
Defining Nonprimitively (Co)recursive
Functions in Isabelle/HOL

Jasmin Christian Blanchette, Aymeric Bouzy,
Andreas Lochbihler, Andrei Popescu, and

Dmitriy Traytel

9 June 2019

Abstract

This tutorial describes the definitional package for nonprimi-
tively corecursive functions in Isabelle/HOL. The following com-
mands are provided: corec, corecursive, friend_of_corec, and
coinduction_upto. They supplement codatatype, primcorec,
and primcorecursive, which define codatatypes and primitively
corecursive functions.

Contents
1 Introduction 2

2 Introductory Examples 4
2.1 Simple Corecursion . 4
2.2 Nested Corecursion . 5
2.3 Mixed Recursion–Corecursion 6
2.4 Self-Friendship . 8
2.5 Coinduction . 8
2.6 Uniqueness Reasoning . 11

3 Command Syntax 12
3.1 corec and corecursive . 12
3.2 friend_of_corec . 13
3.3 coinduction_upto . 14

1

1 Introduction 2

4 Generated Theorems 14
4.1 corec and corecursive . 15
4.2 friend_of_corec . 16
4.3 coinduction_upto . 16

5 Proof Methods 17
5.1 corec_unique . 17
5.2 transfer_prover_eq . 17

6 Attribute 17
6.1 friend_of_corec_simps . 17

7 Known Bugs and Limitations 17

1 Introduction
Isabelle’s (co)datatype package [1] offers a convenient syntax for introducing
codatatypes. For example, the type of (infinite) streams can be defined as
follows (cf. ~~/src/HOL/Library/Stream.thy):

codatatype ′a stream =
SCons (shd: ′a) (stl: “′a stream”)

The (co)datatype package also provides two commands, primcorec and
primcorecursive, for defining primitively corecursive functions.

This tutorial presents a definitional package for functions beyond prim-
itive corecursion. It describes corec and related commands: corecursive,
friend_of_corec, and coinduction_upto. It also covers the corec_unique
proof method. The package is not part of Main; it is located in ~~/src/HOL/
Library/BNF_Corec.thy.

The corec command generalizes primcorec in three main respects. First,
it allows multiple constructors around corecursive calls, where primcorec
expects exactly one. For example:

corec oneTwos :: “nat stream” where
“oneTwos = SCons 1 (SCons 2 oneTwos)”

Second, corec allows other functions than constructors to appear in the
corecursive call context (i.e., around any self-calls on the right-hand side of
the equation). The requirement on these functions is that they must be
friendly. Intuitively, a function is friendly if it needs to destruct at most one
constructor of input to produce one constructor of output. We can register
functions as friendly using the friend_of_corec command, or by passing

1 Introduction 3

the friend option to corec. The friendliness check relies on an internal syn-
tactic check in combination with a parametricity subgoal, which must be dis-
charged manually (typically using transfer_prover or transfer_prover_eq).

Third, corec allows self-calls that are not guarded by a constructor, as
long as these calls occur in a friendly context (a context consisting exclusively
of friendly functions) and can be shown to be terminating (well founded). The
mixture of recursive and corecursive calls in a single function can be quite
useful in practice.

Internally, the package synthesizes corecursors that take into account the
possible call contexts. The corecursor is accompanined by a corresponding,
equally general coinduction principle. The corecursor and the coinduction
principle grow in expressiveness as we interact with it. In process algebra
terminology, corecursion and coinduction take place up to friendly contexts.

The package fully adheres to the LCF philosophy [5]: The characteris-
tic theorems associated with the specified corecursive functions are derived
rather than introduced axiomatically. (Exceptionally, most of the internal
proof obligations are omitted if the quick_and_dirty option is enabled.) The
package is described in a pair of scientific papers [2,3]. Some of the text and
examples below originate from there.

This tutorial is organized as follows:

• Section 2, “Introductory Examples,” describes how to specify corecur-
sive functions and to reason about them.
• Section 3, “Command Syntax,” describes the syntax of the commands

offered by the package.
• Section 4, “Generated Theorems,” lists the theorems produced by the

package’s commands.
• Section 5, “Proof Methods,” briefly describes the corec_unique and
transfer_prover_eq proof methods.
• Section 6, “Attribute,” briefly describes the friend_of_corec_simps at-

tribute, which can be used to strengthen the tactics underlying the
friend_of_corec and corec (friend) commands.
• Section 7, “Known Bugs and Limitations,” concludes with known open

issues.

Although it is more powerful than primcorec in many respects, corec
suffers from a number of limitations. Most notably, it does not support
mutually corecursive codatatypes, and it is less efficient than primcorec
because it needs to dynamically synthesize corecursors and corresponding
coinduction principles to accommodate the friends.

2 Introductory Examples 4

Comments and bug reports concerning either the package or this tutorial
should be directed to the first author at jasmin.blanNOSPAMchette@gmail.com or
to the cl-isabelle-users mailing list.

2 Introductory Examples
The package is illustrated through concrete examples featuring different fla-
vors of corecursion. More examples can be found in the directory ~~/src/
HOL/Corec_Examples.

2.1 Simple Corecursion
The case studies by Rutten [7] and Hinze [6] on stream calculi serve as our
starting point. The following definition of pointwise sum can be performed
with either primcorec or corec:

primcorec ssum :: “(′a :: plus) stream ⇒ ′a stream ⇒ ′a stream” where
“ssum xs ys = SCons (shd xs + shd ys) (ssum (stl xs) (stl ys))”

Pointwise sum meets the friendliness criterion. We register it as a friend
using the friend_of_corec command. The command requires us to give a
specification of ssum where a constructor (SCons) occurs at the outermost
position on the right-hand side. Here, we can simply reuse the primcorec
specification above:
friend_of_corec ssum :: “(′a :: plus) stream ⇒ ′a stream ⇒ ′a stream” where

“ssum xs ys = SCons (shd xs + shd ys) (ssum (stl xs) (stl ys))”
apply (rule ssum.code)
by transfer_prover

The command emits two subgoals. The first subgoal corresponds to the
equation we specified and is trivial to discharge. The second subgoal is a
parametricity property that captures the the requirement that the function
may destruct at most one constructor of input to produce one constructor of
output. This subgoal can usually be discharged using the transfer_prover or
transfer_prover_eq proof method (Section 5.2). The latter replaces equality
relations by their relator terms according to the relator_eq theorem collection
before it invokes transfer_prover .

After registering ssum as a friend, we can use it in the corecursive call
context, either inside or outside the constructor guard:

corec fibA :: “nat stream” where
“fibA = SCons 0 (ssum (SCons 1 fibA) fibA)”

2 Introductory Examples 5

corec fibB :: “nat stream” where
“fibB = ssum (SCons 0 (SCons 1 fibB)) (SCons 0 fibB)”

Using the friend option, we can simultaneously define a function and
register it as a friend:

corec (friend)
sprod :: “(′a :: {plus,times}) stream ⇒ ′a stream ⇒ ′a stream”

where
“sprod xs ys =
SCons (shd xs ∗ shd ys) (ssum (sprod xs (stl ys)) (sprod (stl xs) ys))”

corec (friend) sexp :: “nat stream ⇒ nat stream” where
“sexp xs = SCons (2 ^^ shd xs) (sprod (stl xs) (sexp xs))”

The parametricity subgoal is given to transfer_prover_eq (Section 5.2).
The sprod and sexp functions provide shuffle product and exponentiation

on streams. We can use them to define the stream of factorial numbers in
two different ways:

corec factA :: “nat stream” where
“factA = (let zs = SCons 1 factA in sprod zs zs)”

corec factB :: “nat stream” where
“factB = sexp (SCons 0 factB)”

The arguments of friendly functions can be of complex types involving the
target codatatype. The following example defines the supremum of a finite
set of streams by primitive corecursion and registers it as friendly:

corec (friend) sfsup :: “nat stream fset ⇒ nat stream” where
“sfsup X = SCons (Sup (fset (fimage shd X))) (sfsup (fimage stl X))”

In general, the arguments may be any bounded natural functor (BNF) [1],
with the restriction that the target codatatype (nat stream) may occur only
in a live position of the BNF. For this reason, the following function, on
unbounded sets, cannot be registered as a friend:

primcorec ssup :: “nat stream set ⇒ nat stream” where
“ssup X = SCons (Sup (image shd X)) (ssup (image stl X))”

2.2 Nested Corecursion
The package generally supports arbitrary codatatypes with multiple con-
structors and nesting through other type constructors (BNFs). Consider the
following type of finitely branching Rose trees of potentially infinite depth:

codatatype ′a tree =

2 Introductory Examples 6

Node (lab: ′a) (sub: “′a tree list”)

We first define the pointwise sum of two trees analogously to ssum:
corec (friend) tsum :: “(′a :: plus) tree ⇒ ′a tree ⇒ ′a tree” where
“tsum t u =
Node (lab t + lab u) (map (λ(t ′, u′). tsum t ′ u′) (zip (sub t) (sub u)))”

Here, map is the standard map function on lists, and zip converts two par-
allel lists into a list of pairs. The tsum function is primitively corecur-
sive. Instead of corec (friend), we could also have used primcorec and
friend_of_corec, as we did for ssum.

Once tsum is registered as friendly, we can use it in the corecursive call
context of another function:

corec (friend) ttimes :: “(′a :: {plus,times}) tree ⇒ ′a tree ⇒ ′a tree” where
“ttimes t u = Node (lab t ∗ lab u)

(map (λ(t ′, u′). tsum (ttimes t u′) (ttimes t ′ u)) (zip (sub t) (sub u)))”

All the syntactic convenience provided by primcorec is also supported by
corec, corecursive, and friend_of_corec. In particular, nesting through
the function type can be expressed using λ-abstractions and function appli-
cations rather than through composition ((◦), the map function for ⇒). For
example:

codatatype ′a language =
Lang (o: bool) (d: “′a ⇒ ′a language”)

corec (friend) Plus :: “′a language ⇒ ′a language ⇒ ′a language” where
“Plus r s = Lang (o r ∨ o s) (λa. Plus (d r a) (d s a))”

corec (friend) Times :: “′a language ⇒ ′a language ⇒ ′a language” where
“Times r s = Lang (o r ∧ o s)

(λa. if o r then Plus (Times (d r a) s) (d s a) else Times (d r a) s)”

corec (friend) Star :: “′a language ⇒ ′a language” where
“Star r = Lang True (λa. Times (d r a) (Star r))”

corec (friend) Inter :: “′a language ⇒ ′a language ⇒ ′a language” where
“Inter r s = Lang (o r ∧ o s) (λa. Inter (d r a) (d s a))”

corec (friend) PLUS :: “′a language list ⇒ ′a language” where
“PLUS xs = Lang (∃ x ∈ set xs. o x) (λa. PLUS (map (λr . d r a) xs))”

2.3 Mixed Recursion–Corecursion
It is often convenient to let a corecursive function perform some finite com-
putation before producing a constructor. With mixed recursion–corecursion,

2 Introductory Examples 7

a finite number of unguarded recursive calls perform this calculation before
reaching a guarded corecursive call. Intuitively, the unguarded recursive call
can be unfolded to arbitrary finite depth, ultimately yielding a purely core-
cursive definition. An example is the primes function from Di Gianantonio
and Miculan [4]:

corecursive primes :: “nat ⇒ nat ⇒ nat stream” where
“primes m n =
(if (m = 0 ∧ n > 1) ∨ coprime m n then

SCons n (primes (m ∗ n) (n + 1))
else
primes m (n + 1))”

apply (relation “measure (λ(m, n).
if n = 0 then 1 else if coprime m n then 0 else m − n mod m)”)

apply (auto simp: mod_Suc diff_less_mono2 intro: Suc_lessI elim!: not_coprimeE)
apply (metis dvd_1_iff_1 dvd_eq_mod_eq_0 mod_0 mod_Suc mod_Suc_eq

mod_mod_cancel)
done

The corecursive command is a variant of corec that allows us to specify a
termination argument for any unguarded self-call.

When called with m = 1 and n = 2, the primes function computes the
stream of prime numbers. The unguarded call in the else branch increments
n until it is coprime to the first argumentm (i.e., the greatest common divisor
of m and n is 1).

For any positive integers m and n, the numbers m and m ∗ n + 1 are
coprime, yielding an upper bound on the number of times n is increased.
Hence, the function will take the else branch at most finitely often before
taking the then branch and producing one constructor. There is a slight
complication when m = 0 ∧ n > 1: Without the first disjunct in the if
condition, the function could stall. (This corner case was overlooked in the
original example [4].)

In the following examples, termination is discharged automatically by
corec by invoking lexicographic_order :

corec catalan :: “nat ⇒ nat stream” where
“catalan n =
(if n > 0 then ssum (catalan (n − 1)) (SCons 0 (catalan (n + 1)))
else SCons 1 (catalan 1))”

corec collatz :: “nat ⇒ nat stream” where
“collatz n = (if even n ∧ n > 0 then collatz (n div 2)

else SCons n (collatz (3 ∗ n + 1)))”

A more elaborate case study, revolving around the filter function on lazy

2 Introductory Examples 8

lists, is presented in ~~/src/HOL/Corec_Examples/LFilter.thy.

2.4 Self-Friendship
The package allows us to simultaneously define a function and use it as its
own friend, as in the following definition of a “skewed product”:

corec (friend)
sskew :: “(′a :: {plus,times}) stream ⇒ ′a stream ⇒ ′a stream”

where
“sskew xs ys =
SCons (shd xs ∗ shd ys) (sskew (sskew xs (stl ys)) (sskew (stl xs) ys))”

Such definitions, with nested self-calls on the right-hand side, cannot be
separated into a corec part and a friend_of_corec part.

2.5 Coinduction
Once a corecursive specification has been accepted, we normally want to
reason about it. The codatatype command generates a structural coinduction
principle that matches primitively corecursive functions. For nonprimitive
specifications, our package provides the more advanced proof principle of
coinduction up to congruence—or simply coinduction up-to.

The structural coinduction principle for ′a stream, called stream.coinduct,
is as follows:

[[R stream stream′; ∧stream stream′. R stream stream′ =⇒ shd stream =
shd stream′ ∧ R (stl stream) (stl stream′)]] =⇒ stream = stream′

Coinduction allows us to prove an equality l = r on streams by providing a
relation R that relates l and r (first premise) and that constitutes a bisimu-
lation (second premise). Streams that are related by a bisimulation cannot
be distinguished by taking observations (via the selectors shd and stl); hence
they must be equal.

The coinduction up-to principle after registering sskew as friendly is avail-
able as sskew.coinduct and as one of the components of the theorem collection
stream.coinduct_upto:

[[R stream stream′; ∧stream stream′. R stream stream′ =⇒ shd stream =
shd stream′ ∧ stream.v5.congclp R (stl stream) (stl stream′)]] =⇒ stream
= stream′

This rule is almost identical to structural coinduction, except that the core-
cursive application of R is generalized to stream.v5.congclp R.

2 Introductory Examples 9

The stream.v5.congclp predicate is equipped with the following introduc-
tion rules:

sskew.cong_base:
P x y =⇒ stream.v5.congclp P x y

sskew.cong_refl:
x = y =⇒ stream.v5.congclp R x y

sskew.cong_sym:
stream.v5.congclp R x y =⇒ stream.v5.congclp R y x

sskew.cong_trans:
[[stream.v5.congclp R x y; stream.v5.congclp R y z]] =⇒ stream.v5.congclp
R x z

sskew.cong_SCons:
[[x1 = y1; stream.v5.congclp R x2 y2]] =⇒ stream.v5.congclp R (SCons
x1 x2) (SCons y1 y2)

sskew.cong_ssum:
[[stream.v5.congclp R x1 y1; stream.v5.congclp R x2 y2]] =⇒ stream.v5.congclp
R (ssum x1 x2) (ssum y1 y2)

sskew.cong_sprod:
[[stream.v5.congclp R x1 y1; stream.v5.congclp R x2 y2]] =⇒ stream.v5.congclp
R (sprod x1 x2) (sprod y1 y2)

sskew.cong_sskew:
[[stream.v5.congclp R x1 y1; stream.v5.congclp R x2 y2]] =⇒ stream.v5.congclp
R (sskew x1 x2) (sskew y1 y2)

The introduction rules are also available as sskew.cong_intros.
Notice that there is no introduction rule corresponding to sexp, because

sexp has a more restrictive result type than sskew (nat stream vs. ′a stream.
The version numbers, here v5, distinguish the different congruence clo-

sures generated for a given codatatype as more friends are registered. As
much as possible, it is recommended to avoid referring to them in proof
documents.

Since the package maintains a set of incomparable corecursors, there is
also a set of associated coinduction principles and a set of sets of introduc-
tion rules. A technically subtle point is to make Isabelle choose the right
rules in most situations. For this purpose, the package maintains the col-
lection stream.coinduct_upto of coinduction principles ordered by increasing
generality, which works well with Isabelle’s philosophy of applying the first
rule that matches. For example, after registering ssum as a friend, proving

2 Introductory Examples 10

the equality l = r on nat stream might require coinduction principle for nat
stream, which is up to ssum.

The collection stream.coinduct_upto is guaranteed to be complete and up
to date with respect to the type instances of definitions considered so far,
but occasionally it may be necessary to take the union of two incompara-
ble coinduction principles. This can be done using the coinduction_upto
command. Consider the following definitions:

codatatype (′a, ′b) tllist =
TNil (terminal: ′b)
| TCons (thd: ′a) (ttl: “(′a, ′b) tllist”)

corec (friend) square_elems :: “(nat, ′b) tllist ⇒ (nat, ′b) tllist” where
“square_elems xs =
(case xs of
TNil z ⇒ TNil z
| TCons y ys ⇒ TCons (y ^^ 2) (square_elems ys))”

corec (friend) square_terminal :: “(′a, int) tllist ⇒ (′a, int) tllist” where
“square_terminal xs =
(case xs of
TNil z ⇒ TNil (z ^^ 2)
| TCons y ys ⇒ TCons y (square_terminal ys))”

At this point, tllist.coinduct_upto contains three variants of the coinduc-
tion principles:

• (′a, int) tllist up to TNil, TCons, and square_terminal;

• (nat, ′b) tllist up to TNil, TCons, and square_elems;

• (′a, ′b) tllist up to TNil and TCons.

The following variant is missing:

• (nat, int) tllist up to TNil, TCons, square_elems, and square_terminal.

To generate it without having to define a new function with corec, we can
use the following command:

coinduction_upto nat_int_tllist: “(nat, int) tllist”

This produces the theorems

nat_int_tllist.coinduct_upto
nat_int_tllist.cong_intros

(as well as the individually named introduction rules) and extends the dy-
namic collections tllist.coinduct_upto and tllist.cong_intros.

2 Introductory Examples 11

2.6 Uniqueness Reasoning
It is sometimes possible to achieve better automation by using a more special-
ized proof method than coinduction. Uniqueness principles maintain a good
balance between expressiveness and automation. They exploit the property
that a corecursive definition is the unique solution to a fixpoint equation.

The corec, corecursive, and friend_of_corec commands generate a
property f .unique about the function of interest f that can be used to prove
that any function that satisfies f ’s corecursive specification must be equal
to f. For example:

f = (λxs ys. SCons (shd xs + shd ys) (f (stl xs) (stl ys))) =⇒ f = ssum

The uniqueness principles are not restricted to functions defined using
corec or corecursive or registered with friend_of_corec. Suppose t x is
an arbitrary term depending on x. The corec_unique proof method, provided
by our tool, transforms subgoals of the form

∀ x . f x = H x f =⇒ f x = t x

into
∀ x . t x = H x t

The higher-order functional H must be such that f x = H x f would be a valid
corec specification, but without nested self-calls or unguarded (recursive)
calls. Thus, corec_unique proves uniqueness of t with respect to the given
corecursive equation regardless of how t was defined. For example:

lemma
fixes f :: “nat stream ⇒ nat stream ⇒ nat stream”
assumes “∀ xs ys. f xs ys =
SCons (shd ys ∗ shd xs) (ssum (f xs (stl ys)) (f (stl xs) ys))”

shows “f = sprod”
using assms

proof corec_unique
show “sprod = (λxs ys :: nat stream.

SCons (shd ys ∗ shd xs) (ssum (sprod xs (stl ys)) (sprod (stl xs) ys)))”
apply (rule ext)+
apply (subst sprod.code)
by simp

qed

The proof method relies on some theorems generated by the package.
If no function over a given codatatype has been defined using corec or

3 Command Syntax 12

corecursive or registered as friendly using friend_of_corec, the theo-
rems will not be available yet. In such cases, the theorems can be explicitly
generated using the command

coinduction_upto stream: “′a stream”

3 Command Syntax
3.1 corec and corecursive

corec : local_theory → local_theory
corecursive : local_theory → proof (prove)

corec
�� ���

�corecursive
�� ��

�
�

�
�target

�
�

�

��
��

�cr-options

�
�

fix where
�� ��prop

cr-options

(
���� plugins�

�friend
�� ���transfer
�� ��

�
�
�

�

� ,
����

�

�

)
����

The corec and corecursive commands introduce a corecursive function over
a codatatype.

The syntactic entity target can be used to specify a local context, fix
denotes name with an optional type signature, and prop denotes a HOL
proposition [8].

The optional target is optionally followed by a combination of the follow-
ing options:

3 Command Syntax 13

• The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.
• The friend option indicates that the defined function should be regis-

tered as a friend. This gives rise to additional proof obligations.
• The transfer option indicates that an unconditional transfer rule should

be generated and proved by transfer_prover. The [transfer_rule] at-
tribute is set on the generated theorem.

The corec command is an abbreviation for corecursive with appropriate
applications of transfer_prover_eq (Section 5.2) and lexicographic_order to
discharge any emerging proof obligations.

3.2 friend_of_corec
friend_of_corec : local_theory → proof (prove)

friend_of_corec
�� ���

�target

�
�

�

��
��

�foc-options

�
�

fix where
�� ��prop

foc-options

(
���� plugins�

�transfer
�� ��

�
�

�

� ,
����

�

�

)
����

The friend_of_corec command registers a corecursive function as friendly.
The syntactic entity target can be used to specify a local context, fix

denotes name with an optional type signature, and prop denotes a HOL
proposition [8].

4 Generated Theorems 14

The optional target is optionally followed by a combination of the follow-
ing options:

• The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.
• The transfer option indicates that an unconditional transfer rule should

be generated and proved by transfer_prover. The [transfer_rule] at-
tribute is set on the generated theorem.

3.3 coinduction_upto
coinduction_upto : local_theory → local_theory

coinduction_upto
�� ���

�target

�
�

name :
����type

The coinduction_upto generates a coinduction up-to rule for a given in-
stance of a (possibly polymorphic) codatatype and notes the result with the
specified prefix.

The syntactic entity name denotes an identifier and type denotes a type [8].

4 Generated Theorems
The full list of named theorems generated by the package can be obtained
by issuing the command print_theorems immediately after the datatype
definition. This list excludes low-level theorems that reveal internal construc-
tions. To make these accessible, add the line

declare [[bnf_internals]]

In addition to the theorem listed below for each command provided by
the package, all commands update the dynamic theorem collections

t.coinduct_upto
t.cong_intros

for the corresponding codatatype t so that they always contain the most
powerful coinduction up-to principles derived so far.

4 Generated Theorems 15

4.1 corec and corecursive
For a function f over codatatype t, the corec and corecursive commands
generate the following properties (listed for sexp, cf. Section 2.1):

f .code [code]:
sexp xs = SCons 2shd xs (sprod (stl xs) (sexp xs))
The [code] attribute is set by the code plugin [1].

f .coinduct [consumes 1, case_names t, case_conclusion D1 . . . Dn]:
[[R nat_stream nat_stream′; ∧nat_stream nat_stream′. R nat_stream
nat_stream′ =⇒ shd nat_stream = shd nat_stream′∧ stream.v3.congclp
R (stl nat_stream) (stl nat_stream′)]] =⇒ nat_stream = nat_stream′

f .cong_intros:
P x y =⇒ stream.v3.congclp P x y
x = y =⇒ stream.v3.congclp R x y
stream.v3.congclp R x y =⇒ stream.v3.congclp R y x
[[stream.v3.congclp R x y; stream.v3.congclp R y z]] =⇒ stream.v3.congclp
R x z
[[x1 = y1; stream.v3.congclp R x2 y2]] =⇒ stream.v3.congclp R (SCons
x1 x2) (SCons y1 y2)
[[stream.v3.congclp R x1 y1; stream.v3.congclp R x2 y2]] =⇒ stream.v3.congclp
R (ssum x1 x2) (ssum y1 y2)
[[stream.v3.congclp R x1 y1; stream.v3.congclp R x2 y2]] =⇒ stream.v3.congclp
R (sprod x1 x2) (sprod y1 y2)
stream.v3.congclp R x y =⇒ stream.v3.congclp R (sexp x) (sexp y)

f .unique:
f = (λxs. SCons 2shd xs (sprod (stl xs) (f xs))) =⇒ f = sexp
This property is not generated for mixed recursive–corecursive defi-
nitions.

f .inner_induct:
This property is only generated for mixed recursive–corecursive def-
initions. For primes (Section 2.3, it reads as follows:
(∧m n. (∧x y. [[(x , y) = (m, n); ¬ (x = 0 ∧ 1 < y ∨ coprime x y)]]
=⇒ P (x , y + 1)) =⇒ P (m, n)) =⇒ P a0

The individual rules making up f .cong_intros are available as

f .cong_base
f .cong_refl

4 Generated Theorems 16

f .cong_sym
f .cong_trans
f .cong_C 1, . . . , f .cong_Cn

where C 1, . . . , C n are t’s constructors
f .cong_f 1, . . . , f .cong_fm

where f 1, . . . , f m are the available friends for t

4.2 friend_of_corec
The friend_of_corec command generates the same theorems as corec and
corecursive, except that it adds an optional friend. component to the names
to prevent potential clashes (e.g., f .friend.code).

4.3 coinduction_upto
The coinduction_upto command generates the following properties (listed
for nat_int_tllist):

t.coinduct_upto [consumes 1, case_names t,
case_conclusion D1 . . . Dn]:

[[R nat_int_tllist nat_int_tllist ′; ∧nat_int_tllist nat_int_tllist ′. R
nat_int_tllist nat_int_tllist ′ =⇒ is_TNil nat_int_tllist = is_TNil
nat_int_tllist ′∧ (is_TNil nat_int_tllist −→ is_TNil nat_int_tllist ′

−→ terminal nat_int_tllist = terminal nat_int_tllist ′) ∧ (¬ is_TNil
nat_int_tllist −→ ¬ is_TNil nat_int_tllist ′ −→ thd nat_int_tllist
= thd nat_int_tllist ′ ∧ tllist.v3.congclp R (ttl nat_int_tllist) (ttl
nat_int_tllist ′))]] =⇒ nat_int_tllist = nat_int_tllist ′

t.cong_intros:
P x y =⇒ tllist.v3.congclp P x y
x = y =⇒ tllist.v3.congclp R x y
tllist.v3.congclp R x y =⇒ tllist.v3.congclp R y x
[[tllist.v3.congclp R x y; tllist.v3.congclp R y z]] =⇒ tllist.v3.congclp
R x z
x = y =⇒ tllist.v3.congclp R (TNil x) (TNil y)
[[x1 = y1; tllist.v3.congclp R x2 y2]] =⇒ tllist.v3.congclp R (TCons
x1 x2) (TCons y1 y2)
tllist.v3.congclp R x y =⇒ tllist.v3.congclp R (square_elems x) (square_elems
y)

5 Proof Methods 17

tllist.v3.congclp R x y =⇒ tllist.v3.congclp R (square_terminal x)
(square_terminal y)

The individual rules making up t.cong_intros are available separately as
t.cong_base, t.cong_refl, etc. (Section 4.1).

5 Proof Methods
5.1 corec_unique
The corec_unique proof method can be used to prove the uniqueness of a
corecursive specification. See Section 2.6 for details.

5.2 transfer_prover_eq
The transfer_prover_eq proof method replaces the equality relation (=)
with compound relator expressions according to relator_eq before calling
transfer_prover on the current subgoal. It tends to work better than plain
transfer_prover on the parametricity proof obligations of corecursive and
friend_of_corec, because they often contain equality relations on complex
types, which transfer_prover cannot reason about.

6 Attribute
6.1 friend_of_corec_simps
The friend_of_corec_simps attribute declares naturality theorems to be used
by friend_of_corec and corec (friend) in deriving the user specification
from reduction to primitive corecursion. Internally, these commands derive
naturality theorems from the parametricity proof obligations dischared by
the user or the transfer_prover_eq method, but this derivation fails if in the
arguments of a higher-order constant a type variable occurs on both sides of
the function type constructor. The required naturality theorem can then be
declared with friend_of_corec_simps. See ~~/src/HOL/Corec_Examples/
Tests/Iterate_GPV.thy for an example.

7 Known Bugs and Limitations
This section lists the known bugs and limitations of the corecursion package
at the time of this writing.

REFERENCES 18

1. Mutually corecursive codatatypes are not supported.
2. The signature of friend functions may not depend on type variables

beyond those that appear in the codatatype.
3. The internal tactics may fail on legal inputs. In some cases, this limi-

tation can be circumvented using the friend_of_corec_simps attribute
(Section 6.1).

4. The transfer option is not implemented yet.
5. The constructor and destructor views offered by primcorec are not

supported by corec and corecursive.
6. There is no mechanism for registering custom plugins.
7. The package does not interact well with locales.
8. The undocumented corecUU_transfer theorem is not as polymorphic as

it could be.
9. All type variables occurring in the arguments of a friendly function

must occur as direct arguments of the type constructor of the resulting
type.

References
[1] J. Biendarra, J. C. Blanchette, M. Desharnais, L. Panny, A. Popescu, and

D. Traytel. Defining (Co)datatypes and Primitively (Co)recursive Func-
tions in Isabelle/HOL. https://isabelle.in.tum.de/doc/datatypes.
pdf.

[2] J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel.
Friends with benefits: Implementing corecursion in foundational proof
assistants. http://www21.in.tum.de/~blanchet/amico.pdf, 2016.

[3] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible
corecursion: A proof assistant perspective. In K. Fisher and J. H. Reppy,
editors, 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 192–204. ACM, 2015.

[4] P. Di Gianantonio and M. Miculan. A unifying approach to recursive and
co-recursive definitions. In H. Geuvers and F. Wiedijk, editors, TYPES
2002, volume 2646 of LNCS, pages 148–161. Springer, 2003.

https://isabelle.in.tum.de/doc/datatypes.pdf
https://isabelle.in.tum.de/doc/datatypes.pdf
http://www21.in.tum.de/~blanchet/amico.pdf

REFERENCES 19

[5] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of Lecture Notes in Com-
puter Science. Springer, 1979.

[6] R. Hinze. Concrete stream calculus—An extended study. J. Funct. Pro-
gram., 20:463–535, 2010.

[7] J. J. M. M. Rutten. A coinductive calculus of streams. Math. Struct.
Comp. Sci., 15(1):93–147, 2005.

[8] M. Wenzel. The Isabelle/Isar Reference Manual. https://isabelle.
in.tum.de/doc/isar-ref.pdf.

https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Introductory Examples
	Simple Corecursion
	Nested Corecursion
	Mixed Recursion–Corecursion
	Self-Friendship
	Coinduction
	Uniqueness Reasoning

	Command Syntax
	corec and corecursive
	friend_of_corec
	coinduction_upto

	Generated Theorems
	corec and corecursive
	friend_of_corec
	coinduction_upto

	Proof Methods
	corec_unique
	transfer_prover_eq

	Attribute
	friend_of_corec_simps

	Known Bugs and Limitations

