Lattices and Orders in Isabelle/HOL

Markus Wenzel TU München

October 8, 2017

Abstract

We consider abstract structures of orders and lattices. Many fundamental concepts of lattice theory are developed, including dual structures, properties of bounds versus algebraic laws, lattice operations versus set-theoretic ones etc. We also give example instantiations of lattices and orders, such as direct products and function spaces. Wellknown properties are demonstrated, like the Knaster-Tarski Theorem for complete lattices.

This formal theory development may serve as an example of applying Isabelle/HOL to the domain of mathematical reasoning about "axiomatic" structures. Apart from the simply-typed classical set-theory of HOL, we employ Isabelle's system of axiomatic type classes for expressing structures and functors in a light-weight manner. Proofs are expressed in the Isar language for readable formal proof, while aiming at its "best-style" of representing formal reasoning.

Contents

1	Ord	ers	3
	1.1	Ordered structures	3
	1.2	Duality	3
	1.3	Transforming orders	4
		1.3.1 Duals	4
		1.3.2 Binary products	5
		1.3.3 General products	5
2	Bou	inds	6
	2.1	Infimum and supremum	6
	2.2	Duality	7
	2.3	Uniqueness	8
	2.4	Related elements	8
	2.5	General versus binary bounds	8
	2.6		

CONTENTS

3	Lat	tices	9
	3.1	Lattice operations	9
	3.2	Duality	10
	3.3	Algebraic properties	11
	3.4	Order versus algebraic structure	11
	3.5	Example instances	12
		3.5.1 Linear orders \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	12
		3.5.2 Binary products	12
		3.5.3 General products	13
	3.6	Monotonicity and semi-morphisms	13
4	Con	nplete lattices	14
	4.1	Complete lattice operations	14
	4.2	The Knaster-Tarski Theorem	15
	4.3	Bottom and top elements	16
	4.4	Duality	16
	4.5	Complete lattices are lattices	16
	4.6	Complete lattices and set-theory operations	17

2

1 Orders

theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type 'a with relation $\sqsubseteq :: 'a \Rightarrow 'a \Rightarrow bool$. For a *quasi-order* that relation is required to be reflexive and transitive, for a *partial order* it also has to be anti-symmetric, while for a *linear order* all elements are required to be related (in either direction).

```
class leq =
fixes leq :: 'a \Rightarrow 'a \Rightarrow bool (infixl \sqsubseteq 50)
```

class quasi-order = leq + assumes leq-refl [intro?]: $x \sqsubseteq x$ assumes leq-trans [trans]: $x \sqsubseteq y \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqsubseteq z$

class partial-order = quasi-order + **assumes** leq-antisym [trans]: $x \sqsubseteq y \Longrightarrow y \sqsubseteq x \Longrightarrow x = y$

class linear-order = partial-order + **assumes** leq-linear: $x \sqsubseteq y \lor y \sqsubseteq x$

lemma linear-order-cases: ((x::'a::linear-order) $\sqsubseteq y \Longrightarrow C$) $\Longrightarrow (y \sqsubseteq x \Longrightarrow C) \Longrightarrow C$ $\langle proof \rangle$

1.2 Duality

The *dual* of an ordered structure is an isomorphic copy of the underlying type, with the \sqsubseteq relation defined as the inverse of the original one.

```
datatype 'a dual = dual 'a
```

primrec undual :: 'a dual \Rightarrow 'a where undual-dual: undual (dual x) = x

instantiation dual :: (leq) leq begin

```
definition
```

 $leq-dual-def: x' \sqsubseteq y' \equiv undual y' \sqsubseteq undual x'$

instance $\langle proof \rangle$

end

```
lemma undual-leq [iff?]: (undual x' \sqsubseteq undual y') = (y' \sqsubseteq x')
\lapla proof \lapla
```

lemma dual-leq [iff?]: (dual $x \sqsubseteq$ dual y) = ($y \sqsubseteq x$) \lapla proof \rangle

Functions *dual* and *undual* are inverse to each other; this entails the following fundamental properties.

- **lemma** dual-undual [simp]: dual (undual x') = $x' \langle proof \rangle$
- **lemma** undual-dual-id [simp]: undual o dual = id $\langle proof \rangle$
- **lemma** dual-undual-id [simp]: dual o undual = id $\langle proof \rangle$

Since *dual* (and *undual*) are both injective and surjective, the basic logical connectives (equality, quantification etc.) are transferred as follows.

lemma undual-equality [iff?]: (undual x' = undual y') = (x' = y') $\langle proof \rangle$

lemma dual-equality [iff?]: (dual x = dual y) = (x = y) $\langle proof \rangle$

lemma dual-ball [iff?]: $(\forall x \in A. P (dual x)) = (\forall x' \in dual `A. P x') \langle proof \rangle$

lemma range-dual [simp]: surj dual $\langle proof \rangle$

lemma dual-all [iff?]: $(\forall x. P (dual x)) = (\forall x'. P x') \langle proof \rangle$

lemma dual-ex: $(\exists x. P (dual x)) = (\exists x'. P x') \langle proof \rangle$

lemma dual-Collect: {dual x| x. P (dual x)} = {x'. P x'} $\langle proof \rangle$

1.3 Transforming orders

1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation of dual structures.

instance dual :: (quasi-order) quasi-order $\langle proof \rangle$

instance dual :: (partial-order) partial-order $\langle proof \rangle$

instance dual :: (linear-order) linear-order (proof)

1.3.2 Binary products

The classes of quasi and partial orders are closed under binary products. Note that the direct product of linear orders need *not* be linear in general.

instantiation prod :: (leq, leq) leq begin

definition

 $leq \text{-} prod \text{-} def \colon p \sqsubseteq q \equiv fst \ p \sqsubseteq fst \ q \land snd \ p \sqsubseteq snd \ q$

instance $\langle proof \rangle$

 \mathbf{end}

```
lemma leq-prodI [intro?]:

fst p \sqsubseteq fst q \Longrightarrow snd p \sqsubseteq snd q \Longrightarrow p \sqsubseteq q

\langle proof \rangle
```

lemma leq-prodE [elim?]: $p \sqsubseteq q \Longrightarrow (fst \ p \sqsubseteq fst \ q \Longrightarrow snd \ p \sqsubseteq snd \ q \Longrightarrow C) \Longrightarrow C$ $\langle proof \rangle$

instance prod ::: (quasi-order, quasi-order) quasi-order $\langle proof \rangle$

instance prod :: (partial-order, partial-order) partial-order $\langle proof \rangle$

1.3.3 General products

The classes of quasi and partial orders are closed under general products (function spaces). Note that the direct product of linear orders need *not* be linear in general.

instantiation fun :: (type, leq) leq begin

definition *leq-fun-def*: $f \sqsubseteq g \equiv \forall x. f x \sqsubseteq g x$

instance $\langle proof \rangle$

 \mathbf{end}

lemma leq-funI [intro?]: $(\bigwedge x. f x \sqsubseteq g x) \Longrightarrow f \sqsubseteq g$ $\langle proof \rangle$

lemma *leq-funD* [*dest*?]: $f \sqsubseteq g \Longrightarrow f x \sqsubseteq g x$ $\langle proof \rangle$

instance fun :: (type, quasi-order) quasi-order $\langle proof \rangle$

instance fun :: (type, partial-order) partial-order $\langle proof \rangle$

 \mathbf{end}

2 Bounds

theory Bounds imports Orders begin

hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supremum (least upper bound) wrt. \sqsubseteq for two and for any number of elements.

definition

is-inf :: 'a::partial-order \Rightarrow 'a \Rightarrow 'a \Rightarrow bool where is-inf x y inf = (inf $\sqsubseteq x \land inf \sqsubseteq y \land (\forall z. \ z \sqsubseteq x \land z \sqsubseteq y \longrightarrow z \sqsubseteq inf))$

definition

is-sup :: 'a::partial-order \Rightarrow 'a \Rightarrow 'a \Rightarrow bool where is-sup x y sup = (x \sqsubseteq sup \land y \sqsubseteq sup \land ($\forall z. x \sqsubseteq z \land y \sqsubseteq z \longrightarrow sup \sqsubseteq z$))

definition

is-Inf :: 'a::partial-order set \Rightarrow 'a \Rightarrow bool where is-Inf A inf = (($\forall x \in A$. inf $\sqsubseteq x$) \land ($\forall z$. ($\forall x \in A$. $z \sqsubseteq x$) $\longrightarrow z \sqsubseteq inf$))

definition

is-Sup :: 'a::partial-order set \Rightarrow 'a \Rightarrow bool where is-Sup A sup = (($\forall x \in A. x \sqsubseteq sup$) \land ($\forall z. (\forall x \in A. x \sqsubseteq z) \longrightarrow sup \sqsubseteq z$))

These definitions entail the following basic properties of boundary elements.

lemma is-infI [intro?]: inf $\sqsubseteq x \Longrightarrow$ inf $\sqsubseteq y \Longrightarrow$ ($\bigwedge z. \ z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq$ inf) \Longrightarrow is-inf x y inf $\langle proof \rangle$

lemma is-inf-greatest [elim?]: is-inf x y inf $\Longrightarrow z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq$ inf

 $\langle proof \rangle$ **lemma** *is-inf-lower* [*elim*?]: is-inf x y inf \Longrightarrow (inf $\sqsubseteq x \Longrightarrow$ inf $\sqsubseteq y \Longrightarrow C$) $\Longrightarrow C$ $\langle proof \rangle$ **lemma** is-supI [intro?]: $x \sqsubseteq sup \Longrightarrow y \sqsubseteq sup \Longrightarrow$ $(\bigwedge z. \ x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow sup \sqsubseteq z) \Longrightarrow is$ -sup $x \ y \ sup$ $\langle proof \rangle$ lemma is-sup-least [elim?]: $\textit{is-sup } x \; y \; sup \Longrightarrow x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow sup \sqsubseteq z$ $\langle proof \rangle$ **lemma** *is-sup-upper* [*elim*?]: $is\text{-}sup \ x \ y \ sup \Longrightarrow (x \sqsubseteq sup \Longrightarrow y \sqsubseteq sup \Longrightarrow C) \Longrightarrow C$ $\langle proof \rangle$ **lemma** is-InfI [intro?]: $(\bigwedge x. \ x \in A \implies inf \sqsubseteq x) \implies$ $(\bigwedge z. \ (\forall x \in A. \ z \sqsubseteq x) \Longrightarrow z \sqsubseteq inf) \Longrightarrow is-Inf A inf$ $\langle proof \rangle$ **lemma** *is-Inf-greatest* [*elim*?]: is-Inf A inf $\Longrightarrow (\bigwedge x. \ x \in A \Longrightarrow z \sqsubseteq x) \Longrightarrow z \sqsubseteq inf$ $\langle proof \rangle$ **lemma** *is-Inf-lower* [*dest*?]: is-Inf A inf $\implies x \in A \implies inf \sqsubseteq x$ $\langle proof \rangle$ **lemma** is-SupI [intro?]: $(\bigwedge x. \ x \in A \implies x \sqsubseteq sup) \implies$ $(\bigwedge z. \ (\forall x \in A. \ x \sqsubseteq z) \Longrightarrow sup \sqsubseteq z) \Longrightarrow is$ -Sup A sup $\langle proof \rangle$ **lemma** *is-Sup-least* [*elim?*]: is-Sup A sup \Longrightarrow $(\bigwedge x. x \in A \Longrightarrow x \sqsubseteq z) \Longrightarrow$ sup $\sqsubseteq z$ $\langle proof \rangle$ **lemma** *is-Sup-upper* [*dest*?]: is-Sup $A sup \implies x \in A \implies x \sqsubseteq sup$ $\langle proof \rangle$

2.2 Duality

Infimum and supremum are dual to each other. theorem *dual-inf* [*iff*?]: is-inf (dual x) (dual y) (dual sup) = is-sup x y sup $\langle proof \rangle$

theorem dual-sup [iff?]: is-sup (dual x) (dual y) (dual inf) = is-inf x y inf $\langle proof \rangle$

```
theorem dual-Inf [iff?]:
is-Inf (dual 'A) (dual sup) = is-Sup A sup \langle proof \rangle
```

```
theorem dual-Sup [iff?]:
is-Sup (dual 'A) (dual inf) = is-Inf A inf
\langle proof \rangle
```

2.3 Uniqueness

Infima and suprema on partial orders are unique; this is mainly due to antisymmetry of the underlying relation.

theorem is-inf-uniq: is-inf x y inf \implies is-inf x y inf ' \implies inf = inf ' $\langle proof \rangle$

theorem is-sup-uniq: is-sup $x y \sup \Longrightarrow$ is-sup $x y \sup' \Longrightarrow \sup = \sup' \langle proof \rangle$

theorem is-Inf-uniq: is-Inf A inf \implies is-Inf A inf ' \implies inf = inf ' (proof)

theorem is-Sup-uniq: is-Sup A sup \implies is-Sup A sup' \implies sup = sup' $\langle proof \rangle$

2.4 Related elements

The binary bound of related elements is either one of the argument.

theorem is-inf-related [elim?]: $x \sqsubseteq y \Longrightarrow$ is-inf $x y x \langle proof \rangle$

theorem is-sup-related [elim?]: $x \sqsubseteq y \Longrightarrow$ is-sup $x y y \langle proof \rangle$

2.5 General versus binary bounds

General bounds of two-element sets coincide with binary bounds.

theorem is-Inf-binary: is-Inf $\{x, y\}$ inf = is-inf x y inf $\langle proof \rangle$

theorem is-Sup-binary: is-Sup $\{x, y\}$ sup = is-sup x y sup

 $\langle proof \rangle$

2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least upper bound (supremum) is the same as the the greatest lower bound of the set of all upper bounds; the dual statements holds as well; the dual statement holds as well.

theorem Inf-Sup: is-Inf $\{b. \forall a \in A. a \sqsubseteq b\}$ sup \Longrightarrow is-Sup A sup $\langle proof \rangle$

theorem Sup-Inf: is-Sup $\{b. \forall a \in A. b \sqsubseteq a\}$ inf \Longrightarrow is-Inf A inf $\langle proof \rangle$

 \mathbf{end}

3 Lattices

theory Lattice imports Bounds begin

3.1 Lattice operations

A *lattice* is a partial order with infimum and supremum of any two elements (thus any *finite* number of elements have bounds as well).

class *lattice* = **assumes** *ex-inf*: \exists *inf*. *is-inf* x y *inf* **assumes** *ex-sup*: \exists *sup*. *is-sup* x y *sup*

The \sqcap (meet) and \sqcup (join) operations select such infimum and supremum elements.

definition

meet :: 'a::lattice \Rightarrow 'a \Rightarrow 'a (infixl \sqcap 70) where $x \sqcap y = (THE inf. is-inf x y inf)$ definition join :: 'a::lattice \Rightarrow 'a \Rightarrow 'a (infixl \sqcup 65) where $x \sqcup y = (THE sup. is-sup x y sup)$

Due to unique existence of bounds, the lattice operations may be exhibited as follows.

lemma meet-equality [elim?]: is-inf x y inf $\implies x \sqcap y = inf \langle proof \rangle$

lemma meetI [intro?]:

 $\inf \sqsubseteq x \Longrightarrow \inf \sqsubseteq y \Longrightarrow (\bigwedge z. \ z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq inf) \Longrightarrow x \sqcap y = \inf \langle proof \rangle$

lemma join-equality [elim?]: is-sup $x y sup \implies x \sqcup y = sup \langle proof \rangle$

The \sqcap and \sqcup operations indeed determine bounds on a lattice structure.

lemma is-inf-meet [intro?]: is-inf $x y (x \sqcap y)$ $\langle proof \rangle$ **lemma** meet-greatest [intro?]: $z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq x \sqcap y$ $\langle proof \rangle$ **lemma** meet-lower1 [intro?]: $x \sqcap y \sqsubseteq x$ $\langle proof \rangle$ **lemma** meet-lower2 [intro?]: $x \sqcap y \sqsubseteq y$ $\langle proof \rangle$ **lemma** is-sup-join [intro?]: is-sup $x y (x \sqcup y)$ $\langle proof \rangle$ **lemma** join-least [intro?]: $x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqcup y \sqsubseteq z$ $\langle proof \rangle$ **lemma** *join-upper1* [*intro?*]: $x \sqsubseteq x \sqcup y$ $\langle proof \rangle$ **lemma** *join-upper2* [*intro?*]: $y \sqsubseteq x \sqcup y$ $\langle proof \rangle$

3.2 Duality

The class of lattices is closed under formation of dual structures. This means that for any theorem of lattice theory, the dualized statement holds as well; this important fact simplifies many proofs of lattice theory.

instance dual :: (lattice) lattice $\langle proof \rangle$

Apparently, the \sqcap and \sqcup operations are dual to each other.

theorem dual-meet [intro?]: dual $(x \sqcap y) = dual \ x \sqcup dual \ y \langle proof \rangle$

theorem dual-join [intro?]: dual $(x \sqcup y) = dual \ x \sqcap dual \ y$ $\langle proof \rangle$

3.3 Algebraic properties

The \sqcap and \sqcup operations have the following characteristic algebraic properties: associative (A), commutative (C), and absorptive (AB).

theorem meet-assoc: $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$ $\langle proof \rangle$

theorem join-assoc: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$ $\langle proof \rangle$

theorem meet-commute: $x \sqcap y = y \sqcap x$ $\langle proof \rangle$

theorem join-commute: $x \sqcup y = y \sqcup x$ (proof)

theorem meet-join-absorb: $x \sqcap (x \sqcup y) = x$ $\langle proof \rangle$

theorem join-meet-absorb: $x \sqcup (x \sqcap y) = x$ $\langle proof \rangle$

Some further algebraic properties hold as well. The property idempotent (I) is a basic algebraic consequence of (AB).

theorem meet-idem: $x \sqcap x = x$ $\langle proof \rangle$

theorem join-idem: $x \sqcup x = x$ $\langle proof \rangle$

Meet and join are trivial for related elements.

theorem meet-related [elim?]: $x \sqsubseteq y \Longrightarrow x \sqcap y = x$ (proof)

theorem join-related [elim?]: $x \sqsubseteq y \Longrightarrow x \sqcup y = y$ (proof)

3.4 Order versus algebraic structure

The \sqcap and \sqcup operations are connected with the underlying \sqsubseteq relation in a canonical manner.

theorem meet-connection: $(x \sqsubseteq y) = (x \sqcap y = x)$ $\langle proof \rangle$

theorem join-connection: $(x \sqsubseteq y) = (x \sqcup y = y)$ (proof) The most fundamental result of the meta-theory of lattices is as follows (we do not prove it here).

Given a structure with binary operations \sqcap and \sqcup such that (A), (C), and (AB) hold (cf. §3.3). This structure represents a lattice, if the relation $x \sqsubseteq y$ is defined as $x \sqcap y = x$ (alternatively as $x \sqcup y = y$). Furthermore, infimum and supremum with respect to this ordering coincide with the original \sqcap and \sqcup operations.

3.5 Example instances

3.5.1 Linear orders

Linear orders with *minimum* and *maximum* operations are a (degenerate) example of lattice structures.

definition

minimum :: 'a::linear-order \Rightarrow 'a \Rightarrow 'a where minimum $x \ y = (if \ x \sqsubseteq y \ then \ x \ else \ y)$ definition maximum :: 'a::linear-order \Rightarrow 'a \Rightarrow 'a where maximum $x \ y = (if \ x \sqsubseteq y \ then \ y \ else \ x)$

lemma is-inf-minimum: is-inf $x \ y$ (minimum $x \ y$) $\langle proof \rangle$

lemma is-sup-maximum: is-sup x y (maximum x y) $\langle proof \rangle$

instance linear-order \subseteq lattice $\langle proof \rangle$

The lattice operations on linear orders indeed coincide with *minimum* and *maximum*.

theorem meet-minimum: $x \sqcap y = minimum \ x \ y \\ \langle proof \rangle$

theorem meet-maximum: $x \sqcup y = maximum \ x \ y \ \langle proof \rangle$

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. $\S1.3.2$).

```
lemma is-inf-prod: is-inf p \ q (fst p \ \sqcap fst q, snd p \ \sqcap snd q) \langle proof \rangle
```

lemma is-sup-prod: is-sup $p \ q$ (fst $p \sqcup$ fst q, snd $p \sqcup$ snd q) $\langle proof \rangle$

instance prod :: (lattice, lattice) lattice $\langle proof \rangle$

The lattice operations on a binary product structure indeed coincide with the products of the original ones.

theorem meet-prod: $p \sqcap q = (fst \ p \sqcap fst \ q, snd \ p \sqcap snd \ q)$ $\langle proof \rangle$

theorem join-prod: $p \sqcup q = (fst \ p \sqcup fst \ q, snd \ p \sqcup snd \ q)$ $\langle proof \rangle$

3.5.3 General products

The class of lattices is closed under general products (function spaces) as well (cf. $\S1.3.3$).

```
lemma is-inf-fun: is-inf f g (\lambda x. f x \sqcap g x) \langle proof \rangle
```

```
lemma is-sup-fun: is-sup f g (\lambda x. f x \sqcup g x)
\langle proof \rangle
```

instance fun :: (type, lattice) lattice $\langle proof \rangle$

The lattice operations on a general product structure (function space) indeed emerge by point-wise lifting of the original ones.

theorem meet-fun: $f \sqcap g = (\lambda x. f x \sqcap g x)$ $\langle proof \rangle$

theorem join-fun: $f \sqcup g = (\lambda x. f x \sqcup g x)$ $\langle proof \rangle$

3.6 Monotonicity and semi-morphisms

The lattice operations are monotone in both argument positions. In fact, monotonicity of the second position is trivial due to commutativity.

theorem meet-mono: $x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcap y \sqsubseteq z \sqcap w$ (proof)

theorem join-mono: $x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcup y \sqsubseteq z \sqcup w$ $\langle proof \rangle$

A semi-morphisms is a function f that preserves the lattice operations in the following manner: $f(x \sqcap y) \sqsubseteq f x \sqcap f y$ and $f x \sqcup f y \sqsubseteq f (x \sqcup y)$, respectively. Any of these properties is equivalent with monotonicity.

```
theorem meet-semimorph:
```

 $(\bigwedge x \ y. \ f \ (x \sqcap y) \sqsubseteq f \ x \sqcap f \ y) \equiv (\bigwedge x \ y. \ x \sqsubseteq y \Longrightarrow f \ x \sqsubseteq f \ y)$ $\langle proof \rangle$

lemma join-semimorph: $(\bigwedge x \ y. \ f \ x \sqcup f \ y \sqsubseteq f \ (x \sqcup y)) \equiv (\bigwedge x \ y. \ x \sqsubseteq y \Longrightarrow f \ x \sqsubseteq f \ y)$ $\langle proof \rangle$

 \mathbf{end}

4 Complete lattices

theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any set of elements. General supremum exists as well, as a consequence of the connection of infinitary bounds (see $\S2.6$).

```
class complete-lattice =
assumes ex-Inf: \exists inf. is-Inf A inf
```

theorem *ex-Sup*: \exists *sup*::'*a*::*complete-lattice*. *is-Sup* A *sup* $\langle proof \rangle$

The general \prod (meet) and \bigsqcup (join) operations select such infimum and supremum elements.

definition

Meet :: 'a::complete-lattice set \Rightarrow 'a ([] - [90] 90) where [] A = (THE inf. is-Inf A inf)definition Join :: 'a::complete-lattice set \Rightarrow 'a ([] - [90] 90) where [] A = (THE sup. is-Sup A sup)

Due to unique existence of bounds, the complete lattice operations may be exhibited as follows.

lemma Meet-equality [elim?]: is-Inf A inf $\Longrightarrow \prod A = inf \langle proof \rangle$

lemma MeetI [intro?]: $(\bigwedge a. \ a \in A \Longrightarrow inf \sqsubseteq a) \Longrightarrow$ $(\bigwedge b. \ \forall \ a \in A. \ b \sqsubseteq a \Longrightarrow b \sqsubseteq inf) \Longrightarrow$ $\square A = inf$ $\langle proof \rangle$

lemma Join-equality [elim?]: is-Sup A sup $\Longrightarrow \bigsqcup A = sup \langle proof \rangle$

The \square and \square operations indeed determine bounds on a complete lattice structure.

lemma is-Inf-Meet [intro?]: is-Inf $A (\Box A)$ (proof)

lemma Meet-greatest [intro?]: $(\bigwedge a. \ a \in A \Longrightarrow x \sqsubseteq a) \Longrightarrow x \sqsubseteq \square A$ $\langle proof \rangle$

lemma Meet-lower [intro?]: $a \in A \Longrightarrow \prod A \sqsubseteq a$ $\langle proof \rangle$

lemma is-Sup-Join [intro?]: is-Sup A ($\bigsqcup A$) $\langle proof \rangle$

lemma Join-least [intro?]: $(\bigwedge a. \ a \in A \implies a \sqsubseteq x) \implies \bigsqcup A \sqsubseteq x$ $\langle proof \rangle$ **lemma** Join-lower [intro?]: $a \in A \implies a \sqsubseteq \bigsqcup A$ $\langle proof \rangle$

4.2 The Knaster-Tarski Theorem

The Knaster-Tarski Theorem (in its simplest formulation) states that any monotone function on a complete lattice has a least fixed-point (see [?, pages 93–94] for example). This is a consequence of the basic boundary properties of the complete lattice operations.

theorem Knaster-Tarski: **assumes** mono: $\bigwedge x \ y. \ x \sqsubseteq y \Longrightarrow f \ x \sqsubseteq f \ y$ **obtains** a :: 'a::complete-lattice where $f \ a = a \text{ and } \bigwedge a'. \ f \ a' = a' \Longrightarrow a \sqsubseteq a'$ $\langle proof \rangle$

theorem Knaster-Tarski-dual: **assumes** mono: $\bigwedge x \ y. \ x \sqsubseteq y \Longrightarrow f \ x \sqsubseteq f \ y$ **obtains** a :: 'a::complete-lattice where $f \ a = a \ and \ \bigwedge a'. \ f \ a' = a' \Longrightarrow a' \sqsubseteq a$ $\langle proof \rangle$

4.3 Bottom and top elements

With general bounds available, complete lattices also have least and greatest elements.

definition bottom :: 'a::complete-lattice (\perp) where $\perp = \prod UNIV$

definition

top ::: 'a::complete-lattice (\top) where $\top = | UNIV$

lemma bottom-least [intro?]: $\bot \sqsubseteq x$ $\langle proof \rangle$

lemma bottomI [intro?]: $(\bigwedge a. x \sqsubseteq a) \Longrightarrow \bot = x$ $\langle proof \rangle$

lemma top-greatest [intro?]: $x \sqsubseteq \top$ $\langle proof \rangle$

lemma topI [intro?]: ($\bigwedge a. \ a \sqsubseteq x$) $\Longrightarrow \top = x$ (proof)

4.4 Duality

The class of complete lattices is closed under formation of dual structures.

instance dual :: (complete-lattice) complete-lattice $\langle proof \rangle$

Apparently, the \square and \bigsqcup operations are dual to each other.

theorem dual-Meet [intro?]: dual $(\prod A) = \bigsqcup (dual `A) \langle proof \rangle$

theorem dual-Join [intro?]: dual ($\bigsqcup A$) = $\bigsqcup (dual `A) \langle proof \rangle$

Likewise are \perp and \top duals of each other.

theorem dual-bottom [intro?]: dual $\perp = \top$ $\langle proof \rangle$

theorem dual-top [intro?]: dual $\top = \bot$ $\langle proof \rangle$

4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices as well. This holds due to the connection of general versus binary bounds that has been formally established in $\S2.5$.

lemma is-inf-binary: is-inf $x \ y \ (\prod \{x, \ y\})$ $\langle proof \rangle$

lemma is-sup-binary: is-sup $x y (\bigsqcup \{x, y\})$ $\langle proof \rangle$

instance complete-lattice \subseteq lattice $\langle proof \rangle$

theorem meet-binary: $x \sqcap y = \prod \{x, y\}$ $\langle proof \rangle$

theorem join-binary: $x \sqcup y = \bigsqcup \{x, y\}$ $\langle proof \rangle$

4.6 Complete lattices and set-theory operations

The complete lattice operations are (anti) monotone wrt. set inclusion.

theorem Meet-subset-antimono: $A \subseteq B \Longrightarrow \prod B \sqsubseteq \prod A \langle proof \rangle$

theorem Join-subset-mono: $A \subseteq B \Longrightarrow \bigsqcup A \sqsubseteq \bigsqcup B$ $\langle proof \rangle$

Bounds over unions of sets may be obtained separately.

theorem Meet-Un: $\prod (A \cup B) = \prod A \sqcap \prod B \langle proof \rangle$

theorem Join-Un: $\bigsqcup (A \cup B) = \bigsqcup A \sqcup \bigsqcup B$ $\langle proof \rangle$

Bounds over singleton sets are trivial.

theorem Meet-singleton: $\prod \{x\} = x \ \langle proof \rangle$

theorem Join-singleton: $\bigsqcup \{x\} = x \ \langle proof \rangle$

Bounds over the empty and universal set correspond to each other.

theorem Meet-empty: \Box {} = \sqcup UNIV $\langle proof \rangle$

theorem Join-empty: $\bigsqcup \{\} = \bigsqcup UNIV \langle proof \rangle$

end