theory Hoare_Logic_Abort
imports Main
begin
type_synonym 'a bexp = "'a set"
type_synonym 'a assn = "'a set"
datatype 'a com =
Basic "'a ⇒ 'a"
| Abort
| Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60)
| Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61)
| While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61)
abbreviation annskip ("SKIP") where "SKIP == Basic id"
type_synonym 'a sem = "'a option => 'a option => bool"
inductive Sem :: "'a com ⇒ 'a sem"
where
"Sem (Basic f) None None"
| "Sem (Basic f) (Some s) (Some (f s))"
| "Sem Abort s None"
| "Sem c1 s s'' ⟹ Sem c2 s'' s' ⟹ Sem (c1;c2) s s'"
| "Sem (IF b THEN c1 ELSE c2 FI) None None"
| "s ∈ b ⟹ Sem c1 (Some s) s' ⟹ Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'"
| "s ∉ b ⟹ Sem c2 (Some s) s' ⟹ Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'"
| "Sem (While b x c) None None"
| "s ∉ b ⟹ Sem (While b x c) (Some s) (Some s)"
| "s ∈ b ⟹ Sem c (Some s) s'' ⟹ Sem (While b x c) s'' s' ⟹
Sem (While b x c) (Some s) s'"
inductive_cases [elim!]:
"Sem (Basic f) s s'" "Sem (c1;c2) s s'"
"Sem (IF b THEN c1 ELSE c2 FI) s s'"
definition Valid :: "'a bexp ⇒ 'a com ⇒ 'a bexp ⇒ bool" where
"Valid p c q == ∀s s'. Sem c s s' ⟶ s : Some ` p ⟶ s' : Some ` q"
syntax
"_assign" :: "idt => 'b => 'a com" ("(2_ :=/ _)" [70, 65] 61)
syntax
"_hoare_abort_vars" :: "[idts, 'a assn,'a com,'a assn] => bool"
("VARS _// {_} // _ // {_}" [0,0,55,0] 50)
syntax ("" output)
"_hoare_abort" :: "['a assn,'a com,'a assn] => bool"
("{_} // _ // {_}" [0,55,0] 50)
ML_file "hoare_syntax.ML"
parse_translation ‹[(@{syntax_const "_hoare_abort_vars"}, K Hoare_Syntax.hoare_vars_tr)]›
print_translation
‹[(@{const_syntax Valid}, K (Hoare_Syntax.spec_tr' @{syntax_const "_hoare_abort"}))]›
lemma SkipRule: "p ⊆ q ⟹ Valid p (Basic id) q"
by (auto simp:Valid_def)
lemma BasicRule: "p ⊆ {s. f s ∈ q} ⟹ Valid p (Basic f) q"
by (auto simp:Valid_def)
lemma SeqRule: "Valid P c1 Q ⟹ Valid Q c2 R ⟹ Valid P (c1;c2) R"
by (auto simp:Valid_def)
lemma CondRule:
"p ⊆ {s. (s ∈ b ⟶ s ∈ w) ∧ (s ∉ b ⟶ s ∈ w')}
⟹ Valid w c1 q ⟹ Valid w' c2 q ⟹ Valid p (Cond b c1 c2) q"
by (fastforce simp:Valid_def image_def)
lemma While_aux:
assumes "Sem (WHILE b INV {i} DO c OD) s s'"
shows "∀s s'. Sem c s s' ⟶ s ∈ Some ` (I ∩ b) ⟶ s' ∈ Some ` I ⟹
s ∈ Some ` I ⟹ s' ∈ Some ` (I ∩ -b)"
using assms
by (induct "WHILE b INV {i} DO c OD" s s') auto
lemma WhileRule:
"p ⊆ i ⟹ Valid (i ∩ b) c i ⟹ i ∩ (-b) ⊆ q ⟹ Valid p (While b i c) q"
apply(simp add:Valid_def)
apply(simp (no_asm) add:image_def)
apply clarify
apply(drule While_aux)
apply assumption
apply blast
apply blast
done
lemma AbortRule: "p ⊆ {s. False} ⟹ Valid p Abort q"
by(auto simp:Valid_def)
subsection ‹Derivation of the proof rules and, most importantly, the VCG tactic›
lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}"
by blast
ML_file "hoare_tac.ML"
method_setup vcg = ‹
Scan.succeed (fn ctxt => SIMPLE_METHOD' (Hoare.hoare_tac ctxt (K all_tac)))›
"verification condition generator"
method_setup vcg_simp = ‹
Scan.succeed (fn ctxt =>
SIMPLE_METHOD' (Hoare.hoare_tac ctxt (asm_full_simp_tac ctxt)))›
"verification condition generator plus simplification"
syntax
"_guarded_com" :: "bool ⇒ 'a com ⇒ 'a com" ("(2_ →/ _)" 71)
"_array_update" :: "'a list ⇒ nat ⇒ 'a ⇒ 'a com" ("(2_[_] :=/ _)" [70, 65] 61)
translations
"P → c" == "IF P THEN c ELSE CONST Abort FI"
"a[i] := v" => "(i < CONST length a) → (a := CONST list_update a i v)"
text‹Note: there is no special syntax for guarded array access. Thus
you must write ‹j < length a → a[i] := a!j›.›
end