
λ
→

∀
=Is

ab
el
le

β

α

Isar

The Isabelle/HOL type-class hierarchy

Florian Haftmann

15 August 2018

Abstract

This primer introduces corner stones of the Isabelle/HOL type-class
hierarchy and gives some insights into its internal organization.



1 INTRODUCTION 1

1 Introduction

The Isabelle/HOL type-class hierarchy entered the stage in a quite ancient
era – first related NEWS entries date back to release Isabelle99-1. Since then,
there have been ongoing modifications and additions, leading to (Isabelle2016)
more than 180 type-classes. This sheer complexity makes access and under-
standing of that type-class hierarchy difficult and involved, let alone mainte-
nance.

The purpose of this primer is to shed some light on this, not only on the
mere ingredients, but also on the design principles which have evolved and
proven useful over time.

2 Foundations

2.1 Locales and type classes

Some familiarity with the Isabelle module system is assumed: defining locales
and type-classes, interpreting locales and instantiating type-classes, adding
relationships between locales (sublocale) and type-classes (subclass). Handy
introductions are the respective tutorials [1] [2].

2.2 Strengths and restrictions of type classes

The primary motivation for using type classes in Isabelle/HOL always have
been numerical types, which form an inclusion chain:

nat < int < rat < real < complex

The inclusion < means that any value of the numerical type to the left hand
side mathematically can be transferred to the numerical type on the right
hand side.

How to accomplish this given the quite restrictive type system of Isabelle/HOL?
Paulson [4] explains that each numerical type has some characteristic proper-
ties which define an characteristic algebraic structure; < then corresponds to
specialization of the corresponding characteristic algebraic structures. These
algebraic structures are expressed using algebraic type classes and embed-
dings of numerical types into them:



2 FOUNDATIONS 2

of-nat :: nat ⇒ ′a::semiring-1
u ↑

of-int :: int ⇒ ′a::ring-1
u ↑

of-rat :: rat ⇒ ′a::field-char-0
u ↑

of-real :: real ⇒ ′a::real-algebra-1
u

complex

d ← c means that c is subclass of d. Hence each characteristic embedding
of-num can transform any value of type num to any numerical type further
up in the inclusion chain.

This canonical example exhibits key strengths of type classes:

• Sharing of operations and facts among different types, hence also shar-
ing of notation and names: there is only one plus operation using infix
syntax +, only one zero written 0, and neutrality (

∧
a:: ′a::monoid-add .

0 + a = a and
∧

a:: ′a::monoid-add . a + 0 = a) is referred to uniformly
by names add-0-left and add-0-right .

• Proof tool setups are shared implicitly: add-0 and add-0-right are sim-
plification rules by default.

• Hence existing proofs about particular numerical types are often easy
to generalize to algebraic structures, given that they do not depend on
specific properties of those numerical types.

Considerable restrictions include:

• Type class operations are restricted to one type parameter; this is in-
sufficient e.g. for expressing a unified power operation adequately (see
§??).

• Parameters are fixed over the whole type class hierarchy and cannot
be refined in specific situations: think of integral domains with a predi-
cate is-unit ; for natural numbers, this degenerates to the much simpler
HOL.equal (1::nat) but facts refer to is-unit nonetheless.

• Type classes are not apt for meta-theory. There is no practically usable
way to express that the units of an integral domain form a multiplicative
group using type classes. But see session HOL−Algebra which provides
locales with an explicit carrier.



3 THE HIERARCHY 3

2.3 Navigating the hierarchy

An indispensable tool to inspect the class hierarchy is class-deps which
displays the graph of classes, optionally showing the logical content for each
class also. Optional parameters restrict the graph to a particular segment
which is useful to get a graspable view. See the Isar reference manual [5] for
details.

3 The hierarchy

3.1 Syntactic type classes

At the top of the hierarchy there are a couple of syntactic type classes, ie.
classes with operations but with no axioms, most notably:

• class plus with (a:: ′a::plus) + b

• class zero with 0:: ′a::zero

• class times with (a:: ′a::times) ∗ b

• class one with 1:: ′a::one

Before the introduction of the class statement in Isabelle [3] it was impossible
to define operations with associated axioms in the same class, hence there
were always pairs of syntactic and logical type classes. This restriction is
lifted nowadays, but there are still reasons to maintain syntactic type classes:

• Syntactic type classes allow generic notation to be used regardless of
a particular logical interpretation; e.g. although multiplication ∗ is
usually associative, there are examples where it is not (e.g. octonions),
and leaving ∗ without axioms allows to re-use this syntax by means of
type class instantiation also for such exotic examples.

• Type classes might share operations but not necessarily axioms on
them, e.g. gcd (see §??). Hence their common base is a syntactic
type class.

However syntactic type classes should only be used with striking cause. Oth-
erwise there is risk for confusion if the notation suggests properties which do
not hold without particular constraints. This can be illustrated using numer-
als (see §??): 2 + 2 = 4 is provable without further ado, and this also meets
the typical expectation towards a numeral notation; in more ancient releases
numerals were purely syntactic and 2 + 2 = 4 was not provable without
particular type constraints.



3 THE HIERARCHY 4

3.2 Additive and multiplicative semigroups and monoids

In common literature, notation for semigroups and monoids is either multi-
plicative (∗, 1) or additive (+, 0) with underlying properties isomorphic. In
Isabelle/HOL, this is accomplished using the following abstract setup:

• A semigroup introduces an abstract binary associative operation.

• A monoid is an extension of semigroup with a neutral element.

• Both semigroup and monoid provide dedicated syntax for their opera-
tions (∗, 1). This syntax is not visible on the global theory level but
only for abstract reasoning inside the respective locale.

• Concrete global syntax is added building on existing syntactic type
classes §3.1 using the following classes:

– class semigroup-mult = times

– class monoid-mult = one + semigroup-mult

– class semigroup-add = plus

– class monoid-add = zero + semigroup-add

Locales semigroup and monoid are interpreted (using sublocale) into
their corresponding type classes, with prefixes add and mult ; hence
facts derived in semigroup and monoid are propagated simultaneously
to both using a consistent naming policy, ie.

– semigroup.assoc:
∧

f (a:: ′a::type) b c. semigroup f =⇒ f (f a b) c
= f a (f b c)

– mult .assoc:
∧

(a:: ′a::semigroup-mult) b c. a ∗ b ∗ c = a ∗ (b ∗ c)

– add .assoc:
∧

(a:: ′a::semigroup-add) b c. a + b + c = a + (b + c)

– monoid .right-neutral :
∧

f (z :: ′a::type) a. monoid f z =⇒ f a z =
a

– mult .right-neutral :
∧

a:: ′a::monoid-mult . a ∗ 1 = a

– add .right-neutral :
∧

a:: ′a::monoid-add . a + 0 = a

• Note that the syntax in semigroup and monoid is bold; this avoids
clashes when writing properties inside one of these locales in presence
of that global concrete type class syntax.



3 THE HIERARCHY 5

That hierarchy extends in a straightforward manner to abelian semigroups
and commutative monoids1:

• Locales abel-semigroup and comm-monoid add commutativity as prop-
erty.

• Concrete syntax emerges through

– class ab-semigroup-add = semigroup-add

– class ab-semigroup-mult = semigroup-mult

– class comm-monoid-add = zero + ab-semigroup-add

– class comm-monoid-mult = one + ab-semigroup-mult

and corresponding interpretation of the locales above, yielding

– abel-semigroup.commute:
∧

f (a:: ′a::type) b. abel-semigroup f =⇒
f a b = f b a

– mult .commute:
∧

(a:: ′a::ab-semigroup-mult) b. a ∗ b = b ∗ a

– add .commute:
∧

(a:: ′a::ab-semigroup-add) b. a + b = b + a

Named collection of theorems Locale interpretation interacts smoothly
with named collections of theorems as introduced by command named-theorems.
In our example, rules concerning associativity and commutativity are no
simplification rules by default since they desired orientation may vary de-
pending on the situation. However, there is a collection ac-simps where facts
abel-semigroup.assoc, abel-semigroup.commute and abel-semigroup.left-commute
are declared as members. Due to interpretation, also mult .assoc, mult .commute
and mult .left-commute are also members of ac-simps , as any corresponding
facts stemming from interpretation of abel-semigroup. Hence adding ac-simps
to the simplification rules for a single method call uses all associativity and
commutativity rules known by means of interpretation.

1The designation abelian is quite standard concerning (semi)groups, but not for
monoids



3 THE HIERARCHY 6

3.3 Additive and multiplicative groups

The hierarchy for inverse group operations takes into account that there are
weaker algebraic structures with only a partially inverse operation. E. g.
the natural numbers have bounded subtraction (m::nat) − (n::nat) which is
only an inverse operation if (n::nat) ≤ (m::nat); unary minus − is pointless
on the natural numbers.

Hence for both additive and multiplicative notation there are syntactic
classes for inverse operations, both unary and binary:

• class minus with (a:: ′a::minus) − b

• class uminus with − a:: ′a::uminus

• class divide with (a:: ′a::divide) div b

• class inverse = divide with inverse a:: ′a::inverse
and (a:: ′a::inverse) / b

Here inverse specializes the “partial” syntax a div b to the more specific a /
b.

Semantic properties are added by

• class cancel-ab-semigroup-add = ab-semigroup-add + minus

• class cancel-comm-monoid-add = cancel-ab-semigroup-add + comm-monoid-add

which specify a minimal binary partially inverse operation as

• add-diff-cancel-left ′:
∧

(a:: ′a::cancel-ab-semigroup-add) b. a + b − a =
b

• diff-diff-add :
∧

(a:: ′a::cancel-ab-semigroup-add) b c. a − b − c = a −
(b + c)

which in turn allow to derive facts like

• add-left-imp-eq :
∧

(a:: ′a::cancel-semigroup-add) b c. a + b = a + c =⇒
b = c

The total inverse operation is established as follows:

• Locale group extends the abstract hierarchy with the inverse operation.

• The concrete additive inverse operation emerges through



REFERENCES 7

– class group-add = minus + uminus + monoid-add (in HOL.Groups)

– class ab-group-add = minus + uminus + comm-monoid-add (in
HOL.Groups)

and corresponding interpretation of locale group, yielding e.g.

– group.left-inverse:
∧

f (z :: ′a::type) inverse a. group f z inverse =⇒
f (inverse a) a = z

– add .left-inverse:
∧

a:: ′a::group-add . − a + a = 0

There is no multiplicative counterpart. Why? In rings, the multiplicative
group excludes the zero element, hence the inverse operation is not total.
See further §??.

Mitigating against redundancy by default simplification rules In-
verse operations imposes some redundancy on the type class hierarchy: in
a group with a total inverse operation, the unary operation is simpler and
more primitive than the binary one; but we cannot eliminate the binary one
in favour of a mere syntactic abbreviation since the binary one is vital to
express a partial inverse operation.

This is mitigated by providing suitable default simplification rules: expres-
sion involving the unary inverse operation are simplified to binary inverse
operation whenever appropriate. The rationale is that simplification is a
central device in explorative proving, where proof obligation remaining after
certain default proof steps including simplification are inspected to get an
idea what is missing to finish a proof. When preferable normal forms are en-
coded into default simplification rules, proof obligations after simplification
are normalized and hence more proof-friendly.

References

[1] Clemens Ballarin. Tutorial to Locales and Locale Interpretation.
https://isabelle.in.tum.de/doc/locales.pdf.

[2] Florian Haftmann. Haskell-style type classes with Isabelle/Isar.
https://isabelle.in.tum.de/doc/classes.pdf.

[3] Florian Haftmann and Makarius Wenzel. Constructive type classes in
Isabelle. In T. Altenkirch and C. McBride, editors, Types for Proofs and
Programs, TYPES 2006, volume 4502 of LNCS. Springer, 2007.

https://isabelle.in.tum.de/doc/locales.pdf
https://isabelle.in.tum.de/doc/classes.pdf


REFERENCES 8

[4] Lawrence C. Paulson. Organizing numerical theories using axiomatic type
classes. Journal of Automated Reasoning, 33(1):29–49, 2004.

[5] Makarius Wenzel. The Isabelle/Isar Reference Manual.
https://isabelle.in.tum.de/doc/isar-ref.pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Foundations
	Locales and type classes
	Strengths and restrictions of type classes
	Navigating the hierarchy

	The hierarchy
	Syntactic type classes 
	Additive and multiplicative semigroups and monoids
	Additive and multiplicative groups


