section ‹Peano's axioms for Natural Numbers› theory Peano_Axioms imports Main begin locale peano = fixes zero :: 'n fixes succ :: "'n ⇒ 'n" assumes succ_neq_zero [simp]: "succ m ≠ zero" assumes succ_inject [simp]: "succ m = succ n ⟷ m = n" assumes induct [case_names zero succ, induct type: 'n]: "P zero ⟹ (⋀n. P n ⟹ P (succ n)) ⟹ P n" begin lemma zero_neq_succ [simp]: "zero ≠ succ m" by (rule succ_neq_zero [symmetric]) text ‹┉ Primitive recursion as a (functional) relation -- polymorphic!› inductive Rec :: "'a ⇒ ('n ⇒ 'a ⇒ 'a) ⇒ 'n ⇒ 'a ⇒ bool" for e :: 'a and r :: "'n ⇒ 'a ⇒ 'a" where Rec_zero: "Rec e r zero e" | Rec_succ: "Rec e r m n ⟹ Rec e r (succ m) (r m n)" lemma Rec_functional: "∃!y::'a. Rec e r x y" for x :: 'n proof - let ?R = "Rec e r" show ?thesis proof (induct x) case zero show "∃!y. ?R zero y" proof show "?R zero e" .. show "y = e" if "?R zero y" for y using that by cases simp_all qed next case (succ m) from ‹∃!y. ?R m y› obtain y where y: "?R m y" and yy': "⋀y'. ?R m y' ⟹ y = y'" by blast show "∃!z. ?R (succ m) z" proof from y show "?R (succ m) (r m y)" .. next fix z assume "?R (succ m) z" then obtain u where "z = r m u" and "?R m u" by cases simp_all with yy' show "z = r m y" by (simp only:) qed qed qed text ‹┉ The recursion operator -- polymorphic!› definition rec :: "'a ⇒ ('n ⇒ 'a ⇒ 'a) ⇒ 'n ⇒ 'a" where "rec e r x = (THE y. Rec e r x y)" lemma rec_eval: assumes Rec: "Rec e r x y" shows "rec e r x = y" unfolding rec_def using Rec_functional and Rec by (rule the1_equality) lemma rec_zero [simp]: "rec e r zero = e" proof (rule rec_eval) show "Rec e r zero e" .. qed lemma rec_succ [simp]: "rec e r (succ m) = r m (rec e r m)" proof (rule rec_eval) let ?R = "Rec e r" have "?R m (rec e r m)" unfolding rec_def using Rec_functional by (rule theI') then show "?R (succ m) (r m (rec e r m))" .. qed text ‹┉ Example: addition (monomorphic)› definition add :: "'n ⇒ 'n ⇒ 'n" where "add m n = rec n (λ_ k. succ k) m" lemma add_zero [simp]: "add zero n = n" and add_succ [simp]: "add (succ m) n = succ (add m n)" unfolding add_def by simp_all lemma add_assoc: "add (add k m) n = add k (add m n)" by (induct k) simp_all lemma add_zero_right: "add m zero = m" by (induct m) simp_all lemma add_succ_right: "add m (succ n) = succ (add m n)" by (induct m) simp_all lemma "add (succ (succ (succ zero))) (succ (succ zero)) = succ (succ (succ (succ (succ zero))))" by simp text ‹┉ Example: replication (polymorphic)› definition repl :: "'n ⇒ 'a ⇒ 'a list" where "repl n x = rec [] (λ_ xs. x # xs) n" lemma repl_zero [simp]: "repl zero x = []" and repl_succ [simp]: "repl (succ n) x = x # repl n x" unfolding repl_def by simp_all lemma "repl (succ (succ (succ zero))) True = [True, True, True]" by simp end text ‹┉ Just see that our abstract specification makes sense \dots› interpretation peano 0 Suc proof fix m n show "Suc m ≠ 0" by simp show "Suc m = Suc n ⟷ m = n" by simp show "P n" if zero: "P 0" and succ: "⋀n. P n ⟹ P (Suc n)" for P proof (induct n) case 0 show ?case by (rule zero) next case Suc then show ?case by (rule succ) qed qed end