theory Functions imports Main begin text‹ @{thm[display] id_def[no_vars]} \rulename{id_def} @{thm[display] o_def[no_vars]} \rulename{o_def} @{thm[display] o_assoc[no_vars]} \rulename{o_assoc} › text‹ @{thm[display] fun_upd_apply[no_vars]} \rulename{fun_upd_apply} @{thm[display] fun_upd_upd[no_vars]} \rulename{fun_upd_upd} › text‹ definitions of injective, surjective, bijective @{thm[display] inj_on_def[no_vars]} \rulename{inj_on_def} @{thm[display] surj_def[no_vars]} \rulename{surj_def} @{thm[display] bij_def[no_vars]} \rulename{bij_def} › text‹ possibly interesting theorems about inv › text‹ @{thm[display] inv_f_f[no_vars]} \rulename{inv_f_f} @{thm[display] inj_imp_surj_inv[no_vars]} \rulename{inj_imp_surj_inv} @{thm[display] surj_imp_inj_inv[no_vars]} \rulename{surj_imp_inj_inv} @{thm[display] surj_f_inv_f[no_vars]} \rulename{surj_f_inv_f} @{thm[display] bij_imp_bij_inv[no_vars]} \rulename{bij_imp_bij_inv} @{thm[display] inv_inv_eq[no_vars]} \rulename{inv_inv_eq} @{thm[display] o_inv_distrib[no_vars]} \rulename{o_inv_distrib} › text‹ small sample proof @{thm[display] ext[no_vars]} \rulename{ext} @{thm[display] fun_eq_iff[no_vars]} \rulename{fun_eq_iff} › lemma "inj f ⟹ (f o g = f o h) = (g = h)" apply (simp add: fun_eq_iff inj_on_def) apply (auto) done text‹ \begin{isabelle} inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline \ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline \ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x) \end{isabelle} › text‹image, inverse image› text‹ @{thm[display] image_def[no_vars]} \rulename{image_def} › text‹ @{thm[display] image_Un[no_vars]} \rulename{image_Un} › text‹ @{thm[display] image_comp[no_vars]} \rulename{image_comp} @{thm[display] image_Int[no_vars]} \rulename{image_Int} @{thm[display] bij_image_Compl_eq[no_vars]} \rulename{bij_image_Compl_eq} › text‹ illustrates Union as well as image › lemma "f`A ∪ g`A = (⋃x∈A. {f x, g x})" by blast lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}" by blast text‹actually a macro!› lemma "range f = f`UNIV" by blast text‹ inverse image › text‹ @{thm[display] vimage_def[no_vars]} \rulename{vimage_def} @{thm[display] vimage_Compl[no_vars]} \rulename{vimage_Compl} › end