ). \(x(\wedge) d=1\} \leq \operatorname{card}\{a(\wedge) n\)
| n. n \(\in\{1\).. d\}\}"
    proof -
            have *:"\{a(^)n | n. n \(\in\{1 \ldots \mathrm{~d}\}\}=\left(\left(\lambda \mathrm{n} . \mathrm{a}\left({ }^{\wedge}\right) \mathrm{n}\right)\right.\) ' \{1 .. d\})"
by auto
            have " 0 < order (mult_of R)" unfolding order_mult_of [OF finite]
using card_mono[0F finite, of "\{0, 1\}"] by (simp add: order_def)
have "card \(\{x \in\) carrier (mult_of \(R\) ). \(x(\wedge) d=1\} \leq \operatorname{card}\{x \in\) carrier R. \(x(\wedge) d=1\} "\)
using finite by (auto intro: card_mono)
also have \(" . . . \leq d "\) using ' 0 < order (mult_of R)' num_roots_le_deg[OF finite, of d]
by (simp add : dvd_pos_nat[0F _ 'd dvd order (mult_of R)'])
finally show ?thesis using G.ord_inj'[OF finite' a] ord_a * by (simp add: card_image)
qed
qed
have set_eq2:"\{x \(\in\) carrier (mult_of \(R\) ) . group.ord (mult_of \(R\) ) \(x=\) d\}
```

 = (\lambda n . a(`)n) ' {n \in {1 .. d}. group.ord (mult_of R)
 (a(`)n) = d}" (is "?L = ?R") proof { fix x assume x:"x (carrier (mult_of R)) ^ group.ord (mult_of R) x = d" hence "x \in {x \in carrier (mult_of R). x (^) d = 1}" by (simp add: G.pow_ord_eq_1[OF finite', of x, symmetric]) then obtain n where n:"x = a(`)n ^ n \in {1 .. d}" using set_eq1

```
by blast
            hence " \(x \in ? R\) " using \(x\) by fast
            \} thus "?L \(\subseteq\) ?R" by blast
            show "?R \(\subseteq\) ?L" using a by (auto simp add: carrier_mult_of [symmetric]
simp del: carrier_mult_of)
    qed
    have "inj_on ( \(\lambda \mathrm{n} . \mathrm{a}\left({ }^{\wedge}\right) \mathrm{n}\) ) \(\left\{\mathrm{n} \in\{1 \ldots \mathrm{~d}\}\right.\). group.ord (mult_of R ) ( \(\mathrm{a}\left({ }^{\wedge}\right) \mathrm{n}\) )
= d\}"
            using G.ord_inj'[0F finite' a, unfolded ord_a] unfolding inj_on_def
by fast
    hence "card (( \(\left.\lambda \mathrm{n} . \mathrm{a}\left({ }^{\wedge}\right) \mathrm{n}\right)\) ' \(\{\mathrm{n} \in\{1 \ldots \mathrm{~d}\}\). group.ord (mult_of R) (a(^)n)
\(=\mathrm{d}\}\) )
                        \(=\operatorname{card}\{k \in\{1 \ldots d\}\). group.ord (mult_of \(R\) ) \((a(\wedge) k)=d\} "\)
                        using card_image by blast
    thus ?thesis using set_eq2 G.pow_ord_eq_ord_iff[0F finite' 'a \(\in\) _', \(^{\prime}\)
unfolded ord_a]
            by (simp add: phi'_def)
qed
end
```

theorem (in field) finite_field_mult_group_has_gen :
assumes finite:"finite (carrier R)"
shows " }\exists\textrm{a}\in\mathrm{ carrier (mult_of R) . carrier (mult_of R) = {a(^)i | i::nat
. i \in UNIV}"
proof -

```
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule finite_mult_of)
interpret G: group "mult_of R" rewrites

by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)
let \(? \mathrm{~N}=\mathrm{N} \| \mathrm{x} . \operatorname{card}\{\mathrm{a} \in\) carrier (mult_of R ). group.ord (mult_of R ) a = x\}"
have " 0 < order R - 1" unfolding order_def using card_mono[0F finite, of "\{0, 1\}"] by simp
then have \(*\) : " 0 < order (mult_of R)" using assms by (simp add: order_mult_of)
have fin: "finite \{d. d dvd order (mult_of R) \}" using dvd_nat_bounds [OF
*] by force
```

 have "(\sumd | d dvd order (mult_of R). ?N d)
 = card (UN d:{d . d dvd order (mult_of R) }. {a \in carrier (mult_of
 R). group.ord (mult_of R) a = d})"
(is "_ = card ?U")
using fin finite by (subst card_UN_disjoint) auto
also have "?U = carrier (mult_of R)"
proof
{ fix x assume x:"x \in carrier (mult_of R)"
hence x':"x\incarrier (mult_of R)" by simp
then have "group.ord (mult_of R) x dvd order (mult_of R)"
using finite' G.ord_dvd_group_order[OF _ x'] by (simp add: order_mult_of)
hence "x \in ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord
(mult_of R) x"] x by blast
} thus "carrier (mult_of R) \subseteq ?U" by blast
qed auto
also have "card ... = order (mult_of R)"
using order_mult_of finite' by (simp add: order_def)
finally have sum_Ns_eq: "(\sumd | d dvd order (mult_of R). ?N d) = order
(mult_of R)" .

```
\{ fix d assume d:"d dvd order (mult_of R)"
        have "card \(\{a \in\) carrier (mult_of \(R\) ). group.ord (mult_of R) a = d\}
\(\leq\) phi' \({ }^{\prime \prime}\)
    proof cases
                            assume "card \(\{a \in\) carrier (mult_of R). group.ord (mult_of R) a
\(=d\}=0 "\) thus \(?\) thesis by presburger
            next
            assume "card \(\{a \in\) carrier (mult_of R). group.ord (mult_of R) a
\(=d\} \neq 0 "\)
                hence \(" \exists a \in\) carrier (mult_of \(R\) ). group.ord (mult_of \(R\) ) \(a=d " b y\)
(auto simp: card_eq_0_iff)
                thus ?thesis using num_elems_of_ord_eq_phi' [OF finite d] by auto
            qed
```

 }
 hence all_le:"\i. i \in {d. d dvd order (mult_of R) }
 \Longrightarrow (\lambda i . ~ c a r d ~ \{ a ~ \in ~ c a r r i e r ~ (m u l t _ o f ~ R) . ~ g r o u p . o r d ~ (m u l t _ o f ~ R)
 a = i}) i \leq (\lambdai. phi' i) i" by fast
hence le:"(\sumi | i dvd order (mult_of R). ?N i)
\leq (\sumi | i dvd order (mult_of R). phi' i)"
using sum_mono[of "{d . d dvd order (mult_of R)}"
"\lambdai. card {a \in carrier (mult_of R). group.ord (mult_of
R) a = i}"] by presburger
have "order (mult_of R) = (\sumd | d dvd order (mult_of R). phi' d)"
using *
by (simp add: sum_phi'_factors)
hence eq:"(\sumi | i dvd order (mult_of R). ?N i)
= (\sumi | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq
by presburger
have "\i. i \in {d. d dvd order (mult_of R) } \Longrightarrow ?N i = (\lambdai. phi' i)
i"
proof (rule ccontr)
fix i
assume i1:"i \in {d. d dvd order (mult_of R)}" and "?N i f= phi' i"
hence "?N i = O"
using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff)
moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of
"order (mult_of R)" i])
ultimately have "?N i < phi' i" using phi'_nonzero by presburger
hence "(\sumi | i dvd order (mult_of R). ?N i)
< (\sumi l i dvd order (mult_of R). phi' i)"
using sum_strict_mono_ex1[0F fin, of "?N" "\lambda i . phi' i"]
i1 all_le by auto
thus False using eq by force
qed
hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero)
then obtain a where a:"a \in carrier (mult_of R)" and a_ord:"group.ord
(mult_of R) a = order (mult_of R)"
by (auto simp add: card_gt_0_iff)
hence set_eq:"{a(`)i | i::nat. i \in UNIV} = (\lambdax. a(^)x) ' {0 .. group.ord
(mult_of R) a - 1}"
using G.ord_elems[OF finite'] by auto
have card_eq:"card ((\lambdax. a(^)x) ' {0 .. group.ord (mult_of R) a - 1})
= card {0 .. group.ord (mult_of R) a - 1}"
by (intro card_image G.ord_inj finite' a)
hence "card ((\lambda x . a(^)x) ' {0 .. group.ord (mult_of R) a - 1}) = card
{0 ..order (mult_of R) - 1}"
using assms by (simp add: card_eq a_ord)
hence card_R_minus_1:"card {a(^)i | i::nat. i \in UNIV} = order (mult_of
R) "
using * by (subst set_eq) auto
have **:"{a(^)i | i::nat. i G UNIV} \subseteq carrier (mult_of R)"
using G.nat_pow_closed[OF a] by auto

```
```

 with _ have "carrier (mult_of R) = {a(^)i|i::nat. i \in UNIV}"
 by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite
 order_def del: UNIV_I)
thus ?thesis using a by blast
qed
end

```

\section*{22 Divisibility in monoids and rings}
theory Divisibility
imports "HOL-Library.Permutation" Coset Group
begin

\section*{23 Factorial Monoids}

\subsection*{23.1 Monoids with Cancellation Law}
```

locale monoid_cancel = monoid +
assumes l_cancel: "\llbracketc \& a = c \otimes b; a \in carrier G; b \in carrier G; c
\epsilon carrier G\rrbracket \Longrightarrowa = b"
and r_cancel: "\llbracketa \otimes c = b \otimes c; a \in carrier G; b \in carrier G; c \in
carrier G\rrbracket \Longrightarrow a = b"
lemma (in monoid) monoid_cancelI:
assumes l_cancel: "\a b c. \llbracketc \otimes a = c \otimes b; a \in carrier G; b \in carrier
G; c \in carrier G\rrbracket \Longrightarrow a = b"
and r_cancel: "\a b c. \llbracketa \otimes c = b \otimes c; a \in carrier G; b \in carrier
G; c \in carrier G\rrbracket \Longrightarrow a = b"
shows "monoid_cancel G"
by standard fact+
lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" ..
sublocale group \subseteq monoid_cancel
by standard simp_all
locale comm_monoid_cancel = monoid_cancel + comm_monoid
lemma comm_monoid_cancelI:
fixes G (structure)
assumes "comm_monoid G"
assumes cancel: "\a b c. \llbracketa \otimes c = b \otimes c; a \in carrier G; b \in carrier
G; c \in carrier G\rrbracket \Longrightarrow a = b"
shows "comm_monoid_cancel G"
proof -
interpret comm_monoid G by fact

```
```

 show "comm_monoid_cancel G"
 by unfold_locales (metis assms(2) m_ac(2))+
 qed
lemma (in comm_monoid_cancel) is_comm_monoid_cancel: "comm_monoid_cancel
G"
by intro_locales
sublocale comm_group \subseteq comm_monoid_cancel ..

```

\subsection*{23.2 Products of Units in Monoids}
```

lemma (in monoid) Units_m_closed[simp, intro]:

```
lemma (in monoid) Units_m_closed[simp, intro]:
    assumes h1unit: "h1 \in Units G"
        and h2unit: "h2 \in Units G"
    shows "h1 \otimes h2 \in Units G"
    unfolding Units_def
    using assms
    by auto (metis Units_inv_closed Units_l_inv Units_m_closed Units_r_inv)
lemma (in monoid) prod_unit_l:
    assumes abunit[simp]: "a \otimes b \in Units G"
        and aunit[simp]: "a \in Units G"
        and carr[simp]: "a \in carrier G" "b \in carrier G"
    shows "b \in Units G"
proof -
    have c: "inv (a \otimes b) \otimes a \in carrier G" by simp
    have "(inv (a \otimes b) \otimes a) \otimes b = inv (a \otimes b) \otimes (a \otimes b)"
        by (simp add: m_assoc)
    also have "... = 1" by simp
    finally have li: "(inv (a \otimes b) \otimes a) \otimes b = 1" .
    have "1 = inv a \otimes a" by (simp add: Units_l_inv[symmetric])
    also have "... = inv a \otimes 1 \otimes a" by simp
    also have "... = inv a \otimes ((a \otimes b) \otimes inv (a \otimes b)) \otimes a"
        by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
    also have "... = ((inv a \otimes a) \otimes b) \otimes inv (a \otimes b) \otimes a"
        by (simp add: m_assoc del: Units_l_inv)
    also have "... = b \otimes inv (a \otimes b) \otimes a" by simp
    also have "... = b \otimes (inv (a \otimes b) \otimes a)" by (simp add: m_assoc)
    finally have ri: "b \otimes (inv (a \otimes b) \otimes a) = 1 " by simp
    from c li ri show "b \in Units G" by (auto simp: Units_def)
qed
lemma (in monoid) prod_unit_r:
    assumes abunit[simp]: "a \otimes b \in Units G"
        and bunit[simp]: "b \in Units G"
```

```
        and carr[simp]: "a \in carrier G" "b \in carrier G"
    shows "a \in Units G"
proof -
    have c: "b \otimes inv (a \otimes b) \in carrier G" by simp
    have "a \otimes (b \otimes inv (a \otimes b)) = (a \otimes b) \otimes inv (a \otimes b)"
        by (simp add: m_assoc del: Units_r_inv)
    also have "... = 1" by simp
    finally have li: "a \otimes (b \otimes inv (a \otimes b)) = 1" .
    have "1 = b \otimes inv b" by (simp add: Units_r_inv[symmetric])
    also have "... = b \otimes 1 \otimes inv b" by simp
    also have "... = b \otimes (inv (a \otimes b) \otimes (a \otimes b)) \otimes inv b"
        by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
    also have "... = (b \otimes inv (a \otimes b) \otimes a) \otimes (b \otimes inv b)"
        by (simp add: m_assoc del: Units_l_inv)
    also have "... = b \otimes inv (a \otimes b) \otimes a" by simp
    finally have ri: "(b \otimes inv (a \otimes b)) \otimes a = 1 " by simp
    from c li ri show "a \in Units G" by (auto simp: Units_def)
qed
lemma (in comm_monoid) unit_factor:
    assumes abunit: "a \otimes b \in Units G"
        and [simp]: "a \in carrier G" "b \in carrier G"
    shows "a \in Units G"
    using abunit[simplified Units_def]
proof clarsimp
    fix i
    assume [simp]: "i \in carrier G"
    have carr': "b \otimes i \in carrier G" by simp
    have "(b \otimes i) \otimes a = (i \otimes b) \otimes a" by (simp add: m_comm)
    also have "...= i \otimes (b \otimes a)" by (simp add: m_assoc)
    also have "... = i \otimes (a \otimes b)" by (simp add: m_comm)
    also assume "i \otimes (a \otimes b) = 1"
    finally have li': "(b \otimes i) \otimes a = 1" .
    have "a \otimes (b & i) = a \otimes b \otimes i" by (simp add: m_assoc)
    also assume "a \otimes b & i = 1"
    finally have ri': "a \otimes (b \otimes i) = 1" .
    from carr' li' ri'
    show "a \in Units G" by (simp add: Units_def, fast)
qed
```


23.3 Divisibility and Association

23.3.1 Function definitions

```
definition factor :: "[_, 'a, 'a] => bool" (infix "divides\imath" 65)
    where "a divides }\mp@subsup{G}{G}{}\textrm{b}\longleftrightarrow(\exists\textrm{c}\in\mathrm{ carrier G. b = a * }\mp@subsup{\textrm{G}}{\textrm{C}}{
definition associated :: "[_, 'a, 'a] => bool" (infix "~\imath" 55)
    where "a ~}\mp@subsup{~}{G}{}\textrm{b}\longleftrightarrow\textrm{a}\mp@subsup{\operatorname{divides}}{\textrm{G}}{}\textrm{b}\wedge \textrm{b}\mp@subsup{\mathrm{ divides}}{\textrm{G}}{}\textrm{a}
abbreviation "division_rel G \equiv (carrier = carrier G, eq = op ~ ~ , le =
op dividesG|"
definition properfactor :: "[_, 'a, 'a] # bool"
    where "properfactor G a b \longleftrightarrow a divides}\mp@subsup{G}{G}{}\textrm{b}\wedge\neg(\textrm{b}\mp@subsup{\operatorname{divides}}{G}{}\textrm{a})
definition irreducible :: "[_, 'a] => bool"
    where "irreducible G a \longleftrightarrow a # Units G ^ ( }\forall\textrm{b}\in\mathrm{ carrier G. properfactor
G b a \longrightarrow b \in Units G)"
definition prime :: "[_, 'a] => bool"
    where "prime G p \longleftrightarrow
        p}\not\in\mathrm{ Units G ^
```



```
a V p dividesg b)"
```


23.3.2 Divisibility

lemma dividesI:
fixes G (structure)
assumes carr: "c \in carrier G"
and $\mathrm{p}: ~ " \mathrm{~b}=\mathrm{a} \otimes \mathrm{c}$ "
shows "a divides b"
unfolding factor_def using assms by fast
lemma dividesI' [intro]:
fixes G (structure)
assumes $\mathrm{p}: ~ " \mathrm{~b}=\mathrm{a} \otimes \mathrm{c} "$ and carr: "c \in carrier G"
shows "a divides b"
using assms by (fast intro: dividesI)
lemma dividesD:
fixes G (structure)
assumes "a divides b"
shows " $\exists \mathrm{c} \in$ carrier $\mathrm{G} . \mathrm{b}=\mathrm{a} \otimes \mathrm{c} "$
using assms unfolding factor_def by fast
lemma dividesE [elim]:
fixes G (structure)

```
    assumes d: "a divides b"
        and elim: "\c. \llbracketb = a \otimes c; c \in carrier G\rrbracket \Longrightarrow P"
    shows "P"
proof -
    from dividesD[OF d] obtain c where "c \in carrier G" and "b = a \otimes c"
by auto
    then show P by (elim elim)
qed
lemma (in monoid) divides_refl[simp, intro!]:
    assumes carr: "a \in carrier G"
    shows "a divides a"
    by (intro dividesI[of "1"]) (simp_all add: carr)
lemma (in monoid) divides_trans [trans]:
    assumes dvds: "a divides b" "b divides c"
        and acarr: "a \in carrier G"
    shows "a divides c"
    using dvds[THEN dividesD] by (blast intro: dividesI m_assoc acarr)
lemma (in monoid) divides_mult_lI [intro]:
    assumes ab: "a divides b"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "(c & a) divides (c \otimes b)"
    using ab
    apply (elim dividesE)
    apply (simp add: m_assoc[symmetric] carr)
    apply (fast intro: dividesI)
    done
lemma (in monoid_cancel) divides_mult_l [simp]:
    assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "(c \otimes a) divides (c \otimes b) = a divides b"
    apply safe
    apply (elim dividesE, intro dividesI, assumption)
    apply (rule l_cancel[of c])
    apply (simp add: m_assoc carr)+
    apply (fast intro: carr)
    done
lemma (in comm_monoid) divides_mult_rI [intro]:
    assumes ab: "a divides b"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "(a & c) divides (b \otimes c)"
    using carr ab
    apply (simp add: m_comm[of a c] m_comm[of b c])
    apply (rule divides_mult_lI, assumption+)
    done
```

```
lemma (in comm_monoid_cancel) divides_mult_r [simp]:
    assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "(a \otimes c) divides (b \otimes c) = a divides b"
    using carr by (simp add: m_comm[of a c] m_comm[of b c])
lemma (in monoid) divides_prod_r:
    assumes ab: "a divides b"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "a divides (b \otimes c)"
    using ab carr by (fast intro: m_assoc)
lemma (in comm_monoid) divides_prod_l:
    assumes carr[intro]: "a \in carrier G" "b \in carrier G" "c \in carrier
G"
        and ab: "a divides b"
    shows "a divides (c & b)"
    using ab carr
    apply (simp add: m_comm[of c b])
    apply (fast intro: divides_prod_r)
    done
lemma (in monoid) unit_divides:
    assumes uunit: "u \in Units G"
        and acarr: "a \in carrier G"
    shows "u divides a"
proof (intro dividesI[of "(inv u) \otimes a"], fast intro: uunit acarr)
    from uunit acarr have xcarr: "inv u \otimes a \in carrier G" by fast
    from uunit acarr have "u \otimes (inv u & a) = (u \otimes inv u) \otimes a"
        by (fast intro: m_assoc[symmetric])
    also have "... = 1 \otimes a" by (simp add: Units_r_inv[OF uunit])
    also from acarr have "... = a" by simp
    finally show "a = u \otimes (inv u \otimes a)" ..
qed
lemma (in comm_monoid) divides_unit:
    assumes udvd: "a divides u"
        and carr: "a \in carrier G" "u \in Units G"
    shows "a \in Units G"
    using udvd carr by (blast intro: unit_factor)
lemma (in comm_monoid) Unit_eq_dividesone:
    assumes ucarr: "u \in carrier G"
    shows "u \in Units G = u divides 1"
    using ucarr by (fast dest: divides_unit intro: unit_divides)
```


23.3.3 Association

lemma associatedI:

fixes G (structure)

```
    assumes "a divides b" "b divides a"
    shows "a ~ b"
    using assms by (simp add: associated_def)
lemma (in monoid) associatedI2:
    assumes uunit[simp]: "u \in Units G"
        and a: "a = b \otimes u"
        and bcarr[simp]: "b \in carrier G"
    shows "a ~ b"
    using uunit bcarr
    unfolding a
    apply (intro associatedI)
        apply (rule dividesI[of "inv u"], simp)
        apply (simp add: m_assoc Units_closed)
    apply fast
    done
lemma (in monoid) associatedI2':
    assumes "a = b \otimes u"
        and "u \in Units G"
        and "b \in carrier G"
    shows "a ~ b"
    using assms by (intro associatedI2)
lemma associatedD:
    fixes G (structure)
    assumes "a ~ b"
    shows "a divides b"
    using assms by (simp add: associated_def)
lemma (in monoid_cancel) associatedD2:
    assumes assoc: "a ~ b"
        and carr: "a \in carrier G" "b \in carrier G"
    shows "\existsu\inUnits G. a = b \otimes u"
    using assoc
    unfolding associated_def
proof clarify
    assume "b divides a"
    then obtain u where ucarr: "u \in carrier G" and a: "a = b \otimes u"
        by (rule dividesE)
    assume "a divides b"
    then obtain u' where u'carr: "u' \in carrier G" and b: "b = a \otimes u'"
        by (rule dividesE)
    note carr = carr ucarr u'carr
    from carr have "a \otimes 1 = a" by simp
    also have "... = b \otimes u" by (simp add: a)
    also have '... = a \otimes u' \otimes u" by (simp add: b)
```

```
    also from carr have "... = a \otimes (u' \otimes u)" by (simp add: m_assoc)
    finally have "a \otimes 1 = a \otimes (u' \otimes u)".
    with carr have u1: "1 = u' \otimes u" by (fast dest: l_cancel)
    from carr have "b \otimes 1 = b" by simp
    also have "... = a \otimes u'" by (simp add: b)
    also have "... = b \otimes u \otimes u'" by (simp add: a)
    also from carr have "... = b \otimes (u \otimes u')" by (simp add: m_assoc)
    finally have "b \otimes 1 = b \otimes (u \otimes u')" .
    with carr have u2: "1 = u \otimes u'" by (fast dest: l_cancel)
    from u'carr u1[symmetric] u2[symmetric] have "\existsu'\incarrier G. u' &
u = 1 ^ u \otimes u' = 1''
    by fast
    then have "u \in Units G"
        by (simp add: Units_def ucarr)
    with ucarr a show "\existsu\inUnits G. a = b \otimes u" by fast
qed
lemma associatedE:
    fixes G (structure)
    assumes assoc: "a ~ b"
        and e: "\llbracketa divides b; b divides a\rrbracket \Longrightarrow P"
    shows "P"
proof -
    from assoc have "a divides b" "b divides a"
        by (simp_all add: associated_def)
    then show P by (elim e)
qed
lemma (in monoid_cancel) associatedE2:
    assumes assoc: "a ~ b"
        and e: "\u. \llbracketa = b \otimes u; u \in Units G\rrbracket\Longrightarrow P"
        and carr: "a \in carrier G" "b \in carrier G"
    shows "P"
proof -
    from assoc and carr have "\existsu\inUnits G. a = b \otimes u"
        by (rule associatedD2)
    then obtain u where "u \in Units G" "a = b \otimes u"
        by auto
    then show P by (elim e)
qed
lemma (in monoid) associated_refl [simp, intro!]:
    assumes "a \in carrier G"
    shows "a ~ a"
    using assms by (fast intro: associatedI)
lemma (in monoid) associated_sym [sym]:
```

```
    assumes "a ~ b"
        and "a \in carrier G" "b \in carrier G"
    shows "b ~ a"
    using assms by (iprover intro: associatedI elim: associatedE)
lemma (in monoid) associated_trans [trans]:
    assumes "a ~ b" "b ~ c"
        and "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "a ~ c"
    using assms by (iprover intro: associatedI divides_trans elim: associatedE)
lemma (in monoid) division_equiv [intro, simp]: "equivalence (division_rel
G) "
    apply unfold_locales
        apply simp_all
        apply (metis associated_def)
    apply (iprover intro: associated_trans)
    done
```


23.3.4 Division and associativity

```
lemma divides_antisym:
```

lemma divides_antisym:
fixes G (structure)
fixes G (structure)
assumes "a divides b" "b divides a"
assumes "a divides b" "b divides a"
and "a \in carrier G" "b \in carrier G"
and "a \in carrier G" "b \in carrier G"
shows "a ~ b"
shows "a ~ b"
using assms by (fast intro: associatedI)
using assms by (fast intro: associatedI)
lemma (in monoid) divides_cong_l [trans]:
lemma (in monoid) divides_cong_l [trans]:
assumes "x ~ x'"
assumes "x ~ x'"
and "x' divides y"
and "x' divides y"
and [simp]: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
and [simp]: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
shows "x divides y"
shows "x divides y"
proof -
proof -
from assms(1) have "x divides x'" by (simp add: associatedD)
from assms(1) have "x divides x'" by (simp add: associatedD)
also note assms(2)
also note assms(2)
finally show "x divides y" by simp
finally show "x divides y" by simp
qed
qed
lemma (in monoid) divides_cong_r [trans]:
lemma (in monoid) divides_cong_r [trans]:
assumes "x divides y"
assumes "x divides y"
and "y ~ y""
and "y ~ y""
and [simp]: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
and [simp]: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
shows "x divides y""
shows "x divides y""
proof -
proof -
note assms(1)
note assms(1)
also from assms(2) have "y divides y'" by (simp add: associatedD)
also from assms(2) have "y divides y'" by (simp add: associatedD)
finally show "x divides y'" by simp
finally show "x divides y'" by simp
qed

```
qed
```

```
lemma (in monoid) division_weak_partial_order [simp, intro!]:
    "weak_partial_order (division_rel G)"
    apply unfold_locales
            apply simp_all
            apply (simp add: associated_sym)
            apply (blast intro: associated_trans)
            apply (simp add: divides_antisym)
    apply (blast intro: divides_trans)
    apply (blast intro: divides_cong_l divides_cong_r associated_sym)
    done
```


23.3.5 Multiplication and associativity

```
lemma (in monoid_cancel) mult_cong_r:
    assumes "b ~ b'"
        and carr: "a \in carrier G" "b \in carrier G" "b' \in carrier G"
    shows "a \otimes b ~ a \otimes b'"
    using assms
    apply (elim associatedE2, intro associatedI2)
        apply (auto intro: m_assoc[symmetric])
    done
lemma (in comm_monoid_cancel) mult_cong_l:
    assumes "a ~ a'"
        and carr: "a \in carrier G" "a' \in carrier G" "b \in carrier G"
    shows "a \otimes b ~ a' \otimes b"
    using assms
    apply (elim associatedE2, intro associatedI2)
            apply assumption
            apply (simp add: m_assoc Units_closed)
            apply (simp add: m_comm Units_closed)
        apply simp_all
    done
lemma (in monoid_cancel) assoc_l_cancel:
    assumes carr: "a \in carrier G" "b \in carrier G" "b' \in carrier G"
        and "a \otimes b ~ a \otimes b'"
    shows "b ~ b'"
    using assms
    apply (elim associatedE2, intro associatedI2)
        apply assumption
        apply (rule l_cancel[of a])
            apply (simp add: m_assoc Units_closed)
            apply fast+
    done
lemma (in comm_monoid_cancel) assoc_r_cancel:
    assumes "a \otimes b ~ a' \otimes b"
```

```
    and carr: "a \in carrier G" "a' \in carrier G" "b \in carrier G"
shows "a ~ a'"
using assms
apply (elim associatedE2, intro associatedI2)
    apply assumption
    apply (rule r_cancel[of a b])
        apply (metis Units_closed assms(3) assms(4) m_ac)
        apply fast+
done
```


23.3.6 Units

lemma (in monoid_cancel) assoc_unit_l [trans]:
assumes "a ~b"
and "b \in Units G"
and "a \in carrier G "
shows "a \in Units G"
using assms by (fast elim: associatedE2)
lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a \in Units G"
and asc: "a ~ b"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using aunit bcarr associated_sym[0F asc] by (blast intro: assoc_unit_l)
lemma (in comm_monoid) Units_cong:
assumes aunit: "a Units G" and asc: "a ~ b"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using assms by (blast intro: divides_unit elim: associatedE)
lemma (in monoid) Units_assoc:
assumes units: "a \in Units G" "b \in Units G"
shows "a ~ b"
using units by (fast intro: associatedI unit_divides)
lemma (in monoid) Units_are_ones: "Units G \{.=\} (division_rel G) \{1\}"
apply (simp add: set_eq_def elem_def, rule, simp_all)
proof clarsimp
fix a
assume aunit: "a \in Units G"
show "a ~ 1"
apply (rule associatedI)
apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric]) apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[0F
aunit])
done
next

```
    have "1 \in Units G" by simp
    moreover have "1 ~ 1" by simp
    ultimately show "\existsa\in Units G. 1 ~ a" by fast
qed
lemma (in comm_monoid) Units_Lower: "Units G = Lower (division_rel G)
(carrier G)"
    apply (simp add: Units_def Lower_def)
    apply (rule, rule)
        apply clarsimp
        apply (rule unit_divides)
        apply (unfold Units_def, fast)
        apply assumption
    apply clarsimp
    apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed)
    done
```


23.3.7 Proper factors

```
lemma properfactorI:
    fixes G (structure)
    assumes "a divides b"
        and "\neg(b divides a)"
    shows "properfactor G a b"
    using assms unfolding properfactor_def by simp
lemma properfactorI2:
    fixes G (structure)
    assumes advdb: "a divides b"
        and neq: "\neg(a ~ b)"
    shows "properfactor G a b"
proof (rule properfactorI, rule advdb, rule notI)
    assume "b divides a"
    with advdb have "a ~ b" by (rule associatedI)
    with neq show "False" by fast
qed
lemma (in comm_monoid_cancel) properfactorI3:
    assumes p: "p = a \otimes b"
        and nunit: "b & Units G"
        and carr: "a \in carrier G" "b \in carrier G" "p \in carrier G"
    shows "properfactor G a p"
    unfolding p
    using carr
    apply (intro properfactorI, fast)
proof (clarsimp, elim dividesE)
    fix c
    assume ccarr: "c \in carrier G"
    note [simp] = carr ccarr
```

```
    have "a \otimes 1 = a" by simp
    also assume "a = a \otimes b \otimes c"
    also have "... = a \otimes (b \otimes c)" by (simp add: m_assoc)
    finally have "a \otimes 1 = a \otimes (b & c)".
    then have rinv: "1 = b & c" by (intro l_cancel[of "a" "1" "b \otimes c"],
simp+)
    also have "... = c \otimes b" by (simp add: m_comm)
    finally have linv: "1 = c & b" .
    from ccarr linv[symmetric] rinv[symmetric] have "b \in Units G"
        unfolding Units_def by fastforce
    with nunit show False ..
qed
lemma properfactorE:
    fixes G (structure)
    assumes pf: "properfactor G a b"
        and r: "\llbracketa divides b; \neg(b divides a)\rrbracket\Longrightarrow P"
    shows "P"
    using pf unfolding properfactor_def by (fast intro: r)
lemma properfactorE2:
    fixes G (structure)
    assumes pf: "properfactor G a b"
        and elim: "\llbracketa divides b; \neg(a ~ b)\rrbracket\Longrightarrow P"
    shows "P"
    using pf unfolding properfactor_def by (fast elim: elim associatedE)
lemma (in monoid) properfactor_unitE:
    assumes uunit: "u \in Units G"
        and pf: "properfactor G a u"
        and acarr: "a \in carrier G"
    shows "P"
    using pf unit_divides[OF uunit acarr] by (fast elim: properfactorE)
lemma (in monoid) properfactor_divides:
    assumes pf: "properfactor G a b"
    shows "a divides b"
    using pf by (elim properfactorE)
lemma (in monoid) properfactor_trans1 [trans]:
    assumes dvds: "a divides b" "properfactor G b c"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G a c"
    using dvds carr
    apply (elim properfactorE, intro properfactorI)
        apply (iprover intro: divides_trans)+
```

done
lemma (in monoid) properfactor_trans2 [trans]:
assumes dvds: "properfactor G a b" "b divides c"
and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "properfactor G a c"
using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+
done
lemma properfactor_lless:
fixes G (structure)
shows "properfactor $G=$ lless (division_rel G)"
apply (rule ext)
apply (rule ext)
apply rule
apply (fastforce elim: properfactorE2 intro: weak_llessI)
apply (fastforce elim: weak_llessE intro: properfactorI2)
done
lemma (in monoid) properfactor_cong_l [trans]:
assumes x 'x: "x' ~ x"
and pf: "properfactor G x y"
and carr: "x \in carrier G " "x' \in carrier $G " \quad " y \in \operatorname{carrier} G "$
shows "properfactor G x' y"
using pf
unfolding properfactor_lless
proof -
interpret weak_partial_order "division_rel G" ..
from x ' x have " x ' .=division_rel G x " by simp
also assume "x $\complement_{\text {division_rel }} \mathrm{G}$ y"
finally show "x' $\complement_{\text {division_rel }} \mathrm{G}$ y" by (simp add: carr)
qed
lemma (in monoid) properfactor_cong_r [trans]:
assumes pf: "properfactor G x y"
and yy': "y ~ y’"
and carr: "x \in carrier $G " \quad " y \in \operatorname{carrier~G"~"y’~} \in$ carrier G"
shows "properfactor G x y""
using pf
unfolding properfactor_lless
proof -
interpret weak_partial_order "division_rel G" ..
assume "x \sqsubset division_rel G y"
also from yy'
have "y .=division_rel g y'" by simp
finally show "x $\complement_{\text {division_rel }} \mathrm{G}$ y'" by (simp add: carr)
qed

```
lemma (in monoid_cancel) properfactor_mult_lI [intro]:
    assumes ab: "properfactor G a b"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G (c \otimes a) (c \otimes b)"
    using ab carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in monoid_cancel) properfactor_mult_l [simp]:
    assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G (c \otimes a) (c \otimes b) = properfactor G a b"
    using carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
    assumes ab: "properfactor G a b"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G (a \otimes c) (b & c)"
    using ab carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
    assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G (a \otimes c) (b \otimes c) = properfactor G a b"
    using carr by (fastforce elim: properfactorE intro: properfactorI)
lemma (in monoid) properfactor_prod_r:
    assumes ab: "properfactor G a b"
        and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G a (b \otimes c)"
    by (intro properfactor_trans2[OF ab] divides_prod_r) simp_all
lemma (in comm_monoid) properfactor_prod_l:
    assumes ab: "properfactor G a b"
        and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
    shows "properfactor G a (c & b)"
    by (intro properfactor_trans2[OF ab] divides_prod_l) simp_all
```


23.4 Irreducible Elements and Primes

23.4.1 Irreducible elements

```
lemma irreducibleI:
    fixes G (structure)
    assumes "a \not\inUnits G"
        and "\b. \llbracketb \in carrier G; properfactor G b a\rrbracket \Longrightarrow b \in Units G"
    shows "irreducible G a"
    using assms unfolding irreducible_def by blast
lemma irreducibleE:
    fixes G (structure)
    assumes irr: "irreducible G a"
        and elim: "\llbracketa # Units G; \forallb. b \in carrier G ^ properfactor G b a }
```

```
b \in Units G\rrbracket\Longrightarrow P"
    shows "P"
    using assms unfolding irreducible_def by blast
lemma irreducibleD:
    fixes G (structure)
    assumes irr: "irreducible G a"
        and pf: "properfactor G b a"
        and bcarr: "b \in carrier G"
    shows "b \in Units G"
    using assms by (fast elim: irreducibleE)
lemma (in monoid_cancel) irreducible_cong [trans]:
    assumes irred: "irreducible G a"
        and aa': "a ~ a'"
        and carr[simp]: "a \in carrier G" "a' \in carrier G"
    shows "irreducible G a'"
    using assms
    apply (elim irreducibleE, intro irreducibleI)
        apply simp_all
        apply (metis assms(2) assms(3) assoc_unit_l)
    apply (metis assms(2) assms(3) assms(4) associated_sym properfactor_cong_r)
    done
lemma (in monoid) irreducible_prod_rI:
    assumes airr: "irreducible G a"
        and bunit: "b \in Units G"
        and carr[simp]: "a \in carrier G" "b \in carrier G"
    shows "irreducible G (a \otimes b)"
    using airr carr bunit
    apply (elim irreducibleE, intro irreducibleI, clarify)
        apply (subgoal_tac "a \in Units G", simp)
        apply (intro prod_unit_r[of a b] carr bunit, assumption)
    apply (metis assms(2,3) associatedI2 m_closed properfactor_cong_r)
    done
lemma (in comm_monoid) irreducible_prod_lI:
    assumes birr: "irreducible G b"
        and aunit: "a \in Units G"
        and carr [simp]: "a \in carrier G" "b \in carrier G"
    shows "irreducible G (a \otimes b)"
    apply (subst m_comm, simp+)
    apply (intro irreducible_prod_rI assms)
    done
lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
    assumes irr: "irreducible G (a \otimes b)"
        and carr[simp]: "a \in carrier G" "b \in carrier G"
        and e1: "\llbracketirreducible G a; b \in Units G\rrbracket\Longrightarrow P"
```

```
        and e2: "\llbracketa \in Units G; irreducible G b\rrbracket\Longrightarrow P"
    shows P
    using irr
proof (elim irreducibleE)
    assume abnunit: "a \otimes b # Units G"
        and isunit[rule_format]: " }\forall\textrm{ba}. ba \in carrier G ^ properfactor G ba
(a \otimes b) \longrightarrow ba \in Units G"
    show P
    proof (cases "a \in Units G")
        case aunit: True
        have "irreducible G b"
        proof (rule irreducibleI, rule notI)
            assume "b \in Units G"
            with aunit have "(a \otimes b) \in Units G" by fast
            with abnunit show "False" ..
        next
            fix c
            assume ccarr: "c \in carrier G"
                    and "properfactor G c b"
            then have "properfactor G c (a \otimes b)" by (simp add: properfactor_prod_l[of
c b a])
            with ccarr show "c \in Units G" by (fast intro: isunit)
        qed
        with aunit show "P" by (rule e2)
    next
        case anunit: False
        with carr have "properfactor G b (b \otimes a)" by (fast intro: properfactorI3)
        then have bf: "properfactor G b (a \otimes b)" by (subst m_comm[of a b],
simp+)
            then have bunit: "b \in Units G" by (intro isunit, simp)
        have "irreducible G a"
        proof (rule irreducibleI, rule notI)
            assume "a \in Units G"
            with bunit have "(a \otimes b) \in Units G" by fast
            with abnunit show "False" ..
        next
            fix c
            assume ccarr: "c \in carrier G"
                and "properfactor G c a"
            then have "properfactor G c (a \otimes b)"
                by (simp add: properfactor_prod_r [of c a b])
            with ccarr show "c \in Units G" by (fast intro: isunit)
        qed
        from this bunit show "P" by (rule e1)
        qed
qed
```


23.4.2 Prime elements

```
lemma primeI:
    fixes G (structure)
    assumes "p & Units G"
        and "\a b. \llbracketa \in carrier G; b \in carrier G; p divides (a \otimes b)\rrbracket \Longrightarrow
p divides a V p divides b"
    shows "prime G p"
    using assms unfolding prime_def by blast
lemma primeE:
    fixes G (structure)
    assumes pprime: "prime G p"
        and e: "\llbracketp & Units G; \foralla\incarrier G. \forallb\incarrier G.
            p divides a }\otimes\textrm{b}\longrightarrow\textrm{p}\mathrm{ divides a }\vee\textrm{p}\mathrm{ divides b\ # P"
    shows "P"
    using pprime unfolding prime_def by (blast dest: e)
lemma (in comm_monoid_cancel) prime_divides:
    assumes carr: "a \in carrier G" "b \in carrier G"
        and pprime: "prime G p"
        and pdvd: "p divides a & b"
    shows "p divides a V p divides b"
    using assms by (blast elim: primeE)
lemma (in monoid_cancel) prime_cong [trans]:
    assumes pprime: "prime G p"
        and pp': "p ~ p'"
        and carr[simp]: "p \in carrier G" "p' \in carrier G"
    shows "prime G p'"
    using pprime
    apply (elim primeE, intro primeI)
        apply (metis assms(2) assms(3) assoc_unit_l)
    apply (metis assms(2) assms(3) assms(4) associated_sym divides_cong_l
m_closed)
    done
```


23.5 Factorization and Factorial Monoids

23.5.1 Function definitions

```
definition factors :: "[_, 'a list, 'a] => bool"
    where "factors G fs a \longleftrightarrow ( }\forall\textrm{x}\in\mathrm{ (set fs). irreducible G x) ^ foldr
(op }\mp@subsup{\otimes}{G}{}\mathrm{ ) fs 1}\mp@subsup{1}{G}{}=\mp@subsup{a}{}{\prime
definition wfactors ::"[_, 'a list, 'a] => bool"
    where "wfactors G fs a \longleftrightarrow \longleftrightarrow (\forallx\in (set fs). irreducible G x) ^ foldr
(op * &G) fs 1, (G ~G a"
abbreviation list_assoc :: "('a,_) monoid_scheme => 'a list = 'a list
```

```
=> bool" (infix "[~] \imath" 44)
    where "list_assoc G \equiv list_all2 (op ~G)"
definition essentially_equal :: "[_, 'a list, 'a list] }=>\mathrm{ bool"
    where "essentially_equal G fs1 fs2 \longleftrightarrow(\existsfs1'. fs1 < ~ > fs1' ^ fs1'
[~]}\mp@subsup{]}{\textrm{G}}{\textrm{fs}2)"
locale factorial_monoid = comm_monoid_cancel +
    assumes factors_exist: "\llbracketa \in carrier G; a }\not=\mathrm{ Units G\ # ヨfs. set fs
\subseteq \mp@code { c a r r i e r ~ G ~ ^ ~ f a c t o r s ~ G ~ f s ~ a " }
    and factors_unique:
            "\llbracketfactors G fs a; factors G fs' a; a \in carrier G; a \not\in Units G;
                        set fs }\subseteq\mathrm{ carrier G; set fs' }\subseteq\mathrm{ carrier G\ }\Longrightarrow essentially_equal
G fs fs'"
```


23.5.2 Comparing lists of elements

Association on lists

```
lemma (in monoid) listassoc_refl [simp, intro]:
    assumes "set as \subseteqcarrier G"
    shows "as [~] as"
    using assms by (induct as) simp_all
lemma (in monoid) listassoc_sym [sym]:
    assumes "as [~] bs"
        and "set as \subseteqcarrier G"
        and "set bs \subseteqcarrier G"
    shows "bs [~] as"
    using assms
proof (induct as arbitrary: bs, simp)
    case Cons
    then show ?case
        apply (induct bs)
            apply simp
        apply clarsimp
        apply (iprover intro: associated_sym)
        done
qed
lemma (in monoid) listassoc_trans [trans]:
    assumes "as [~] bs" and "bs [~] cs"
            and "set as \subseteqcarrier G" and "set bs \subseteq carrier G" and "set cs \subseteq
carrier G"
    shows "as [~] cs"
    using assms
    apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
    apply (rule associated_trans)
        apply (subgoal_tac "as ! i ~ bs ! i", assumption)
```

```
            apply (simp, simp)
        apply blast+
    done
lemma (in monoid_cancel) irrlist_listassoc_cong:
    assumes "\foralla\inset as. irreducible G a"
        and "as [~] bs"
        and "set as \subseteqcarrier G" and "set bs \subseteq carrier G"
    shows "\foralla\inset bs. irreducible G a"
    using assms
    apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
    apply (blast intro: irreducible_cong)
    done
```


Permutations

```
lemma perm_map [intro]:
```

lemma perm_map [intro]:
assumes p: "a <~~> b"
assumes p: "a <~~> b"
shows "map f a <~~
shows "map f a <~~
using p by induct auto
using p by induct auto
lemma perm_map_switch:
lemma perm_map_switch:
assumes m: "map f a = map f b" and p: "b <~~> c"
assumes m: "map f a = map f b" and p: "b <~~> c"
shows "\existsd. a < ~ > d ^ map f d = map f c"
shows "\existsd. a < ~ > d ^ map f d = map f c"
using p m by (induct arbitrary: a) (simp, force, force, blast)
using p m by (induct arbitrary: a) (simp, force, force, blast)
lemma (in monoid) perm_assoc_switch:
lemma (in monoid) perm_assoc_switch:
assumes a:"as [~] bs" and p: "bs <~~> cs"
assumes a:"as [~] bs" and p: "bs <~~> cs"
shows "\existsbs'. as <~~> bs' ^ bs' [~] cs"
shows "\existsbs'. as <~~> bs' ^ bs' [~] cs"
using p a
using p a
apply (induct bs cs arbitrary: as, simp)
apply (induct bs cs arbitrary: as, simp)
apply (clarsimp simp add: list_all2_Cons2, blast)
apply (clarsimp simp add: list_all2_Cons2, blast)
apply (clarsimp simp add: list_all2_Cons2)
apply (clarsimp simp add: list_all2_Cons2)
apply blast
apply blast
apply blast
apply blast
done
done
lemma (in monoid) perm_assoc_switch_r:
lemma (in monoid) perm_assoc_switch_r:
assumes p: "as <~~ > bs" and a:"bs [~] cs"
assumes p: "as <~~ > bs" and a:"bs [~] cs"
shows "\existsbs'. as [~] bs' ^ bs' <~~> cs"
shows "\existsbs'. as [~] bs' ^ bs' <~~> cs"
using p a
using p a
apply (induct as bs arbitrary: cs, simp)
apply (induct as bs arbitrary: cs, simp)
apply (clarsimp simp add: list_all2_Cons1, blast)
apply (clarsimp simp add: list_all2_Cons1, blast)
apply (clarsimp simp add: list_all2_Cons1)
apply (clarsimp simp add: list_all2_Cons1)
apply blast
apply blast
apply blast
apply blast
done
done
declare perm_sym [sym]

```
```

lemma perm_setP:
assumes perm: "as <~~> bs"
and as: "P (set as)"
shows "P (set bs)"
proof -
from perm have "mset as = mset bs"
by (simp add: mset_eq_perm)
then have "set as = set bs"
by (rule mset_eq_setD)
with as show "P (set bs)"
by simp
qed
lemmas (in monoid) perm_closed = perm_setP[of _ _ "\lambdaas. as \subseteq carrier
G"]
lemmas (in monoid) irrlist_perm_cong = perm_setP[of _ _ "\lambdaas. \foralla\inas.
irreducible G a"]
Essentially equal factorizations

```
```

lemma (in monoid) essentially_equalI:

```
lemma (in monoid) essentially_equalI:
    assumes ex: "fs1 <~~> fs1'" "fs1' [~] fs2"
    assumes ex: "fs1 <~~> fs1'" "fs1' [~] fs2"
    shows "essentially_equal G fs1 fs2"
    shows "essentially_equal G fs1 fs2"
    using ex unfolding essentially_equal_def by fast
    using ex unfolding essentially_equal_def by fast
lemma (in monoid) essentially_equalE:
lemma (in monoid) essentially_equalE:
    assumes ee: "essentially_equal G fs1 fs2"
    assumes ee: "essentially_equal G fs1 fs2"
        and e: "\fs1'. \llbracketfs1 <~~> fs1'; fs1' [~] fs2\rrbracket \Longrightarrow P"
        and e: "\fs1'. \llbracketfs1 <~~> fs1'; fs1' [~] fs2\rrbracket \Longrightarrow P"
    shows "P"
    shows "P"
    using ee unfolding essentially_equal_def by (fast intro: e)
    using ee unfolding essentially_equal_def by (fast intro: e)
lemma (in monoid) ee_refl [simp,intro]:
lemma (in monoid) ee_refl [simp,intro]:
    assumes carr: "set as \subseteq carrier G"
    assumes carr: "set as \subseteq carrier G"
    shows "essentially_equal G as as"
    shows "essentially_equal G as as"
    using carr by (fast intro: essentially_equalI)
    using carr by (fast intro: essentially_equalI)
lemma (in monoid) ee_sym [sym]:
lemma (in monoid) ee_sym [sym]:
    assumes ee: "essentially_equal G as bs"
    assumes ee: "essentially_equal G as bs"
        and carr: "set as \subseteqcarrier G" "set bs \subseteq carrier G"
        and carr: "set as \subseteqcarrier G" "set bs \subseteq carrier G"
    shows "essentially_equal G bs as"
    shows "essentially_equal G bs as"
    using ee
    using ee
proof (elim essentially_equalE)
proof (elim essentially_equalE)
    fix fs
    fix fs
    assume "as <~~> fs" "fs [~] bs"
    assume "as <~~> fs" "fs [~] bs"
    from perm_assoc_switch_r [OF this] obtain fs' where a: "as [~] fs'"
    from perm_assoc_switch_r [OF this] obtain fs' where a: "as [~] fs'"
and p: "fs' <~~> bs"
and p: "fs' <~~> bs"
        by blast
        by blast
    from p have "bs <~ ~ f fs'" by (rule perm_sym)
    from p have "bs <~ ~ f fs'" by (rule perm_sym)
    with a[symmetric] carr show ?thesis
```

 with a[symmetric] carr show ?thesis
    ```
```

 by (iprover intro: essentially_equalI perm_closed)
 qed
lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal
G bs cs"
and ascarr: "set as \subseteq carrier G"
and bscarr: "set bs \subseteq carrier G"
and cscarr: "set cs \subseteq carrier G"
shows "essentially_equal G as cs"
using ab bc
proof (elim essentially_equalE)
fix abs bcs
assume "abs [~] bs" and pb: "bs <~~> bcs"
from perm_assoc_switch [OF this] obtain bs' where p: "abs <~~ > bs'"
and a: "bs' [~] bcs"
by blast
assume "as <~~> abs"
with p have pp: "as <~~ > bs'" by fast
from pp ascarr have c1: "set bs' \subseteq carrier G" by (rule perm_closed)
from pb bscarr have c2: "set bcs \subseteq carrier G" by (rule perm_closed)
note a
also assume "bcs [~] cs"
finally (listassoc_trans) have "bs' [~] cs" by (simp add: c1 c2 cscarr)
with pp show ?thesis
by (rule essentially_equalI)
qed

```

\subsection*{23.5.3 Properties of lists of elements}

Multiplication of factors in a list
```

lemma (in monoid) multlist_closed [simp, intro]:
assumes ascarr: "set fs \subseteq carrier G"
shows "foldr (op \otimes) fs 1 \in carrier G"
using ascarr by (induct fs) simp_all
lemma (in comm_monoid) multlist_dividesI :
assumes "f \in set fs" and "f \in carrier G" and "set fs }\subseteq\mathrm{ carrier G"
shows "f divides (foldr (op \otimes) fs 1)"
using assms
apply (induct fs)
apply simp
apply (case_tac "f = a")
apply simp
apply (fast intro: dividesI)
apply clarsimp
apply (metis assms(2) divides_prod_l multlist_closed)

```
done
lemma (in comm_monoid_cancel) multlist_listassoc_cong:
assumes "fs [~] fs'"
and "set fs \(\subseteq\) carrier G" and "set fs' \(\subseteq\) carrier G"
shows "foldr (op \(\otimes\) ) fs \(1 \sim\) foldr (op \(\otimes\) ) fs' 1 "
using assms
proof (induct fs arbitrary: fs', simp)
case (Cons a as fs')
then show ?case
apply (induct fs', simp)
proof clarsimp
fix b bs
assume "a ~b"
and acarr: "a \(\in\) carrier G" and bcarr: "b \(\in\) carrier G" and ascarr: "set as \(\subseteq\) carrier G"
then have \(\mathrm{p}: ~ " \mathrm{a} \otimes\) foldr op \(\otimes\) as \(1 \sim \mathrm{~b} \otimes\) foldr op \(\otimes\) as 1" by (fast intro: mult_cong_l)
also
assume "as [~] bs"
and bscarr: "set bs \(\subseteq\) carrier G"
and " \(\bigwedge\) fs'. \(\llbracket\) as \([\sim]\) fs'; set \(f s^{\prime} \subseteq\) carrier \(G \rrbracket \Longrightarrow\) foldr op \(\otimes\) as
\(1 \sim\) foldr op \(\otimes\) fs' \(\mathbf{1 "}^{\prime \prime}\)
then have "foldr op \(\otimes\) as \(1 \sim\) foldr op \(\otimes\) bs 1 " by simp
with ascarr bscarr bcarr have "b \(\otimes\) foldr op \(\otimes\) as \(1 \sim b \otimes\) foldr
op \(\otimes\) bs 1" by (fast intro: mult_cong_r)
finally show "a \(\otimes\) foldr op \(\otimes\) as \(1 \sim b \otimes\) foldr op \(\otimes\) bs 1" by (simp add: ascarr bscarr acarr bcarr)
qed
qed
lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"
and ascarr: "set as \(\subseteq\) carrier G"
shows "foldr (op \(\otimes\) ) as \(1=\) foldr ( \(o p \otimes\) ) bs 1"
using prm ascarr
apply (induct, simp, clarsimp simp add: m_ac, clarsimp)
proof clarsimp
fix xs ys \(z s\)
assume "xs <~~> ys" "set xs \(\subseteq\) carrier G"
then have "set ys \(\subseteq\) carrier \(G\) " by (rule perm_closed)
moreover assume "set ys \(\subseteq\) carrier \(G \Longrightarrow\) foldr op \(\otimes\) ys \(1=\) foldr op
Q zs 1"
ultimately show "foldr op \(\otimes\) ys \(1=\) foldr op \(\otimes\) zs 1" by simp qed
lemma (in comm_monoid_cancel) multlist_ee_cong:
assumes "essentially_equal G fs fs'"
```

 and "set fs \subseteqcarrier G" and "set fs' \subseteq carrier G"
 shows "foldr (op \otimes) fs 1 ~ foldr (op \otimes) fs' 1"
using assms
apply (elim essentially_equalE)
apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
done

```

\subsection*{23.5.4 Factorization in irreducible elements}
```

lemma wfactorsI:
fixes G (structure)
assumes "\forallf\inset fs. irreducible G f"
and "foldr (op \otimes) fs 1 ~ a"
shows "wfactors G fs a"
using assms unfolding wfactors_def by simp
lemma wfactorsE:
fixes G (structure)
assumes wf: "wfactors G fs a"
and e: "\llbracket\forallf\inset fs. irreducible G f; foldr (op \otimes) fs 1 ~ a\rrbracket \Longrightarrow
P"
shows "P"
using wf unfolding wfactors_def by (fast dest: e)
lemma (in monoid) factorsI:
assumes "\forallf\inset fs. irreducible G f"
and "foldr (op \otimes) fs 1 = a"
shows "factors G fs a"
using assms unfolding factors_def by simp
lemma factorsE:
fixes G (structure)
assumes f: "factors G fs a"
and e: "\llbracket\forallf\inset fs. irreducible G f; foldr (op \otimes) fs 1 = a\rrbracket \Longrightarrow P"
shows "P"
using f unfolding factors_def by (simp add: e)
lemma (in monoid) factors_wfactors:
assumes "factors G as a" and "set as \subseteq carrier G"
shows "wfactors G as a"
using assms by (blast elim: factorsE intro: wfactorsI)
lemma (in monoid) wfactors_factors:
assumes "wfactors G as a" and "set as \subseteq carrier G"
shows "\existsa'. factors G as a' ^ a' ~ a"
using assms by (blast elim: wfactorsE intro: factorsI)
lemma (in monoid) factors_closed [dest]:
assumes "factors G fs a" and "set fs \subseteqcarrier G"

```
```

 shows "a \in carrier G"
 using assms by (elim factorsE, clarsimp)
 lemma (in monoid) nunit_factors:
assumes anunit: "a \& Units G"
and fs: "factors G as a"
shows "length as > 0"
proof -
from anunit Units_one_closed have "a \not= 1" by auto
with fs show ?thesis by (auto elim: factorsE)
qed
lemma (in monoid) unit_wfactors [simp]:
assumes aunit: "a \in Units G"
shows "wfactors G [] a"
using aunit by (intro wfactorsI) (simp, simp add: Units_assoc)
lemma (in comm_monoid_cancel) unit_wfactors_empty:
assumes aunit: "a \in Units G"
and wf: "wfactors G fs a"
and carr[simp]: "set fs \subseteq carrier G"
shows "fs = []"
proof (cases fs)
case Nil
then show ?thesis .
next
case fs: (Cons f fs')
from carr have fcarr[simp]: "f \in carrier G" and carr'[simp]: "set
fs' \subseteq carrier G"
by (simp_all add: fs)
from fs wf have "irreducible G f" by (simp add: wfactors_def)
then have fnunit: "f \& Units G" by (fast elim: irreducibleE)
from fs wf have a: "f \otimes foldr (op \otimes) fs' 1 ~ a" by (simp add: wfactors_def)
note aunit
also from fs wf
have a: "f \& foldr (op \otimes) fs' 1 ~ a" by (simp add: wfactors_def)
have "a ~ f \& foldr (op \otimes) fs' 1"
by (simp add: Units_closed[OF aunit] a[symmetric])
finally have "f \& foldr (op \otimes) fs' 1 \in Units G" by simp
then have "f \in Units G" by (intro unit_factor[of f], simp+)
with fnunit show ?thesis by contradiction
qed
Comparing wfactors

```
```

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:

```
lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
    assumes fact: "wfactors G fs a"
```

```
        and asc: "fs [~] fs'"
        and carr: "a \in carrier G" "set fs }\subseteq\mathrm{ carrier G" "set fs' }\subseteq\mathrm{ carrier
G"
    shows "wfactors G fs' a"
    using fact
    apply (elim wfactorsE, intro wfactorsI)
        apply (metis assms(2) assms(4) assms(5) irrlist_listassoc_cong)
proof -
    from asc[symmetric] have "foldr op \otimes fs' 1 ~ foldr op \otimes fs 1"
        by (simp add: multlist_listassoc_cong carr)
    also assume "foldr op & fs 1 ~ a"
    finally show "foldr op \otimes fs' 1 ~ a" by (simp add: carr)
qed
lemma (in comm_monoid) wfactors_perm_cong_l:
    assumes "wfactors G fs a"
        and "fs <~~> fs'"
        and "set fs \subseteq carrier G"
    shows "wfactors G fs' a"
    using assms
    apply (elim wfactorsE, intro wfactorsI)
        apply (rule irrlist_perm_cong, assumption+)
    apply (simp add: multlist_perm_cong[symmetric])
    done
lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
    assumes ee: "essentially_equal G as bs"
        and bfs: "wfactors G bs b"
        and carr: "b \in carrier G" "set as }\subseteq\mathrm{ carrier G" "set bs }\subseteq\mathrm{ carrier
G"
    shows "wfactors G as b"
    using ee
proof (elim essentially_equalE)
    fix fs
    assume prm: "as <~~> fs"
    with carr have fscarr: "set fs \subseteq carrier G" by (simp add: perm_closed)
    note bfs
    also assume [symmetric]: "fs [~] bs"
    also (wfactors_listassoc_cong_l)
    note prm[symmetric]
    finally (wfactors_perm_cong_l)
    show "wfactors G as b" by (simp add: carr fscarr)
qed
lemma (in monoid) wfactors_cong_r [trans]:
    assumes fac: "wfactors G fs a" and aa': "a ~ a'"
        and carr[simp]: "a \in carrier G" "a' \in carrier G" "set fs \subseteq carrier
G"
```

```
    shows "wfactors G fs a'"
    using fac
proof (elim wfactorsE, intro wfactorsI)
    assume "foldr op \otimes fs 1 ~ a" also note aa'
    finally show "foldr op \otimes fs 1 ~ a'" by simp
qed
```


23.5.5 Essentially equal factorizations

```
lemma (in comm_monoid_cancel) unitfactor_ee:
    assumes uunit: "u \in Units G"
        and carr: "set as }\subseteq\mathrm{ carrier G"
    shows "essentially_equal G (as[0 := (as!0 \otimes u)]) as"
        (is "essentially_equal G ?as' as")
    using assms
    apply (intro essentially_equalI[of _ ?as'], simp)
    apply (cases as, simp)
    apply (clarsimp, fast intro: associatedI2[of u])
    done
lemma (in comm_monoid_cancel) factors_cong_unit:
    assumes uunit: "u \in Units G"
        and anunit: "a & Units G"
        and afs: "factors G as a"
        and ascarr: "set as \subseteq carrier G"
    shows "factors G (as[0 := (as!0 \otimes u)]) (a \otimes u)"
        (is "factors G ?as' ?a'")
    using assms
    apply (elim factorsE, clarify)
    apply (cases as)
        apply (simp add: nunit_factors)
    apply clarsimp
    apply (elim factorsE, intro factorsI)
        apply (clarsimp, fast intro: irreducible_prod_rI)
    apply (simp add: m_ac Units_closed)
    done
lemma (in comm_monoid) perm_wfactorsD:
    assumes prm: "as < ~ > bs"
        and afs: "wfactors G as a"
        and bfs: "wfactors G bs b"
        and [simp]: "a \in carrier G" "b \in carrier G"
        and ascarr [simp]: "set as \subseteq carrier G"
    shows "a ~ b"
    using afs bfs
proof (elim wfactorsE)
    from prm have [simp]: "set bs \subseteq carrier G" by (simp add: perm_closed)
    assume "foldr op \otimes as 1 ~ a"
    then have "a ~ foldr op \otimes as 1" by (rule associated_sym, simp+)
```

```
    also from prm
    have "foldr op \otimes as 1 = foldr op \otimes bs 1" by (rule multlist_perm_cong,
simp)
    also assume "foldr op \otimes bs 1 ~ b"
    finally show "a ~ b" by simp
qed
lemma (in comm_monoid_cancel) listassoc_wfactorsD:
    assumes assoc: "as [~] bs"
        and afs: "wfactors G as a"
        and bfs: "wfactors G bs b"
        and [simp]: "a \in carrier G" "b \in carrier G"
        and [simp]: "set as \subseteq carrier G" "set bs \subseteq carrier G"
    shows "a ~ b"
    using afs bfs
proof (elim wfactorsE)
    assume "foldr op \otimes as 1 ~ a"
    then have "a ~ foldr op Q as 1" by (rule associated_sym, simp+)
    also from assoc
    have "foldr op \otimes as 1 ~ foldr op \otimes bs 1" by (rule multlist_listassoc_cong,
simp+)
    also assume "foldr op & bs 1 ~ b"
    finally show "a ~ b" by simp
qed
lemma (in comm_monoid_cancel) ee_wfactorsD:
    assumes ee: "essentially_equal G as bs"
        and afs: "wfactors G as a" and bfs: "wfactors G bs b"
        and [simp]: "a \in carrier G" "b \in carrier G"
        and ascarr[simp]: "set as \subseteq carrier G" and bscarr[simp]: "set bs
\subseteq \mp@code { c a r r i e r ~ G " }
    shows "a ~ b"
    using ee
proof (elim essentially_equalE)
    fix fs
    assume prm: "as <~~
    then have as'carr[simp]: "set fs \subseteq carrier G"
        by (simp add: perm_closed)
    from afs prm have afs': "wfactors G fs a"
        by (rule wfactors_perm_cong_l) simp
    assume "fs [~] bs"
    from this afs' bfs show "a ~ b"
        by (rule listassoc_wfactorsD) simp_all
qed
lemma (in comm_monoid_cancel) ee_factorsD:
    assumes ee: "essentially_equal G as bs"
        and afs: "factors G as a" and bfs:"factors G bs b"
        and "set as \subseteq carrier G" "set bs \subseteq carrier G"
```

```
    shows "a ~ b"
    using assms by (blast intro: factors_wfactors dest: ee_wfactorsD)
lemma (in factorial_monoid) ee_factorsI:
    assumes ab: "a ~ b"
        and afs: "factors G as a" and anunit: "a & Units G"
        and bfs: "factors G bs b" and bnunit: "b & Units G"
        and ascarr: "set as \subseteqcarrier G" and bscarr: "set bs \subseteq carrier G"
    shows "essentially_equal G as bs"
proof -
    note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
        factors_closed[OF bfs bscarr] bscarr[THEN subsetD]
    from ab carr obtain u where uunit: "u \in Units G" and a: "a = b \otimes u"
        by (elim associatedE2)
    from uunit bscarr have ee: "essentially_equal G (bs[0 := (bs!0 \otimes u)])
bs"
        (is "essentially_equal G ?bs' bs")
        by (rule unitfactor_ee)
    from bscarr uunit have bs'carr: "set ?bs' \subseteq carrier G"
        by (cases bs) (simp_all add: Units_closed)
    from uunit bnunit bfs bscarr have fac: "factors G ?bs' (b \otimes u)"
        by (rule factors_cong_unit)
    from afs fac[simplified a[symmetric]] ascarr bs'carr anunit
    have "essentially_equal G as ?bs'"
        by (blast intro: factors_unique)
    also note ee
    finally show "essentially_equal G as bs"
        by (simp add: ascarr bscarr bs'carr)
qed
lemma (in factorial_monoid) ee_wfactorsI:
    assumes asc: "a ~ b"
        and asf: "wfactors G as a" and bsf: "wfactors G bs b"
        and acarr[simp]: "a \in carrier G" and bcarr[simp]: "b \in carrier G"
        and ascarr[simp]: "set as \subseteq carrier G" and bscarr[simp]: "set bs
\subseteq \mp@code { c a r r i e r ~ G " }
    shows "essentially_equal G as bs"
    using assms
proof (cases "a \in Units G")
    case aunit: True
    also note asc
    finally have bunit: "b \in Units G" by simp
    from aunit asf ascarr have e: "as = []"
```

```
    by (rule unit_wfactors_empty)
    from bunit bsf bscarr have e': "bs = []"
        by (rule unit_wfactors_empty)
    have "essentially_equal G [] []"
        by (fast intro: essentially_equalI)
    then show ?thesis
        by (simp add: e e')
next
    case anunit: False
    have bnunit: "b & Units G"
    proof clarify
        assume "b \in Units G"
        also note asc[symmetric]
        finally have "a \in Units G" by simp
        with anunit show False ..
    qed
    from wfactors_factors[OF asf ascarr] obtain a' where fa': "factors
G as a'" and a': "a' ~ a"
        by blast
    from fa' ascarr have a'carr[simp]: "a' \in carrier G"
        by fast
    have a'nunit: "a' & Units G"
    proof clarify
        assume "a' \in Units G"
        also note a'
        finally have "a \in Units G" by simp
        with anunit
        show "False" ..
    qed
    from wfactors_factors[OF bsf bscarr] obtain b' where fb': "factors
G bs b'" and b': "b' ~ b"
        by blast
    from fb' bscarr have b'carr[simp]: "b' \in carrier G"
        by fast
    have b'nunit: "b' \not\in Units G"
    proof clarify
        assume "b' \in Units G"
        also note b'
        finally have "b \in Units G" by simp
        with bnunit show False ..
qed
note a'
also note asc
```

```
    also note b'[symmetric]
    finally have "a' ~ b'" by simp
    from this fa' a'nunit fb' b'nunit ascarr bscarr show "essentially_equal
G as bs"
    by (rule ee_factorsI)
qed
lemma (in factorial_monoid) ee_wfactors:
    assumes asf: "wfactors G as a"
        and bsf: "wfactors G bs b"
        and acarr: "a \in carrier G" and bcarr: "b \in carrier G"
        and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
    shows asc: "a ~ b = essentially_equal G as bs"
    using assms by (fast intro: ee_wfactorsI ee_wfactorsD)
lemma (in factorial_monoid) wfactors_exist [intro, simp]:
    assumes acarr[simp]: "a \in carrier G"
    shows " }\exists\textrm{fs}
proof (cases "a \in Units G")
    case True
    then have "wfactors G [] a" by (rule unit_wfactors)
    then show ?thesis by (intro exI) force
next
    case False
    with factors_exist [OF acarr] obtain fs where fscarr: "set fs }\subseteq\mathrm{ carrier
G" and f: "factors G fs a"
            by blast
    from f have "wfactors G fs a" by (rule factors_wfactors) fact
    with fscarr show ?thesis by fast
qed
lemma (in monoid) wfactors_prod_exists [intro, simp]:
    assumes "\foralla \in set as. irreducible G a" and "set as \subseteq carrier G"
    shows "\existsa. a \in carrier G ^ wfactors G as a"
    unfolding wfactors_def using assms by blast
lemma (in factorial_monoid) wfactors_unique:
    assumes "wfactors G fs a"
        and "wfactors G fs' a"
        and "a \in carrier G"
        and "set fs \subseteq carrier G"
        and "set fs' \subseteq carrier G"
    shows "essentially_equal G fs fs'"
    using assms by (fast intro: ee_wfactorsI[of a a])
lemma (in monoid) factors_mult_single:
    assumes "irreducible G a" and "factors G fb b" and "a \in carrier G"
    shows "factors G (a # fb) (a \otimes b)"
    using assms unfolding factors_def by simp
```

```
lemma (in monoid_cancel) wfactors_mult_single:
    assumes f: "irreducible G a" "wfactors G fb b"
        "a \in carrier G" "b \in carrier G" "set fb \subseteq carrier G"
    shows "wfactors G (a # fb) (a \otimes b)"
    using assms unfolding wfactors_def by (simp add: mult_cong_r)
lemma (in monoid) factors_mult:
    assumes factors: "factors G fa a" "factors G fb b"
        and ascarr: "set fa \subseteq carrier G"
        and bscarr: "set fb \subseteq carrier G"
    shows "factors G (fa @ fb) (a & b)"
    using assms
    unfolding factors_def
    apply safe
        apply force
    apply hypsubst_thin
    apply (induct fa)
        apply simp
    apply (simp add: m_assoc)
    done
lemma (in comm_monoid_cancel) wfactors_mult [intro]:
    assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"
        and acarr: "a \in carrier G" and bcarr: "b \in carrier G"
        and ascarr: "set as \subseteq carrier G" and bscarr:"set bs \subseteq carrier G"
    shows "wfactors G (as @ bs) (a \otimes b)"
    using wfactors_factors[OF asf ascarr] and wfactors_factors[OF bsf bscarr]
proof clarsimp
    fix a' b'
    assume asf': "factors G as a'" and a'a: "a' ~ a"
        and bsf': "factors G bs b'" and b'b: "b' ~ b"
    from asf' have a'carr: "a' \in carrier G" by (rule factors_closed) fact
    from bsf' have b'carr: "b' \in carrier G" by (rule factors_closed) fact
    note carr = acarr bcarr a'carr b'carr ascarr bscarr
    from asf' bsf' have "factors G (as @ bs) (a' \otimes b')"
        by (rule factors_mult) fact+
    with carr have abf': "wfactors G (as @ bs) (a' \otimes b')"
        by (intro factors_wfactors) simp_all
    also from b'b carr have trb: "a' \otimes b' ~ a' \otimes b"
        by (intro mult_cong_r)
    also from a'a carr have tra: "a' \otimes b ~ a \otimes b"
        by (intro mult_cong_l)
    finally show "wfactors G (as @ bs) (a \otimes b)"
        by (simp add: carr)
qed
```

```
lemma (in comm_monoid) factors_dividesI:
    assumes "factors G fs a"
        and "f \in set fs"
        and "set fs \subseteq carrier G"
    shows "f divides a"
    using assms by (fast elim: factorsE intro: multlist_dividesI)
lemma (in comm_monoid) wfactors_dividesI:
    assumes p: "wfactors G fs a"
        and fscarr: "set fs \subseteq carrier G" and acarr: "a \in carrier G"
        and f: "f \in set fs"
    shows "f divides a"
    using wfactors_factors[OF p fscarr]
proof clarsimp
    fix a'
    assume fsa': "factors G fs a'" and a'a: "a' ~ a"
    with fscarr have a'carr: "a' \in carrier G"
        by (simp add: factors_closed)
    from fsa' fscarr f have "f divides a'"
        by (fast intro: factors_dividesI)
    also note a'a
    finally show "f divides a"
        by (simp add: f fscarr[THEN subsetD] acarr a'carr)
qed
```


23.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:
assumes wfactors_exists: " $\bigwedge a . a \in \operatorname{carrier~} G \Longrightarrow \exists$ fs. set fs \subseteq carrier
G ^ wfactors G fs a"
and wfactors_unique:
 G;
wfactors G fs a; wfactors G fs' $a \rrbracket \Longrightarrow$ essentially_equal G fs
fs'"
shows "factorial_monoid G"
proof
fix a
assume acarr: "a \in carrier G" and anunit: "a \notin Units G"
from wfactors_exists[0F acarr]
obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors G
as a"
by blast
from wfactors_factors [OF afs ascarr] obtain a' where afs': "factors
G as a'" and a'a: "a' ~ a"
by blast

```
    from afs' ascarr have a'carr: "a' \in carrier G"
        by fast
    have a'nunit: "a' \not\in Units G"
    proof clarify
        assume "a' \in Units G"
        also note a'a
        finally have "a \in Units G" by (simp add: acarr)
        with anunit show False ..
    qed
    from a'carr acarr a'a obtain u where uunit: "u \in Units G" and a':
"a' = a & u"
        by (blast elim: associatedE2)
    note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]
    have "a = a \otimes 1" by simp
    also have "... = a \otimes (u \otimes inv u)" by (simp add: uunit)
    also have "... = a' \otimes inv u" by (simp add: m_assoc[symmetric] a'[symmetric])
    finally have a: "a = a' \otimes inv u".
    from ascarr uunit have cr: "set (as[0:=(as!0\otimes inv u)]) \subseteq carrier
G"
        by (cases as) auto
    from afs' uunit a'nunit acarr ascarr have "factors G (as[0:=(as!0 \otimes
inv u)]) a"
        by (simp add: a factors_cong_unit)
    with cr show "\existsfs. set fs }\subseteq\mathrm{ carrier G ^ factors G fs a"
        by fast
qed (blast intro: factors_wfactors wfactors_unique)
```


23.6 Factorizations as Multisets

Gives useful operations like intersection
abbreviation "assocs $G \mathrm{x} \equiv$ eq_closure_of (division_rel G) \{x\}"
definition $" f m s e t ~ G a s=m s e t(m a p(\lambda a . \operatorname{assocs} G a) a s) "$
Helper lemmas
lemma (in monoid) assocs_repr_independence:
assumes "y $\in \operatorname{assocs} G x$ "
and " $\mathrm{x} \in$ carrier G "
shows "assocs $G x=\operatorname{assocs} G y "$
using assms
apply safe
apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])
apply (clarsimp, iprover intro: associated_trans associated_sym,
simp+)

```
    apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])
        apply (clarsimp, iprover intro: associated_trans, simp+)
    done
lemma (in monoid) assocs_self:
    assumes "x \in carrier G"
    shows "x \in assocs G x"
    using assms by (fastforce intro: closure_ofI2)
lemma (in monoid) assocs_repr_independenceD:
    assumes repr: "assocs G x = assocs G y"
        and ycarr: "y \in carrier G"
    shows "y \in assocs G x"
    unfolding repr using ycarr by (intro assocs_self)
lemma (in comm_monoid) assocs_assoc:
    assumes "a \in assocs G b"
        and "b \in carrier G"
    shows "a ~ b"
    using assms by (elim closure_ofE2) simp
lemmas (in comm_monoid) assocs_eqD = assocs_repr_independenceD[THEN assocs_assoc]
```


23.6.1 Comparing multisets

```
lemma (in monoid) fmset_perm_cong:
    assumes prm: "as <~ > bs"
    shows "fmset G as = fmset G bs"
    using perm_map[OF prm] unfolding mset_eq_perm fmset_def by blast
lemma (in comm_monoid_cancel) eqc_listassoc_cong:
    assumes "as [~] bs"
        and "set as \subseteq carrier G" and "set bs \subseteq carrier G"
    shows "map (assocs G) as = map (assocs G) bs"
    using assms
    apply (induct as arbitrary: bs, simp)
    apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)
        apply (clarsimp elim!: closure_ofE2) defer 1
        apply (clarsimp elim!: closure_ofE2) defer 1
proof -
    fix a x z
    assume carr[simp]: "a \in carrier G" "x \in carrier G" "z \in carrier
G"
    assume "x ~ a"
    also assume "a ~ z"
    finally have "x ~ z" by simp
    with carr show "x \in assocs G z"
        by (intro closure_ofI2) simp_all
next
```

```
    fix a x z
    assume carr [simp]: "a \in carrier G" "x \in carrier G" "z \in carrier
G"
    assume "x ~ z"
    also assume [symmetric]: "a ~ z"
    finally have "x ~ a" by simp
    with carr show "x \in assocs G a"
        by (intro closure_ofI2) simp_all
qed
lemma (in comm_monoid_cancel) fmset_listassoc_cong:
    assumes "as [~] bs"
        and "set as \subseteqcarrier G" and "set bs \subseteq carrier G"
    shows "fmset G as = fmset G bs"
    using assms unfolding fmset_def by (simp add: eqc_listassoc_cong)
lemma (in comm_monoid_cancel) ee_fmset:
    assumes ee: "essentially_equal G as bs"
        and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
    shows "fmset G as = fmset G bs"
    using ee
proof (elim essentially_equalE)
    fix as'
    assume prm: "as <~~> as'"
    from prm ascarr have as'carr: "set as' \subseteq carrier G"
        by (rule perm_closed)
    from prm have "fmset G as = fmset G as'"
        by (rule fmset_perm_cong)
    also assume "as' [~] bs"
    with as'carr bscarr have "fmset G as' = fmset G bs"
        by (simp add: fmset_listassoc_cong)
    finally show "fmset G as = fmset G bs" .
qed
lemma (in monoid_cancel) fmset_ee__hlp_induct:
    assumes prm: "cas <~~> cbs"
        and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"
    shows "\forall as bs. (cas < ~ > cbs ^ cas = map (assocs G) as ^
        cbs = map (assocs G) bs) \longrightarrow (\existsas'. as < ~~ > as' }^\mathrm{ map (assocs G)
as' = cbs)"
    apply (rule perm.induct[of cas cbs], rule prm)
            apply safe
            apply (simp_all del: mset_map)
            apply (simp add: map_eq_Cons_conv)
            apply blast
        apply force
proof -
    fix ys as bs
```

```
    assume p1: "map (assocs G) as <~~> ys"
    and r1[rule_format]:
            "\forallasa bs. map (assocs G) as = map (assocs G) asa }\wedge ys = map (assoc
G) bs
            \longrightarrow(\exists as'. asa <~ > as' ^ map (assocs G) as' = map (assocs G)
bs)"
    and p2: "ys <~~> map (assocs G) bs"
    and r2[rule_format]: "\forall as bsa. ys = map (assocs G) as }\wedge map (assoc
G) bs = map (assocs G) bsa
            \longrightarrow(\existsas'. as <~~> as' ^ map (assocs G) as' = map (assocs G) bsa)"
    and p3: "map (assocs G) as <~~> map (assocs G) bs"
    from p1 have "mset (map (assocs G) as) = mset ys"
        by (simp add: mset_eq_perm del: mset_map)
    then have setys: "set (map (assocs G) as) = set ys"
        by (rule mset_eq_setD)
    have "set (map (assocs G) as) = {assocs G x | x. x f set as}" by auto
    with setys have "set ys }\subseteq{\mp@code{assocs G x | x. x \in set as}" by simp
    then have "\existsyy. ys = map (assocs G) yy"
    proof (induct ys)
        case Nil
        then show ?case by simp
    next
        case Cons
        then show ?case
        proof clarsimp
            fix yy x
            show "\existsyya. assocs G x # map (assocs G) yy = map (assocs G) yya"
                by (rule exI[of _ "x#yy"]) simp
    qed
    qed
    then obtain yy where ys: "ys = map (assocs G) yy" ..
    from p1 ys have "\existsas'. as <~~> as' ^ map (assocs G) as' = map (assocs
G) yy"
            by (intro r1) simp
    then obtain as' where asas': "as <~~> as'" and as'yy: "map (assocs
G) as' = map (assocs G) yy"
            by auto
    from p2 ys have "\existsas'. yy <~~> as' ^ map (assocs G) as' = map (assocs
G) bs"
            by (intro r2) simp
    then obtain as'' where yyas'': "yy <~~> as''" and as''bs: "map (assocs
G) as'' = map (assocs G) bs"
            by auto
    from perm_map_switch [OF as'yy yyas'']
```

```
    obtain cs where as'cs: "as' <~~> cs" and csas'': "map (assocs G) cs
= map (assocs G) as''"
            by blast
    from asas' and as'cs have ascs: "as <~~> cs"
        by fast
    from csas'' and as''bs have "map (assocs G) cs = map (assocs G) bs"
        by simp
    with ascs show "\existsas'. as <~~> as' ^ map (assocs G) as' = map (assocs
G) bs"
        by fast
qed
lemma (in comm_monoid_cancel) fmset_ee:
    assumes mset: "fmset G as = fmset G bs"
        and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
    shows "essentially_equal G as bs"
proof -
    from mset have mpp: "map (assocs G) as <~~> map (assocs G) bs"
        by (simp add: fmset_def mset_eq_perm del: mset_map)
    define cas where "cas = map (assocs G) as"
    define cbs where "cbs = map (assocs G) bs"
    from cas_def cbs_def mpp have [rule_format]:
        "\forall as bs. (cas <~~
G) bs)
            \longrightarrow(\existsas'. as <~~> as' ^ map (assocs G) as' = cbs)"
        by (intro fmset_ee__hlp_induct, simp+)
    with mpp cas_def cbs_def have " \existsas'. as <~~> as' }\wedge map (assocs G) as'
= map (assocs G) bs"
        by simp
    then obtain as' where tp: "as <~~> as'" and tm: "map (assocs G) as'
= map (assocs G) bs"
        by auto
    from tm have lene: "length as' = length bs"
        by (rule map_eq_imp_length_eq)
    from tp have "set as = set as'"
        by (simp add: mset_eq_perm mset_eq_setD)
    with ascarr have as'carr: "set as' \subseteq carrier G"
        by simp
    from tm as'carr[THEN subsetD] bscarr[THEN subsetD] have "as' [~] bs"
        by (induct as' arbitrary: bs) (simp, fastforce dest: assocs_eqD[THEN
associated_sym])
    with tp show "essentially_equal G as bs"
        by (fast intro: essentially_equalI)
qed
```

```
lemma (in comm_monoid_cancel) ee_is_fmset:
    assumes "set as \subseteq carrier G" and "set bs \subseteq carrier G"
    shows "essentially_equal G as bs = (fmset G as = fmset G bs)"
    using assms by (fast intro: ee_fmset fmset_ee)
```


23.6.2 Interpreting multisets as factorizations

```
lemma (in monoid) mset_fmsetEx:
    assumes elems: "\X. X \in set_mset Cs \Longrightarrow \existsx. P x }^X=\mp@code{assocs G x"
    shows "\existscs. ( }\forall\textrm{c}\in\mathrm{ set cs. P c) }\wedge fmset G cs = Cs"
proof -
    from surjE[OF surj_mset] obtain Cs' where Cs: "Cs = mset Cs'"
            by blast
    have "\existscs. ( }\forall\textrm{c}\in\operatorname{set cs. P c) ^ mset (map (assocs G) cs) = Cs"
            using elems
            unfolding Cs
            apply (induct Cs', simp)
    proof (clarsimp simp del: mset_map)
            fix a Cs' cs
            assume ih: "\X. X = a \vee X G set Cs' \Longrightarrow \existsx. P x ^ X = assocs G
x"
            and csP: " }\forall\textrm{x}\in\mathrm{ set cs. P x"
            and mset: "mset (map (assocs G) cs) = mset Cs'"
            from ih obtain c where cP: "P c" and a: "a = assocs G c"
                by auto
            from cP csP have tP: "\forallx\inset (c#cs). P x"
                by simp
            from mset a have "mset (map (assocs G) (c#cs)) = add_mset a (mset
Cs')"
            by simp
            with tP show "\existscs. ( }\forall\textrm{x}\in\mathrm{ set cs. P x) ^ mset (map (assocs G) cs) =
add_mset a (mset Cs')"
                by fast
    qed
    then show ?thesis by (simp add: fmset_def)
qed
lemma (in monoid) mset_wfactorsEx:
    assumes elems: " \X. X \in set_mset Cs \Longrightarrow \existsx. (x \in carrier G ^ irreducible
G x) ^ X = assocs G x"
    shows "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^ fmset G cs = Cs"
proof -
    have "\existscs. ( }\forall\textrm{c}\in\mathrm{ set cs. c € carrier G ^ irreducible G c) ^ fmset G
cs = Cs"
            by (intro mset_fmsetEx, rule elems)
    then obtain cs where p[rule_format]: "\forallc\inset cs. c \in carrier G ^ irreducible
G c"
```

```
        and Cs[symmetric]: "fmset G cs = Cs" by auto
    from p have cscarr: "set cs \subseteq carrier G" by fast
    from p have "\existsc. c \in carrier G ^ wfactors G cs c"
        by (intro wfactors_prod_exists) auto
    then obtain c where ccarr: "c \in carrier G" and cfs: "wfactors G cs
c" by auto
    with cscarr Cs show ?thesis by fast
qed
```


23.6.3 Multiplication on multisets

```
lemma (in factorial_monoid) mult_wfactors_fmset:
    assumes afs: "wfactors G as a"
        and bfs: "wfactors G bs b"
        and cfs: "wfactors G cs (a \otimes b)"
        and carr: "a \in carrier G" "b \in carrier G"
                            "set as \subseteqcarrier G" "set bs \subseteq carrier G" "set cs }\subseteq\mathrm{ carrier
G"
    shows "fmset G cs = fmset G as + fmset G bs"
proof -
    from assms have "wfactors G (as @ bs) (a \otimes b)"
            by (intro wfactors_mult)
    with carr cfs have "essentially_equal G cs (as@bs)"
            by (intro ee_wfactorsI[of "a\otimesb" "a\otimesb"]) simp_all
    with carr have "fmset G cs = fmset G (as@bs)"
        by (intro ee_fmset) simp_all
    also have "fmset G (as@bs) = fmset G as + fmset G bs"
        by (simp add: fmset_def)
    finally show "fmset G cs = fmset G as + fmset G bs" .
qed
lemma (in factorial_monoid) mult_factors_fmset:
    assumes afs: "factors G as a"
        and bfs: "factors G bs b"
        and cfs: "factors G cs (a \otimes b)"
        and "set as \subseteqcarrier G" "set bs \subseteq carrier G" "set cs \subseteq carrier
G"
    shows "fmset G cs = fmset G as + fmset G bs"
    using assms by (blast intro: factors_wfactors mult_wfactors_fmset)
lemma (in comm_monoid_cancel) fmset_wfactors_mult:
    assumes mset: "fmset G cs = fmset G as + fmset G bs"
        and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
            "set as \subseteqcarrier G" "set bs \subseteqcarrier G" "set cs \subseteq carrier G"
        and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"
    shows "c ~ a \otimes b"
proof -
    from carr fs have m: "wfactors G (as @ bs) (a \otimes b)"
        by (intro wfactors_mult)
```

```
    from mset have "fmset G cs = fmset G (as@bs)"
        by (simp add: fmset_def)
    then have "essentially_equal G cs (as@bs)"
        by (rule fmset_ee) (simp_all add: carr)
    then show "c ~ a }\otimes\textrm{b}
        by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp_all add: assms m)
qed
```


23.6.4 Divisibility on multisets

lemma (in factorial_monoid) divides_fmsubset:
assumes ab: "a divides b"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and carr: "a \in carrier $G "$ "b \in carrier $G "$ "set as \subseteq carrier G"
"set bs \subseteq carrier G"
shows "fmset G as $\subseteq \#$ fmset G bs"
using ab
proof (elim dividesE)
fix c
assume ccarr: "c \in carrier G"
from wfactors_exist [OF this]
obtain cs where cscarr: "set cs \subseteq carrier G " and cfs: "wfactors G
cs c"
by blast
note carr $=$ carr ccarr cscarr
assume "b = a $\otimes \mathrm{c}$ "
with afs bfs cfs carr have "fmset G bs = fmset G as + fmset G cs"
by (intro mult_wfactors_fmset[0F afs cfs]) simp_all
then show ?thesis by simp
qed
lemma (in comm_monoid_cancel) fmsubset_divides:
assumes msubset: "fmset G as \subseteq \# fmset G bs"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
and ascarr: "set as \subseteq carrier G"
and bscarr: "set bs \subseteq carrier G"
shows "a divides b"
proof -
from afs have airr: " $\forall \mathrm{a} \in$ set as. irreducible G a" by (fast elim:
wfactorsE)
from bfs have birr: " $\forall \mathrm{b} \in$ set bs. irreducible G b" by (fast elim:
wfactorsE)

```
    have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^fmset G cs = fmset G bs - fmset G as"
    proof (intro mset_wfactorsEx, simp)
        fix X
        assume "X \in# fmset G bs - fmset G as"
        then have "X \in# fmset G bs" by (rule in_diffD)
        then have "X \in set (map (assocs G) bs)" by (simp add: fmset_def)
        then have " }\exists\textrm{x}.\textrm{x}\in\mathrm{ set bs }\wedge\textrm{X}=\mathrm{ assocs G x" by (induct bs) auto
        then obtain x where xbs: "x f set bs" and X: "X = assocs G x" by
auto
    with bscarr have xcarr: "x \in carrier G" by fast
    from xbs birr have xirr: "irreducible G x" by simp
    from xcarr and xirr and X show "\existsx. x \in carrier G ^ irreducible
G x ^ X = assocs G x"
        by fast
    qed
    then obtain c cs
        where ccarr: "c \in carrier G"
            and cscarr: "set cs \subseteq carrier G"
            and csf: "wfactors G cs c"
            and csmset: "fmset G cs = fmset G bs - fmset G as" by auto
    from csmset msubset
    have "fmset G bs = fmset G as + fmset G cs"
        by (simp add: multiset_eq_iff subseteq_mset_def)
    then have basc: "b ~ a \otimes c"
        by (rule fmset_wfactors_mult) fact+
    then show ?thesis
    proof (elim associatedE2)
        fix u
        assume "u \in Units G" "b = a @ c & u"
        with acarr ccarr show "a divides b"
            by (fast intro: dividesI[of "c \otimes u"] m_assoc)
    qed (simp_all add: acarr bcarr ccarr)
qed
lemma (in factorial_monoid) divides_as_fmsubset:
    assumes "wfactors G as a"
        and "wfactors G bs b"
        and "a \in carrier G"
        and "b \in carrier G"
        and "set as \subseteq carrier G"
        and "set bs \subseteq carrier G"
    shows "a divides b = (fmset G as \subseteq# fmset G bs)"
    using assms
    by (blast intro: divides_fmsubset fmsubset_divides)
```

Proper factors on multisets

```
lemma (in factorial_monoid) fmset_properfactor:
    assumes asubb: "fmset G as \subseteq# fmset G bs"
        and anb: "fmset G as }\not=\mathrm{ fmset G bs"
        and "wfactors G as a"
        and "wfactors G bs b"
        and "a \in carrier G"
        and "b \in carrier G"
        and "set as \subseteq carrier G"
        and "set bs \subseteq carrier G"
    shows "properfactor G a b"
    apply (rule properfactorI)
        apply (rule fmsubset_divides[of as bs], fact+)
proof
    assume "b divides a"
    then have "fmset G bs \subseteq# fmset G as"
        by (rule divides_fmsubset) fact+
    with asubb have "fmset G as = fmset G bs"
        by (rule subset_mset.antisym)
    with anb show False ..
qed
lemma (in factorial_monoid) properfactor_fmset:
    assumes pf: "properfactor G a b"
        and "wfactors G as a"
        and "wfactors G bs b"
        and "a \in carrier G"
        and "b \in carrier G"
        and "set as \subseteq carrier G"
        and "set bs }\subseteq\mathrm{ carrier G"
    shows "fmset G as \subseteq# fmset G bs }\wedge\mathrm{ fmset G as f= fmset G bs"
    using pf
    apply (elim properfactorE)
    apply rule
        apply (intro divides_fmsubset, assumption)
            apply (rule assms)+
    using assms(2,3,4,6,7) divides_as_fmsubset
    apply auto
    done
```


23.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_prime:
assumes pirr: "irreducible G p"
and pcarr: "p \in carrier $G "$
shows "prime G p"
using pirr
proof (elim irreducibleE, intro primeI)
fix $a b$
assume acarr: "a \in carrier G" and bcarr: "b \in carrier G"

```
        and pdvdab: "p divides (a \otimes b)"
        and pnunit: "p & Units G"
    assume irreduc[rule_format]:
        "\forall\textrm{b}.\textrm{b}\in\mathrm{ carrier G ^ properfactor G b p }\longrightarrow b \in Units G"
    from pdvdab obtain c where ccarr: "c \in carrier G" and abpc: "a \otimes b
= p\otimesc"
            by (rule dividesE)
    from wfactors_exist [OF acarr]
    obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors G
as a"
            by blast
    from wfactors_exist [OF bcarr]
    obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
            by auto
    from wfactors_exist [OF ccarr]
    obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors G
cs c"
        by auto
    note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr
    from afs and bfs have abfs: "wfactors G (as @ bs) (a \otimes b)"
        by (rule wfactors_mult) fact+
    from pirr cfs have pcfs: "wfactors G (p # cs) (p \otimes c)"
        by (rule wfactors_mult_single) fact+
    with abpc have abfs': "wfactors G (p # cs) (a \otimes b)"
        by simp
    from abfs' abfs have "essentially_equal G (p # cs) (as @ bs)"
        by (rule wfactors_unique) simp+
    then obtain ds where "p # cs <~~> ds" and dsassoc: "ds [~] (as @ bs)"
        by (fast elim: essentially_equalE)
    then have "p \in set ds"
        by (simp add: perm_set_eq[symmetric])
    with dsassoc obtain p' where "p' \in set (as@bs)" and pp': "p ~ p'"
        unfolding list_all2_conv_all_nth set_conv_nth by force
    then consider "p' }\in\mathrm{ set as" | "p' }\in\mathrm{ set bs" by auto
    then show "p divides a }V p divides b"
    proof cases
        case 1
        with ascarr have [simp]: "p' \in carrier G" by fast
        note pp'
```

```
        also from afs
        have "p' divides a" by (rule wfactors_dividesI) fact+
        finally have "p divides a" by simp
        then show ?thesis ..
    next
        case 2
    with bscarr have [simp]: "p' \in carrier G" by fast
    note pp'
    also from bfs
    have "p' divides b" by (rule wfactors_dividesI) fact+
    finally have "p divides b" by simp
    then show ?thesis ..
    qed
qed
- A version using factors, more complicated
lemma (in factorial_monoid) factors_irreducible_prime:
    assumes pirr: "irreducible G p"
        and pcarr: "p \in carrier G"
    shows "prime G p"
    using pirr
    apply (elim irreducibleE, intro primeI)
        apply assumption
proof -
    fix a b
    assume acarr: "a \in carrier G"
        and bcarr: "b \in carrier G"
        and pdvdab: "p divides (a \otimes b)"
    assume irreduc[rule_format]: " }\forall\textrm{b}.\textrm{b}\in\operatorname{carrier G ^ properfactor G b
p \longrightarrow b \in Units G"
    from pdvdab obtain c where ccarr: "c \in carrier G" and abpc: "a \otimes b
= p\otimes c"
            by (rule dividesE)
    note [simp] = pcarr acarr bcarr ccarr
    show "p divides a \vee p divides b"
    proof (cases "a \in Units G")
        case aunit: True
        note pdvdab
        also have "a \otimes b = b \otimes a" by (simp add: m_comm)
        also from aunit have bab: "b \otimes a ~ b"
            by (intro associatedI2[of "a"], simp+)
        finally have "p divides b" by simp
        then show ?thesis ..
    next
        case anunit: False
```

```
    show ?thesis
    proof (cases "b \in Units G")
        case bunit: True
        note pdvdab
        also from bunit
    have baa: "a \otimes b ~ a"
        by (intro associatedI2[of "b"], simp+)
    finally have "p divides a" by simp
    then show ?thesis ..
next
    case bnunit: False
    have cnunit: "c & Units G"
    proof
        assume cunit: "c \in Units G"
        from bnunit have "properfactor G a (a \otimes b)"
            by (intro properfactorI3[of _ _ b], simp+)
        also note abpc
        also from cunit have "p\otimesc ~ p"
            by (intro associatedI2[of c], simp+)
        finally have "properfactor G a p" by simp
        with acarr have "a \in Units G" by (fast intro: irreduc)
        with anunit show False ..
    qed
    have abnunit: "a \otimes b & Units G"
    proof clarsimp
        assume "a \otimes b \in Units G"
        then have "a \in Units G" by (rule unit_factor) fact+
        with anunit show False ..
    qed
    from factors_exist [OF acarr anunit]
    obtain as where ascarr: "set as \subseteq carrier G" and afac: "factors
G as a"
            by blast
    from factors_exist [OF bcarr bnunit]
    obtain bs where bscarr: "set bs \subseteq carrier G" and bfac: "factors
G bs b"
            by blast
    from factors_exist [OF ccarr cnunit]
    obtain cs where cscarr: "set cs \subseteq carrier G" and cfac: "factors
G cs c"
    by auto
    note [simp] = ascarr bscarr cscarr
    from afac and bfac have abfac: "factors G (as @ bs) (a \otimes b)"
```

```
            by (rule factors_mult) fact+
    from pirr cfac have pcfac: "factors G (p # cs) (p \otimes c)"
        by (rule factors_mult_single) fact+
    with abpc have abfac': "factors G (p # cs) (a \otimes b)"
        by simp
    from abfac' abfac have "essentially_equal G (p # cs) (as @ bs)"
        by (rule factors_unique) (fact | simp)+
    then obtain ds where "p # cs <~~ > ds" and dsassoc: "ds [~] (as
@ bs)"
            by (fast elim: essentially_equalE)
            then have "p \in set ds"
                by (simp add: perm_set_eq[symmetric])
    with dsassoc obtain p' where "p' \in set (as@bs)" and pp': "p ~
p'"
            unfolding list_all2_conv_all_nth set_conv_nth by force
            then consider "p' \in set as" | "p' \in set bs" by auto
            then show "p divides a }\vee\textrm{p}\mathrm{ divides b"
            proof cases
                case 1
                with ascarr have [simp]: "p' \in carrier G" by fast
                    note pp'
                also from afac 1 have "p' divides a" by (rule factors_dividesI)
fact+
            finally have "p divides a" by simp
                        then show ?thesis ..
            next
                case 2
                with bscarr have [simp]: "p' \in carrier G" by fast
                note pp'
                also from bfac
                have "p' divides b" by (rule factors_dividesI) fact+
                finally have "p divides b" by simp
                then show ?thesis ..
            qed
        qed
    qed
qed
```


23.8 Greatest Common Divisors and Lowest Common Multiples

23.8.1 Definitions

```
definition isgcd :: "[('a,_) monoid_scheme, 'a, 'a, 'a] => bool" ("(_
gcdof \imath _ _)" [81,81,81] 80)
    where "x gcdof}\mp@subsup{G}{G}{}\textrm{a b}\longleftrightarrow\textrm{x}\mp@subsup{\operatorname{divides}}{G}{}\textrm{a}\\textrm{x}\mp@subsup{\operatorname{divides}}{G}{}\textrm{b}
```



```
definition islcm :: "[_, 'a, 'a, 'a] => bool" ("(_ lcmof \imath _ _)" [81,81,81]
80)
    where "x lcmof
    (\forally\incarrier G. (a dividesG y ^ b dividesG y m x divides
definition somegcd :: "('a,_) monoid_scheme }=>\mathrm{ ' 'a m 'a a 'a"
    where "somegcd G a b = (SOME x. x \in carrier G ^ x gcdof
definition somelcm :: "('a,_) monoid_scheme }=>\mathrm{ ' 'a }=>\mathrm{ 'a a 'a"
    where "somelcm G a b = (SOME x. x \in carrier G ^ x lcmof
definition "SomeGcd G A = inf (division_rel G) A"
locale gcd_condition_monoid = comm_monoid_cancel +
    assumes gcdof_exists: "\llbracketa }\in\mathrm{ carrier G; b }\in\mathrm{ carrier G| # ヨc.c }\in\mathrm{ carrier
G ^ c gcdof a b"
locale primeness_condition_monoid = comm_monoid_cancel +
    assumes irreducible_prime: "\llbracketa \in carrier G; irreducible G a\rrbracket \Longrightarrow prime
G a"
locale divisor_chain_condition_monoid = comm_monoid_cancel +
    assumes division_wellfounded: "wf {(x, y). x \in carrier G ^ y \in carrier
G ^ properfactor G x y}"
```


23.8.2 Connections to Lattice.thy

```
lemma gcdof_greatestLower:
```

lemma gcdof_greatestLower:
fixes G (structure)
fixes G (structure)
assumes carr[simp]: "a \in carrier G" "b \in carrier G"
assumes carr[simp]: "a \in carrier G" "b \in carrier G"
shows "(x \in carrier G ^ x gcdof a b) = greatest (division_rel G) x
shows "(x \in carrier G ^ x gcdof a b) = greatest (division_rel G) x
(Lower (division_rel G) {a, b})"
(Lower (division_rel G) {a, b})"
by (auto simp: isgcd_def greatest_def Lower_def elem_def)
by (auto simp: isgcd_def greatest_def Lower_def elem_def)
lemma lcmof_leastUpper:
fixes G (structure)
assumes carr[simp]: "a \in carrier G" "b \in carrier G"
shows "(x \in carrier G ^ x lcmof a b) = least (division_rel G) x (Upper
(division_rel G) {a, b})"
by (auto simp: islcm_def least_def Upper_def elem_def)
lemma somegcd_meet:
fixes G (structure)
assumes carr: "a \in carrier G" "b \in carrier G"
shows "somegcd G a b = meet (division_rel G) a b"
by (simp add: somegcd_def meet_def inf_def gcdof_greatestLower[OF carr])

```
```

lemma (in monoid) isgcd_divides_l:
assumes "a divides b"
and "a \in carrier G" "b \in carrier G"
shows "a gcdof a b"
using assms unfolding isgcd_def by fast
lemma (in monoid) isgcd_divides_r:
assumes "b divides a"
and "a \in carrier G" "b \in carrier G"
shows "b gcdof a b"
using assms unfolding isgcd_def by fast

```

\subsection*{23.8.3 Existence of gcd and lcm}
```

lemma (in factorial_monoid) gcdof_exists:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
shows "\existsc. c \in carrier G ^ c gcdof a b"
proof -
from wfactors_exist [OF acarr]
obtain as where ascarr: "set as }\subseteq\mathrm{ carrier G" and afs: "wfactors G
as a"
by blast
from afs have airr: "\foralla \in set as. irreducible G a"
by (fast elim: wfactorsE)
from wfactors_exist [OF bcarr]
obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
by blast
from bfs have birr: "\forallb \in set bs. irreducible G b"
by (fast elim: wfactorsE)
have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^
fmset G cs = fmset G as \cap\# fmset G bs"
proof (intro mset_wfactorsEx)
fix X
assume "X \in\# fmset G as \cap\# fmset G bs"
then have "X \in\# fmset G as" by simp
then have "X \in set (map (assocs G) as)"
by (simp add: fmset_def)
then have "\existsx. X = assocs G x ^ x f set as"
by (induct as) auto
then obtain x where X: "X = assocs G x" and xas: "x \in set as"
by blast
with ascarr have xcarr: "x \in carrier G"
by blast

```
```

 from xas airr have xirr: "irreducible G x"
 by simp
 from xcarr and xirr and X show "\existsx. (x \in carrier G ^ irreducible
 G x) ^ X = assocs G x"
by blast
qed
then obtain c cs
where ccarr: "c \in carrier G"
and cscarr: "set cs \subseteq carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as \cap\# fmset G bs"
by auto
have "c gcdof a b"
proof (simp add: isgcd_def, safe)
from csmset
have "fmset G cs \subseteq\# fmset G as"
by (simp add: multiset_inter_def subset_mset_def)
then show "c divides a" by (rule fmsubset_divides) fact+
next
from csmset have "fmset G cs \subseteq\# fmset G bs"
by (simp add: multiset_inter_def subseteq_mset_def, force)
then show "c divides b"
by (rule fmsubset_divides) fact+
next
fix y
assume "y \in carrier G"
from wfactors_exist [OF this]
obtain ys where yscarr: "set ys }\subseteq\mathrm{ carrier G" and yfs: "wfactors
G ys y"
by blast
assume "y divides a"
then have ya: "fmset G ys \subseteq\# fmset G as"
by (rule divides_fmsubset) fact+
assume "y divides b"
then have yb: "fmset G ys \subseteq\# fmset G bs"
by (rule divides_fmsubset) fact+
from ya yb csmset have "fmset G ys \subseteq=\# fmset G cs"
by (simp add: subset_mset_def)
then show "y divides c"
by (rule fmsubset_divides) fact+
qed
with ccarr show "\existsc. c \in carrier G ^ c gcdof a b"
by fast
qed

```
```

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
shows "\existsc. c \in carrier G ^ c lcmof a b"
proof -
from wfactors_exist [OF acarr]
obtain as where ascarr: "set as }\subseteq\mathrm{ carrier G" and afs: "wfactors G
as a"
by blast
from afs have airr: "\foralla \in set as. irreducible G a"
by (fast elim: wfactorsE)
from wfactors_exist [OF bcarr]
obtain bs where bscarr: "set bs \subseteq carrier G" and bfs: "wfactors G
bs b"
by blast
from bfs have birr: "\forallb \in set bs. irreducible G b"
by (fast elim: wfactorsE)
have "\existsc cs. c \in carrier G ^ set cs \subseteq carrier G ^ wfactors G cs c
^
fmset G cs = (fmset G as - fmset G bs) + fmset G bs"
proof (intro mset_wfactorsEx)
fix X
assume "X \in\# (fmset G as - fmset G bs) + fmset G bs"
then have "X \in\# fmset G as V X \in\# fmset G bs"
by (auto dest: in_diffD)
then consider "X \in set_mset (fmset G as)" | "X \in set_mset (fmset
G bs)"
by fast
then show " \existsx. (x \in carrier G ^ irreducible G x) ^ X = assocs G
x"
proof cases
case 1
then have "X \in set (map (assocs G) as)" by (simp add: fmset_def)
then have " }\exists\textrm{x}.\textrm{x}\in\mathrm{ set as }\wedgeX=\mathrm{ assocs G x" by (induct as) auto
then obtain x where xas: "x \in set as" and X: "X = assocs G x"
by auto
with ascarr have xcarr: "x \in carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp
from xcarr and xirr and X show ?thesis by fast
next
case 2
then have "X \in set (map (assocs G) bs)" by (simp add: fmset_def)
then have "\existsx. x \in set bs }\wedge X = assocs G x" by (induct as) aut
then obtain x where xbs: "x f set bs" and X: "X = assocs G x"
by auto
with bscarr have xcarr: "x \in carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

```
```

 from xcarr and xirr and X show ?thesis by fast
 qed
 qed
 then obtain c cs
 where ccarr: "c \in carrier G"
 and cscarr: "set cs \subseteq carrier G"
 and csirr: "wfactors G cs c"
 and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"
 by auto
 have "c lcmof a b"
 proof (simp add: islcm_def, safe)
 from csmset have "fmset G as \subseteq# fmset G cs"
 by (simp add: subseteq_mset_def, force)
 then show "a divides c"
 by (rule fmsubset_divides) fact+
 next
 from csmset have "fmset G bs \subseteq# fmset G cs"
 by (simp add: subset_mset_def)
 then show "b divides c"
 by (rule fmsubset_divides) fact+
 next
 fix y
 assume "y \in carrier G"
 from wfactors_exist [OF this]
 obtain ys where yscarr: "set ys \subseteq carrier G" and yfs: "wfactors
 G ys y"
by blast
assume "a divides y"
then have ya: "fmset G as \subseteq\# fmset G ys"
by (rule divides_fmsubset) fact+
assume "b divides y"
then have yb: "fmset G bs \subseteq\# fmset G ys"
by (rule divides_fmsubset) fact+
from ya yb csmset have "fmset G cs \subseteq\# fmset G ys"
apply (simp add: subseteq_mset_def, clarify)
apply (case_tac "count (fmset G as) a < count (fmset G bs) a")
apply simp
apply simp
done
then show "c divides y"
by (rule fmsubset_divides) fact+
qed
with ccarr show "\existsc. c \in carrier G ^ c lcmof a b"
by fast
qed

```

\subsection*{23.9 Conditions for Factoriality}

\subsection*{23.9.1 Gcd condition}
```

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
"weak_lower_semilattice (division_rel G)"
proof -
interpret weak_partial_order "division_rel G" ..
show ?thesis
apply (unfold_locales, simp_all)
proof -
fix x y
assume carr: "x \in carrier G" "y \in carrier G"
from gcdof_exists [OF this] obtain z where zcarr: "z \in carrier G"
and isgcd: "z gcdof x y"
by blast
with carr have "greatest (division_rel G) z (Lower (division_rel
G) {x, y})"
by (subst gcdof_greatestLower[symmetric], simp+)
then show "\existsz. greatest (division_rel G) z (Lower (division_rel G)
{x, y})"
by fast
qed
qed
lemma (in gcd_condition_monoid) gcdof_cong_l:
assumes a'a: "a' ~ a"
and agcd: "a gcdof b c"
and a'carr: "a' \in carrier G" and carr': "a \in carrier G" "b \in carrier
G" "c \in carrier G"
shows "a' gcdof b c"
proof -
note carr = a'carr carr'
interpret weak_lower_semilattice "division_rel G" by simp
have "a' \in carrier G ^ a' gcdof b c"
apply (simp add: gcdof_greatestLower carr')
apply (subst greatest_Lower_cong_l[of _ a])
apply (simp add: a'a)
apply (simp add: carr)
apply (simp add: carr)
apply (simp add: carr)
apply (simp add: gcdof_greatestLower[symmetric] agcd carr)
done
then show ?thesis ..
qed
lemma (in gcd_condition_monoid) gcd_closed [simp]:
assumes carr: "a \in carrier G" "b \in carrier G"
shows "somegcd G a b \in carrier G"
proof -

```
```

 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 apply (simp add: somegcd_meet[OF carr])
 apply (rule meet_closed[simplified], fact+)
 done
 qed
lemma (in gcd_condition_monoid) gcd_isgcd:
assumes carr: "a \in carrier G" "b \in carrier G"
shows "(somegcd G a b) gcdof a b"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
from carr have "somegcd G a b \in carrier G ^(somegcd G a b) gcdof a
b"
apply (subst gcdof_greatestLower, simp, simp)
apply (simp add: somegcd_meet[OF carr] meet_def)
apply (rule inf_of_two_greatest[simplified], assumption+)
done
then show "(somegcd G a b) gcdof a b"
by simp
qed
lemma (in gcd_condition_monoid) gcd_exists:
assumes carr: "a \in carrier G" "b \in carrier G"
shows "\existsx\incarrier G. x = somegcd G a b"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis carr(1) carr(2) gcd_closed)
qed
lemma (in gcd_condition_monoid) gcd_divides_l:
assumes carr: "a \in carrier G" "b \in carrier G"
shows "(somegcd G a b) divides a"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis carr(1) carr(2) gcd_isgcd isgcd_def)
qed
lemma (in gcd_condition_monoid) gcd_divides_r:
assumes carr: "a \in carrier G" "b \in carrier G"
shows "(somegcd G a b) divides b"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp

```
```

 show ?thesis
 by (metis carr gcd_isgcd isgcd_def)
 qed
lemma (in gcd_condition_monoid) gcd_divides:
assumes sub: "z divides x" "z divides y"
and L: "x \in carrier G" "y \in carrier G" "z \in carrier G"
shows "z divides (somegcd G x y)"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
by (metis gcd_isgcd isgcd_def assms)
qed
lemma (in gcd_condition_monoid) gcd_cong_l:
assumes xx': "x ~ x'"
and carr: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
shows "somegcd G x y ~ somegcd G x' y"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
apply (simp add: somegcd_meet carr)
apply (rule meet_cong_l[simplified], fact+)
done
qed
lemma (in gcd_condition_monoid) gcd_cong_r:
assumes carr: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
and yy': "y ~ y'"
shows "somegcd G x y ~ somegcd G x y'"
proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis
apply (simp add: somegcd_meet carr)
apply (rule meet_cong_r[simplified], fact+)
done
qed

```
lemma (in gcd_condition_monoid) gcdI:
    assumes dvd: "a divides b" "a divides c"
        and others: " \(\forall \mathrm{y} \in\) carrier \(\mathrm{G} . \mathrm{y}\) divides \(\mathrm{b} \wedge \mathrm{y}\) divides \(\mathrm{c} \longrightarrow \mathrm{y}\) divides
a"
            and acarr: "a \(\in\) carrier G" and bcarr: "b \(\in\) carrier G" and ccarr:
"c \(\in\) carrier G"
    shows "a ~ somegcd G b c"
```

 apply (simp add: somegcd_def)
 apply (rule someI2_ex)
 apply (rule exI[of _ a], simp add: isgcd_def)
 apply (simp add: assms)
 apply (simp add: isgcd_def assms, clarify)
 apply (insert assms, blast intro: associatedI)
 done
 lemma (in gcd_condition_monoid) gcdI2:
assumes "a gcdof b c" and "a \in carrier G" and "b \in carrier G" and
"c \in carrier G"
shows "a ~ somegcd G b c"
using assms unfolding isgcd_def by (blast intro: gcdI)
lemma (in gcd_condition_monoid) SomeGcd_ex:
assumes "finite A" "A \subseteq carrier G" "A \not= {}"
shows "\existsx\in carrier G. x = SomeGcd G A"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
apply (simp add: SomeGcd_def)
apply (rule finite_inf_closed[simplified], fact+)
done
qed
lemma (in gcd_condition_monoid) gcd_assoc:
assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "somegcd G (somegcd G a b) c ~ somegcd G a (somegcd G b c)"
proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show ?thesis
apply (subst (2 3) somegcd_meet, (simp add: carr)+)
apply (simp add: somegcd_meet carr)
apply (rule weak_meet_assoc[simplified], fact+)
done
qed
lemma (in gcd_condition_monoid) gcd_mult:
assumes acarr: "a \in carrier G" and bcarr: "b \in carrier G" and ccarr:
"c \in carrier G"
shows "c \otimes somegcd G a b ~ somegcd G (c \otimes a) (c \otimes b)"
proof -
let ?d = "somegcd G a b"
let ?e = "somegcd G (c \& a) (c \& b)"
note carr[simp] = acarr bcarr ccarr
have dcarr: "?d \in carrier G" by simp
have ecarr: "?e \in carrier G" by simp

```
```

note carr = carr dcarr ecarr
have "?d divides a" by (simp add: gcd_divides_l)
then have cd'ca: "c \otimes ?d divides (c \otimes a)" by (simp add: divides_mult_lI)
have "?d divides b" by (simp add: gcd_divides_r)
then have cd'cb: "c \otimes ?d divides (c \otimes b)" by (simp add: divides_mult_lI)
from cd'ca cd'cb have cd'e: "c \otimes ?d divides ?e"
by (rule gcd_divides) simp_all
then obtain u where ucarr[simp]: "u \in carrier G" and e_cdu: "?e =
c \& ?d \otimes u"
by blast
note carr = carr ucarr
have "?e divides c \otimes a" by (rule gcd_divides_l) simp_all
then obtain x where xcarr: "x \in carrier G" and ca_ex: "c \otimes a = ?e
x"
by blast
with e_cdu have ca_cdux: "c \otimes a = c \otimes ?d \otimes u \otimes x"
by simp
from ca_cdux xcarr have "c \& a = c \otimes (?d \otimes u | x)"
by (simp add: m_assoc)
then have "a = ?d \otimes u \otimes x"
by (rule l_cancel[of c a]) (simp add: xcarr)+
then have du'a: "?d \otimes u divides a"
by (rule dividesI[OF xcarr])
have "?e divides c \& b" by (intro gcd_divides_r) simp_all
then obtain x where xcarr: "x \in carrier G" and cb_ex: "c \otimes b = ?e
\otimes x"
by blast
with e_cdu have cb_cdux: "c \otimes b = c \otimes ?d \otimes u \& x"
by simp
from cb_cdux xcarr have "c \& b = c Q (?d \otimes u \otimes x)"
by (simp add: m_assoc)
with xcarr have "b = ?d \otimes u \otimes x"
by (intro l_cancel[of c b]) simp_all
then have du'b: "?d \otimes u divides b"
by (intro dividesI[OF xcarr])
from du'a du'b carr have du'd: "?d \otimes u divides ?d"
by (intro gcd_divides) simp_all
then have uunit: "u \in Units G"
proof (elim dividesE)
fix v

```
```

 assume vcarr[simp]: "v \in carrier G"
 assume d: "?d = ?d \otimes u \otimes v"
 have "?d \otimes 1 = ?d \otimes u \otimes v" by simp fact
 also have "?d \otimes u \otimes v = ?d \otimes (u \otimes v)" by (simp add: m_assoc)
 finally have "?d \otimes 1 = ?d & (u \otimes v)" .
 then have i2: "1 = u \otimes v" by (rule l_cancel) simp_all
 then have i1: "1 = v \otimes u" by (simp add: m_comm)
 from vcarr i1[symmetric] i2[symmetric] show "u \in Units G"
 by (auto simp: Units_def)
 qed
 from e_cdu uunit have "somegcd G (c & a) (c & b) ~ c & somegcd G
 a b"
by (intro associatedI2[of u]) simp_all
from this[symmetric] show "c \otimes somegcd G a b ~ somegcd G (c \otimes a)
(c \otimes b)"
by simp
qed
lemma (in monoid) assoc_subst:
assumes ab: "a ~ b"
and cP: "\foralla b. a \in carrier G ^ b \in carrier G ^ a ~ b
f a \in carrier G ^ f b \in carrier G ^ f a ~ f b"
and carr: "a \in carrier G" "b \in carrier G"
shows "f a ~ f b"
using assms by auto
lemma (in gcd_condition_monoid) relprime_mult:
assumes abrelprime: "somegcd G a b ~ 1"
and acrelprime: "somegcd G a c ~ 1"
and carr[simp]: "a \in carrier G" "b \in carrier G" "c \in carrier G"
shows "somegcd G a (b \otimes c) ~ 1"
proof -
have "c = c \& 1" by simp
also from abrelprime[symmetric]
have "... ~ c \& somegcd G a b"
by (rule assoc_subst) (simp add: mult_cong_r)+
also have "... ~ somegcd G (c \& a) (c \otimes b)"
by (rule gcd_mult) fact+
finally have c: "c ~ somegcd G (c \otimes a) (c \otimes b)"
by simp
from carr have a: "a ~ somegcd G a (c \otimes a)"
by (fast intro: gcdI divides_prod_l)
have "somegcd G a (b \otimes c) ~ somegcd G a (c \otimes b)"
by (simp add: m_comm)
also from a have "... ~ somegcd G (somegcd G a (c \otimes a)) (c \otimes b)"
by (rule assoc_subst) (simp add: gcd_cong_l)+

```
```

 also from gcd_assoc have "... ~ somegcd G a (somegcd G (c \otimes a) (c \otimes
 b))"
by (rule assoc_subst) simp+
also from c[symmetric] have "... ~ somegcd G a c"
by (rule assoc_subst) (simp add: gcd_cong_r)+
also note acrelprime
finally show "somegcd G a (b \otimes c) ~ 1"
by simp
qed
lemma (in gcd_condition_monoid) primeness_condition: "primeness_condition_monoid
G"
apply unfold_locales
apply (rule primeI)
apply (elim irreducibleE, assumption)
proof -
fix p a b
assume pcarr: "p \in carrier G" and acarr: "a \in carrier G" and bcarr:
"b \in carrier G"
and pirr: "irreducible G p"
and pdvdab: "p divides a \& b"
from pirr have pnunit: "p \& Units G"
and r[rule_format]: " }\forall\textrm{b}.\textrm{b}\in\mathrm{ carrier G ^ properfactor G b p }\longrightarrow\textrm{b
\in Units G"
by (fast elim: irreducibleE)+
show "p divides a V p divides b"
proof (rule ccontr, clarsimp)
assume npdvda: "\neg p divides a"
with pcarr acarr have "1 ~ somegcd G p a"
apply (intro gcdI, simp, simp, simp)
apply (fast intro: unit_divides)
apply (fast intro: unit_divides)
apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof
fix y
assume ycarr: "y \in carrier G"
assume "p divides y"
also assume "y divides a"
finally have "p divides a"
by (simp add: pcarr ycarr acarr)
with npdvda show False ..
qed simp_all
with pcarr acarr have pa: "somegcd G p a ~ 1"
by (fast intro: associated_sym[of "1"] gcd_closed)
assume npdvdb: "\neg p divides b"

```
```

 with pcarr bcarr have "1 ~ somegcd G p b"
 apply (intro gcdI, simp, simp, simp)
 apply (fast intro: unit_divides)
 apply (fast intro: unit_divides)
 apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
 apply (rule r, rule, assumption)
 apply (rule properfactorI, assumption)
 proof
 fix y
 assume ycarr: "y \in carrier G"
 assume "p divides y"
 also assume "y divides b"
 finally have "p divides b" by (simp add: pcarr ycarr bcarr)
 with npdvdb
 show "False" ..
 qed simp_all
 with pcarr bcarr have pb: "somegcd G p b ~ 1"
 by (fast intro: associated_sym[of "1"] gcd_closed)
 from pcarr acarr bcarr pdvdab have "p gcdof p (a \otimes b)"
 by (fast intro: isgcd_divides_l)
 with pcarr acarr bcarr have "p ~ somegcd G p (a \otimes b)"
 by (fast intro: gcdI2)
 also from pa pb pcarr acarr bcarr have "somegcd G p (a \otimes b) ~ 1"
 by (rule relprime_mult)
 finally have "p ~ 1"
 by (simp add: pcarr acarr bcarr)
 with pcarr have "p \in Units G"
 by (fast intro: assoc_unit_l)
 with pnunit show False ..
 qed
 qed

```
sublocale gcd_condition_monoid \(\subseteq\) primeness_condition_monoid
    by (rule primeness_condition)

\subsection*{23.9.2 Divisor chain condition}
```

lemma (in divisor_chain_condition_monoid) wfactors_exist:
assumes acarr: "a \in carrier G"
shows "\existsas. set as \subseteqcarrier G ^ wfactors G as a"
proof -
have r[rule_format]: "a \in carrier G \longrightarrow (\existsas. set as \subseteq carrier G ^
wfactors G as a)"
proof (rule wf_induct[OF division_wellfounded])
fix x
assume ih: "\forally. (y, x) \in {(x, y). x \in carrier G ^ y \in carrier G
^ properfactor G x y}
y \in carrier G \longrightarrow (\existsas. set as \subseteq carrier G ^

```
```

wfactors G as y)"
show "x carrier G (a c. set as \subseteq carrier G ^ wfactors G as
x)"
apply clarify
apply (cases "x \in Units G")
apply (rule exI[of _ "[]"], simp)
apply (cases "irreducible G x")
apply (rule exI[of _ "[x]"], simp add: wfactors_def)
proof -
assume xcarr: "x \in carrier G"
and xnunit: "x \# Units G"
and xnirr: "\neg irreducible G x"
then have "\existsy. y \in carrier G ^ properfactor G y x ^ y \not\inUnits
G"
apply -
apply (rule ccontr)
apply simp
apply (subgoal_tac "irreducible G x", simp)
apply (rule irreducibleI, simp, simp)
done
then obtain y where ycarr: "y \in carrier G" and ynunit: "y \& Units
G"
and pfyx: "properfactor G y x"
by blast
have ih': "\y. \llbrackety \in carrier G; properfactor G y x\rrbracket
\Longrightarrow\existsas. set as \subseteq carrier G ^ wfactors G as y"
by (rule ih[rule_format, simplified]) (simp add: xcarr)+
from ih' [OF ycarr pfyx]
obtain ys where yscarr: "set ys \subseteq carrier G" and yfs: "wfactors
G ys y"
by blast
from pfyx have "y divides x" and nyx: "\neg y ~ x"
by (fast elim: properfactorE2)+
then obtain z where zcarr: "z \in carrier G" and x: "x = y \otimes z"
by blast
from zcarr ycarr have "properfactor G z x"
apply (subst x)
apply (intro properfactorI3[of _ _ y])
apply (simp add: m_comm)
apply (simp add: ynunit)+
done
from ih' [OF zcarr this]
obtain zs where zscarr: "set zs \subseteq carrier G" and zfs: "wfactors
G zs z"

```
```

 by blast
 from yscarr zscarr have xscarr: "set (ys@zs) \subseteq carrier G"
 by simp
 from yfs zfs ycarr zcarr yscarr zscarr have "wfactors G (ys@zs)
 (y\otimesz)"
by (rule wfactors_mult)
then have "wfactors G (ys@zs) x"
by (simp add: x)
with xscarr show " }\exists\textrm{xs}. set xs \subseteq carrier G ^ wfactors G xs x"
by fast
qed
qed
from acarr show ?thesis by (rule r)
qed

```

\subsection*{23.9.3 Primeness condition}
lemma (in comm_monoid_cancel) multlist_prime_pos:
assumes carr: "a \(\in\) carrier G" "set as \(\subseteq\) carrier G" and aprime: "prime G a" and "a divides (foldr (op \(\otimes\) ) as 1)"
shows \(" \exists i<l e n g t h\) as. a divides (as!i)"
proof -
have r[rule_format]: "set as \(\subseteq\) carrier \(G \wedge\) a divides (foldr (op \(\otimes\) ) as 1 )
\(\longrightarrow\) ( \(\exists\) i. i < length as \(\wedge\) a divides (as!i))"
apply (induct as)
apply clarsimp defer 1
apply clarsimp defer 1
proof -
assume "a divides 1"
with carr have "a \(\in\) Units G"
by (fast intro: divides_unit[of a 1])
with aprime show False
by (elim primeE, simp)
next
fix aa as
assume ih[rule_format]: "a divides foldr op \(\otimes\) as \(1 \longrightarrow\) ( \(\exists i<l e n g t h\)
as. a divides as ! i)"
and carr': "aa \(\in\) carrier G" "set as \(\subseteq\) carrier G"
and "a divides aa \(\otimes\) foldr op \(\otimes\) as 1"
with carr aprime have "a divides aa \(\vee\) a divides foldr op \(\otimes\) as 1"
by (intro prime_divides) simp+
then show "ヨi<Suc (length as). a divides (aa \# as) ! i"
proof
assume "a divides aa"
then have p1: "a divides (aa\#as)!0" by simp
have " 0 < Suc (length as)" by simp
with p1 show ?thesis by fast
```

 next
 assume "a divides foldr op \otimes as 1"
 from ih [OF this] obtain i where "a divides as ! i" and len: "i
 < length as" by auto
then have p1: "a divides (aa\#as) ! (Suc i)" by simp
from len have "Suc i < Suc (length as)" by simp
with p1 show ?thesis by force
qed
qed
from assms show ?thesis
by (intro r) auto
qed
lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:
"\foralla as'. a }\in\mathrm{ carrier G ^ set as }\subseteq\mathrm{ carrier G ^ set as' }\subseteq\mathrm{ carrier G
^
wfactors G as a ^ wfactors G as' a }\longrightarrow\mathrm{ essentially_equal G
as as'"
proof (induct as)
case Nil
show ?case
proof auto
fix a as'
assume a: "a \in carrier G"
assume "wfactors G [] a"
then obtain "1 ~ a" by (auto elim: wfactorsE)
with a have "a \in Units G" by (auto intro: assoc_unit_r)
moreover assume "wfactors G as' a"
moreover assume "set as' }\subseteq\mathrm{ carrier G"
ultimately have "as' = []" by (rule unit_wfactors_empty)
then show "essentially_equal G [] as'" by simp
qed
next
case (Cons ah as)
then show ?case
proof clarsimp
fix a as'
assume ih [rule_format]:
"\foralla as'. a \in carrier G ^ set as' \subseteq carrier G ^ wfactors G as a
^
wfactors G as' a \longrightarrow essentially_equal G as as'"
and acarr: "a \in carrier G" and ahcarr: "ah \in carrier G"
and ascarr: "set as \subseteq carrier G" and as'carr: "set as' \subseteq carrier
G"
and afs: "wfactors G (ah \# as) a"
and afs': "wfactors G as' a"
then have ahdvda: "ah divides a"
by (intro wfactors_dividesI[of "ah\#as" "a"]) simp_all
then obtain a' where a'carr: "a' \in carrier G" and a: "a = ah \otimes a'"

```
```

 by blast
 have a'fs: "wfactors G as a'"
 apply (rule wfactorsE[OF afs], rule wfactorsI, simp)
 apply (simp add: a)
 apply (insert ascarr a'carr)
 apply (intro assoc_l_cancel[of ah _ a'] multlist_closed ahcarr,
 assumption+)
done
from afs have ahirr: "irreducible G ah"
by (elim wfactorsE) simp
with ascarr have ahprime: "prime G ah"
by (intro irreducible_prime ahcarr)
note carr [simp] = acarr ahcarr ascarr as'carr a'carr
note ahdvda
also from afs' have "a divides (foldr (op \otimes) as' 1)"
by (elim wfactorsE associatedE, simp)
finally have "ah divides (foldr (op \otimes) as' 1)"
by simp
with ahprime have "\existsi<length as'. ah divides as'!i"
by (intro multlist_prime_pos) simp_all
then obtain i where len: "i<length as'" and ahdvd: "ah divides as'!i"
by blast
from afs' carr have irrasi: "irreducible G (as'!i)"
by (fast intro: nth_mem[OF len] elim: wfactorsE)
from len carr have asicarr[simp]: "as'!i \in carrier G"
unfolding set_conv_nth by force
note carr = carr asicarr
from ahdvd obtain x where "x \in carrier G" and asi: "as'!i = ah \otimes
x"
by blast
with carr irrasi[simplified asi] have asiah: "as'!i ~ ah"
apply -
apply (elim irreducible_prodE[of "ah" "x"], assumption+)
apply (rule associatedI2[of x], assumption+)
apply (rule irreducibleE[OF ahirr], simp)
done
note setparts = set_take_subset[of i as'] set_drop_subset[of "Suc
i" as']
note partscarr [simp] = setparts[THEN subset_trans[OF _ as'carr]]
note carr = carr partscarr
have "\existsaa_1. aa_1 \in carrier G ^ wfactors G (take i as') aa_1"
apply (intro wfactors_prod_exists)
using setparts afs'
apply (fast elim: wfactorsE)

```

\section*{apply simp}
done
then obtain aa_1 where aa1carr: "aa_1 \(\in\) carrier G" and aa1fs: "wfactors G (take i as') aa_1"
by auto

apply (intro wfactors_prod_exists)
using setparts afs'
apply (fast elim: wfactorsE)
apply simp
done
then obtain aa_2 where aa2carr: "aa_2 \(\in\) carrier G"
and aa2fs: "wfactors G (drop (Suc i) as') aa_2"
by auto
note carr = carr aa1carr[simp] aa2carr[simp]
from aa1fs aa2fs
have v1: "wfactors G (take i as' @ drop (Suc i) as') (aa_1 \(\otimes\) aa_2)" by (intro wfactors_mult, simp+)
then have v1': "wfactors G (as'!i \# take i as' @ drop (Suc i) as') (as'!i \(\otimes\left(a a \_1 \otimes\right.\) aa_2))"
apply (intro wfactors_mult_single)
using setparts afs'
apply (fast intro: nth_mem[0F len] elim: wfactorsE)
apply simp_all
done
from aa2carr carr aa1fs aa2fs have "wfactors G (as'!i \# drop (Suc
i) as') (as'!i \(\otimes\) aa_2)"
by (metis irrasi wfactors_mult_single)
with len carr aa1carr aa2carr aa1fs
have v2: "wfactors G (take i as' @ as'!i \# drop (Suc i) as') (aa_1
Q (as'!i \(\otimes\) aa_2))"
apply (intro wfactors_mult)
apply fast
apply (simp, (fast intro: nth_mem[0F len])?)+
done
from len have as': "as' = (take i as' @ as'!i \# drop (Suc i) as')"
by (simp add: Cons_nth_drop_Suc)
with carr have eer: "essentially_equal G (take i as' @ as'!i \# drop
(Suc i) as') as'"
by simp
with v2 afs' carr aa1carr aa2carr nth_mem[0F len] have "aa_1 \(\otimes\) (as'!i
Q aa_2) ~ a"
by (metis as' ee_wfactorsD m_closed)
then have t1: "as'!i \(\otimes\left(a a_{1} 1 \otimes a a \_2\right) \sim a "\)
```

 by (metis aa1carr aa2carr asicarr m_lcomm)
 from carr asiah have "ah \otimes (aa_1 \otimes aa_2) ~ as'!i \otimes (aa_1 \otimes aa_2)"
 by (metis associated_sym m_closed mult_cong_l)
 also note t1
 finally have "ah \otimes (aa_1 \otimes aa_2) ~ a" by simp
 with carr aa1carr aa2carr a'carr nth_mem[OF len] have a': "aa_1 \otimes
 aa_2 ~ a'"
by (simp add: a, fast intro: assoc_l_cancel[of ah _ a'])
note v1
also note a'
finally have "wfactors G (take i as' @ drop (Suc i) as') a'"
by simp
from a'fs this carr have "essentially_equal G as (take i as' @ drop
(Suc i) as')"
by (intro ih[of a']) simp
then have ee1: "essentially_equal G (ah \# as) (ah \# take i as' @
drop (Suc i) as')"
by (elim essentially_equalE) (fastforce intro: essentially_equalI)
from carr have ee2: "essentially_equal G (ah \# take i as' @ drop
(Suc i) as')
(as' ! i \# take i as' @ drop (Suc i) as')"
proof (intro essentially_equalI)
show "ah \# take i as' @ drop (Suc i) as' < ~ > ah \# take i as' @
drop (Suc i) as'"
by simp
next
show "ah \# take i as' @ drop (Suc i) as' [~] as' ! i \# take i as'
@ drop (Suc i) as'"
by (simp add: list_all2_append) (simp add: asiah[symmetric])
qed
note ee1
also note ee2
also have "essentially_equal G (as' ! i \# take i as' @ drop (Suc i)
as')
(take i as' @ as' ! i \# drop (Suc i) as')"
apply (intro essentially_equalI)
apply (subgoal_tac "as' ! i \# take i as' @ drop (Suc i) as' <~~>
take i as' @ as' ! i \# drop (Suc i) as'")
apply simp
apply (rule perm_append_Cons)
apply simp
done
finally have "essentially_equal G (ah \# as) (take i as' @ as' ! i \#
drop (Suc i) as')"

```
```

 by simp
 then show "essentially_equal G (ah # as) as'"
 by (subst as')
 qed
 qed
lemma (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" "wfactors G as' a"
and "a \in carrier G" "set as \subseteq carrier G" "set as' }\subseteq\mathrm{ carrier G"
shows "essentially_equal G as as'"
by (rule wfactors_unique__hlp_induct[rule_format, of a]) (simp add:
assms)

```

\subsection*{23.9.4 Application to factorial monoids}

Number of factors for wellfoundedness
```

definition factorcount : : "_ \Rightarrow 'a \Rightarrow nat"
where "factorcount G a =
(THE c. \forall as. set as \subseteq carrier $G \wedge$ wfactors G as $a \longrightarrow c=$ length
as)"
lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"
by (rule essentially_equalE[OF ee]) (metis list_all2_conv_all_nth perm_length)
lemma (in factorial_monoid) factorcount_exists:
assumes carr[simp]: "a \in carrier G"
shows " $\exists \mathrm{c} . \forall$ as. set as \subseteq carrier $G \wedge$ wfactors G as a $\longrightarrow c=$ length
as"
proof -
have " \exists as. set as \subseteq carrier $G \wedge$ wfactors G as a"
by (intro wfactors_exist) simp
then obtain as where ascarr[simp]: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by (auto simp del: carr)
have $" \forall$ as'. set as' \subseteq carrier $G \wedge$ wfactors G as' a \longrightarrow length as =
length as'"
by (metis afs ascarr assms ee_length wfactors_unique)
then show " $\exists \mathrm{c} . \forall$ as'. set as' \subseteq carrier $G \wedge$ wfactors G as' $a \longrightarrow c$
= length as'" ..
qed
lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"
and acarr[simp]: "a \in carrier G" and ascarr[simp]: "set as \subseteq carrier
G"
shows "factorcount G a = length as"
proof -

```
```

 have "\existsac. }\forall\mathrm{ as. set as }\subseteq\mathrm{ carrier G ^ wfactors G as a }\longrightarrow\mathrm{ ac = length
 as"
by (rule factorcount_exists) simp
then obtain ac where alen: " }\forall\mathrm{ as. set as }\subseteq\mathrm{ carrier G ^ wfactors G as
a }\longrightarrow\mathrm{ ac = length as"
by auto
have ac: "ac = factorcount G a"
apply (simp add: factorcount_def)
apply (rule theI2)
apply (rule alen)
apply (metis afs alen ascarr)+
done
from ascarr afs have "ac = length as"
by (iprover intro: alen[rule_format])
with ac show ?thesis
by simp
qed
lemma (in factorial_monoid) divides_fcount:
assumes dvd: "a divides b"
and acarr: "a \in carrier G"
and bcarr:"b \in carrier G"
shows "factorcount G a \leq factorcount G b"
proof (rule dividesE[OF dvd])
fix c
from assms have "\existsas. set as \subseteq carrier G ^ wfactors G as a"
by blast
then obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by blast
with acarr have fca: "factorcount G a = length as"
by (intro factorcount_unique)
assume ccarr: "c \in carrier G"
then have "\existscs. set cs \subseteq carrier G ^ wfactors G cs c"
by blast
then obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors
G cs c"
by blast
note [simp] = acarr bcarr ccarr ascarr cscarr
assume b: "b = a \otimes c"
from afs cfs have "wfactors G (as@cs) (a \otimes c)"
by (intro wfactors_mult) simp_all
with b have "wfactors G (as@cs) b"
by simp
then have "factorcount G b = length (as@cs)"
by (intro factorcount_unique) simp_all

```
```

 then have "factorcount G b = length as + length cs"
 by simp
 with fca show ?thesis
 by simp
 qed
lemma (in factorial_monoid) associated_fcount:
assumes acarr: "a \in carrier G"
and bcarr: "b \in carrier G"
and asc: "a ~ b"
shows "factorcount G a = factorcount G b"
apply (rule associatedE[OF asc])
apply (drule divides_fcount[OF _ acarr bcarr])
apply (drule divides_fcount[OF _ bcarr acarr])
apply simp
done
lemma (in factorial_monoid) properfactor_fcount:
assumes acarr: "a \in carrier G" and bcarr:"b \in carrier G"
and pf: "properfactor G a b"
shows "factorcount G a < factorcount G b"
proof (rule properfactorE[OF pf], elim dividesE)
fix c
from assms have "\existsas. set as }\subseteq\mathrm{ carrier G ^ wfactors G as a"
by blast
then obtain as where ascarr: "set as \subseteq carrier G" and afs: "wfactors
G as a"
by blast
with acarr have fca: "factorcount G a = length as"
by (intro factorcount_unique)
assume ccarr: "c \in carrier G"
then have "\existscs. set cs \subseteq carrier G ^ wfactors G cs c"
by blast
then obtain cs where cscarr: "set cs \subseteq carrier G" and cfs: "wfactors
G cs c"
by blast
assume b: "b = a \otimes c"
have "wfactors G (as@cs) (a \otimes c)"
by (rule wfactors_mult) fact+
with b have "wfactors G (as@cs) b"
by simp
with ascarr cscarr bcarr have "factorcount G b = length (as@cs)"
by (simp add: factorcount_unique)
then have fcb: "factorcount G b = length as + length cs"
by simp

```
```

 assume nbdvda: "\neg b divides a"
 have "c & Units G"
 proof
 assume cunit:"c \in Units G"
 have "b \otimes inv c = a \otimes c \otimes inv c"
 by (simp add: b)
 also from ccarr acarr cunit have "... = a Q (c \otimes inv c)"
 by (fast intro: m_assoc)
 also from ccarr cunit have "...= a \otimes 1" by simp
 also from acarr have "... = a" by simp
 finally have "a = b \otimes inv c" by simp
 with ccarr cunit have "b divides a"
 by (fast intro: dividesI[of "inv c"])
 with nbdvda show False by simp
 qed
 with cfs have "length cs > 0"
 apply -
 apply (rule ccontr, simp)
 apply (metis Units_one_closed ccarr cscarr l_one one_closed properfactorI3
 properfactor_fmset unit_wfactors)
done
with fca fcb show ?thesis
by simp
qed
sublocale factorial_monoid \subseteq divisor_chain_condition_monoid
apply unfold_locales
apply (rule wfUNIVI)
apply (rule measure_induct[of "factorcount G"])
apply simp
apply (metis properfactor_fcount)
done
sublocale factorial_monoid \subseteq primeness_condition_monoid
by standard (rule irreducible_prime)
lemma (in factorial_monoid) primeness_condition: "primeness_condition_monoid
G" ..
lemma (in factorial_monoid) gcd_condition [simp]: "gcd_condition_monoid
G"
by standard (rule gcdof_exists)
sublocale factorial_monoid \subseteq gcd_condition_monoid
by standard (rule gcdof_exists)
lemma (in factorial_monoid) division_weak_lattice [simp]: "weak_lattice
(division_rel G)"

```
```

proof -
interpret weak_lower_semilattice "division_rel G"
by simp
show "weak_lattice (division_rel G)"
proof (unfold_locales, simp_all)
fix x y
assume carr: "x \in carrier G" "y \in carrier G"
from lcmof_exists [OF this] obtain z where zcarr: "z \in carrier G"
and isgcd: "z lcmof x y"
by blast
with carr have "least (division_rel G) z (Upper (division_rel G)
{x, y})"
by (simp add: lcmof_leastUpper[symmetric])
then show "\existsz. least (division_rel G) z (Upper (division_rel G) {x,
y})"
by blast
qed
qed

```

\subsection*{23.10 Factoriality Theorems}
```

theorem factorial_condition_one:
"divisor_chain_condition_monoid G ^ primeness_condition_monoid G \longleftrightarrow
factorial_monoid G"
proof (rule iffI, clarify)
assume dcc: "divisor_chain_condition_monoid G"
and pc: "primeness_condition_monoid G"
interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret primeness_condition_monoid "G" by (rule pc)
show "factorial_monoid G"
by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)
next
assume "factorial_monoid G"
then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ^ primeness_condition_monoid
G"
by rule unfold_locales
qed
theorem factorial_condition_two:
"divisor_chain_condition_monoid G ^ gcd_condition_monoid G \longleftrightarrow factorial_monoid
G"
proof (rule iffI, clarify)
assume dcc: "divisor_chain_condition_monoid G"
and gc: "gcd_condition_monoid G"
interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret gcd_condition_monoid "G" by (rule gc)
show "factorial_monoid G"
by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)

```
```

next
assume "factorial_monoid G"
then interpret factorial_monoid "G" .
show "divisor_chain_condition_monoid G ^ gcd_condition_monoid G"
by rule unfold_locales
qed
end

```
theory QuotRing
imports RingHom
begin

\section*{24 Quotient Rings}

\subsection*{24.1 Multiplication on Cosets}
```

definition rcoset_mult :: "[('a, _) ring_scheme, 'a set, 'a set, 'a set]

'a set"

 ("[mod _:] _ @ r _" [81,81,81] 80)
 where "rcoset_mult R I A B = (\bigcupa\inA. \b\inB. I +> R (a \otimes | b)"
 rcoset_mult fulfils the properties required by congruences
lemma (in ideal) rcoset_mult_add:
"x \in carrier R \Longrightarrow y \in carrier R \Longrightarrow [mod I:] (I +> x) 囚 (I +> y)
= I +> (x \otimes y)"
apply rule
apply (rule, simp add: rcoset_mult_def, clarsimp)
defer 1
apply (rule, simp add: rcoset_mult_def)
defer 1
proof -
fix z x' y'
assume carr: "x \in carrier R" "y \in carrier R"
and x'rcos: "x' \in I +> x"
and y'rcos: "y' \in I +> y"
and zrcos: "z \in I +> x' \otimes y'"
from x'rcos have "\existsh\inI. x' = h \oplus x"
by (simp add: a_r_coset_def r_coset_def)
then obtain hx where hxI: "hx \in I" and x': "x' = hx \oplus x"
by fast+
from y'rcos have "\existsh\inI. y' = h \oplus y"
by (simp add: a_r_coset_def r_coset_def)
then obtain hy where hyI: "hy \in I" and y': "y' = hy }\oplus\mathrm{ y"
by fast+

```
```

 from zrcos have "\existsh\inI. z = h \oplus (x' \otimes y')"
 by (simp add: a_r_coset_def r_coset_def)
 then obtain hz where hzI: "hz \in I" and z: "z = hz \oplus (x' \otimes y')"
 by fast+
 note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]
 from z have "z = hz \oplus (x' \otimes y')".
 also from x' y' have "... = hz \oplus ((hx \oplus x) \otimes (hy \oplus y))" by simp
 also from carr have "... = (hz \oplus (hx \otimes (hy }\oplus\textrm{y}))\oplus\textrm{x}\otimes\textrm{hy})\oplus\textrm{x}
 y" by algebra
finally have z2: "z = (hz \oplus (hx \otimes (hy }\oplus\textrm{y}))\oplus\textrm{x}\otimes\textrm{hy})\oplus\textrm{x}\otimes\textrm{y}|
from hxI hyI hzI carr have "hz \oplus (hx \otimes (hy \oplus y)) }\oplus\textrm{x}\otimes\textrm{my}\in\textrm{I}
by (simp add: I_l_closed I_r_closed)
with z2 have " }\exists\textrm{h}\in\textrm{I}.\textrm{z = h }\oplus\textrm{x}\otimes\textrm{y}|\mp@code{by fast
then show "z \in I +> x \otimes y" by (simp add: a_r_coset_def r_coset_def)
next
fix z
assume xcarr: "x \in carrier R"
and ycarr: "y \in carrier R"
and zrcos: "z G I +> x \otimes y"
from xcarr have xself: "x \in I +> x" by (intro a_rcos_self)
from ycarr have yself: "y \in I +> y" by (intro a_rcos_self)
show "\existsa\inI +> x. \existsb\inI +> y. z \in I +> a \otimes b"
using xself and yself and zrcos by fast
qed

```

\subsection*{24.2 Quotient Ring Definition}
```

definition FactRing :: "[('a,'b) ring_scheme, 'a set] => ('a set) ring"
(infixl "Quot" 65)
where "FactRing R I =
(carrier = a_rcosetsi I, mult = rcoset_mult R I,
one = (I +> R 1 1R

```

\subsection*{24.3 Factorization over General Ideals}

The quotient is a ring
```

lemma (in ideal) quotient_is_ring: "ring (R Quot I)"
apply (rule ringI)
- abelian group
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def)
apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def'])
- mult monoid
apply (rule monoidI)
apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def

```
```

 a_r_coset_def[symmetric])
 - mult closed
 apply (clarify)
 apply (simp add: rcoset_mult_add, fast)
 - mult one_closed
 apply force
 - mult assoc
 apply clarify
 apply (simp add: rcoset_mult_add m_assoc)
 - mult one
 apply clarify
 apply (simp add: rcoset_mult_add)
 apply clarify
 apply (simp add: rcoset_mult_add)
 - distr
 apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum l_distr)
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
done

```

This is a ring homomorphism
lemma (in ideal) rcos_ring_hom: "(op +> I) \(\in\) ring_hom R (R Quot I)"
apply (rule ring_hom_memI)
    apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
    apply (simp add: FactRing_def rcoset_mult_add)
    apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done
lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) (op
+> I)"
apply (rule ring_hom_ringI)
            apply (rule is_ring, rule quotient_is_ring)
    apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
    apply (simp add: FactRing_def rcoset_mult_add)
    apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done

The quotient of a cring is also commutative
```

lemma (in ideal) quotient_is_cring:
assumes "cring R"
shows "cring (R Quot I)"
proof -
interpret cring R by fact
show ?thesis
apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
apply (rule quotient_is_ring)

```
```

 apply (rule ring.axioms[OF quotient_is_ring])
 apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
 apply clarify
 apply (simp add: rcoset_mult_add m_comm)
 done
 qed

```

Cosets as a ring homomorphism on crings
```

lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring_hom_cring R (R Quot I) (op +> I)"
proof -
interpret cring R by fact
show ?thesis
apply (rule ring_hom_cringI)
apply (rule rcos_ring_hom_ring)
apply (rule is_cring)
apply (rule quotient_is_cring)
apply (rule is_cring)
done
qed

```

\subsection*{24.4 Factorization over Prime Ideals}

The quotient ring generated by a prime ideal is a domain
```

lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"
apply (rule domain.intro)
apply (rule quotient_is_cring, rule is_cring)
apply (rule domain_axioms.intro)
apply (simp add: FactRing_def) defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],
clarify)
apply (simp add: rcoset_mult_add) defer 1
proof (rule ccontr, clarsimp)
assume "I +> 1 = I"
then have "1 \in I" by (simp only: a_coset_join1 one_closed a_subgroup)
then have "carrier R\subseteq I" by (subst one_imp_carrier, simp, fast)
with a_subset have "I = carrier R" by fast
with I_notcarr show False by fast
next
fix x y
assume carr: "x \in carrier R" "y \in carrier R"
and a: "I +> x \& y = I"
and b: "I +> y \not= I"
have ynI: "y \& I"
proof (rule ccontr, simp)
assume "y \in I"
then have "I +> y = I" by (rule a_rcos_const)

```
```

 with b show False by simp
 qed
 from carr have "x \otimes y \in I +> x \otimes y" by (simp add: a_rcos_self)
 then have xyI: "x \otimes y \in I" by (simp add: a)
 from xyI and carr have xI: "x \in I V y \in I" by (simp add: I_prime)
 with ynI have "x \in I" by fast
 then show "I +> x = I" by (rule a_rcos_const)
 qed

```

Generating right cosets of a prime ideal is a homomorphism on commutative rings
lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot I) (op +> I)" by (rule rcos_ring_hom_cring) (rule is_cring)

\subsection*{24.5 Factorization over Maximal Ideals}

In a commutative ring, the quotient ring over a maximal ideal is a field. The proof follows "W. Adkins, S. Weintraub: Algebra - An Approach via Module Theory"
lemma (in maximalideal) quotient_is_field:
    assumes "cring R"
    shows "field (R Quot I)"
proof -
    interpret cring \(R\) by fact
    show ?thesis
            apply (intro cring.cring_fieldI2)
                apply (rule quotient_is_cring, rule is_cring)
            defer 1
            apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],
clarsimp)
            apply (simp add: rcoset_mult_add) defer 1
    proof (rule ccontr, simp)
            - Quotient is not empty
            assume " \(0_{\text {R }}\) Quot I \(=1_{R}\) Quot I"
            then have II1: "I = I +> 1" by (simp add: FactRing_def)
            from a_rcos_self [OF one_closed] have "1 \(\in\) I"
                by (simp add: II1[symmetric])
            then have "I = carrier R" by (rule one_imp_carrier)
            with I_notcarr show False by simp
    next
            - Existence of Inverse
            fix a
            assume IanI: "I +> a \(\neq \mathrm{I} "\) and acarr: "a \(\in\) carrier R"
            - Helper ideal J
```

 define J :: "'a set" where "J = (carrier R #> a) <+> I"
 have idealJ: "ideal J R"
 apply (unfold J_def, rule add_ideals)
 apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal,
 rule acarr)
apply (rule is_ideal)
done
- Showing J not smaller than I
have IinJ: "I \subseteq J"
proof (rule, simp add: J_def r_coset_def set_add_defs)
fix x
assume xI: "x \in I"
have Zcarr: "0 \in carrier R" by fast
from xI[THEN a_Hcarr] acarr
have "x = 0 \otimes a \oplus x" by algebra
with Zcarr and xI show "\existsxa\incarrier R. \existsk\inI. x = xa \otimes a \oplus k"
by fast
qed
- Showing J F I
have anI: "a \& I"
proof (rule ccontr, simp)
assume "a \in I"
then have "I +> a = I" by (rule a_rcos_const)
with IanI show False by simp
qed
have aJ: "a \in J"
proof (simp add: J_def r_coset_def set_add_defs)
from acarr
have "a = 1 \otimes a \oplus 0" by algebra
with one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]
show "\existsx\incarrier R. \existsk\inI. a = x \otimes a \oplus k" by fast
qed
from aJ and anI have JnI: "J \not= I" by fast
- Deducing J = carrier R because I is maximal
from idealJ and IinJ have "J = I V J = carrier R"
proof (rule I_maximal, unfold J_def)
have "carrier R \#> a \subseteq carrier R"
using subset_refl acarr by (rule r_coset_subset_G)
then show "carrier R \#> a <+> I \subseteq carrier R"
using a_subset by (rule set_add_closed)
qed
with JnI have Jcarr: "J = carrier R" by simp

```
```

 - Calculating an inverse for a
 from one_closed[folded Jcarr]
 have "\existsr\incarrier R. \existsi\inI. 1 = r \otimes a \oplus i"
 by (simp add: J_def r_coset_def set_add_defs)
 then obtain r i where rcarr: "r \in carrier R"
 and iI: "i \in I" and one: "1 = r \otimes a @ i" by fast
 from one and rcarr and acarr and iI[THEN a_Hcarr]
 have rai1: "a \otimes r = \ominusi }\oplus1" by algebr
 - Lifting to cosets
 from iI have "\ominusi \oplus 1 \in I +> 1"
 by (intro a_rcosI, simp, intro a_subset, simp)
 with rai1 have "a \otimes r G I +> 1" by simp
 then have "I +> 1 = I +> a \otimes r"
 by (rule a_repr_independence, simp) (rule a_subgroup)
 from rcarr and this[symmetric]
 show "\existsr\incarrier R. I +> a \otimes r = I +> 1" by fast
 qed
 qed
end
theory IntRing
imports "HOL-Computational_Algebra.Primes" QuotRing Lattice HOL.Int
begin

```

\section*{25 The Ring of Integers}

\subsection*{25.1 Some properties of int}
lemma dvds_eq_abseq:
fixes k : : int
shows "l dvd \(\mathrm{k} \wedge \mathrm{k}\) dvd \(\mathrm{l} \longleftrightarrow|\mathrm{l}|=|\mathrm{k}| "\)
apply rule
apply (simp add: zdvd_antisym_abs)
apply (simp add: dvd_if_abs_eq)
done

\section*{\(25.2 \mathcal{Z}\) : The Set of Integers as Algebraic Structure}
abbreviation int_ring : : "int ring" (" \(\mathcal{Z}\) ")
where "int_ring \(\equiv\) (carrier \(=\) UNIV, mult \(=\) op \(*\), one \(=1\), zero \(=0\), add \(=o p+\mid) "\)
lemma int_Zcarr [intro!, simp]: "k \(\in\) carrier \(\mathcal{Z}\) "
by simp
```

lemma int_is_cring: "cring Z"
apply (rule cringI)
apply (rule abelian_groupI, simp_all)
defer 1
apply (rule comm_monoidI, simp_all)
apply (rule distrib_right)
apply (fast intro: left_minus)
done

```

\subsection*{25.3 Interpretations}

Since definitions of derived operations are global, their interpretation needs to be done as early as possible - that is, with as few assumptions as possible.
```

interpretation int: monoid \mathcal{Z}
rewrites "carrier \mathcal{Z = UNIV"}
and "mult \mathcal{Z x y = x * y"}
and "one \mathcal{Z = 1"}
and "pow \mathcal{Z x n = x^n"}
proof -
- Specification
show "monoid \mathcal{Z" by standard auto}
then interpret int: monoid \mathcal{Z .}
- Carrier
show "carrier \mathcal{Z = UNIV" by simp}

```
    - Operations
    \(\{\) fix x y show "mult \(\mathcal{Z} \mathrm{x} y=\mathrm{x} * \mathrm{y}\) " by simp \}
    show "one \(\mathcal{Z}=1\) " by simp
    show "pow \(\mathcal{Z}\) x \(n=x \wedge n "\) by (induct \(n\) ) simp_all
qed
interpretation int: comm_monoid \(\mathcal{Z}\)
    rewrites "finprod \(\mathcal{Z} f A=\operatorname{prod} f \mathrm{~A} "\)
proof -
    - Specification
    show "comm_monoid \(\mathcal{Z}\) " by standard auto
    then interpret int: comm_monoid \(\mathcal{Z}\).
    - Operations
    \(\{\) fix x y have "mult \(\mathcal{Z} \mathrm{x} y=\mathrm{x} * \mathrm{y}\) " by \(\operatorname{simp}\}\)
    note mult = this
    have one: "one \(\mathcal{Z}=1\) " by simp
    show "finprod \(\mathcal{Z}\) f \(A=\operatorname{prod} f A^{\prime \prime}\)
        by (induct A rule: infinite_finite_induct, auto)
qed
interpretation int: abelian_monoid \(\mathcal{Z}\)
    rewrites int_carrier_eq: "carrier \(\mathcal{Z}=\) UNIV"
```

 and int_zero_eq: "zero \mathcal{Z = 0"}
 and int_add_eq: "add \mathcal{Z x y = x + y"}
 and int_finsum_eq: "finsum \mathcal{Z fa = sum f A"}
 proof -
- Specification
show "abelian_monoid \mathcal{Z}}\mathrm{ " by standard auto
then interpret int: abelian_monoid \mathcal{Z .}
- Carrier
show "carrier \mathcal{Z = UNIV" by simp}
- Operations
{ fix x y show "add \mathcal{Z x y = x + y" by simp }}
note add = this
show zero: "zero \mathcal{Z = 0"}
by simp
show "finsum \mathcal{Z f A = sum f A"}
by (induct A rule: infinite_finite_induct, auto)
qed
interpretation int: abelian_group \mathcal{Z}
rewrites "carrier \mathcal{Z = UNIV"}
and "zero \mathcal{Z = 0"}
and "add \mathcal{Z x y = x + y"}
and "finsum Z f A = sum f A"
and int_a_inv_eq: "a_inv \mathcal{Z x = - x"}
and int_a_minus_eq: "a_minus \mathcal{Z x y = x - y"}
proof -
- Specification
show "abelian_group \mathcal{Z"}
proof (rule abelian_groupI)
fix x
assume "x \in carrier \mathcal{Z"}
then show "\existsy\in carrier \mathcal{Z. y }\mp@subsup{\oplus}{\mathcal{Z}}{}\textrm{x}=\mp@subsup{\mathbf{0}}{\mathcal{Z}}{}"
by simp arith
qed auto
then interpret int: abelian_group \mathcal{Z .}
- Operations
{ fix x y have "add \mathcal{Z x y = x + y" by simp }}
note add = this
have zero: "zero \mathcal{Z = 0" by simp}
{
fix x
have "add \mathcal{Z (- x) x = zero \mathcal{Z"}}=\mp@code{\prime}=\mp@code{l}
by (simp add: add zero)
then show "a_inv \mathcal{Z x = - x"}
by (simp add: int.minus_equality)

```
```

 }
 note a_inv = this
 show "a_minus \mathcal{Z x y = x - y"}
 by (simp add: int.minus_eq add a_inv)
 qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq)+
interpretation int: "domain" \mathcal{Z}
rewrites "carrier }\mathcal{Z}=\mathrm{ UNIV"
and "zero \mathcal{Z = 0"}
and "add \mathcal{Z x y = x + y"}
and "finsum \mathcal{Z f A = sum f A"}
and "a_inv \mathcal{Z x = - x"}
and "a_minus \mathcal{Z x y = x - y"}
proof -
show "domain \mathcal{Z"}
by unfold_locales (auto simp: distrib_right distrib_left)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq
int_a_minus_eq)+

```

Removal of occurrences of UNIV in interpretation result - experimental.
```

lemma UNIV:
"x \in UNIV \longleftrightarrow True"
"A \subseteq UNIV \longleftrightarrow True"
"(}\forall\textrm{x}\in\mathrm{ UNIV. P x) }\longleftrightarrow(\forall\textrm{x}.\textrm{P}x)
"(EX x : UNIV. P x) \longleftrightarrow (EX x. P x)"
"(True \longrightarrow Q) \longleftrightarrow Q"
"(True \Longrightarrow PROP R) \equiv PROP R"
by simp_all
interpretation int :
partial_order "(|carrier = UNIV::int set, eq = op =, le = op \leql)"
rewrites "carrier (carrier = UNIV::int set, eq = op =, le = op \leql) =
UNIV"
and "le (carrier = UNIV::int set, eq = op =, le = op S|) x y = (x
s y)"
and "lless (carrier = UNIV::int set, eq = op =, le = op \leq|) x y =
(x < y)"
proof -
show "partial_order (carrier = UNIV::int set, eq = op =, le = op \leq\)"
by standard simp_all
show "carrier (carrier = UNIV::int set, eq = op =, le = op \leqD = UNIV"
by simp
show "le (carrier = UNIV::int set, eq = op =, le = op SD x y = (x \leq
y)"
by simp
show "lless (carrier = UNIV::int set, eq = op =, le = op \leql) x y = (x
< y)"
by (simp add: lless_def) auto
qed

```
```

interpretation int :
lattice "()carrier = UNIV::int set, eq = op =, le = op \leql)"
rewrites "join (carrier = UNIV::int set, eq = op =, le = op S| x y =
max x y"
and "meet (carrier = UNIV::int set, eq = op =, le = op \leq|) x y = min
x y"
proof -
let ?Z = "(|carrier = UNIV::int set, eq = op =, le = op \leql)"
show "lattice ?Z"
apply unfold_locales
apply (simp add: least_def Upper_def)
apply arith
apply (simp add: greatest_def Lower_def)
apply arith
done
then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"
apply (rule int.joinI)
apply (simp_all add: least_def Upper_def)
apply arith
done
show "meet ?Z x y = min x y"
apply (rule int.meetI)
apply (simp_all add: greatest_def Lower_def)
apply arith
done
qed
interpretation int :
total_order "(|carrier = UNIV::int set, eq = op =, le = op \leql)"
by standard clarsimp

```

\subsection*{25.4 Generated Ideals of \(\mathcal{Z}\)}
```

lemma int_Idl: "Idl_\mathcal{Z {a} = {x * a | x. True}"}
apply (subst int.cgenideal_eq_genideal[symmetric]) apply simp
apply (simp add: cgenideal_def)
done
lemma multiples_principalideal: "principalideal {x * a | x. True } \mathcal{Z"}
by (metis UNIV_I int.cgenideal_eq_genideal int.cgenideal_is_principalideal
int_Idl)
lemma prime_primeideal:
assumes prime: "prime p"
shows "primeideal (Idl\mathcal{Z {p}) Z "}
apply (rule primeidealI)
apply (rule int.genideal_ideal, simp)

```
```

 apply (rule int_is_cring)
 apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
 apply clarsimp defer 1
 apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
 apply (elim exE)
 proof -
fix a b x
assume "a * b = x * p"
then have "p dvd a * b" by simp
then have "p dvd a V p dvd b"
by (metis prime prime_dvd_mult_eq_int)
then show "(\existsx. a = x * p) V (\existsx. b = x * p)"
by (metis dvd_def mult.commute)
next
assume "UNIV = {uu. EX x. uu = x * p}"
then obtain x where "1 = x * p" by best
then have " |p * x| = 1" by (simp add: mult.commute)
then show False using prime
by (auto dest!: abs_zmult_eq_1 simp: prime_def)
qed

```

\subsection*{25.5 Ideals and Divisibility}
```

lemma int_Idl_subset_ideal: "Idl\mathcal{Z }{k}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{l}=(k\in Idl}\mathcal{Z}{l})
by (rule int.Idl_subset_ideal') simp_all
lemma Idl_subset_eq_dvd: "Idl\mathcal{Z }{\textrm{k}}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{1}\longleftrightarrowl dvd k"
apply (subst int_Idl_subset_ideal, subst int_Idl, simp)
apply (rule, clarify)
apply (simp add: dvd_def)
apply (simp add: dvd_def ac_simps)
done
lemma dvds_eq_Idl: "l dvd k ^ k dvd l \longleftrightarrow Idl }\mathcal{Z}{k}=\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{l}"
proof -
have a: "l dvd k \longleftrightarrow(Idl\mathcal{Z }{k}\subseteq Idl \mathcal{Z {l})"}
by (rule Idl_subset_eq_dvd[symmetric])
have b: "k dvd l \longleftrightarrow(Idl\mathcal{Z }{l}\subseteq Idl \mathcal{Z {k})"}
by (rule Idl_subset_eq_dvd[symmetric])
have "l dvd k ^ k dvd l \longleftrightarrow Idl Z {k} \subseteq Idl_\mathcal{Z {l} ^ Idl }\mathcal{Z}{I}\subseteq Idl Z
{k}"
by (subst a, subst b, simp)
also have "Idl }\mp@subsup{\mathscr{Z}}{{}{{k}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{I}\wedge Idl}\mathcal{Z}{I}\subseteq\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{}{\textrm{k}}\longleftrightarrow\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{k}
= Idl\mathcal{Z {l}"}
by blast
finally show ?thesis .
qed

```
```

lemma Idl_eq_abs: "Idl_\mathcal{Z }{\textrm{k}}=\mp@subsup{\operatorname{Idl}}{\mathcal{Z}}{{ll}}\longleftrightarrow < | | = |k|"
apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done

```

\subsection*{25.6 Ideals and the Modulus}
```

definition ZMod :: "int }=>\mathrm{ int }=>\mathrm{ int set"

```

```

lemmas ZMod_defs =
ZMod_def genideal_def
lemma rcos_zfact:
assumes kIl: "k \in ZMod l r"
shows "\existsx. k = x * l + r"
proof -
from kIl[unfolded ZMod_def] have "\existsxl\inIdl\mathcal{Z {l}. k = xl + r"}
by (simp add: a_r_coset_defs)
then obtain xl where xl: "xl \in Idl\mathcal{Z {l}" and k: "k = xl + r"}
by auto
from xl obtain x where "xl = x * l"
by (auto simp: int_Idl)
with k have "k = x * l + r"
by simp
then show "\existsx. k = x * l + r" ..
qed
lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"
proof -
interpret ideal "Idl }\mathcal{Z {m}" \mathcal{Z}
by (rule int.genideal_ideal) fast
from zmods have "b \in ZMod m a"
unfolding ZMod_def by (simp add: a_repr_independenceD)
then have "\existsx. b = x * m + a"
by (rule rcos_zfact)
then obtain x where "b = x * m + a"
by fast
then have "b mod m = (x * m + a) mod m"
by simp
also have "... = ((x * m) mod m) + (a mod m)"
by (simp add: mod_add_eq)
also have "... = a mod m"
by simp
finally have "b mod m = a mod m".
then show "a mod m = b mod m" ..
qed

```
```

lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"
proof -
interpret ideal "Idl }\mathcal{Z {m}" \mathcal{Z}
by (rule int.genideal_ideal) fast
show ?thesis
unfolding ZMod_def
apply (rule a_repr_independence'[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
proof -
have "a = m * (a div m) + (a mod m)"
by (simp add: mult_div_mod_eq [symmetric])
then have "a = (a div m) * m + (a mod m)"
by simp
then show "\existsh. (\existsx.h = x * m) ^ a = h + a mod m"
by fast
qed simp
qed
lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"
proof -
have "ZMod m a = ZMod m (a mod m)"
by (rule ZMod_mod)
also have "... = ZMod m (b mod m)"
by (simp add: modeq[symmetric])
also have "... = ZMod m b"
by (rule ZMod_mod[symmetric])
finally show ?thesis .
qed
corollary ZMod_eq_mod: "ZMod m a = ZMod m b \longleftrightarrow a mod m = b mod m"
apply (rule iffI)
apply (erule ZMod_imp_zmod)
apply (erule zmod_imp_ZMod)
done

```

\subsection*{25.7 Factorization}
```

definition ZFact :: "int }=>\mathrm{ int set ring"
where "ZFact k = \mathcal{Z Quot (Idl }\mathcal{Z {k})"}
lemmas ZFact_defs = ZFact_def FactRing_def
lemma ZFact_is_cring: "cring (ZFact k)"
apply (unfold ZFact_def)
apply (rule ideal.quotient_is_cring)
apply (intro ring.genideal_ideal)

```
```

 apply (simp add: cring.axioms[OF int_is_cring] ring.intro)
 apply simp
 apply (rule int_is_cring)
 done
 lemma ZFact_zero: "carrier (ZFact 0) = (Ua. {{a}})"
apply (insert int.genideal_zero)
apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def)
done
lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"
apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps)
apply (subst int.genideal_one)
apply (rule, rule, clarsimp)
apply (rule, rule, clarsimp)
apply (rule, clarsimp, arith)
apply (rule, clarsimp)
apply (rule exI[of _ "0"], clarsimp)
done
lemma ZFact_prime_is_domain:
assumes pprime: "prime p"
shows "domain (ZFact p)"
apply (unfold ZFact_def)
apply (rule primeideal.quotient_is_domain)
apply (rule prime_primeideal[OF pprime])
done
end

```

\section*{26 More on rings etc.}
```

theory More_Ring
imports
Ring
begin

```

```

x \in Units R \Longrightarrow field R"
apply (unfold_locales)
apply (insert cring_axioms, auto)
apply (rule trans)
apply (subgoal_tac "a = (a \otimes b) \otimes inv b")
apply assumption
apply (subst m_assoc)
apply auto
apply (unfold Units_def)
apply auto
done

```
```

lemma (in monoid) inv_char: "x : carrier G \Longrightarrow y : carrier G \Longrightarrow
x \otimes y = 1 \Longrightarrow y \otimes x = 1 \Longrightarrow inv x = y"
apply (subgoal_tac "x : Units G")
apply (subgoal_tac "y = inv x \otimes 1")
apply simp
apply (erule subst)
apply (subst m_assoc [symmetric])
apply auto
apply (unfold Units_def)
apply auto
done
lemma (in comm_monoid) comm_inv_char: "x : carrier G \Longrightarrow y : carrier
G \Longrightarrow
x \otimes y = 1\Longrightarrow inv x = y"
apply (rule inv_char)
apply auto
apply (subst m_comm, auto)
done
lemma (in ring) inv_neg_one [simp]: "inv (\ominus 1) = \ominus 1"
apply (rule inv_char)
apply (auto simp add: l_minus r_minus)
done
lemma (in monoid) inv_eq_imp_eq: "x : Units G C y : Units G \Longrightarrow
inv x = inv y \Longrightarrow x = y"
apply (subgoal_tac "inv(inv x) = inv(inv y)")
apply (subst (asm) Units_inv_inv)+
apply auto
done
lemma (in ring) Units_minus_one_closed [intro]: "\ominus 1 : Units R"
apply (unfold Units_def)
apply auto
apply (rule_tac x = "\ominus 1" in bexI)
apply auto
apply (simp add: l_minus r_minus)
done
lemma (in monoid) inv_one [simp]: "inv 1 = 1"
apply (rule inv_char)
apply auto
done
lemma (in ring) inv_eq_neg_one_eq: "x : Units R \Longrightarrow(inv x = \ominus 1) =
(x = \ominus 1)"
apply auto

```
```

 apply (subst Units_inv_inv [symmetric])
 apply auto
 done
 lemma (in monoid) inv_eq_one_eq: "x : Units G \Longrightarrow (inv x = 1) = (x =
1)"
by (metis Units_inv_inv inv_one)
end

```

\section*{References}
[1] C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, University of Cambridge, 1999. Also Computer Laboratory Technical Report number 473.
[2] N. Jacobson. Basic Algebra I. Freeman, 1985.
[3] F. Kammüller and L. C. Paulson. A formal proof of sylow's theorem: An experiment in abstract algebra with Isabelle HOL. J. Automated Reasoning, (23):235-264, 1999.```

