
Isabelle/HOLCF Tutorial

October 8, 2017

Contents

1 Domain package examples 1
1.1 Generated constants and theorems 3
1.2 Known bugs . 5

2 Fixrec package examples 5
2.1 Basic fixrec examples . 5
2.2 Examples using fixrec_simp 5
2.3 Pattern matching with bottoms 6
2.4 Skipping proofs of rewrite rules 6
2.5 Mutual recursion with fixrec 7
2.6 Looping simp rules . 8
2.7 Using fixrec inside locales 8

3 Definitional domain package 9

1 Domain package examples

theory Domain_ex

imports HOLCF

begin

Domain constructors are strict by default.

domain d1 = d1a | d1b "d1" "d1"

lemma "d1b ·⊥·y = ⊥" 〈proof 〉

Constructors can be made lazy using the lazy keyword.

domain d2 = d2a | d2b (lazy "d2")

lemma "d2b ·x 6= ⊥" 〈proof 〉

Strict and lazy arguments may be mixed arbitrarily.

1

2

domain d3 = d3a | d3b (lazy "d2") "d2"

lemma "P (d3b ·x ·y = ⊥) ←→ P (y = ⊥)" 〈proof 〉

Selectors can be used with strict or lazy constructor arguments.

domain d4 = d4a | d4b (lazy d4b_left :: "d2") (d4b_right :: "d2")

lemma "y 6= ⊥ =⇒ d4b_left ·(d4b ·x ·y) = x" 〈proof 〉

Mixfix declarations can be given for data constructors.

domain d5 = d5a | d5b (lazy "d5") "d5" (infixl ":#:" 70)

lemma "d5a 6= x :#: y :#: z" 〈proof 〉

Mixfix declarations can also be given for type constructors.

domain (’a, ’b) lazypair (infixl ":*:" 25) =

lpair (lazy lfst :: ’a) (lazy lsnd :: ’b) (infixl ":*:" 75)

lemma "∀ p::(’a :*: ’b). p v lfst ·p :*: lsnd ·p"
〈proof 〉

Non-recursive constructor arguments can have arbitrary types.

domain (’a, ’b) d6 = d6 "int lift" "’a ⊕ ’b u" (lazy "(’a :*: ’b) ×
(’b → ’a)")

Indirect recusion is allowed for sums, products, lifting, and the continuous
function space. However, the domain package does not generate an induction
rule in terms of the constructors.

domain ’a d7 = d7a "’a d7 ⊕ int lift" | d7b "’a ⊗ ’a d7" | d7c (lazy
"’a d7 → ’a")

— Indirect recursion detected, skipping proofs of (co)induction rules

Note that d7.induct is absent.

Indirect recursion is also allowed using previously-defined datatypes.

domain ’a slist = SNil | SCons ’a "’a slist"

domain ’a stree = STip | SBranch "’a stree slist"

Mutually-recursive datatypes can be defined using the and keyword.

domain d8 = d8a | d8b "d9" and d9 = d9a | d9b (lazy "d8")

Non-regular recursion is not allowed.

Mutually-recursive datatypes must have all the same type arguments, not
necessarily in the same order.

domain (’a, ’b) list1 = Nil1 | Cons1 ’a "(’b, ’a) list2"

3

and (’b, ’a) list2 = Nil2 | Cons2 ’b "(’a, ’b) list1"

Induction rules for flat datatypes have no admissibility side-condition.

domain ’a flattree = Tip | Branch "’a flattree" "’a flattree"

lemma " [[P ⊥; P Tip;
∧
x y. [[x 6= ⊥; y 6= ⊥; P x; P y]] =⇒ P (Branch ·x ·y)]]

=⇒ P x"

〈proof 〉

Trivial datatypes will produce a warning message.

domain triv = Triv triv triv

— domain Domain_ex.triv is empty!

lemma "(x::triv) = ⊥" 〈proof 〉

Lazy constructor arguments may have unpointed types.

domain natlist = nnil | ncons (lazy "nat discr") natlist

Class constraints may be given for type parameters on the LHS.

domain (’a::predomain) box = Box (lazy ’a)

domain (’a::countable) stream = snil | scons (lazy "’a discr") "’a stream"

1.1 Generated constants and theorems

domain ’a tree = Leaf (lazy ’a) | Node (left :: "’a tree") (right ::

"’a tree")

lemmas tree_abs_bottom_iff =

iso.abs_bottom_iff [OF iso.intro [OF tree.abs_iso tree.rep_iso]]

Rules about ismorphism

term tree_rep

term tree_abs

thm tree.rep_iso

thm tree.abs_iso

thm tree.iso_rews

Rules about constructors

term Leaf

term Node

thm Leaf_def Node_def

thm tree.nchotomy

thm tree.exhaust

thm tree.compacts

thm tree.con_rews

thm tree.dist_les

thm tree.dist_eqs

4

thm tree.inverts

thm tree.injects

Rules about case combinator

term tree_case

thm tree.tree_case_def

thm tree.case_rews

Rules about selectors

term left

term right

thm tree.sel_rews

Rules about discriminators

term is_Leaf

term is_Node

thm tree.dis_rews

Rules about monadic pattern match combinators

term match_Leaf

term match_Node

thm tree.match_rews

Rules about take function

term tree_take

thm tree.take_def

thm tree.take_0

thm tree.take_Suc

thm tree.take_rews

thm tree.chain_take

thm tree.take_take

thm tree.deflation_take

thm tree.take_below

thm tree.take_lemma

thm tree.lub_take

thm tree.reach

thm tree.finite_induct

Rules about finiteness predicate

term tree_finite

thm tree.finite_def

thm tree.finite

Rules about bisimulation predicate

term tree_bisim

thm tree.bisim_def

thm tree.coinduct

5

Induction rule

thm tree.induct

1.2 Known bugs

Declaring a mixfix with spaces causes some strange parse errors.

end

2 Fixrec package examples

theory Fixrec_ex

imports HOLCF

begin

2.1 Basic fixrec examples

Fixrec patterns can mention any constructor defined by the domain package,
as well as any of the following built-in constructors: Pair, spair, sinl, sinr,
up, ONE, TT, FF.

Typical usage is with lazy constructors.

fixrec down :: "’a u → ’a"

where "down ·(up ·x) = x"

With strict constructors, rewrite rules may require side conditions.

fixrec from_sinl :: "’a ⊕ ’b → ’a"

where "x 6= ⊥ =⇒ from_sinl ·(sinl ·x) = x"

Lifting can turn a strict constructor into a lazy one.

fixrec from_sinl_up :: "’a u ⊕ ’b → ’a"

where "from_sinl_up ·(sinl ·(up ·x)) = x"

Fixrec also works with the HOL pair constructor.

fixrec down2 :: "’a u × ’b u → ’a × ’b"

where "down2 ·(up ·x, up ·y) = (x, y)"

2.2 Examples using fixrec_simp

A type of lazy lists.

domain ’a llist = lNil | lCons (lazy ’a) (lazy "’a llist")

A zip function for lazy lists.

Notice that the patterns are not exhaustive.

fixrec

6

lzip :: "’a llist → ’b llist → (’a × ’b) llist"

where
"lzip ·(lCons ·x ·xs) ·(lCons ·y ·ys) = lCons ·(x, y) ·(lzip ·xs ·ys)"

| "lzip ·lNil ·lNil = lNil"

fixrec_simp is useful for producing strictness theorems.

Note that pattern matching is done in left-to-right order.

lemma lzip_stricts [simp]:

"lzip ·⊥·ys = ⊥"
"lzip ·lNil ·⊥ = ⊥"
"lzip ·(lCons ·x ·xs) ·⊥ = ⊥"

〈proof 〉

fixrec_simp can also produce rules for missing cases.

lemma lzip_undefs [simp]:

"lzip ·lNil ·(lCons ·y ·ys) = ⊥"
"lzip ·(lCons ·x ·xs) ·lNil = ⊥"

〈proof 〉

2.3 Pattern matching with bottoms

As an alternative to using fixrec_simp, it is also possible to use bottom
as a constructor pattern. When using a bottom pattern, the right-hand-
side must also be bottom; otherwise, fixrec will not be able to prove the
equation.

fixrec
from_sinr_up :: "’a ⊕ ’b⊥ → ’b"

where
"from_sinr_up ·⊥ = ⊥"

| "from_sinr_up ·(sinr ·(up ·x)) = x"

If the function is already strict in that argument, then the bottom pattern
does not change the meaning of the function. For example, in the definition
of from_sinr_up, the first equation is actually redundant, and could have
been proven separately by fixrec_simp.

A bottom pattern can also be used to make a function strict in a certain
argument, similar to a bang-pattern in Haskell.

fixrec
seq :: "’a → ’b → ’b"

where
"seq ·⊥·y = ⊥"

| "x 6= ⊥ =⇒ seq ·x ·y = y"

2.4 Skipping proofs of rewrite rules

Another zip function for lazy lists.

7

Notice that this version has overlapping patterns. The second equation
cannot be proved as a theorem because it only applies when the first pattern
fails.

fixrec
lzip2 :: "’a llist → ’b llist → (’a × ’b) llist"

where
"lzip2 ·(lCons ·x ·xs) ·(lCons ·y ·ys) = lCons ·(x, y) ·(lzip2 ·xs ·ys)"

| (unchecked) "lzip2 ·xs ·ys = lNil"

Usually fixrec tries to prove all equations as theorems. The ”unchecked”
option overrides this behavior, so fixrec does not attempt to prove that
particular equation.

Simp rules can be generated later using fixrec_simp.

lemma lzip2_simps [simp]:

"lzip2 ·(lCons ·x ·xs) ·lNil = lNil"

"lzip2 ·lNil ·(lCons ·y ·ys) = lNil"

"lzip2 ·lNil ·lNil = lNil"

〈proof 〉

lemma lzip2_stricts [simp]:

"lzip2 ·⊥·ys = ⊥"
"lzip2 ·(lCons ·x ·xs) ·⊥ = ⊥"

〈proof 〉

2.5 Mutual recursion with fixrec

Tree and forest types.

domain ’a tree = Leaf (lazy ’a) | Branch (lazy "’a forest")

and ’a forest = Empty | Trees (lazy "’a tree") "’a forest"

To define mutually recursive functions, give multiple type signatures sepa-
rated by the keyword and.

fixrec
map_tree :: "(’a → ’b) → (’a tree → ’b tree)"

and
map_forest :: "(’a → ’b) → (’a forest → ’b forest)"

where
"map_tree ·f ·(Leaf ·x) = Leaf ·(f ·x)"

| "map_tree ·f ·(Branch ·ts) = Branch ·(map_forest ·f ·ts)"
| "map_forest ·f ·Empty = Empty"

| "ts 6= ⊥ =⇒
map_forest ·f ·(Trees ·t ·ts) = Trees ·(map_tree ·f ·t) ·(map_forest ·f ·ts)"

lemma map_tree_strict [simp]: "map_tree ·f ·⊥ = ⊥"
〈proof 〉

8

lemma map_forest_strict [simp]: "map_forest ·f ·⊥ = ⊥"
〈proof 〉

2.6 Looping simp rules

The defining equations of a fixrec definition are declared as simp rules by
default. In some cases, especially for constants with no arguments or func-
tions with variable patterns, the defining equations may cause the simplifier
to loop. In these cases it will be necessary to use a [simp del] declaration.

fixrec
repeat :: "’a → ’a llist"

where
[simp del]: "repeat ·x = lCons ·x ·(repeat ·x)"

We can derive other non-looping simp rules for repeat by using the subst

method with the repeat.simps rule.

lemma repeat_simps [simp]:

"repeat ·x 6= ⊥"
"repeat ·x 6= lNil"

"repeat ·x = lCons ·y ·ys ←→ x = y ∧ repeat ·x = ys"

〈proof 〉

lemma llist_case_repeat [simp]:

"llist_case ·z ·f ·(repeat ·x) = f ·x ·(repeat ·x)"
〈proof 〉

For mutually-recursive constants, looping might only occur if all equations
are in the simpset at the same time. In such cases it may only be necessary
to declare [simp del] on one equation.

fixrec
inf_tree :: "’a tree" and inf_forest :: "’a forest"

where
[simp del]: "inf_tree = Branch ·inf_forest"

| "inf_forest = Trees ·inf_tree ·(Trees ·inf_tree ·Empty)"

2.7 Using fixrec inside locales

locale test =

fixes foo :: "’a → ’a"

assumes foo_strict: "foo ·⊥ = ⊥"
begin

fixrec
bar :: "’a u → ’a"

where
"bar ·(up ·x) = foo ·x"

lemma bar_strict: "bar ·⊥ = ⊥"

9

〈proof 〉

end

end

3 Definitional domain package

theory New_Domain

imports HOLCF

begin

UPDATE: The definitional back-end is now the default mode of the domain
package. This file should be merged with Domain_ex.thy.

Provided that domain is the default sort, the new_domain package should
work with any type definition supported by the old domain package.

domain ’a llist = LNil | LCons (lazy ’a) (lazy "’a llist")

The difference is that the new domain package is completely definitional, and
does not generate any axioms. The following type and constant definitions
are not produced by the old domain package.

thm type_definition_llist

thm llist_abs_def llist_rep_def

The new domain package also adds support for indirect recursion with user-
defined datatypes. This definition of a tree datatype uses indirect recursion
through the lazy list type constructor.

domain ’a ltree = Leaf (lazy ’a) | Branch (lazy "’a ltree llist")

For indirect-recursive definitions, the domain package is not able to generate
a high-level induction rule. (It produces a warning message instead.) The
low-level reach lemma (now proved as a theorem, no longer generated as an
axiom) can be used to derive other induction rules.

thm ltree.reach

The definition of the take function uses map functions associated with each
type constructor involved in the definition. A map function for the lazy list
type has been generated by the new domain package.

thm ltree.take_rews

thm llist_map_def

lemma ltree_induct:

fixes P :: "’a ltree ⇒ bool"

assumes adm: "adm P"

assumes bot: "P ⊥"

10

assumes Leaf: "
∧
x. P (Leaf ·x)"

assumes Branch: "
∧
f l. ∀ x. P (f ·x) =⇒ P (Branch ·(llist_map ·f ·l))"

shows "P x"

〈proof 〉

end

	Domain package examples
	Generated constants and theorems
	Known bugs

	Fixrec package examples
	Basic 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fixrec examples
	Examples using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fixrecsimp
	Pattern matching with bottoms
	Skipping proofs of rewrite rules
	Mutual recursion with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fixrec
	Looping simp rules
	Using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fixrec inside locales

	Definitional domain package

