Lattices and Orders in Isabelle/HOL

Markus Wenzel
TU München

October 8, 2017

Abstract

We consider abstract structures of orders and lattices. Many fundamental concepts of lattice theory are developed, including dual structures, properties of bounds versus algebraic laws, lattice operations versus set-theoretic ones etc. We also give example instantiations of lattices and orders, such as direct products and function spaces. Wellknown properties are demonstrated, like the Knaster-Tarski Theorem for complete lattices.

This formal theory development may serve as an example of applying Isabelle/HOL to the domain of mathematical reasoning about "axiomatic" structures. Apart from the simply-typed classical set-theory of HOL, we employ Isabelle's system of axiomatic type classes for expressing structures and functors in a light-weight manner. Proofs are expressed in the Isar language for readable formal proof, while aiming at its "best-style" of representing formal reasoning.

Contents

1 Orders 3
1.1 Ordered structures 3
1.2 Duality 3
1.3 Transforming orders 4
1.3.1 Duals 4
1.3.2 Binary products 5
1.3.3 General products 5
2 Bounds 6
2.1 Infimum and supremum 6
2.2 Duality 7
2.3 Uniqueness 8
2.4 Related elements 8
2.5 General versus binary bounds 8
2.6 Connecting general bounds 9
CONTENTS 2
3 Lattices 9
3.1 Lattice operations 9
3.2 Duality 10
3.3 Algebraic properties 11
3.4 Order versus algebraic structure 11
3.5 Example instances 12
3.5.1 Linear orders 12
3.5.2 Binary products 12
3.5.3 General products 13
3.6 Monotonicity and semi-morphisms 13
4 Complete lattices 14
4.1 Complete lattice operations 14
4.2 The Knaster-Tarski Theorem 15
4.3 Bottom and top elements 16
4.4 Duality 16
4.5 Complete lattices are lattices 16
4.6 Complete lattices and set-theory operations 17

1 Orders

theory Orders imports Main begin

1.1 Ordered structures

We define several classes of ordered structures over some type ' a with relation $\sqsubseteq:: ' a \Rightarrow{ }^{\prime} a \Rightarrow$ bool. For a quasi-order that relation is required to be reflexive and transitive, for a partial order it also has to be anti-symmetric, while for a linear order all elements are required to be related (in either direction).

```
class leq \(=\)
    fixes leq :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool (infixl \(\left.\sqsubseteq 50\right)\)
class quasi-order \(=l e q+\)
    assumes leq-refl [intro?]: \(x \sqsubseteq x\)
    assumes leq-trans \([\) trans]: \(x \sqsubseteq y \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqsubseteq z\)
class partial-order \(=\) quasi-order +
    assumes leq-antisym [trans]: \(x \sqsubseteq y \Longrightarrow y \sqsubseteq x \Longrightarrow x=y\)
class linear-order \(=\) partial-order +
    assumes leq-linear: \(x \sqsubseteq y \vee y \sqsubseteq x\)
lemma linear-order-cases:
    \(\left(\left(x::^{\prime}\right.\right.\) : : : inear-order \(\left.) \sqsubseteq y \Longrightarrow C\right) \Longrightarrow(y \sqsubseteq x \Longrightarrow C) \Longrightarrow C\)
    〈proof〉
```


1.2 Duality

The dual of an ordered structure is an isomorphic copy of the underlying type, with the \sqsubseteq relation defined as the inverse of the original one.

```
datatype 'a dual = dual 'a
primrec undual :: 'a dual }=>\mp@subsup{|}{}{\prime}a\mathrm{ where
    undual-dual:undual (dual x)}=
instantiation dual :: (leq) leq
begin
definition
    leq-dual-def: x' }\sqsubseteq\mp@subsup{y}{}{\prime}\equiv\mathrm{ undual }\mp@subsup{y}{}{\prime}\sqsubseteq\mathrm{ undual }\mp@subsup{x}{}{\prime
instance \langleproof\rangle
end
lemma undual-leq [iff?]: (undual \mp@subsup{x}{}{\prime}\sqsubseteq undual y')}=(\mp@subsup{y}{}{\prime}\sqsubseteq\mp@subsup{x}{}{\prime}
    <proof>
```

```
lemma dual-leq [iff?]: (dual \(x \sqsubseteq\) dual \(y)=(y \sqsubseteq x)\)
    〈proof〉
```

Functions dual and undual are inverse to each other; this entails the following fundamental properties.
lemma dual-undual [simp]: dual (undual $\left.x^{\prime}\right)=x^{\prime}$ $\langle p r o o f\rangle$
lemma undual-dual-id [simp]: undual o dual $=$ id $\langle p r o o f\rangle$
lemma dual-undual-id [simp]: dual o undual $=$ id $\langle p r o o f\rangle$

Since dual (and undual) are both injective and surjective, the basic logical connectives (equality, quantification etc.) are transferred as follows.
lemma undual-equality [iff?]: (undual $x^{\prime}=$ undual $\left.y^{\prime}\right)=\left(x^{\prime}=y^{\prime}\right)$ $\langle p r o o f\rangle$
lemma dual-equality [iff?]: (dual $x=$ dual $y)=(x=y)$
$\langle p r o o f\rangle$
lemma dual-ball [iff?]: $(\forall x \in A . P($ dual $x))=\left(\forall x^{\prime} \in\right.$ dual' $\left.A . P x^{\prime}\right)$
$\langle p r o o f\rangle$
lemma range-dual [simp]: surj dual
$\langle p r o o f\rangle$
lemma dual-all [iff?]: $(\forall x . P($ dual $x))=\left(\forall x^{\prime} . P x^{\prime}\right)$
$\langle p r o o f\rangle$
lemma dual-ex: $(\exists x . P($ dual $x))=\left(\exists x^{\prime} . P x^{\prime}\right)$
$\langle p r o o f\rangle$
lemma dual-Collect: $\{$ dual $x \mid x . P($ dual $x)\}=\left\{x^{\prime} . P x^{\prime}\right\}$
$\langle p r o o f\rangle$

1.3 Transforming orders

1.3.1 Duals

The classes of quasi, partial, and linear orders are all closed under formation of dual structures.
instance dual :: (quasi-order) quasi-order $\langle p r o o f\rangle$

```
instance dual :: (partial-order) partial-order
〈proof〉
instance dual :: (linear-order) linear-order
\(\langle p r o o f\rangle\)
```


1．3．2 Binary products

The classes of quasi and partial orders are closed under binary products． Note that the direct product of linear orders need not be linear in general．

```
instantiation prod :: (leq, leq) leq
begin
definition
    leq-prod-def: p\sqsubseteqq\equiv fst p\sqsubseteq fst q}\wedge snd p\sqsubseteqsnd 
instance \langleproof\rangle
end
lemma leq-prodI [intro?]:
    fst p\sqsubseteq fst q\Longrightarrow snd p\sqsubseteq snd q\Longrightarrowp\sqsubseteqq
    <proof\rangle
lemma leq-prodE [elim?]:
    p\sqsubseteqq\Longrightarrow(fst p\sqsubseteqfst q\Longrightarrow snd p\sqsubseteq snd q\LongrightarrowC)\LongrightarrowC
    <proof>
```

instance prod :: (quasi-order, quasi-order) quasi-order
〈proof〉
instance prod :: (partial-order, partial-order) partial-order
〈proof〉

1．3．3 General products

The classes of quasi and partial orders are closed under general products （function spaces）．Note that the direct product of linear orders need not be linear in general．

```
instantiation fun :: (type, leq) leq
begin
definition
    leq-fun-def: f\sqsubseteqg\equiv\forallx.fx\sqsubseteqgx
instance \langleproof\rangle
```

end

```
lemma leq-funI [intro?]: \((\bigwedge x . f x \sqsubseteq g x) \Longrightarrow f \sqsubseteq g\)
    \(\langle p r o o f\rangle\)
lemma leq-funD [dest?]: \(f \sqsubseteq g \Longrightarrow f x \sqsubseteq g x\)
    \(\langle p r o o f\rangle\)
instance fun :: (type, quasi-order) quasi-order
\(\langle p r o o f\rangle\)
instance fun :: (type, partial-order) partial-order
\(\langle p r o o f\rangle\)
end
```


2 Bounds

theory Bounds imports Orders begin
hide-const (open) inf sup

2.1 Infimum and supremum

Given a partial order, we define infimum (greatest lower bound) and supremum (least upper bound) wrt. \sqsubseteq for two and for any number of elements.

definition

```
is-inf :: ' \(a::\) partial-order \(\Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow\) bool where
is-inf \(x y \inf =(\inf \sqsubseteq x \wedge \inf \sqsubseteq y \wedge(\forall z . z \sqsubseteq x \wedge z \sqsubseteq y \longrightarrow z \sqsubseteq \inf ))\)
```


definition

```
is-sup :: 'a::partial-order \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool where
is-sup \(x y \sup =(x \sqsubseteq \sup \wedge y \sqsubseteq \sup \wedge(\forall z . x \sqsubseteq z \wedge y \sqsubseteq z \longrightarrow \sup \sqsubseteq z))\)
```


definition

```
is-Inf :: 'a::partial-order set \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool where
is-Inf \(A \inf =((\forall x \in A . \inf \sqsubseteq x) \wedge(\forall z .(\forall x \in A . z \sqsubseteq x) \longrightarrow z \sqsubseteq \inf ))\)
```


definition

```
is-Sup :: ' \(a:\) :partial-order set \(\Rightarrow\) ' \(a \Rightarrow\) bool where
\(i s\)-Sup A sup \(=((\forall x \in A . x \sqsubseteq \sup ) \wedge(\forall z .(\forall x \in A . x \sqsubseteq z) \longrightarrow \sup \sqsubseteq z))\)
```

These definitions entail the following basic properties of boundary elements.

```
lemma is-infI [intro?]: inf \sqsubseteq }\\Longrightarrow\mathrm{ inf }\sqsubseteqy
    (\bigwedgez.z\sqsubseteqx\Longrightarrowz\sqsubseteqy\Longrightarrowz\sqsubseteqinf)\Longrightarrowis-inf x y inf
    <proof\rangle
```

lemma is-inf-greatest [elim?]:
is-inf x y inf $\Longrightarrow z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq \inf$

```
<proof\rangle
```

lemma is－inf－lower［elim？］：
is－inf $x y \inf \Longrightarrow($ inf $\sqsubseteq x \Longrightarrow \inf \sqsubseteq y \Longrightarrow C) \Longrightarrow C$〈proof〉
lemma is－supI［intro？］：$x \sqsubseteq$ sup $\Longrightarrow y \sqsubseteq \sup \Longrightarrow$
$(\bigwedge z . x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow \sup \sqsubseteq z) \Longrightarrow i s$－sup $x y$ sup $\langle p r o o f\rangle$
lemma is－sup－least［elim？］：
is－sup x y sup $\Longrightarrow x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow \sup \sqsubseteq z$
〈proof〉
lemma is－sup－upper［elim？］：
is－sup x y sup $\Longrightarrow(x \sqsubseteq$ sup $\Longrightarrow y \sqsubseteq \sup \Longrightarrow C) \Longrightarrow C$
$\langle p r o o f\rangle$
lemma is－InfI［intro？］：$(\bigwedge x . x \in A \Longrightarrow i n f \sqsubseteq x) \Longrightarrow$ $(\bigwedge z .(\forall x \in A . z \sqsubseteq x) \Longrightarrow z \sqsubseteq i n f) \Longrightarrow i s$－Inf $A \inf$〈proof〉
lemma is－Inf－greatest［elim？］：
is－Inf $A \inf \Longrightarrow(\bigwedge x . x \in A \Longrightarrow z \sqsubseteq x) \Longrightarrow z \sqsubseteq \inf$ $\langle p r o o f\rangle$
lemma is－Inf－lower［dest？］： $i s-\operatorname{Inf} A \inf \Longrightarrow x \in A \Longrightarrow \inf \sqsubseteq x$〈proof〉
lemma is－SupI［intro？］：$(\bigwedge x . x \in A \Longrightarrow x \sqsubseteq$ sup $) \Longrightarrow$ $(\bigwedge z .(\forall x \in A . x \sqsubseteq z) \Longrightarrow \sup \sqsubseteq z) \Longrightarrow i s$－Sup A sup〈proof〉
lemma is－Sup－least［elim？］：
is－Sup A sup $\Longrightarrow(\bigwedge x . x \in A \Longrightarrow x \sqsubseteq z) \Longrightarrow \sup \sqsubseteq z$
〈proof〉
lemma is－Sup－upper［dest？］：
is－Sup A sup $\Longrightarrow x \in A \Longrightarrow x \sqsubseteq$ sup
〈proof〉

2.2 Duality

Infimum and supremum are dual to each other．
theorem dual－inf［iff？］：

```
    is-inf \((\) dual \(x)(\) dual \(y)(\) dual sup \()=i s-s u p x y \sup\)
\(\langle p r o o f\rangle\)
```

theorem dual-sup [iff?]:
is-sup $($ dual $x)($ dual $y)($ dual inf $)=i s-i n f x y \inf$
$\langle p r o o f\rangle$

```
theorem dual-Inf [iff?]:
    is-Inf \((\) dual' \(A)(\) dual sup \()=i s-S u p A \sup\)
\(\langle p r o o f\rangle\)
```

theorem dual－Sup［iff？］：
$i s$－Sup $($ dual＇$A)($ dual inf $)=i s-I n f A \inf$ ＜proof〉

2．3 Uniqueness

Infima and suprema on partial orders are unique；this is mainly due to anti－ symmetry of the underlying relation．
theorem is－inf－uniq：is－inf $x y \inf \Longrightarrow i s-i n f x y i n f^{\prime} \Longrightarrow i n f=i n f^{\prime}$ $\langle p r o o f\rangle$
theorem is－sup－uniq：is－sup x y sup $\Longrightarrow i s$－sup x y sup ${ }^{\prime} \Longrightarrow$ sup $^{\prime}=$ sup $^{\prime}$ $\langle p r o o f\rangle$
theorem is－Inf－uniq：is－Inf $A \inf \Longrightarrow i s$－Inf $A \inf { }^{\prime} \Longrightarrow i n f=i n f \prime$ $\langle p r o o f\rangle$
theorem is－Sup－uniq：is－Sup A sup \Longrightarrow is－Sup A sup $^{\prime} \Longrightarrow s u p=$ sup $^{\prime}$ $\langle p r o o f\rangle$

2．4 Related elements

The binary bound of related elements is either one of the argument．

```
theorem is-inf-related [elim?]: \(x \sqsubseteq y \Longrightarrow i s-i n f x y x\)
〈proof〉
theorem is-sup-related [elim?]: \(x \sqsubseteq y \Longrightarrow i s-s u p x y y\)
\(\langle p r o o f\rangle\)
```


2．5 General versus binary bounds

General bounds of two－element sets coincide with binary bounds．
theorem is－Inf－binary：is－Inf $\{x, y\}$ inf $=i s$－inf x y inf〈proof〉
theorem is－Sup－binary：is－Sup $\{x, y\}$ sup $=i s-s u p x$ y sup
$\langle p r o o f\rangle$

2.6 Connecting general bounds

Either kind of general bounds is sufficient to express the other. The least upper bound (supremum) is the same as the the greatest lower bound of the set of all upper bounds; the dual statements holds as well; the dual statement holds as well.
theorem Inf-Sup: is-Inf $\{b . \forall a \in A . a \sqsubseteq b\}$ sup $\Longrightarrow i s$-Sup A sup $\langle p r o o f\rangle$
theorem Sup-Inf: is-Sup $\{b . \forall a \in A . b \sqsubseteq a\} \inf \Longrightarrow i s-I n f A \inf$ $\langle p r o o f\rangle$
end

3 Lattices

theory Lattice imports Bounds begin

3.1 Lattice operations

A lattice is a partial order with infimum and supremum of any two elements (thus any finite number of elements have bounds as well).

```
class lattice =
    assumes ex-inf: \existsinf.is-inf x y inf
    assumes ex-sup: \exists sup.is-sup x y sup
```

The \sqcap (meet) and \sqcup (join) operations select such infimum and supremum elements.

```
definition
    meet \(::\) 'a::lattice \(\Rightarrow\) ' \(a \Rightarrow\) ' \(a\) (infixl \(\sqcap 70\) ) where
    \(x \sqcap y=(\) THE inf. is-inf \(x y\) inf \()\)
definition
    join :: ' \(a:\) :lattice \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) (infixl \(\sqcup 65\) ) where
    \(x \sqcup y=(\) THE sup. is-sup \(x\) y sup \()\)
```

Due to unique existence of bounds, the lattice operations may be exhibited as follows.
lemma meet-equality [elim?]: is-inf $x y \inf \Longrightarrow x \sqcap y=\inf$
$\langle p r o o f\rangle$
lemma meetI [intro?]:
$\underset{\langle\text { inf }}{\operatorname{inoof\rangle }} \sqsubseteq x \Longrightarrow \inf \sqsubseteq y \Longrightarrow(\bigwedge z . z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq \inf) \Longrightarrow x \sqcap y=\inf$

```
lemma join-equality [elim?]: is-sup \(x\) y sup \(\Longrightarrow x \sqcup y=\) sup
\(\langle p r o o f\rangle\)
lemma joinI [intro?]: \(x \sqsubseteq\) sup \(\Longrightarrow y \sqsubseteq \sup \Longrightarrow\)
    \((\bigwedge z . x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow \sup \sqsubseteq z) \Longrightarrow x \sqcup y=\sup\)
    \(\langle p r o o f\rangle\)
```

The \sqcap and \sqcup operations indeed determine bounds on a lattice structure.
lemma is-inf-meet [intro?]: is-inf x y $(x \sqcap y)$
$\langle p r o o f\rangle$
lemma meet-greatest [intro?]: $z \sqsubseteq x \Longrightarrow z \sqsubseteq y \Longrightarrow z \sqsubseteq x \sqcap y$
$\langle p r o o f\rangle$
lemma meet-lower1 [intro?]: $x \sqcap y \sqsubseteq x$
$\langle p r o o f\rangle$
lemma meet-lower2 [intro?]: $x \sqcap y \sqsubseteq y$
$\langle p r o o f\rangle$
lemma is-sup-join [intro?]: is-sup x y $(x \sqcup y)$
$\langle p r o o f\rangle$
lemma join-least [intro?]: $x \sqsubseteq z \Longrightarrow y \sqsubseteq z \Longrightarrow x \sqcup y \sqsubseteq z$
$\langle p r o o f\rangle$
lemma join-upper1 [intro?]: $x \sqsubseteq x \sqcup y$
〈proof〉
lemma join-upper2 [intro?]: $y \sqsubseteq x \sqcup y$
$\langle p r o o f\rangle$

3.2 Duality

The class of lattices is closed under formation of dual structures. This means that for any theorem of lattice theory, the dualized statement holds as well; this important fact simplifies many proofs of lattice theory.
instance dual :: (lattice) lattice
$\langle p r o o f\rangle$
Apparently, the \sqcap and \sqcup operations are dual to each other.
theorem dual-meet [intro?]: dual $(x \sqcap y)=$ dual $x \sqcup$ dual y $\langle p r o o f\rangle$
theorem dual-join [intro?]: dual $(x \sqcup y)=$ dual $x \sqcap$ dual y $\langle p r o o f\rangle$

3．3 Algebraic properties

The \sqcap and \sqcup operations have the following characteristic algebraic proper－ ties：associative（A），commutative（C），and absorptive（AB）．
theorem meet－assoc：$(x \sqcap y) \sqcap z=x \sqcap(y \sqcap z)$
〈proof〉
theorem join－assoc：$(x \sqcup y) \sqcup z=x \sqcup(y \sqcup z)$
$\langle p r o o f\rangle$
theorem meet－commute：$x \sqcap y=y \sqcap x$
〈proof〉
theorem join－commute：$x \sqcup y=y \sqcup x$〈proof〉
theorem meet－join－absorb：$x \sqcap(x \sqcup y)=x$
〈proof〉
theorem join－meet－absorb：$x \sqcup(x \sqcap y)=x$
〈proof〉

Some further algebraic properties hold as well．The property idempotent（I） is a basic algebraic consequence of（ AB ）．
theorem meet－idem：$x \sqcap x=x$
〈proof〉
theorem join－idem：$x \sqcup x=x$
〈proof〉
Meet and join are trivial for related elements．
theorem meet－related［elim？］：$x \sqsubseteq y \Longrightarrow x \sqcap y=x$〈proof〉
theorem join－related［elim？］：$x \sqsubseteq y \Longrightarrow x \sqcup y=y$
〈proof〉

3．4 Order versus algebraic structure

The \sqcap and \sqcup operations are connected with the underlying \sqsubseteq relation in a canonical manner．
theorem meet－connection：$(x \sqsubseteq y)=(x \sqcap y=x)$
〈proof〉
theorem join－connection：$(x \sqsubseteq y)=(x \sqcup y=y)$
〈proof〉

The most fundamental result of the meta-theory of lattices is as follows (we do not prove it here).
Given a structure with binary operations \sqcap and \sqcup such that $(\mathrm{A}),(\mathrm{C})$, and (AB) hold (cf. §3.3). This structure represents a lattice, if the relation $x \sqsubseteq y$ is defined as $x \sqcap y=x$ (alternatively as $x \sqcup y=y$). Furthermore, infimum and supremum with respect to this ordering coincide with the original \sqcap and \sqcup operations.

3.5 Example instances

3.5.1 Linear orders

Linear orders with minimum and maximum operations are a (degenerate) example of lattice structures.

definition

```
minimum :: ' \(a::\) linear-order \(\Rightarrow{ }^{\prime} a \Rightarrow\) ' \(a\) where
    minimum \(x y=(\) if \(x \sqsubseteq y\) then \(x\) else \(y)\)
```


definition

```
maximum \(::\) ' \(a::\) linear-order \(\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) where maximum \(x y=(\) if \(x \sqsubseteq y\) then \(y\) else \(x)\)
```

lemma is-inf-minimum: is-inf x y (minimum $x y)$
$\langle p r o o f\rangle$
lemma is-sup-maximum: is-sup x y (maximum $x y$)
$\langle p r o o f\rangle$

```
instance linear-order \subseteq lattice
```

$\langle p r o o f\rangle$

The lattice operations on linear orders indeed coincide with minimum and maximum.

```
theorem meet-mimimum: x }\squarey=m\mathrm{ minimum x y
    <proof>
```

theorem meet-maximum: $x \sqcup y=$ maximum $x y$
$\langle p r o o f\rangle$

3.5.2 Binary products

The class of lattices is closed under direct binary products (cf. §1.3.2).
lemma is-inf-prod: is-inf $p q(f s t p \sqcap f s t q$, snd $p \sqcap$ snd $q)$ $\langle p r o o f\rangle$
lemma is-sup-prod: is-sup p $q($ fst $p \sqcup f$ st q, snd $p \sqcup$ snd $q)$
$\langle p r o o f\rangle$

```
instance prod :: (lattice, lattice) lattice
〈proof〉
```

The lattice operations on a binary product structure indeed coincide with the products of the original ones．

```
theorem meet-prod: \(p \sqcap q=(\) fst \(p \sqcap\) fst \(q\), snd \(p \sqcap\) snd \(q)\)
    \(\langle p r o o f\rangle\)
theorem join-prod: \(p \sqcup q=(\) fst \(p \sqcup\) fst \(q\), snd \(p \sqcup\) snd \(q)\)
    〈proof〉
```


3．5．3 General products

The class of lattices is closed under general products（function spaces）as well（cf．§1．3．3）．
lemma is－inf－fun：is－inf fg（ $\lambda x . f x \sqcap g x)$
$\langle p r o o f\rangle$
lemma is－sup－fun：is－sup fg（ $\lambda x . f x \sqcup g x)$
〈proof〉
instance fun ：：（type，lattice）lattice
$\langle p r o o f\rangle$
The lattice operations on a general product structure（function space）indeed emerge by point－wise lifting of the original ones．
theorem meet－fun：$f \sqcap g=(\lambda x . f x \sqcap g x)$
$\langle p r o o f\rangle$
theorem join－fun：$f \sqcup g=(\lambda x . f x \sqcup g x)$
$\langle p r o o f\rangle$

3．6 Monotonicity and semi－morphisms

The lattice operations are monotone in both argument positions．In fact， monotonicity of the second position is trivial due to commutativity．
theorem meet－mono：$x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcap y \sqsubseteq z \sqcap w$ $\langle p r o o f\rangle$

```
theorem join-mono: \(x \sqsubseteq z \Longrightarrow y \sqsubseteq w \Longrightarrow x \sqcup y \sqsubseteq z \sqcup w\)
```

$\langle p r o o f\rangle$

A semi－morphisms is a function f that preserves the lattice operations in the following manner：$f(x \sqcap y) \sqsubseteq f x \sqcap f y$ and $f x \sqcup f y \sqsubseteq f(x \sqcup y)$ ， respectively．Any of these properties is equivalent with monotonicity．

theorem meet-semimorph:

$(\bigwedge x y . f(x \sqcap y) \sqsubseteq f x \sqcap f y) \equiv(\bigwedge x y . x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y)$
〈proof〉
lemma join-semimorph:
$(\bigwedge x y . f x \sqcup f y \sqsubseteq f(x \sqcup y)) \equiv(\bigwedge x y \cdot x \sqsubseteq y \Longrightarrow f x \sqsubseteq f y)$
$\langle p r o o f\rangle$
end

4 Complete lattices

theory CompleteLattice imports Lattice begin

4.1 Complete lattice operations

A complete lattice is a partial order with general (infinitary) infimum of any set of elements. General supremum exists as well, as a consequence of the connection of infinitary bounds (see §2.6).

```
class complete-lattice =
    assumes ex-Inf: \existsinf. is-Inf A inf
```

theorem ex-Sup: \exists sup ::'a::complete-lattice. is-Sup A sup
$\langle p r o o f\rangle$

The general Π (meet) and \bigsqcup (join) operations select such infimum and supremum elements.

definition

```
    Meet :: 'a::complete-lattice set \(\Rightarrow\) ' \(a(\Pi-[90] 90)\) where
    \(\Pi A=(\) THE inf. is-Inf \(A\) inf \()\)
definition
    Join :: 'a::complete-lattice set \(\Rightarrow{ }^{\prime} a(\square-[90] ~ 90)\) where
    \(\bigsqcup A=(\) THE sup. is-Sup A sup \()\)
```

Due to unique existence of bounds, the complete lattice operations may be exhibited as follows.

```
lemma Meet-equality [elim?]: is-Inf A inf \LongrightarrowПA=inf
<proof\rangle
```

lemma MeetI [intro?]:
$(\bigwedge a . a \in A \Longrightarrow \inf \sqsubseteq a) \Longrightarrow$
$(\bigwedge b . \forall a \in A . b \sqsubseteq a \Longrightarrow b \sqsubseteq i n f) \Longrightarrow$
$\Pi A=i n f$
$\langle p r o o f\rangle$
lemma Join-equality [elim?]: is-Sup A sup $\Longrightarrow \bigsqcup A=$ sup $\langle p r o o f\rangle$

```
lemma JoinI [intro?]:
    \((\bigwedge a . a \in A \Longrightarrow a \sqsubseteq \sup ) \Longrightarrow\)
    \((\bigwedge b . \forall a \in A . a \sqsubseteq b \Longrightarrow \sup \sqsubseteq b) \Longrightarrow\)
    \(\bigsqcup A=\) sup
    \(\langle p r o o f\rangle\)
```

The Π and \bigsqcup operations indeed determine bounds on a complete lattice structure．
lemma is－Inf－Meet［intro？］：is－Inf $A(\sqcap A)$
〈proof〉
lemma Meet－greatest［intro？］：$(\bigwedge a . a \in A \Longrightarrow x \sqsubseteq a) \Longrightarrow x \sqsubseteq \sqcap A$ $\langle p r o o f\rangle$
lemma Meet－lower［intro？］：$a \in A \Longrightarrow \Pi A \sqsubseteq a$ $\langle p r o o f\rangle$

```
lemma is-Sup-Join [intro?]: is-Sup A (\bigsqcupA)
```

$\langle p r o o f\rangle$

```
lemma Join-least [intro?]: \((\bigwedge a . a \in A \Longrightarrow a \sqsubseteq x) \Longrightarrow \bigsqcup A \sqsubseteq x\)
    〈proof〉
lemma Join-lower [intro?]: \(a \in A \Longrightarrow a \sqsubseteq \bigsqcup A\)
    \(\langle p r o o f\rangle\)
```


4．2 The Knaster－Tarski Theorem

The Knaster－Tarski Theorem（in its simplest formulation）states that any monotone function on a complete lattice has a least fixed－point（see［？，pages 93－94］for example）．This is a consequence of the basic boundary properties of the complete lattice operations．

```
theorem Knaster-Tarski:
    assumes mono: \x y. x\sqsubseteqy\Longrightarrowfx\sqsubseteqfy
    obtains a :: 'a::complete-lattice where
    fa=a and \{\mp@subsup{a}{}{\prime}.f\mp@subsup{a}{}{\prime}=\mp@subsup{a}{}{\prime}\Longrightarrowa\sqsubseteq\mp@subsup{a}{}{\prime}
<proof\rangle
```

```
theorem Knaster-Tarski-dual:
    assumes mono: \x y. x\sqsubseteqy\Longrightarrowfx\sqsubseteqfy
    obtains a :: 'a::complete-lattice where
        fa=a and \a\mp@subsup{a}{}{\prime}.f\mp@subsup{a}{}{\prime}=\mp@subsup{a}{}{\prime}\Longrightarrow\mp@subsup{a}{}{\prime}\sqsubseteqa
<proof\rangle
```


4.3 Bottom and top elements

With general bounds available, complete lattices also have least and greatest elements.

```
definition
    bottom :: 'a::complete-lattice ( }\perp\mathrm{ ) where
    \perp}=\Pi\mathrm{ UNIV
```


definition

top :: 'a::complete-lattice (\top) where
$\top=\bigsqcup U N I V$
lemma bottom-least [intro?]: $\perp \sqsubseteq x$ $\langle p r o o f\rangle$
lemma bottomI [intro?]: $(\bigwedge a . x \sqsubseteq a) \Longrightarrow \perp=x$
$\langle p r o o f\rangle$
lemma top-greatest [intro?]: $x \sqsubseteq \top$
〈proof〉
lemma topI [intro?]: $(\bigwedge a . a \sqsubseteq x) \Longrightarrow \top=x$ $\langle p r o o f\rangle$

4.4 Duality

The class of complete lattices is closed under formation of dual structures.
instance dual :: (complete-lattice) complete-lattice
$\langle p r o o f\rangle$
Apparently, the Π and \bigsqcup operations are dual to each other.
theorem dual-Meet [intro?]: dual $(\sqcap A)=\bigsqcup($ dual' $A)$ $\langle p r o o f\rangle$
theorem dual-Join [intro?]: dual $(\bigsqcup A)=\Pi($ dual ' $A)$
$\langle p r o o f\rangle$
Likewise are \perp and \top duals of each other.
theorem dual-bottom [intro?]: dual $\perp=\top$ $\langle p r o o f\rangle$
theorem dual-top [intro?]: dual $\top=\perp$
$\langle p r o o f\rangle$

4.5 Complete lattices are lattices

Complete lattices (with general bounds available) are indeed plain lattices as well. This holds due to the connection of general versus binary bounds
that has been formally established in $\S 2.5$ ．
lemma is－inf－binary：is－inf x y $(\sqcap\{x, y\})$ $\langle p r o o f\rangle$
lemma is－sup－binary：is－sup $x y(\bigsqcup\{x, y\})$
$\langle p r o o f\rangle$
instance complete－lattice \subseteq lattice
〈proof〉
theorem meet－binary：$x \sqcap y=\Pi\{x, y\}$
〈proof〉
theorem join－binary：$x \sqcup y=\bigsqcup\{x, y\}$
$\langle p r o o f\rangle$

4．6 Complete lattices and set－theory operations

The complete lattice operations are（anti）monotone wrt．set inclusion．
theorem Meet－subset－antimono：$A \subseteq B \Longrightarrow \sqcap B \sqsubseteq \sqcap A$ $\langle p r o o f\rangle$

$$
\text { theorem Join-subset-mono: } A \subseteq B \Longrightarrow \bigsqcup A \sqsubseteq \bigsqcup B
$$

$$
\langle p r o o f\rangle
$$

Bounds over unions of sets may be obtained separately．

```
theorem Meet-Un: }(A\cupB)=\PiA\sqcap\Pi
```

$\langle p r o o f\rangle$
theorem Join－Un：$\bigsqcup(A \cup B)=\bigsqcup A \sqcup \sqcup B$ $\langle p r o o f\rangle$

Bounds over singleton sets are trivial．
theorem Meet－singleton：$\rceil\{x\}=x$ $\langle p r o o f\rangle$
theorem Join－singleton：$\bigsqcup\{x\}=x$
$\langle p r o o f\rangle$
Bounds over the empty and universal set correspond to each other．
theorem Meet－empty：$\rceil\}=\bigsqcup$ UNIV
$\langle p r o o f\rangle$
theorem Join－empty：$\bigsqcup\}=\rceil$ UNIV $\langle p r o o f\rangle$
end

