
λ
→

∀
=Is

ab
el
le

β

α

The Isabelle System Manual

Makarius Wenzel

20 February 2021

Contents

1 The Isabelle system environment 1
1.1 Isabelle settings . 1

1.1.1 Bootstrapping the environment 1
1.1.2 Common variables . 2
1.1.3 Additional components 5

1.2 The Isabelle tool wrapper . 6
1.3 The raw Isabelle ML process 8

1.3.1 Batch mode . 8
1.3.2 Interactive mode . 9

1.4 The raw Isabelle Java process 10
1.5 YXML versus XML . 10

2 Isabelle sessions and build management 12
2.1 Session ROOT specifications 12
2.2 System build options . 17
2.3 Invoking the build process . 20
2.4 Print messages from build database 24
2.5 Retrieve theory exports . 25
2.6 Dump PIDE session database 26
2.7 Update theory sources based on PIDE markup 27
2.8 Explore sessions structure . 29

3 Presenting theories 31
3.1 Generating HTML browser information 31
3.2 Preparing session root directories 32
3.3 Preparing Isabelle session documents 33
3.4 Running LATEX within the Isabelle environment 34

4 The Isabelle server 36

i

CONTENTS ii

4.1 Command-line tools . 36
4.1.1 Server . 36
4.1.2 Client . 37
4.1.3 Examples . 38

4.2 Protocol messages . 39
4.2.1 Byte messages . 39
4.2.2 Text messages . 40
4.2.3 Input and output messages 40
4.2.4 Initial password exchange 41
4.2.5 Synchronous commands 41
4.2.6 Asynchronous commands 42

4.3 Types for JSON values . 42
4.4 Server commands and results 47

4.4.1 Command help . 47
4.4.2 Command echo . 48
4.4.3 Command shutdown 48
4.4.4 Command cancel . 48
4.4.5 Command session_build 49
4.4.6 Command session_start 51
4.4.7 Command session_stop 52
4.4.8 Command use_theories 53
4.4.9 Command purge_theories 56

5 Isabelle/Scala systems programming 58
5.1 Command-line tools . 59

5.1.1 Java Runtime Environment 59
5.1.2 Scala toplevel . 59
5.1.3 Scala compiler . 60
5.1.4 Scala script wrapper 60
5.1.5 Project setup for common Scala IDEs 60

5.2 Registered Isabelle/Scala functions 61
5.2.1 Defining functions in Isabelle/Scala 61
5.2.2 Invoking functions in Isabelle/ML 62

5.3 Documenting Isabelle/Scala entities 63

CONTENTS iii

6 Phabricator server setup 66
6.1 Quick start . 67

6.1.1 Initial setup . 67
6.1.2 Mailer configuration 69
6.1.3 SSH configuration . 69
6.1.4 Internet domain name and HTTPS configuration . . . 70

6.2 Global data storage and backups 71
6.3 Upgrading Phabricator installations 72
6.4 Reference of command-line tools 73

6.4.1 isabelle phabricator 73
6.4.2 isabelle phabricator_setup 74
6.4.3 isabelle phabricator_setup_mail 75
6.4.4 isabelle phabricator_setup_ssh 76

7 Miscellaneous tools 78
7.1 Building Isabelle docker images 78
7.2 Managing Isabelle components 80
7.3 Viewing documentation . 81
7.4 Shell commands within the settings environment 81
7.5 Inspecting the settings environment 82
7.6 Mercurial repository setup . 83
7.7 Installing standalone Isabelle executables 83
7.8 Creating instances of the Isabelle logo 84
7.9 Output the version identifier of the Isabelle distribution 84

Bibliography 86

Index 87

CONTENTS iv

Chapter 1

The Isabelle system environment

This manual describes Isabelle together with related tools as seen from a
system oriented view. See also the Isabelle/Isar Reference Manual [2] for the
actual Isabelle input language and related concepts, and The Isabelle/Isar
Implementation Manual [1] for the main concepts of the underlying imple-
mentation in Isabelle/ML.

1.1 Isabelle settings

Isabelle executables may depend on the Isabelle settings within the process
environment. This is a statically scoped collection of environment variables,
such as ISABELLE_HOME, ML_SYSTEM, ML_HOME. These variables are not in-
tended to be set directly from the shell, but are provided by Isabelle compo-
nents their settings files as explained below.

1.1.1 Bootstrapping the environment

Isabelle executables need to be run within a proper settings environment.
This is bootstrapped as described below, on the first invocation of one of
the outer wrapper scripts (such as isabelle). This happens only once for
each process tree, i.e. the environment is passed to subprocesses according to
regular Unix conventions.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the isabelle install tool. Symbolic links are admissible, but a plain
copy of the $ISABELLE_HOME/bin files will not work!

1

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

2. The file $ISABELLE_HOME/etc/settings is run as a bash shell script
with the auto-export option for variables enabled.
This file holds a rather long list of shell variable assignments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.
When installing the system, only a few of these may have to be adapted
(probably ML_SYSTEM etc.).

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run in
the same way as the site default settings. Note that the variable
ISABELLE_HOME_USER has already been set before — usually to some-
thing like $USER_HOME/.isabelle/Isabelle2021.
Thus individual users may override the site-wide defaults. Typically, a
user settings file contains only a few lines, with some assignments that
are actually changed. Never copy the central $ISABELLE_HOME/etc/
settings file!

Since settings files are regular GNU bash scripts, one may use complex shell
commands, such as if or case statements to set variables depending on the
system architecture or other environment variables. Such advanced features
should be added only with great care, though. In particular, external envi-
ronment references should be kept at a minimum.

A few variables are somewhat special, e.g. ISABELLE_TOOL is set automati-
cally to the absolute path name of the isabelle executables.

Note that the settings environment may be inspected with the
isabelle getenv tool. This might help to figure out the effect of com-
plex settings scripts.

1.1.2 Common variables

This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with ∗.

USER_HOME∗ Is the cross-platform user home directory. On Unix systems
this is usually the same as HOME, but on Windows it is the regular
home directory of the user, not the one of within the Cygwin root
file-system.1

1Cygwin itself offers another choice whether its HOME should point to the /home
directory tree or the Windows user home.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

ISABELLE_HOME∗ is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell!

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is relative to $USER_HOME/.isabelle, under rare
circumstances this may be changed in the global setting file. Typically,
the ISABELLE_HOME_USER directory mimics ISABELLE_HOME to some ex-
tend. In particular, site-wide defaults may be overridden by a private
$ISABELLE_HOME_USER/etc/settings.

ISABELLE_PLATFORM_FAMILY∗ is automatically set to the general plat-
form family: linux, macos, windows. Note that platform-
dependent tools usually need to refer to the more specific identifi-
cation according to ISABELLE_PLATFORM64, ISABELLE_PLATFORM32,
ISABELLE_WINDOWS_PLATFORM64, ISABELLE_WINDOWS_PLATFORM32.

ISABELLE_PLATFORM64∗, ISABELLE_PLATFORM32∗ indicate the standard
Posix platform: x86_64 for 64 bit and x86 for 32 bit, together with a
symbolic name for the operating system (linux, darwin, cygwin). All
platforms support 64 bit executables, some platforms also support 32
bit executables.

In GNU bash scripts, it is possible to use the following expressions
(with quotes) to specify a preference of 64 bit over 32 bit:

"${ISABELLE_PLATFORM64:-$ISABELLE_PLATFORM32}"

In contrast, the subsequent expression prefers the old 32 bit variant
(which is only relevant for unusual applications):

"${ISABELLE_PLATFORM32:-$ISABELLE_PLATFORM64}"

ISABELLE_WINDOWS_PLATFORM64∗, ISABELLE_WINDOWS_PLATFORM32∗ in-
dicate the native Windows platform. These settings are analo-
gous (but independent) of those for the standard Posix subsystem:
ISABELLE_PLATFORM64, ISABELLE_PLATFORM32.

In GNU bash scripts, a preference for native Windows platform variants
may be specified like this (first 64 bit, second 32 bit):

"${ISABELLE_WINDOWS_PLATFORM64:-${ISABELLE_WINDOWS_PLATFORM32:-
${ISABELLE_PLATFORM64:-$ISABELLE_PLATFORM32}}}"

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

ISABELLE_TOOL∗ is automatically set to the full path name of the isabelle
executable.

ISABELLE_IDENTIFIER∗ refers to the name of this Isabelle distribution, e.g.
“Isabelle2021”.

ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER∗ specify
the underlying ML system to be used for Isabelle. There is only a fixed
set of admissable ML_SYSTEM names (see the $ISABELLE_HOME/etc/
settings file of the distribution).

The actual compiler binary will be run from the directory ML_HOME,
with ML_OPTIONS as first arguments on the command line. The op-
tional ML_PLATFORM may specify the binary format of ML heap im-
ages, which is useful for cross-platform installations. The value of
ML_IDENTIFIER is automatically obtained by composing the values of
ML_SYSTEM, ML_PLATFORM and the Isabelle version values.

ISABELLE_JDK_HOME points to a full JDK (Java Development Kit) instal-
lation with javac and jar executables. Note that conventional
JAVA_HOME points to the JRE (Java Runtime Environment), not the
JDK.

ISABELLE_JAVA_PLATFORM identifies the hardware and operating system
platform for the Java installation of Isabelle. That is always the (na-
tive) 64 bit variant: x86_64-linux, x86_64-darwin, x86_64-windows.

ISABELLE_BROWSER_INFO is the directory where HTML and PDF
browser information is stored (see also §3.1); its default is
$ISABELLE_HOME_USER/browser_info. For “system build mode” (see
§2.3), ISABELLE_BROWSER_INFO_SYSTEM is used instead; its default is
$ISABELLE_HOME/browser_info.

ISABELLE_HEAPS is the directory where session heap images, log files, and
build databases are stored; its default is $ISABELLE_HOME_USER/heaps.
If system_heaps is true, ISABELLE_HEAPS_SYSTEM is used instead; its
default is $ISABELLE_HOME/heaps. See also §2.3.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitely
by the user. The default value is HOL.

ISABELLE_LINE_EDITOR specifies the line editor for the isabelle console
interface.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

ISABELLE_PDFLATEX, ISABELLE_BIBTEX refer to LATEX related tools for
Isabelle document preparation (see also §3.4).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isabelle for external utility programs (see also §1.2).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

PDF_VIEWER specifies the program to be used for displaying pdf files.

ISABELLE_TMP_PREFIX∗ is the prefix from which any running Isabelle ML
process derives an individual directory for temporary files.

ISABELLE_TOOL_JAVA_OPTIONS is passed to the java executable when run-
ning Isabelle tools (e.g. isabelle build). This is occasionally helpful
to provide more heap space, via additional options like -Xms1g -Xmx4g.

1.1.3 Additional components

Any directory may be registered as an explicit Isabelle component. The
general layout conventions are that of the main Isabelle distribution itself,
and the following two files (both optional) have a special meaning:

• etc/settings holds additional settings that are initialized when boot-
strapping the overall Isabelle environment, cf. §1.1.1. As usual, the
content is interpreted as a GNU bash script. It may refer to the com-
ponent’s enclosing directory via the COMPONENT shell variable.

For example, the following setting allows to refer to files within the
component later on, without having to hardwire absolute paths:

MY_COMPONENT_HOME="$COMPONENT"

Components can also add to existing Isabelle settings such as
ISABELLE_TOOLS, in order to provide component-specific tools that can
be invoked by end-users. For example:

ISABELLE_TOOLS="$ISABELLE_TOOLS:$COMPONENT/lib/Tools"

• etc/components holds a list of further sub-components of the same
structure. The directory specifications given here can be either absolute
(with leading /) or relative to the component’s main directory.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

The root of component initialization is ISABELLE_HOME itself. After initial-
izing all of its sub-components recursively, ISABELLE_HOME_USER is included
in the same manner (if that directory exists). This allows to install private
components via $ISABELLE_HOME_USER/etc/components, although it is of-
ten more convenient to do that programmatically via the init_component
shell function in the etc/settings script of $ISABELLE_HOME_USER (or any
other component directory). For example:

init_component "$HOME/screwdriver-2.0"

This is tolerant wrt. missing component directories, but might produce a
warning.

More complex situations may be addressed by initializing components listed
in a given catalog file, relatively to some base directory:

init_components "$HOME/my_component_store" "some_catalog_file"

The component directories listed in the catalog file are treated as relative to
the given base directory.
See also §7.2 for some tool-support for resolving components that are formally
initialized but not installed yet.

1.2 The Isabelle tool wrapper

The main Isabelle tool wrapper provides a generic startup environment for
Isabelle-related utilities, user interfaces, add-on applications etc. Such tools
automatically benefit from the settings mechanism (§1.1). Moreover, this
is the standard way to invoke Isabelle/Scala functionality as a separate
operating-system process. Isabelle command-line tools are run uniformly
via a common wrapper — isabelle:

Usage: isabelle TOOL [ARGS ...]

Start Isabelle TOOL with ARGS; pass "-?" for tool-specific help.

Available tools:
...

Tools may be implemented in Isabelle/Scala or as stand-alone executables
(usually as GNU bash scripts). In the invocation of “isabelle tool ”, the
named tool is resolved as follows (and in the given order).

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

1. An external tool found on the directories listed in the ISABELLE_TOOLS
settings variable (colon-separated list in standard POSIX notation).

(a) If a file “tool.scala” is found, the source needs to define some
object that extends the class Isabelle_Tool.Body. The Scala
compiler is invoked on the spot (which may take some time), and
the body function is run with the command-line arguments as
List[String].

(b) If an executable file “tool ” is found, it is invoked as stand-alone
program with the command-line arguments provided as argv ar-
ray.

2. An internal tool that is registered in etc/settings via the shell func-
tion isabelle_scala_service, referring to a suitable instance of class
isabelle.Isabelle_Scala_Tools. This is the preferred approach for
non-trivial systems programming in Isabelle/Scala: instead of adhoc
interpretation of scala scripts, which is somewhat slow and only type-
checked at runtime, there are properly compiled jar modules (see also
the shell function classpath in §5).

There are also various administrative tools that are available from a bare
repository clone of Isabelle, but not in regular distributions.

Examples

Show the list of available documentation of the Isabelle distribution:

isabelle doc

View a certain document as follows:

isabelle doc system

Query the Isabelle settings environment:

isabelle getenv ISABELLE_HOME_USER

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

1.3 The raw Isabelle ML process

1.3.1 Batch mode

The isabelle process tool runs the raw ML process in batch mode:

Usage: isabelle process [OPTIONS]

Options are:
-T THEORY load theory
-d DIR include session directory
-e ML_EXPR evaluate ML expression on startup
-f ML_FILE evaluate ML file on startup
-l NAME logic session name (default ISABELLE_LOGIC="HOL")
-m MODE add print mode for output
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)

Run the raw Isabelle ML process in batch mode.

Options -e and -f allow to evaluate ML code, before the ML process is
started. The source is either given literally or taken from a file. Multiple -e
and -f options are evaluated in the given order. Errors lead to premature
exit of the ML process with return code 1.

Option -T loads a specified theory file. This is a wrapper for -e with a
suitable use_thy invocation.

Option -l specifies the logic session name. Option -d specifies additional
directories for session roots, see also §2.3.

The -m option adds identifiers of print modes to be made active for this ses-
sion. For example, -m ASCII prefers ASCII replacement syntax over mathe-
matical Isabelle symbols.

Option -o allows to override Isabelle system options for this process, see also
§2.2.

Examples

The subsequent example retrieves the Main theory value from the theory
loader within ML:

isabelle process -e ’Thy_Info.get_theory "Main"’

Observe the delicate quoting rules for the GNU bash shell vs. ML. The
Isabelle/ML and Scala libraries provide functions for that, but here we need
to do it manually.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

This is how to invoke a function body with proper return code and printing
of errors, and without printing of a redundant val it = (): unit result:

isabelle process -e ’Command_Line.tool (fn () => writeln "OK")’

isabelle process -e ’Command_Line.tool (fn () => error "Bad")’

1.3.2 Interactive mode

The isabelle console tool runs the raw ML process with interactive con-
sole and line editor:

Usage: isabelle console [OPTIONS]

Options are:
-d DIR include session directory
-i NAME include session in name-space of theories
-l NAME logic session name (default ISABELLE_LOGIC)
-m MODE add print mode for output
-n no build of session image on startup
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r bootstrap from raw Poly/ML

Build a logic session image and run the raw Isabelle ML process
in interactive mode, with line editor ISABELLE_LINE_EDITOR.

Option -l specifies the logic session name. By default, its heap image is
checked and built on demand, but the option -n skips that.
Option -i includes additional sessions into the name-space of theories: mul-
tiple occurrences are possible.
Option -r indicates a bootstrap from the raw Poly/ML system, which is
relevant for Isabelle/Pure development.

Options -d, -m, -o have the same meaning as for isabelle process (§1.3.1).

The Isabelle/ML process is run through the line editor that is specified via
the settings variable ISABELLE_LINE_EDITOR (e.g. rlwrap for GNU readline);
the fall-back is to use plain standard input/output.
The user is connected to the raw ML toplevel loop: this is neither Isabelle/Isar
nor Isabelle/ML within the usual formal context. The most relevant ML
commands at this stage are use (for ML files) and use_thy (for theory files).

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 10

1.4 The raw Isabelle Java process

The isabelle_java executable allows to run a Java process within the name
space of Java and Scala components that are bundled with Isabelle, but
without the Isabelle settings environment (§1.1).
After such a JVM cold-start, the Isabelle environment can be accessed via
Isabelle_System.getenv as usual, but the underlying process environment
remains clean. This is e.g. relevant when invoking other processes that should
remain separate from the current Isabelle installation.

Note that under normal circumstances, Isabelle command-line tools are run
within the settings environment, as provided by the isabelle wrapper (§1.2
and §5.1.1).

Example

The subsequent example creates a raw Java process on the command-line
and invokes the main Isabelle application entry point:

isabelle_java isabelle.Main

1.5 YXML versus XML

Isabelle tools often use YXML, which is a simple and efficient syntax for
untyped XML trees. The YXML format is defined as follows.

1. The encoding is always UTF-8.

2. Body text is represented verbatim (no escaping, no special treatment
of white space, no named entities, no CDATA chunks, no comments).

3. Markup elements are represented via ASCII control characters X = 5
and Y = 6 as follows:
XML YXML
<name attribute=value . . .> XYnameYattribute=value. . .X
</name> XYX

There is no special case for empty body text, i.e. <foo/> is treated like
<foo></foo>. Also note that X and Y may never occur in well-formed
XML documents.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 11

Parsing YXML is pretty straight-forward: split the text into chunks sepa-
rated by X, then split each chunk into sub-chunks separated by Y. Markup
chunks start with an empty sub-chunk, and a second empty sub-chunk in-
dicates close of an element. Any other non-empty chunk consists of plain
text. For example, see ~~/src/Pure/PIDE/yxml.ML or ~~/src/Pure/PIDE/
yxml.scala.
YXML documents may be detected quickly by checking that the first two
characters are XY.

Chapter 2

Isabelle sessions and build
management

An Isabelle session consists of a collection of related theories that may be
associated with formal documents (chapter 3). There is also a notion of
persistent heap image to capture the state of a session, similar to object-code
in compiled programming languages. Thus the concept of session resembles
that of a “project” in common IDE environments, but the specific name
emphasizes the connection to interactive theorem proving: the session wraps-
up the results of user-interaction with the prover in a persistent form.
Application sessions are built on a given parent session, which may be built
recursively on other parents. Following this path in the hierarchy eventually
leads to some major object-logic session like HOL, which itself is based on
Pure as the common root of all sessions.
Processing sessions may take considerable time. Isabelle build management
helps to organize this efficiently. This includes support for parallel build jobs,
in addition to the multithreaded theory and proof checking that is already
provided by the prover process itself.

2.1 Session ROOT specifications

Session specifications reside in files called ROOT within certain directories,
such as the home locations of registered Isabelle components or additional
project directories given by the user.
The ROOT file format follows the lexical conventions of the outer syntax
of Isabelle/Isar, see also [2]. This defines common forms like identifiers,
names, quoted strings, verbatim text, nested comments etc. The grammar
for session_chapter and session_entry is given as syntax diagram below;
each ROOT file may contain multiple specifications like this. Chapters help
to organize browser info (§3.1), but have no formal meaning. The default
chapter is “Unsorted ”.

12

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 13

Isabelle/jEdit [3] includes a simple editing mode isabelle-root for session
ROOT files, which is enabled by default for any file of that name.

session_chapter

chapter
�� ��name

session_entry

session
�� ��system_name �

�groups

�
�

�
�dir

�
�

=
�����

��
��

�system_name +
����

�
�

�
�description

�
�

�
�options

�
�

�

��
��

�sessions

�
�

�
�directories

�
�

�
�theories

�
�

�

��
��

�document_theories

�
�

�
�document_files

�
�

�

��
��

�export_files

�
�

groups

(
���� name�

�
�
�

)
����

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 14

dir

in
����embedded

description

description
�� ��text

options

options
�� ��opts

opts

[
���� name =

����value�
�name

�
�

�

� ,
����

�

�

]
����

value

name�
�real

�
�

sessions

sessions
�� �� system_name�

�
�
�

directories

directories
�� �� dir�

�
�
�

theories

theories
�� ���

�opts

�
�

theory_entry�
�

�
�

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 15

theory_entry

system_name �
� (

����global
�� ��)

����
�
�

document_theories

document_theories
�� �� name�

�
�
�

document_files

document_files
�� ���

� (
����dir)

����
�
�

embedded�
�

�
�

export_files

export_files
�� ���

� (
����dir)

����
�
�

�
� [

����nat]
����

�
�

�

��
� embedded�

�
�
�

session A = B + body defines a new session A based on parent session B,
with its content given in body (imported sessions and theories). Note
that a parent (like HOL) is mandatory in practical applications: only
Isabelle/Pure can bootstrap itself from nothing.

All such session specifications together describe a hierarchy (graph) of
sessions, with globally unique names. The new session name A should
be sufficiently long and descriptive to stand on its own in a potentially
large library.

session A (groups) indicates a collection of groups where the new ses-
sion is a member. Group names are uninterpreted and merely follow
certain conventions. For example, the Isabelle distribution tags some

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 16

important sessions by the group name called “main”. Other projects
may invent their own conventions, but this requires some care to avoid
clashes within this unchecked name space.

session A in dir specifies an explicit directory for this session; by default
this is the current directory of the ROOT file.

All theory files are located relatively to the session directory. The
prover process is run within the same as its current working directory.

description text is a free-form annotation for this session.

options [x = a, y = b, z] defines separate options (§2.2) that are used when
processing this session, but without propagation to child sessions. Note
that z abbreviates z = true for Boolean options.

sessions names specifies sessions that are imported into the current name
space of theories. This allows to refer to a theory A from session B by
the qualified name B .A — although it is loaded again into the current
ML process, which is in contrast to a theory that is already present in
the parent session.

Theories that are imported from other sessions are excluded from the
current session document.

directories dirs specifies additional directories for import of theory files
via theories within ROOT or imports within a theory; dirs are relative
to the main session directory (cf. session . . . in dir). These directories
need to be exclusively assigned to a unique session, without implicit
sharing of file-system locations.

theories options names specifies a block of theories that are processed
within an environment that is augmented by the given options, in ad-
dition to the global session options given before. Any number of blocks
of theories may be given. Options are only active for each theories
block separately.

A theory name that is followed by (global) is treated literally in other
session specifications or theory imports — the normal situation is to
qualify theory names by the session name; this ensures globally unique
names in big session graphs. Global theories are usually the entry
points to major logic sessions: Pure, Main, Complex_Main, HOLCF,
IFOL, FOL, ZF, ZFC etc. Regular Isabelle applications should not
claim any global theory names.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 17

document_theories names specifies theories from other sessions that
should be included in the generated document source directory. These
theories need to be explicit imports in the current session, or implicit
imports from the underlying hierarchy of parent sessions. The gener-
ated session.tex file is not affected: the session’s LATEX setup needs
to \input{. . .} generated .tex files separately.

document_files (in base_dir) files lists source files for document prepa-
ration, typically .tex and .sty for LATEX. Only these explicitly given
files are copied from the base directory to the document output direc-
tory, before formal document processing is started (see also §3.3). The
local path structure of the files is preserved, which allows to reconstruct
the original directory hierarchy of base_dir. The default base_dir is
document within the session root directory.

export_files (in target_dir) [number] patterns specifies theory exports
that may get written to the file-system, e.g. via isabelle build with
option -e (§2.3). The target_dir specification is relative to the session
root directory; its default is export. Exports are selected via patterns
as in isabelle export (§2.5). The number given in brackets (default:
0) specifies elements that should be pruned from each name: it allows
to reduce the resulting directory hierarchy at the danger of overwriting
files due to loss of uniqueness.

Examples

See ~~/src/HOL/ROOT for a diversity of practically relevant situations, al-
though it uses relatively complex quasi-hierarchic naming conventions like
HOL-SPARK, HOL-SPARK-Examples. An alternative is to use unqualified names
that are relatively long and descriptive, as in the Archive of Formal Proofs
(https://isa-afp.org), for example.

2.2 System build options

See ~~/etc/options for the main defaults provided by the Isabelle distri-
bution. Isabelle/jEdit [3] includes a simple editing mode isabelle-options
for this file-format.
The following options are particularly relevant to build Isabelle sessions, in
particular with document preparation (chapter 3).

https://isa-afp.org

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 18

• browser_info controls output of HTML browser info, see also §3.1.

• document controls document output for a particular session or theory;
document=pdf means enabled, document=false means disabled (espe-
cially for particular theories).

• document_output specifies an alternative directory for generated out-
put of the document preparation system; the default is within the
ISABELLE_BROWSER_INFO hierarchy as explained in §3.1. See also
isabelle mkroot, which generates a default configuration with out-
put readily available to the author of the document.

• document_variants specifies document variants as a colon-separated
list of name=tags entries. The default name document, without addi-
tional tags.

Tags are specified as a comma separated list of modifier/name pairs and
tell LATEX how to interpret certain Isabelle command regions: “+foo”
(or just “foo”) means to keep, “-foo” to drop, and “/foo” to fold text
tagged as foo. The builtin default is equivalent to the tag specification
“+document,+theory,+proof,+ML,+visible,-invisible,+important,+unimportant”;
see also the LATEX macros \isakeeptag, \isadroptag, and
\isafoldtag, in ~~/lib/texinputs/isabelle.sty.

In contrast, document_variants=document:outline=/proof,/ML in-
dicates two documents: the one called document with default tags, and
the other called outline where proofs and ML sections are folded.

Document variant names are just a matter of conventions. It is also
possible to use different document variant names (without tags) for
different document root entries, see also §3.3.

• document_tags specifies alternative command tags as a comma-
separated list of items: either “command%tag” for a specific command,
or “%tag” as default for all other commands. This is occasionally useful
to control the global visibility of commands via session options (e.g. in
ROOT).

• threads determines the number of worker threads for parallel checking
of theories and proofs. The default 0 means that a sensible maxi-
mum value is determined by the underlying hardware. For machines
with many cores or with hyperthreading, this is often requires man-
ual adjustment (on the command-line or within personal settings or
preferences, not within a session ROOT).

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 19

• condition specifies a comma-separated list of process environment
variables (or Isabelle settings) that are required for the subsequent
theories to be processed. Conditions are considered “true” if the corre-
sponding environment value is defined and non-empty.

• timeout and timeout_scale specify a real wall-clock timeout for the
session as a whole: the two values are multiplied and taken as the num-
ber of seconds. Typically, timeout is given for individual sessions, and
timeout_scale as global adjustment to overall hardware performance.

The timer is controlled outside the ML process by the JVM that runs
Isabelle/Scala. Thus it is relatively reliable in canceling processes that
get out of control, even if there is a deadlock without CPU time usage.

• profiling specifies a mode for global ML profiling. Possible values are
the empty string (disabled), time for profile_time and allocations
for profile_allocations. Results appear near the bottom of the
session log file.

• system_heaps determines the directories for session heap images:
$ISABELLE_HEAPS is the user directory and $ISABELLE_HEAPS_SYSTEM
the system directory (usually within the Isabelle application). For
system_heaps=false, heaps are stored in the user directory and may
be loaded from both directories. For system_heaps=true, store and
load happens only in the system directory.

The isabelle options tool prints Isabelle system options. Its command-
line usage is:

Usage: isabelle options [OPTIONS] [MORE_OPTIONS ...]

Options are:
-b include $ISABELLE_BUILD_OPTIONS
-g OPTION get value of OPTION
-l list options
-x FILE export to FILE in YXML format

Report Isabelle system options, augmented by MORE_OPTIONS given as
arguments NAME=VAL or NAME.

The command line arguments provide additional system options of the form
name=value or name for Boolean options.
Option -b augments the implicit environment of system options by the ones
of ISABELLE_BUILD_OPTIONS, cf. §2.3.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 20

Option -g prints the value of the given option. Option -l lists all options
with their declaration and current value.
Option -x specifies a file to export the result in YXML format, instead of
printing it in human-readable form.

2.3 Invoking the build process

The isabelle build tool invokes the build process for Isabelle sessions.
It manages dependencies between sessions, related sources of theories and
auxiliary files, and target heap images. Accordingly, it runs instances of the
prover process with optional document preparation. Its command-line usage
is:1

Usage: isabelle build [OPTIONS] [SESSIONS ...]

Options are:
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-N cyclic shuffling of NUMA CPU nodes (performance tuning)
-P DIR enable HTML/PDF presentation in directory (":" for

default)
-R refer to requirements of selected sessions
-S soft build: only observe changes of sources, not heap

images
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b build heap images
-c clean build
-d DIR include session directory
-e export files from session specification into file-system
-f fresh build
-g NAME select session group NAME
-j INT maximum number of parallel jobs (default 1)
-k KEYWORD check theory sources for conflicts with proposed keywords
-l list session source files
-n no build -- test dependencies only
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose
-x NAME exclude session NAME and all descendants

Build and manage Isabelle sessions, depending on implicit settings:

ISABELLE_TOOL_JAVA_OPTIONS="..."
ISABELLE_BUILD_OPTIONS="..."

1Isabelle/Scala provides the same functionality via isabelle.Build.build.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 21

ML_PLATFORM="..."
ML_HOME="..."
ML_SYSTEM="..."
ML_OPTIONS="..."

Isabelle sessions are defined via session ROOT files as described in (§2.1).
The totality of sessions is determined by collecting such specifications from
all Isabelle component directories (§1.1.3), augmented by more directories
given via options -d DIR on the command line. Each such directory may
contain a session ROOT file with several session specifications.
Any session root directory may refer recursively to further directories of the
same kind, by listing them in a catalog file ROOTS line-by-line. This helps to
organize large collections of session specifications, or to make -d command
line options persistent (e.g. in $ISABELLE_HOME_USER/ROOTS).

The subset of sessions to be managed is determined via individual SESSIONS
given as command-line arguments, or session groups that are given via one or
more options -g NAME. Option -a selects all sessions. The build tool takes
session dependencies into account: the set of selected sessions is completed
by including all ancestors.

One or more options -B NAME specify base sessions to be included (all
descendants wrt. the session parent or import graph).

One or more options -x NAME specify sessions to be excluded (all descen-
dants wrt. the session parent or import graph). Option -X is analogous to
this, but excluded sessions are specified by session group membership.

Option -R reverses the selection in the sense that it refers to its requirements:
all ancestor sessions excluding the original selection. This allows to prepare
the stage for some build process with different options, before running the
main build itself (without option -R).

Option -D is similar to -d, but selects all sessions that are defined in the
given directories.

Option -S indicates a “soft build”: the selection is restricted to those sessions
that have changed sources (according to actually imported theories). The
status of heap images is ignored.

The build process depends on additional options (§2.2) that are passed to the
prover eventually. The settings variable ISABELLE_BUILD_OPTIONS allows to
provide additional defaults, e.g. ISABELLE_BUILD_OPTIONS="document=pdf

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 22

threads=4". Moreover, the environment of system build options may be
augmented on the command line via -o name=value or -o name, which ab-
breviates -o name=true for Boolean options. Multiple occurrences of -o on
the command-line are applied in the given order.

Option -P enables PDF/HTML presentation in the given direc-
tory, where “-P:” refers to the default ISABELLE_BROWSER_INFO (or
ISABELLE_BROWSER_INFO_SYSTEM). This applies only to explicitly selected
sessions; note that option −R allows to select all requirements separately.

Option -b ensures that heap images are produced for all selected sessions.
By default, images are only saved for inner nodes of the hierarchy of sessions,
as required for other sessions to continue later on.

Option -c cleans the selected sessions (all descendants wrt. the session parent
or import graph) before performing the specified build operation.

Option -e executes the export_files directives from the ROOT specification
of all explicitly selected sessions: the status of the session build database needs
to be OK, but the session could have been built earlier. Using export_files,
a session may serve as abstract interface for add-on build artefacts, but these
are only materialized on explicit request: without option -e there is no effect
on the physical file-system yet.

Option -f forces a fresh build of all selected sessions and their requirements.

Option -n omits the actual build process after the preparatory stage (includ-
ing optional cleanup). Note that the return code always indicates the status
of the set of selected sessions.

Option -j specifies the maximum number of parallel build jobs (prover pro-
cesses). Each prover process is subject to a separate limit of parallel worker
threads, cf. system option threads.

Option -N enables cyclic shuffling of NUMA CPU nodes. This may help
performance tuning on Linux servers with separate CPU/memory modules.

Option -v increases the general level of verbosity. Option -l lists the source
files that contribute to a session.

Option -k specifies a newly proposed keyword for outer syntax (multiple uses
allowed). The theory sources are checked for conflicts wrt. this hypothetical
change of syntax, e.g. to reveal occurrences of identifiers that need to be
quoted.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 23

Examples

Build a specific logic image:

isabelle build -b HOLCF

Build the main group of logic images:

isabelle build -b -g main

Build all descendants (and requirements) of FOL and ZF:

isabelle build -B FOL -B ZF

Build all sessions where sources have changed (ignoring heaps):

isabelle build -a -S

Provide a general overview of the status of all Isabelle sessions, without
building anything:

isabelle build -a -n -v

Build all sessions with HTML browser info and PDF document preparation:

isabelle build -a -o browser_info -o document=pdf

Build all sessions with a maximum of 8 parallel prover processes and 4 worker
threads each (on a machine with many cores):

isabelle build -a -j8 -o threads=4

Build some session images with cleanup of their descendants, while retaining
their ancestry:

isabelle build -b -c HOL-Library HOL-Algebra

Clean all sessions without building anything:

isabelle build -a -n -c

Build all sessions from some other directory hierarchy, according to the set-
tings variable AFP that happens to be defined inside the Isabelle environment:

isabelle build -D ’$AFP’

Inform about the status of all sessions required for AFP, without building
anything yet:

isabelle build -D ’$AFP’ -R -v -n

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 24

2.4 Print messages from build database

The isabelle log tool prints prover messages from the build database of
the given session. Its command-line usage is:

Usage: isabelle log [OPTIONS] SESSION

Options are:
-T NAME restrict to given theories (multiple options possible)
-U output Unicode symbols
-m MARGIN margin for pretty printing (default: 76.0)
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)

Print messages from the build database of the given session, without any
checks against current sources: results from a failed build can be
printed as well.

The specified session database is taken as is, independently of the current
session structure and theories sources. The order of messages follows the
source positions of source files; thus the erratic evaluation of parallel pro-
cessing rarely matters. There is no implicit build process involved, so it is
possible to retrieve error messages from a failed session as well.

Option -o allows to change system options, as in isabelle build (§2.3).
This may affect the storage space for the build database, notably via
system_heaps, or build_database_server and its relatives.

Option -T restricts output to given theories: multiple entries are possible by
repeating this option on the command-line. The default is to refer to all
theories that were used in original session build process.

Options -m and -U modify pretty printing and output of Isabelle symbols.
The default is for an old-fashioned ASCII terminal at 80 characters per line
(76 + 4 characters to prefix warnings or errors).

Option -v prints all messages from the session database, including extra
information and tracing messages etc.

Examples

Print messages from theory HOL.Nat of session HOL, using Unicode rendering
of Isabelle symbols and a margin of 100 characters:

isabelle log -T HOL.Nat -U -m 100 HOL

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 25

2.5 Retrieve theory exports

The isabelle export tool retrieves theory exports from the session
database. Its command-line usage is:

Usage: isabelle export [OPTIONS] SESSION

Options are:
-O DIR output directory for exported files (default: "export")
-d DIR include session directory
-l list exports
-n no build of session
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-p NUM prune path of exported files by NUM elements
-x PATTERN extract files matching pattern (e.g.\ "*:**" for all)

List or export theory exports for SESSION: named blobs produced by
isabelle build. Option -l or -x is required; option -x may be repeated.

The PATTERN language resembles glob patterns in the shell, with ? and *
(both excluding ":" and "/"), ** (excluding ":"), and [abc] or [^abc],
and variants {pattern1,pattern2,pattern3}.

The specified session is updated via isabelle build (§2.3), with the same
options -d, -o. The option -n suppresses the implicit build process: it means
that a potentially outdated session database is used!

Option -l lists all stored exports, with compound names theory:name.

Option -x extracts stored exports whose compound name matches the given
pattern. Note that wild cards “?” and “*” do not match the separators “:”
and “/”; the wild card ** matches over directory name hierarchies separated
by “/”. Thus the pattern “*:**” matches all theory exports. Multiple options
-x refer to the union of all specified patterns.
Option -O specifies an alternative output directory for option -x: the default
is export within the current directory. Each theory creates its own sub-
directory hierarchy, using the session-qualified theory name.
Option -p specifies the number of elements that should be pruned from each
name: it allows to reduce the resulting directory hierarchy at the danger of
overwriting files due to loss of uniqueness.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 26

2.6 Dump PIDE session database

The isabelle dump tool dumps information from the cumulative PIDE ses-
sion database (which is processed on the spot). Its command-line usage is:

Usage: isabelle dump [OPTIONS] [SESSIONS ...]

Options are:
-A NAMES dump named aspects (default: ...)
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-O DIR output directory for dumped files (default: "dump")
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b NAME base logic image (default "Pure")
-d DIR include session directory
-g NAME select session group NAME
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose
-x NAME exclude session NAME and all descendants

Dump cumulative PIDE session database, with the following aspects:
...

Options -B, -D, -R, -X, -a, -d, -g, -x and the remaining command-line ar-
guments specify sessions as in isabelle build (§2.3): the cumulative PIDE
database of all their loaded theories is dumped to the output directory of
option -O (default: dump in the current directory).

Option -b specifies an optional base logic image, for improved scalability
of the PIDE session. Its theories are only processed if it is included in the
overall session selection.

Option -o overrides Isabelle system options as for isabelle build (§2.3).

Option -v increases the general level of verbosity.

Option -A specifies named aspects of the dump, as a comma-separated list.
The default is to dump all known aspects, as given in the command-line usage
of the tool. The underlying Isabelle/Scala operation isabelle.Dump.dump
takes aspects as user-defined operations on the final PIDE state and docu-
ment version. This allows to imitate Prover IDE rendering under program
control.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 27

Examples

Dump all Isabelle/ZF sessions (which are rather small):

isabelle dump -v -B ZF

Dump the quite substantial HOL-Analysis session, with full bootstrap from
Isabelle/Pure:

isabelle dump -v HOL-Analysis

Dump all sessions connected to HOL-Analysis, using main Isabelle/HOL as
basis:

isabelle dump -v -b HOL -B HOL-Analysis

This results in uniform PIDE markup for everything, except for the
Isabelle/Pure bootstrap process itself. Producing that on the spot requires
several GB of heap space, both for the Isabelle/Scala and Isabelle/ML process
(in 64bit mode). Here are some relevant settings (§1.1.1) for such ambitious
applications:

ISABELLE_TOOL_JAVA_OPTIONS="-Xms4g -Xmx32g -Xss16m"
ML_OPTIONS="--minheap 4G --maxheap 32G"

2.7 Update theory sources based on PIDE
markup

The isabelle update tool updates theory sources based on markup that is
produced from a running PIDE session (similar to isabelle dump §2.6). Its
command-line usage is:

Usage: isabelle update [OPTIONS] [SESSIONS ...]

Options are:
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b NAME base logic image (default "Pure")
-d DIR include session directory

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 28

-g NAME select session group NAME
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-u OPT overide update option: shortcut for "-o update_OPT"
-v verbose
-x NAME exclude session NAME and all descendants

Update theory sources based on PIDE markup.

Options -B, -D, -R, -X, -a, -d, -g, -x and the remaining command-line
arguments specify sessions as in isabelle build (§2.3) or isabelle dump
(§2.6).

Option -b specifies an optional base logic image, for improved scalability
of the PIDE session. Its theories are only processed if it is included in the
overall session selection.

Option -v increases the general level of verbosity.

Option -o overrides Isabelle system options as for isabelle build (§2.3).
Option -u refers to specific update options, by relying on naming convention:
“-u OPT ” is a shortcut for “-o update_OPT ”.

The following update options are supported:

• update_inner_syntax_cartouches to update inner syntax (types,
terms, etc.) to use cartouches, instead of double-quoted strings or
atomic identifiers. For example, “lemma "x = x"” is replaced by
“lemma 〈x = x 〉”, and “assume A” is replaced by “assume 〈A〉”.

• update_mixfix_cartouches to update mixfix templates to use car-
touches instead of double-quoted strings. For example, “(infixl "+"
65)” is replaced by “(infixl 〈+〉 65)”.

• update_control_cartouches to update antiquotations to use the com-
pact form with control symbol and cartouche argument. For example,
“@{term "x + y"}” is replaced by “term 〈x + y 〉” (the control symbol
is literally \<^term>.)

• update_path_cartouches to update file-system paths to use car-
touches: this depends on language markup provided by semantic pro-
cessing of parsed input.

It is also possible to produce custom updates in Isabelle/ML, by reporting
Markup.update with the precise source position and a replacement text. This

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 29

operation should be made conditional on specific system options, similar
to the ones above. Searching the above option names in ML sources of
$ISABELLE_HOME/src/Pure provides some examples.
Updates can be in conflict by producing nested or overlapping edits: this may
require to run isabelle update multiple times.

Examples

Update some cartouche notation in all theory sources required for session
HOL-Analysis (and ancestors):

isabelle update -u mixfix_cartouches HOL-Analysis

Update the same for all application sessions based on HOL-Analysis — using
its image is taken starting point (for reduced resource requirements):

isabelle update -u mixfix_cartouches -b HOL-Analysis -B HOL-Analysis

Update sessions that build on HOL-Proofs, which need to be run separately
with special options as follows:

isabelle update -u mixfix_cartouches -l HOL-Proofs -B HOL-Proofs
-o record_proofs=2

See also the end of §2.6 for hints on increasing Isabelle/ML heap sizes for very
big PIDE processes that include many sessions, notably from the Archive of
Formal Proofs.

2.8 Explore sessions structure

The isabelle sessions tool explores the sessions structure. Its command-
line usage is:

Usage: isabelle sessions [OPTIONS] [SESSIONS ...]

Options are:
-B NAME include session NAME and all descendants
-D DIR include session directory and select its sessions
-R refer to requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 30

-d DIR include session directory
-g NAME select session group NAME
-x NAME exclude session NAME and all descendants

Explore the structure of Isabelle sessions and print result names in
topological order (on stdout).

Arguments and options for session selection resemble isabelle build (§2.3).

Examples

All sessions of the Isabelle distribution:

isabelle sessions -a

Sessions that are based on ZF (and required by it):

isabelle sessions -B ZF

All sessions of Isabelle/AFP (based in directory AFP):

isabelle sessions -D AFP/thys

Sessions required by Isabelle/AFP (based in directory AFP):

isabelle sessions -R -D AFP/thys

Chapter 3

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of sessions (chapter 2). The
global session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions further on in the hierarchy.
The command-line tools isabelle mkroot and isabelle build provide the
primary means for managing Isabelle sessions, including options for presen-
tation: “document=pdf” generates PDF output from the theory session, and
“document_output=dir” emits a copy of the document sources with the PDF
into the given directory (relative to the session directory).
Alternatively, isabelle document may be used to turn the generated LATEX
sources of a session (exports from its build database) into PDF, using suitable
invocations of isabelle latex.

3.1 Generating HTML browser information

As a side-effect of building sessions, Isabelle is able to generate theory brows-
ing information, including HTML documents that show the theory sources
and the relationship with its ancestors and descendants. Besides the HTML
file that is generated for every theory, Isabelle stores links to all theories
of a session in an index file. As a second hierarchy, groups of sessions are
organized as chapters, with a separate index. Note that the implicit tree
structure of the session build hierarchy is not relevant for the presentation.

To generate theory browsing information for an existing session, just invoke
isabelle build with suitable options:

isabelle build -o browser_info -v -c FOL

The presentation output will appear in $ISABELLE_BROWSER_INFO/FOL/FOL
as reported by the above verbose invocation of the build process.

31

CHAPTER 3. PRESENTING THEORIES 32

Many Isabelle sessions (such as HOL-Library in ~~/src/HOL/Library) also
provide printable documents in PDF. These are prepared automatically as
well if enabled like this:

isabelle build -o browser_info -o document=pdf -v -c HOL-Library

Enabling both browser info and document preparation simultaneously causes
an appropriate “document” link to be included in the HTML index. Docu-
ments may be generated independently of browser information as well, see
§3.3 for further details.

The theory browsing information is stored in a sub-directory directory deter-
mined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding
to the session chapter and identifier. In order to present Isabelle applications
on the web, the corresponding subdirectory from ISABELLE_BROWSER_INFO
can be put on a WWW server.

3.2 Preparing session root directories

The isabelle mkroot tool configures a given directory as session root, with
some ROOT file and optional document source directory. Its usage is:

Usage: isabelle mkroot [OPTIONS] [DIRECTORY]

Options are:
-A LATEX provide author in LaTeX notation (default: user name)
-I init Mercurial repository and add generated files
-T LATEX provide title in LaTeX notation (default: session name)
-n NAME alternative session name (default: directory base name)

Prepare session root directory (default: current directory).

The results are placed in the given directory dir, which refers to the current
directory by default. The isabelle mkroot tool is conservative in the sense
that it does not overwrite existing files or directories. Earlier attempts to
generate a session root need to be deleted manually.
The generated session template will be accompanied by a formal document,
with DIRECTORY /document/root.tex as its LATEX entry point (see also
chapter 3).
Options -T and -A specify the document title and author explicitly, using
LATEX source notation.

CHAPTER 3. PRESENTING THEORIES 33

Option -I initializes a Mercurial repository in the target directory, and adds
all generated files (without commit).
Option -n specifies an alternative session name; otherwise the base name of
the given directory is used.

The implicit Isabelle settings variable ISABELLE_LOGIC specifies the parent
session.

Examples

Produce session Test within a separate directory of the same name:

isabelle mkroot Test && isabelle build -D Test

Upgrade the current directory into a session ROOT with document prepara-
tion, and build it:

isabelle mkroot && isabelle build -D .

3.3 Preparing Isabelle session documents

The isabelle document tool prepares logic session documents. Its usage is:

Usage: isabelle document [OPTIONS] SESSION

Options are:
-O DIR output directory for LaTeX sources and resulting PDF
-P DIR output directory for resulting PDF
-S DIR output directory for LaTeX sources
-V verbose latex
-d DIR include session directory
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-v verbose build

Prepare the theory document of a session.

Generated LATEX sources are taken from the session build database:
isabelle build is invoked beforehand to ensure that it is up-to-date. Fur-
ther files are generated on the spot, notably essential Isabelle style files, and
session.tex to input all theory sources from the session (excluding imports
from other sessions).

Options -d, -o, -v have the same meaning as for isabelle build.

CHAPTER 3. PRESENTING THEORIES 34

Option -V prints full output of LATEX tools.

Option -O dir specifies the output directory for generated LATEX sources and
the result PDF file. Options -P and -S only refer to the PDF and sources,
respectively.
For example, for output directory “output” and the default document variant
“document”, the generated document sources are placed into the subdirectory
output/document/ and the resulting PDF into output/document.pdf.

Isabelle is usually smart enough to create the PDF from the given root.tex
and optional root.bib (bibliography) and root.idx (index) using standard
LATEX tools. Alternatively, document_files in the session ROOT may in-
clude an executable build script to take care of that. It is invoked with
command-line arguments for the document format (pdf) and the document
variant name. The script needs to produce corresponding output files, e.g.
root.pdf for default document variants (the main work can be delegated to
isabelle latex).

Examples

Produce the document from session FOL with full verbosity, and a copy in
the current directory (subdirectory document and file document.pdf):

isabelle document -v -V -O. FOL

3.4 Running LATEX within the Isabelle environ-
ment

The isabelle latex tool provides the basic interface for Isabelle document
preparation. Its usage is:

Usage: isabelle latex [OPTIONS] [FILE]

Options are:
-o FORMAT specify output format: pdf (default), bbl, idx, sty

Run LaTeX (and related tools) on FILE (default root.tex),
producing the specified output format.

Appropriate LATEX-related programs are run on the input file, according to
the given output format: pdflatex, bibtex (for bbl), and makeindex (for

CHAPTER 3. PRESENTING THEORIES 35

idx). The actual commands are determined from the settings environment
(ISABELLE_PDFLATEX etc.).
The sty output format causes the Isabelle style files to be updated from the
distribution. This is useful in special situations where the document sources
are to be processed another time by separate tools.

Examples

Invoking isabelle latex by hand may be occasionally useful when debug-
ging failed attempts of the automatic document preparation stage of batch-
mode Isabelle. The abortive process leaves the sources at a certain place
within ISABELLE_BROWSER_INFO, see the runtime error message for details.
This enables users to inspect LATEX runs in further detail, e.g. like this:

cd "$(isabelle getenv -b ISABELLE_BROWSER_INFO)/Unsorted/Test/document"
isabelle latex -o pdf

Chapter 4

The Isabelle server

An Isabelle session requires at least two processes, which are both rather
heavy: Isabelle/Scala for the system infrastructure and Isabelle/ML for
the logic session (e.g. HOL). In principle, these processes can be invoked
directly on the command-line, e.g. via isabelle java, isabelle scala,
isabelle process, isabelle console, but this approach is inadequate for
reactive applications that require quick responses from the prover.
In contrast, the Isabelle server exposes Isabelle/Scala as a “terminate-stay-
resident” application that manages multiple logic sessions and concurrent
tasks to use theories. This provides an analogous to Thy_Info.use_theories
in Isabelle/ML, but with full concurrency and Isabelle/PIDE markup.
The client/server arrangement via TCP sockets also opens possibilities for
remote Isabelle services that are accessed by local applications, e.g. via an
SSH tunnel.

4.1 Command-line tools

4.1.1 Server

The isabelle server tool manages resident server processes:

Usage: isabelle server [OPTIONS]

Options are:
-L FILE logging on FILE
-c console interaction with specified server
-l list servers (alternative operation)
-n NAME explicit server name (default: isabelle)
-p PORT explicit server port
-s assume existing server, no implicit startup
-x exit specified server (alternative operation)

Manage resident Isabelle servers.

The main operation of isabelle server is to ensure that a named server

36

CHAPTER 4. THE ISABELLE SERVER 37

is running, either by finding an already running process (according to the
central database file $ISABELLE_HOME_USER/servers.db) or by becoming
itself a new server that accepts connections on a particular TCP socket. The
server name and its address are printed as initial output line. If another
server instance is already running, the current isabelle server process
will terminate; otherwise, it keeps running as a new server process until an
explicit shutdown command is received. Further details of the server socket
protocol are explained in §4.2.
Other server management operations are invoked via options -l and -x (see
below).

Option -n specifies an alternative server name: at most one process for each
name may run, but each server instance supports multiple connections and
logic sessions.

Option -p specifies an explicit TCP port for the server socket (which is always
on localhost): the default is to let the operating system assign a free port
number.

Option -s strictly assumes that the specified server process is already run-
ning, skipping the optional server startup phase.

Option -c connects the console in/out channels after the initial check for a
suitable server process. Also note that the isabelle client tool (§4.1.2)
provides a command-line editor to interact with the server.

Option -L specifies a log file for exceptional output of internal server and
session operations.

Operation -l lists all active server processes with their connection details.

Operation -x exits the specified server process by sending it a shutdown
command.

4.1.2 Client

The isabelle client tool provides console interaction for Isabelle servers:

Usage: isabelle client [OPTIONS]

Options are:
-n NAME explicit server name
-p PORT explicit server port

Console interaction for Isabelle server (with line-editor).

CHAPTER 4. THE ISABELLE SERVER 38

This is a wrapper to isabelle server -s -c for interactive experimenta-
tion, which uses ISABELLE_LINE_EDITOR if available. The server name is
sufficient for identification, as the client can determine the connection details
from the local database of active servers.

Option -n specifies an explicit server name as in isabelle server.

Option -p specifies an explicit server port as in isabelle server.

4.1.3 Examples

Ensure that a particular server instance is running in the background:

isabelle server -n test &

The first line of output presents the connection details:1

server "test" = 127.0.0.1:4711 (password "XYZ")

List available server processes:

isabelle server -l

Connect the command-line client to the above test server:

isabelle client -n test

Interaction now works on a line-by-line basis, with commands like help or
echo. For example, some JSON values may be echoed like this:

echo 42
echo [1, 2, 3]
echo {"a": "text", "b": true, "c": 42}

Closing the connection (via CTRL-D) leaves the server running: it is possible
to reconnect again, and have multiple connections at the same time.

Exit the named server on the command-line:

isabelle server -n test -x

1This information may be used in other TCP clients, without access to Isabelle/Scala
and the underlying database of running servers.

CHAPTER 4. THE ISABELLE SERVER 39

4.2 Protocol messages

The Isabelle server listens on a regular TCP socket, using a line-oriented
protocol of structured messages. Input commands and output results (via
OK or ERROR) are strictly alternating on the toplevel, but commands may
also return a task identifier to indicate an ongoing asynchronous process
that is joined later (via FINISHED or FAILED). Asynchronous NOTE messages
may occur at any time: they are independent of the main command-result
protocol.
For example, the synchronous echo command immediately returns its argu-
ment as OK result. In contrast, the asynchronous session_build command
returns OK {"task":id} and continues in the background. It will eventually
produce FINISHED {"task":id,. . .} or FAILED {"task":id,. . .} with the fi-
nal result. Intermediately, it may emit asynchronous messages of the form
NOTE {"task":id,. . .} to inform about its progress. Due to the explicit task
identifier, the client can show these messages in the proper context, e.g. a
GUI window for this particular session build job.

Subsequently, the protocol message formats are described in further detail.

4.2.1 Byte messages

The client-server connection is a raw byte-channel for bidirectional commu-
nication, but the Isabelle server always works with messages of a particular
length. Messages are written as a single chunk that is flushed immediately.
Message boundaries are determined as follows:

• A short message consists of a single line: it is a sequence of arbitrary
bytes excluding CR (13) and LF (10), and terminated by CR-LF or
just LF.

• A long message starts with a single that consists only of decimal digits:
these are interpreted as length of the subsequent block of arbitrary
bytes. A final line-terminator (as above) may be included here, but is
not required.

Messages in JSON format (see below) always fit on a single line, due to
escaping of newline characters within string literals. This is convenient for
interactive experimentation, but it can impact performance for very long
messages. If the message byte-length is given on the preceding line, the
server can read the message more efficiently as a single block.

CHAPTER 4. THE ISABELLE SERVER 40

4.2.2 Text messages

Messages are read and written as byte streams (with byte lengths), but the
content is always interpreted as plain text in terms of the UTF-8 encoding.2

Note that line-endings and other formatting characters are invariant wrt.
UTF-8 representation of text: thus implementations are free to determine
the overall message structure before or after applying the text encoding.

4.2.3 Input and output messages

Server input and output messages have a uniform format as follows:

• name argument such that:

• name is the longest prefix consisting of ASCII letters, digits, “_”, “.”,

• the separator between name and argument is the longest possible se-
quence of ASCII blanks (it could be empty, e.g. when the argument
starts with a quote or bracket),

• argument is the rest of the message without line terminator.

Input messages are sent from the client to the server. Here the name specifies
a server command : the list of known commands may be retrieved via the help
command.

Output messages are sent from the server to the client. Here the name
specifies the server reply, which always has a specific meaning as follows:

• synchronous results: OK or ERROR

• asynchronous results: FINISHED or FAILED

• intermediate notifications: NOTE

The argument format is uniform for both input and output messages:

• empty argument (Scala type Unit)

• XML element in YXML notation (Scala type XML.Elem)
2See also the “UTF-8 Everywhere Manifesto” https://utf8everywhere.org.

https://utf8everywhere.org

CHAPTER 4. THE ISABELLE SERVER 41

• JSON value (Scala type JSON.T)

JSON values may consist of objects (records), arrays (lists), strings, numbers,
bools, null.3 Since JSON requires explicit quotes and backslash-escapes to
represent arbitrary text, the YXML notation for XML trees (§1.5) works
better for large messages with a lot of PIDE markup.
Nonetheless, the most common commands use JSON by default: big chunks
of text (theory sources etc.) are taken from the underlying file-system and
results are pre-formatted for plain-text output, without PIDE markup infor-
mation. This is a concession to simplicity: the server imitates the appearance
of command-line tools on top of the Isabelle/PIDE infrastructure.

4.2.4 Initial password exchange

Whenever a new client opens the server socket, the initial message needs to
be its unique password as a single line, without length indication (i.e. a “short
message” in the sense of §4.2.1).
The server replies either with OK (and some information about the Isabelle
version) or by silent disconnection of what is considered an illegal connection
attempt. Note that isabelle client already presents the correct password
internally.
Server passwords are created as Universally Unique Identifier (UUID) in
Isabelle/Scala and stored in a per-user database, with restricted file-system
access only for the current user. The Isabelle/Scala server implementation is
careful to expose the password only on private output channels, and not on
a process command-line (which is accessible to other users, e.g. via the ps
command).

4.2.5 Synchronous commands

A synchronous command corresponds to regular function application in
Isabelle/Scala, with single argument and result (regular or error). Both the
argument and the result may consist of type Unit, XML.Elem, JSON.T. An
error result typically consists of a JSON object with error message and po-
tentially further result fields (this resembles exceptions in Scala).
These are the protocol exchanges for both cases of command execution:

3See also the official specification https://www.json.org and unofficial explorations
“Parsing JSON is a Minefield” http://seriot.ch/parsing_json.php.

https://www.json.org
http://seriot.ch/parsing_json.php

CHAPTER 4. THE ISABELLE SERVER 42

input: command argument
(a) regular output: OK result

(b) error output: ERROR result

4.2.6 Asynchronous commands

An asynchronous command corresponds to an ongoing process that finishes or
fails eventually, while emitting arbitrary notifications in between. Formally,
it starts as synchronous command with immediate result OK giving the task
identifier, or an immediate ERROR that indicates bad command syntax. For
a running task, the termination is indicated later by FINISHED or FAILED,
together with its ultimate result value.
These are the protocol exchanges for various cases of command task execu-
tion:

input: command argument
immediate output: OK {"task":id}

intermediate output: NOTE {"task":id,. . .}
(a) regular output: FINISHED {"task":id,. . .}

(b) error output: FAILED {"task":id,. . .}

input: command argument
immediate output: ERROR . . .

All asynchronous messages are decorated with the task identifier that was
revealed in the immediate (synchronous) result. Thus the client can invoke
further asynchronous commands and still dispatch the resulting stream of
asynchronous messages properly.
The synchronous command cancel {"task": id} tells the specified task
to terminate prematurely: usually causing a FAILED result, but this is not
guaranteed: the cancel event may come too late or the running process may
just ignore it.

4.3 Types for JSON values

In order to specify concrete JSON types for command arguments and result
messages, the following type definition language shall be used:

type_def

type
�� ��name =

����type

CHAPTER 4. THE ISABELLE SERVER 43

type

name�
�value

�any
�� ���null
�� ���bool
�� ���int
�� ���long
�� ���double
�� ���string
�� ��� [
����type]

����� {
�����

� ,
����field_type

�
�

}
����

�type ⊕
����type

�type |
����type

� (
����type)

����

�
�
�
�
�
�
�
�
�
�
�

�
�
�

field_type

name �
� ?

����
�
�

:
����type

This is a simplified variation of TypeScript interfaces.4 The meaning of these
types is specified wrt. the Isabelle/Scala implementation as follows.

4https://www.typescriptlang.org/docs/handbook/interfaces.html

https://www.typescriptlang.org/docs/handbook/interfaces.html

CHAPTER 4. THE ISABELLE SERVER 44

• A name refers to a type defined elsewhere. The environment of type
definitions is given informally: put into proper foundational order, it
needs to specify a strongly normalizing system of syntactic abbrevia-
tions; type definitions may not be recursive.

• A value in JSON notation represents the singleton type of the given
item. For example, the string "error" can be used as type for a slot
that is guaranteed to contain that constant.

• Type any is the super type of all other types: it is an untyped slot in
the specification and corresponds to Any or JSON.T in Isabelle/Scala.

• Type null is the type of the improper value null ; it corresponds to type
Null in Scala and is normally not used in Isabelle/Scala.5

• Type bool is the type of the truth values true and false; it corresponds
to Boolean in Scala.

• Types int, long, double are specific versions of the generic number type,
corresponding to Int, Long, Double in Scala, but Long is limited to 53
bit precision.6

• Type string represents Unicode text; it corresponds to type String in
Scala.

• Type [t] is the array (or list) type over t ; it corresponds to List[t]
in Scala. The list type is co-variant as usual (i.e. monotonic wrt. the
subtype relation).

• Object types describe the possible content of JSON records, with field
names and types. A question mark after a field name means that it is
optional. In Scala this could refer to an explicit type Option[t], e.g.
{a: int , b?: string} corresponding to a Scala case class with arguments
a: Int, b: Option[String].
Alternatively, optional fields can have a default value. If nothing else is
specified, a standard “empty value” is used for each type, i.e. 0 for the
number types, false for bool, or the empty string, array, object etc.
Object types are permissive in the sense that only the specified field
names need to conform to the given types, but unspecified fields may
be present as well.

5See also “Null References: The Billion Dollar Mistake” by Tony Hoare https://www.
infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare.

6Implementations of JSON typically standardize number to Double, which can absorb
Int faithfully, but not all of Long.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

CHAPTER 4. THE ISABELLE SERVER 45

• The type expression t1 ⊕ t2 only works for two object types with dis-
joint field names: it is the concatenation of the respective field_type
specifications taken together. For example: {task : string} ⊕ {ok : bool}
is the equivalent to {task : string , ok : bool}.

• The type expression t1 | t2 is the disjoint union of two types, either
one of the two cases may occur.

• Parentheses (t) merely group type expressions syntactically.

These types correspond to JSON values in an obvious manner, which is not
further described here. For example, the JSON array [1, 2, 3] conforms
to types [int], [long], [double], [any], any.
Note that JSON objects require field names to be quoted, but the type lan-
guage omits quotes for clarity. Thus the object {"a": 42, "b": "xyz"}
conforms to the type {a: int , b: string}, for example.

The absence of an argument or result is represented by the Scala type Unit:
it is written as empty text in the message argument (§4.2.3). This is not part
of the JSON language.
Server replies have name tags like OK, ERROR: these are used literally together
with type specifications to indicate the particular name with the type of its
argument, e.g. OK [string] for a regular result that is a list (JSON array) of
strings.

Here are some common type definitions, for use in particular specifications
of command arguments and results.

• type position = {line?: int , offset?: int , end_offset?: int , file?: string ,
id?: long} describes a source position within Isabelle text. Only the line
and file fields make immediate sense to external programs. Detailed off-
set and end_offset positions are counted according to Isabelle symbols,
see Symbol.symbol in Isabelle/ML [1]. The position id belongs to the
representation of command transactions in the Isabelle/PIDE protocol:
it normally does not occur in externalized positions.

• type message = {kind : string , message: string , pos?: position} where
the kind provides some hint about the role and importance of the
message. The main message kinds are writeln (for regular output),
warning, error.

CHAPTER 4. THE ISABELLE SERVER 46

• type error_message = {kind : "error", message: string} refers to error
messages in particular. These occur routinely with ERROR or FAILED
replies, but also as initial command syntax errors (which are omitted
in the command specifications below).

• type theory_progress = {kind : "writeln", message: string , theory :
string , session: string , percentage?: int} reports formal progress in
loading theories (e.g. when building a session image). Apart from a
regular output message, it also reveals the formal theory name (e.g.
"HOL.Nat") and session name (e.g. "HOL"). Note that some rare theory
names lack a proper session prefix, e.g. theory "Main" in session "HOL".
The optional percentage has the same meaning as in type node_status
below.

• type timing = {elapsed : double, cpu: double, gc: double} refers to
common Isabelle timing information in seconds, usually with a precision
of three digits after the point (whole milliseconds).

• type uuid = string refers to a Universally Unique Identifier (UUID) as
plain text.7 Such identifiers are created as private random numbers of
the server and only revealed to the client that creates a certain resource
(e.g. task or session). A client may disclose this information for use
in a different client connection: this allows to share sessions between
multiple connections.

Client commands need to provide syntactically wellformed UUIDs: this
is trivial to achieve by using only identifiers that have been produced
by the server beforehand.

• type task = {task : uuid} identifies a newly created asynchronous task
and thus allows the client to control it by the cancel command. The
same task identification is included in all messages produced by this
task.

• type session_id = {session_id : uuid} identifies a newly created PIDE
session managed by the server. Sessions are independent of client con-
nections and may be shared by different clients, as long as the internal
session identifier is known.

• type node = {node_name: string , theory_name: string} represents
the internal node name of a theory. The node_name is derived from

7See https://www.ietf.org/rfc/rfc4122.txt and https://docs.oracle.com/en/java/
javase/11/docs/api/java.base/java/util/UUID.html.

https://www.ietf.org/rfc/rfc4122.txt
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/UUID.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/UUID.html

CHAPTER 4. THE ISABELLE SERVER 47

the canonical theory file-name (e.g. "~~/src/HOL/Examples/Seq.thy"
after normalization within the file-system). The theory_name is the
session-qualified theory name (e.g. HOL-Examples.Seq).

• type node_status = {ok : bool , total : int , unprocessed : int , running :
int , warned : int , failed : int , finished : int , canceled : bool , consolidated :
bool , percentage: int} represents a formal theory node status of the
PIDE document model as follows.

– Fields total, unprocessed, running, warned, failed, finished account
for individual commands within a theory node; ok is an abstrac-
tion for failed = 0.

– The canceled flag tells if some command in the theory has been
spontaneously canceled (by an Interrupt exception that could also
indicate resource problems).

– The consolidated flag indicates whether the outermost theory com-
mand structure has finished (or failed) and the final end command
has been checked.

– The percentage field tells how far the node has been processed.
It ranges between 0 and 99 in normal operation, and reaches 100
when the node has been formally consolidated as described above.

4.4 Server commands and results

Here follows an overview of particular Isabelle server commands with their
results, which are usually represented as JSON values with types according
to §4.3. The general format of input and output messages is described in
§4.2.3. The relevant Isabelle/Scala source files are:

$ISABELLE_HOME/src/Pure/Tools/server_commands.scala
$ISABELLE_HOME/src/Pure/Tools/server.scala
$ISABELLE_HOME/src/Pure/General/json.scala

4.4.1 Command help

regular result: OK [string]

The help command has no argument and returns the list of server command
names. This is occasionally useful for interactive experimentation (see also
isabelle client in §4.1.2).

CHAPTER 4. THE ISABELLE SERVER 48

4.4.2 Command echo
argument: any
regular result: OK any

The echo command is the identity function: it returns its argument as regular
result. This is occasionally useful for testing and interactive experimentation
(see also isabelle client in §4.1.2).
The Scala type of echo is actually more general than given above: Unit,
XML.Elem, JSON.T work uniformly. Note that XML.Elem might be difficult to
type on the console in its YXML syntax (§1.5).

4.4.3 Command shutdown

regular result: OK

The shutdown command has no argument and result value. It forces a shut-
down of the connected server process, stopping all open sessions and closing
the server socket. This may disrupt pending commands on other connections!

The command-line invocation isabelle server -x opens a server connec-
tion and issues a shutdown command (see also §4.1.1).

4.4.4 Command cancel
argument: task
regular result: OK

The command cancel {"task": id} attempts to cancel the specified task.
Cancellation is merely a hint that the client prefers an ongoing process to be
stopped. The command always succeeds formally, but it may get ignored by
a task that is still running; it might also refer to a non-existing or no-longer
existing task (without producing an error).
Successful cancellation typically leads to an asynchronous failure of type
FAILED {task : uuid , message: "Interrupt"}. A different message is also
possible, depending how the task handles the event.

CHAPTER 4. THE ISABELLE SERVER 49

4.4.5 Command session_build

argument: session_build_args
immediate result: OK task
notifications: NOTE task ⊕ (theory_progress | message)
regular result: FINISHED task ⊕ session_build_results
error result: FAILED task ⊕ error_message ⊕ session_build_results

type session_build_args =
{session: string ,
preferences?: string , default: server preferences
options?: [string],
dirs?: [string],
include_sessions : [string],
verbose?: bool}

type session_build_result =
{session: string ,
ok : bool ,
return_code: int ,
timeout : bool ,
timing : timing}

type session_build_results =
{ok : bool ,
return_code: int ,
sessions : [session_build_result]}

The session_build command prepares a session image for interactive use
of theories. This is a limited version of command-line tool isabelle build
(§2.3), with specific options to request a formal context for an interactive
PIDE session.
The build process is asynchronous, with notifications that inform about the
progress of loaded theories. Some further informative messages are output
as well.
Coordination of independent build processes is at the discretion of the client
(or end-user), just as for isabelle build and isabelle jedit. There is
no built-in coordination of conflicting builds with overlapping hierarchies of
session images. In the worst case, a session image produced by one task may
get overwritten by another task!

CHAPTER 4. THE ISABELLE SERVER 50

Arguments

The session field specifies the target session name. The build process will
produce all required ancestor images according to the overall session graph.

The environment of Isabelle system options is determined from preferences
that are augmented by options, which is a list individual updates of the
form the name=value or name (the latter abbreviates name=true); see also
command-line option -o for isabelle build. The preferences are loaded
from the file $ISABELLE_HOME_USER/etc/preferences by default, but the
client may provide alternative contents for it (as text, not a file-name).
This could be relevant in situations where client and server run in differ-
ent operating-system contexts.

The dirs field specifies additional directories for session ROOT and ROOTS
files (§2.1). This augments the name space of available sessions; see also
option -d in isabelle build.

The include_sessions field specifies sessions whose theories should be in-
cluded in the overall name space of session-qualified theory names. This
corresponds to a sessions specification in ROOT files (§2.1). It enables the
use_theories command (§4.4.8) to refer to sources from other sessions in a
robust manner, instead of relying on directory locations.

The verbose field set to true yields extra verbosity. The effect is similar to
option -v in isabelle build.

Intermediate output

The asynchronous notifications of command session_build mainly serve as
progress indicator: the output resembles that of the session build window of
Isabelle/jEdit after startup [3].
For the client it is usually sufficient to print the messages in plain text,
but note that theory_progress also reveals formal theory and session names
directly.

Results

The overall session_build_results contain both a summary and an entry
session_build_result for each session in the build hierarchy. The result is
always provided, independently of overall success (FINISHED task) or failure
(FAILED task).

CHAPTER 4. THE ISABELLE SERVER 51

The ok field tells abstractly, whether all required session builds came out as
ok, i.e. with zero return_code. A non-zero return_code indicates an error
according to usual POSIX conventions for process exit.
The individual session_build_result entries provide extra fields:

• timeout tells if the build process was aborted after running too long,

• timing gives the overall process timing in the usual Isabelle format with
elapsed, CPU, GC time.

Examples

Build of a session image from the Isabelle distribution:

session_build {"session": "HOL-Algebra"}

Build a session image from the Archive of Formal Proofs:

session_build {"session": "Coinductive", "dirs": ["$AFP_BASE/thys"]}

4.4.6 Command session_start

argument: session_build_args ⊕ {print_mode?: [string]}
immediate result: OK task
notifications: NOTE task ⊕ (theory_progress | message)
regular result: FINISHED task ⊕ session_id ⊕ {tmp_dir : string}
error result: FAILED task ⊕ error_message

The session_start command starts a new Isabelle/PIDE session with un-
derlying Isabelle/ML process, based on a session image that it produces
on demand using session_build. Thus it accepts all session_build_args
and produces similar notifications, but the detailed session_build_results
are omitted.
The session build and startup process is asynchronous: when the task is
finished, the session remains active for commands, until a session_stop or
shutdown command is sent to the server.
Sessions are independent of client connections: it is possible to start a session
and later apply use_theories on different connections, as long as the internal
session identifier is known: shared theory imports will be used only once (and
persist until purged explicitly).

CHAPTER 4. THE ISABELLE SERVER 52

Arguments

Most arguments are shared with session_build (§4.4.5).

The print_mode field adds identifiers of print modes to be made active for
this session. For example, "print_mode": ["ASCII"] prefers ASCII re-
placement syntax over mathematical Isabelle symbols. See also option -m
in isabelle process (§1.3.1).

Results

The session_id provides the internal identification of the session object
within the sever process. It can remain active as long as the server is running,
independently of the current client connection.

The tmp_dir field refers to a temporary directory that is specifically cre-
ated for this session and deleted after it has been stopped. This may serve
as auxiliary file-space for the use_theories command, but concurrent use
requires some care in naming temporary files, e.g. by using sub-directories
with globally unique names.
As tmp_dir is the default master_dir for commands use_theories and
purge_theories, theory files copied there may be used without further path
specification.

Examples

Start a default Isabelle/HOL session:

session_start {"session": "HOL"}

Start a session from the Archive of Formal Proofs:

session_start {"session": "Coinductive", "dirs": ["$AFP_BASE/thys"]}

4.4.7 Command session_stop

argument: session_id
immediate result: OK task
regular result: FINISHED task ⊕ session_stop_result
error result: FAILED task ⊕ error_message ⊕ session_stop_result

type session_stop_result = {ok : bool , return_code: int}

CHAPTER 4. THE ISABELLE SERVER 53

The session_stop command forces a shutdown of the identified PIDE ses-
sion. This asynchronous tasks usually finishes quickly. Failure only hap-
pens in unusual situations, according to the return code of the underlying
Isabelle/ML process.

Arguments

The session_id provides the UUID originally created by the server for this
session.

Results

The ok field tells abstractly, whether the Isabelle/ML process has terminated
properly.
The return_code field expresses this information according to usual POSIX
conventions for process exit.

4.4.8 Command use_theories

argument: use_theories_arguments
immediate result: OK task
regular result: FINISHED use_theories_results
type use_theories_arguments =
{session_id : uuid ,
theories : [string],
master_dir?: string , default: session tmp_dir
pretty_margin?: double, default: 76
unicode_symbols?: bool ,
export_pattern?: string ,
check_delay?: double, default: 0.5
check_limit?: int ,
watchdog_timeout?: double, default: 600.0
nodes_status_delay?: double} default: -1.0

CHAPTER 4. THE ISABELLE SERVER 54

type export =
{name: string , base64: bool , body : string}

type node_results =
{status : node_status , messages : [message], exports : [export]}

type nodes_status =
[node ⊕ {status : node_status}]

type use_theories_results =
{ok : bool ,
errors : [message],
nodes : [node ⊕ node_results]}

The use_theories command updates the identified session by adding the
current version of theory files to it, while dependencies are resolved implicitly.
The command succeeds eventually, when all theories have status terminated
or consolidated in the sense of node_status (§4.3).
Already used theories persist in the session until purged explicitly (§4.4.9).
This also means that repeated invocations of use_theories are idempotent:
it could make sense to do that with different values for pretty_margin or
unicode_symbols to get different formatting for errors or messages.

A non-empty export_pattern means that theory exports are retrieved (see
§2.5). An export name roughly follows file-system standards: “/” separated
list of base names (excluding special names like “.” or “..”). The base64 field
specifies the format of the body string: it is true for a byte vector that cannot
be represented as plain text in UTF-8 encoding, which means the string needs
to be decoded as in java.util.Base64.getDecoder.decode(String).

The status of PIDE processing is checked every check_delay seconds, and
bounded by check_limit attempts (default: 0, i.e. unbounded). A check_
limit > 0 effectively specifies a global timeout of check_delay × check_limit
seconds.

If watchdog_timeout is greater than 0, it specifies the timespan (in seconds)
after the last command status change of Isabelle/PIDE, before finishing with
a potentially non-terminating or deadlocked execution.

A non-negative nodes_status_delay enables continuous notifications of kind
nodes_status, with a field of name and type nodes_status. The time interval
is specified in seconds; by default it is negative and thus disabled.

CHAPTER 4. THE ISABELLE SERVER 55

Arguments

The session_id is the identifier provided by the server, when the session was
created (possibly on a different client connection).

The theories field specifies theory names as in theory imports or in ROOT
theories.

The master_dir field specifies the master directory of imported the-
ories: it acts like the “current working directory” for locating theory
files. This is irrelevant for theories with an absolute path name (e.g.
"~~/src/HOL/Examples/Seq.thy") or session-qualified theory name (e.g.
"HOL-Examples.Seq").

The pretty_margin field specifies the line width for pretty-printing. The
default is suitable for classic console output. Formatting happens at the end
of use_theories, when all prover messages are exported to the client.

The unicode_symbols field set to true renders message output for direct
output on a Unicode capable channel, ideally with the Isabelle fonts as in
Isabelle/jEdit. The default is to keep the symbolic representation of Isabelle
text, e.g. \<forall> instead of its rendering as ∀ . This means the client
needs to perform its own rendering before presenting it to the end-user.

Results

The ok field indicates overall success of processing the specified theories with
all their dependencies.
When ok is false, the errors field lists all errors cumulatively (including im-
ported theories). The messages contain position information for the original
theory nodes.

The nodes field provides detailed information about each imported theory
node. The individual fields are as follows:

• node_name: the canonical name for the theory node, based on its file-
system location;

• theory_name: the logical theory name;

• status : the overall node status, e.g. see the visualization in the Theories
panel of Isabelle/jEdit [3];

• messages : the main bulk of prover messages produced in this theory
(with kind writeln, warning, error).

CHAPTER 4. THE ISABELLE SERVER 56

Examples

Process some example theory from the Isabelle distribution, within the con-
text of an already started session for Isabelle/HOL (see also §4.4.6):

use_theories {"session_id": ..., "theories": ["~~/src/HOL/Examples/Seq"]}

Process some example theories in the context of their (single) parent session:

session_start {"session": "HOL-Library"}
use_theories {"session_id": ..., "theories": ["~~/src/HOL/Unix/Unix"]}
session_stop {"session_id": ...}

Process some example theories that import other theories via session-qualified
theory names:

session_start {"session": "HOL", "include_sessions": ["HOL-Unix"]}
use_theories {"session_id": ..., "theories": ["HOL-Unix.Unix"]}
session_stop {"session_id": ...}

4.4.9 Command purge_theories

argument: purge_theories_arguments
regular result: OK purge_theories_result
type purge_theories_arguments =
{session_id : uuid ,
theories : [string],
master_dir?: string , default: session tmp_dir
all?: bool}

type purge_theories_result = {purged : [string]}

The purge_theories command updates the identified session by remov-
ing theories that are no longer required: theories that are used in pending
use_theories tasks or imported by other theories are retained.

Arguments

The session_id is the identifier provided by the server, when the session was
created (possibly on a different client connection).

CHAPTER 4. THE ISABELLE SERVER 57

The theories field specifies theory names to be purged: imported dependencies
are not completed. Instead it is possible to provide the already completed
import graph returned by use_theories as nodes / node_name.

The master_dir field specifies the master directory as in use_theories. This
is irrelevant, when passing fully-qualified theory node names (e.g. node_name
from nodes in use_theories_results).

The all field set to true attempts to purge all presently loaded theories.

Results

The purged field gives the theory nodes that were actually removed.

The retained field gives the remaining theory nodes, i.e. the complement of
purged.

Chapter 5

Isabelle/Scala systems
programming

Isabelle/ML and Isabelle/Scala are the two main implementation languages
of the Isabelle environment:

• Isabelle/ML is for mathematics, to develop tools within the context of
symbolic logic, e.g. for constructing proofs or defining domain-specific
formal languages. See the Isabelle/Isar implementation manual [1] for
more details.

• Isabelle/Scala is for physics, to connect with the world of systems and
services, including editors and IDE frameworks.

There are various ways to access Isabelle/Scala modules and operations:

• Isabelle command-line tools (§5.1) run in a separate Java process.

• Isabelle/ML antiquotations access Isabelle/Scala functions (§5.2) via
the PIDE protocol: execution happens within the running Java process
underlying Isabelle/Scala.

• The Console/Scala plugin of Isabelle/jEdit [3] operates on the running
Java application, using the Scala read-eval-print-loop (REPL).

The main Isabelle/Scala functionality is provided by Pure.jar, but further
add-ons are bundled with Isabelle, e.g. to access SQLite or PostgreSQL using
JDBC (Java Database Connectivity).
Other components may augment the system environment by providing a
suitable etc/settings shell script in the component directory. Some shell
functions are available to help with that:

• Function classpath adds jar files in Isabelle path notation (POSIX).
On Windows, this is converted to native path names before invoking
isabelle java or isabelle scala (§5.1).

58

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 59

• Function isabelle_scala_service registers global service providers
as subclasses of isabelle.Isabelle_System.Service, using the raw
Java name according to java.lang.Object.getClass (it should be
enclosed in single quotes to avoid special characters like $ to be inter-
preted by the shell).

Particular Isabelle/Scala services require particular subclasses: in-
stances are filtered according to their dynamic type. For example, class
isabelle.Isabelle_Scala_Tools collects Scala command-line tools,
and class isabelle.Scala.Functions collects Scala functions (§5.2).

5.1 Command-line tools

5.1.1 Java Runtime Environment

The isabelle java tool is a direct wrapper for the Java Runtime Environ-
ment, within the regular Isabelle settings environment (§1.1) and Isabelle
classpath. The command line arguments are that of the bundled Java distri-
bution: see option -help in particular.
The java executable is taken from ISABELLE_JDK_HOME, according to the
standard directory layout for regular distributions of OpenJDK.
The shell function isabelle_jdk allows shell scripts to invoke other Java
tools robustly (e.g. isabelle_jdk jar), without depending on accidental
operating system installations.

5.1.2 Scala toplevel

The isabelle scala tool is a direct wrapper for the Scala toplevel, similar
to isabelle java above. The command line arguments are that of the
bundled Scala distribution: see option -help in particular. This allows to
interact with Isabelle/Scala interactively.

Example

Explore the Isabelle system environment in Scala:

$ isabelle scala

import isabelle._

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 60

val isabelle_home = Isabelle_System.getenv("ISABELLE_HOME")

val options = Options.init()
options.bool("browser_info")
options.string("document")

5.1.3 Scala compiler

The isabelle scalac tool is a direct wrapper for the Scala compiler; see
also isabelle scala above. The command line arguments are that of the
bundled Scala distribution.
This allows to compile further Scala modules, depending on existing
Isabelle/Scala functionality. The resulting class or jar files can be added
to the Java classpath using the shell function classpath. Thus add-on com-
ponents can register themselves in a modular manner, see also §1.1.3.
Note that Isabelle/jEdit [3] has its own mechanisms for adding plugin com-
ponents. This needs special attention, since it overrides the standard Java
class loader.

5.1.4 Scala script wrapper

The executable $ISABELLE_HOME/bin/isabelle_scala_script allows to
run Isabelle/Scala source files stand-alone programs, by using a suitable
“hash-bang” line and executable file permissions. For example:

#!/usr/bin/env isabelle_scala_script

val options = isabelle.Options.init()
Console.println("browser_info = " + options.bool("browser_info"))
Console.println("document = " + options.string("document"))

This assumes that the executable may be found via the PATH from the pro-
cess environment: this is the case when Isabelle settings are active, e.g.
in the context of the main Isabelle tool wrapper §1.2. Alternatively, the
full $ISABELLE_HOME/bin/isabelle_scala_script may be specified in ex-
panded form.

5.1.5 Project setup for common Scala IDEs

The isabelle scala_project tool creates a project configuration for
Isabelle/Scala/jEdit:

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 61

Usage: isabelle scala_project [OPTIONS] PROJECT_DIR

Options are:
-L make symlinks to original scala files

Setup Gradle project for Isabelle/Scala/jEdit --- to support Scala IDEs
such as IntelliJ IDEA.

The generated configuration is for Gradle1, but the main purpose is to import
it into common Scala IDEs, such as IntelliJ IDEA2. This allows to explore
the sources with static analysis and other hints in real-time.
The specified project directory needs to be fresh. The generated files refer
to physical file-system locations, using the path notation of the underlying
OS platform. Thus the project needs to be recreated whenever the Isabelle
installation is changed or moved.

By default, Scala sources are copied from the Isabelle distribution and editing
them within the IDE has no permanent effect.
Option -L produces symlinks to the original files: this allows to develop
Isabelle/Scala/jEdit within an external Scala IDE. Note that building the
result always requires isabelle jedit -b on the command-line.

5.2 Registered Isabelle/Scala functions

5.2.1 Defining functions in Isabelle/Scala

A Scala functions of type String => String may be wrapped as isabelle.
Scala.Fun and collected via an instance of the class isabelle.Scala.
Functions. A system component can then register that class via
isabelle_scala_service in etc/settings (§1.1.3). An example is the pre-
defined collection of isabelle.Scala.Functions in Isabelle/Pure.jar with
the following line in $ISABELLE_HOME/etc/settings:

isabelle_scala_service ’isabelle.Functions’

The overall list of registered functions is accessible in Isabelle/Scala as
isabelle.Scala.functions.

1https://gradle.org
2https://www.jetbrains.com/idea

https://gradle.org
https://www.jetbrains.com/idea

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 62

5.2.2 Invoking functions in Isabelle/ML

Isabelle/PIDE provides a protocol to invoke registered Scala functions in ML:
this works both within the Prover IDE and in batch builds.
The subsequent ML antiquotations refer to Scala functions in a formally-
checked manner.

scala_function : ML_antiquotation
scala : ML_antiquotation

scala_thread : ML_antiquotation

scala_function�
�scala

�scala_thread

�
�
�

embedded

@{scala_function name} inlines the checked function name as ML string
literal.

@{scala name} and @{scala_thread name} invoke the checked function via
the PIDE protocol. In Isabelle/ML this appears as a function of type
string -> string, which is subject to interrupts within the ML run-
time environment as usual. A null result in Scala raises an exception
Scala.Null in ML. The execution of @{scala} works via a Scala fu-
ture on a bounded thread farm, while @{scala_thread} always forks a
separate Java thread.

The standard approach of representing datatypes via strings works
via XML in YXML transfer syntax. See Isabelle/ML operations
and modules YXML.string_of_body, YXML.parse_body, XML.Encode,
XML.Decode; similarly for Isabelle/Scala. Isabelle symbols may have
to be recoded via Scala operations isabelle.Symbol.decode and
isabelle.Symbol.encode.

Examples

Invoke the predefined Scala function echo:

ML 〈

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 63

val s = "test";
val s’ = scala 〈echo 〉 s;
assert (s = s’)

〉

Let the Scala compiler process some toplevel declarations, producing a list
of errors:

ML 〈

val source = "class A(a: Int, b: Boolean)"
val errors =

scala 〈scala_toplevel 〉 source
|> YXML.parse_body
|> let open XML.Decode in list string end;

assert (null errors)〉

The above is merely for demonstration. See Scala_Compiler.toplevel for
a more convenient version with builtin decoding and treatment of errors.

5.3 Documenting Isabelle/Scala entities

The subsequent document antiquotations help to document Isabelle/Scala
entities, with formal checking of names against the Isabelle classpath.

scala : antiquotation
scala_object : antiquotation

scala_type : antiquotation
scala_method : antiquotation

scala
�� ���

�scala_object
�� ��

�
�

embedded

scala_type
�� ��embedded types

scala_method
�� ��class embedded types args

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 64

class

�
� (

����in
����name types)

����
�
�

types

�
� [

���� name ,
�����

�
�
�

]
����

�
�

args

�
� (

���� nat�
� _

�����
�name

�
�

�

� ,
����

�

�

�
�

)
����

�
�

@{scala s} is similar to @{verbatim s}, but the given source text is checked
by the Scala compiler as toplevel declaration (without evaluation). This
allows to write Isabelle/Scala examples that are statically checked.

@{scala_object x} checks the given Scala object name (simple value or
ground module) and prints the result verbatim.

@{scala_type T [A]} checks the given Scala type name (with optional type
parameters) and prints the result verbatim.

@{scala_method (in c[A]) m[B](n)} checks the given Scala method m in
the context of class c. The method argument slots are either specified
by a number n or by a list of (optional) argument types; this may refer
to type variables specified for the class or method: A or B above.

Everything except for the method name m is optional. The absence
of the class context means that this is a static method. The absence

CHAPTER 5. ISABELLE/SCALA SYSTEMS PROGRAMMING 65

of arguments with types means that the method can be determined
uniquely as (m _) in Scala (no overloading).

Examples

Miscellaneous Isabelle/Scala entities:

• object: isabelle.Isabelle_Process

• type without parameter: isabelle.Console_Progress

• type with parameter: List[A]

• static method: isabelle.Isabelle_System.bash

• class and method with type parameters: List[A].map

• overloaded method with argument type: Int.+

Chapter 6

Phabricator server setup

Phabricator1 is an open-source product to support the development process
of complex software projects (open or closed ones). The official slogan is:

Discuss. Plan. Code. Review. Test.
Every application your project needs, all in one tool.

Ongoing changes and discussions about changes are maintained uniformly
within a MySQL database. There are standard connections to major ver-
sion control systems: Subversion, Mercurial, Git. So Phabricator offers
a counter-model to trends of monoculture and centralized version control,
especially due to Microsoft’s Github and Atlassian’s Bitbucket.
The small company behind Phabricator provides paid plans for support and
hosting of servers, but it is easy to do independent self-hosting on a standard
LAMP server (Linux, Apache, MySQL, PHP). This merely requires a virtual
machine on the Net, which can be rented cheaply from local hosting providers
— there is no need to follow big cloud corporations. So it is feasible to remain
the master of your virtual home, following the slogan “own all your data”. In
many respects, Phabricator is similar to the well-known Nextcloud2 product,
concerning both the technology and sociology.

The following Phabricator instances may serve as examples:

• Phabricator development https://secure.phabricator.com

• Wikimedia development https://phabricator.wikimedia.org

• Blender development https://developer.blender.org

• LLVM development https://reviews.llvm.org

• Mozilla development https://phabricator.services.mozilla.com
1https://www.phacility.com/phabricator
2https://nextcloud.org

66

https://secure.phabricator.com
https://phabricator.wikimedia.org
https://developer.blender.org
https://reviews.llvm.org
https://phabricator.services.mozilla.com
https://www.phacility.com/phabricator
https://nextcloud.org

CHAPTER 6. PHABRICATOR SERVER SETUP 67

• Mercurial development https://phab.mercurial-scm.org

• Isabelle development https://isabelle-dev.sketis.net

Initial Phabricator configuration requires many details to be done right.
Isabelle provides some command-line tools to help with the setup, and af-
terwards Isabelle support is optional: it is possible to run and maintain the
server, without requiring the somewhat bulky Isabelle distribution again.

Assuming an existing Phabricator installation, the command-line tool
isabelle hg_setup (§7.6) helps to create new repositories or to migrate old
ones. In particular, this avoids the lengthy sequence of clicks in Phabricator
to make a new private repository with hosting on the server. (Phabricator
is a software project management platform, where initial repository setup
happens rarely in practice.)

6.1 Quick start

The starting point is a fresh installation of Ubuntu 18.04 or 20.04 LTS3:
this version is mandatory due to subtle dependencies on system packages and
configuration that is assumed by the Isabelle setup tool.
For production use, a proper Virtual Server or Root Server product from
a hosting provider will be required, including an Internet Domain Name
(§6.1.4).
Initial experimentation also works on a local host, e.g. via VirtualBox4. The
Internet domain lvh.me is used by default: it maps arbitrary subdomains to
localhost.
All administrative commands need to be run as root user (e.g. via sudo).
Note that Isabelle refers to user-specific configuration in the user home di-
rectory via ISABELLE_HOME_USER (§1.1); that may be different or absent for
the root user and thus cause confusion.

6.1.1 Initial setup

Isabelle can manage multiple named Phabricator installations: this allows
to separate administrative responsibilities, e.g. different approaches to user
management for different projects. Subsequently we always use the default

3https://ubuntu.com/download
4https://www.virtualbox.org

https://phab.mercurial-scm.org
https://isabelle-dev.sketis.net
https://ubuntu.com/download
https://www.virtualbox.org

CHAPTER 6. PHABRICATOR SERVER SETUP 68

name “vcs”: the name will appear in file and directory locations, internal
database names and URLs.
The initial setup works as follows (with full Linux package upgrade):

isabelle phabricator_setup -U -M:

After installing many packages, cloning the Phabricator distribution, initial-
izing the MySQL database and Apache, the tool prints an URL for further
configuration. Now the following needs to be provided by the web interface.

• An initial user that will get administrator rights. There is no need to
create a special admin account. Instead, a regular user that will take
over this responsibility can be used here. Subsequently we assume that
user makarius becomes the initial administrator.

• An Auth Provider to manage user names and passwords. None is pro-
vided by default, and Phabricator points out this omission prominently
in its overview of Setup Issues : following these hints quickly leads to
the place where a regular Username/Password provider can be added.
Alternatively, Phabricator can delegate the responsibility of authenti-
cation to big corporations like Google and Facebook, but these can be
easily ignored. Genuine self-hosting means to manage users directly,
without outsourcing of authentication.

• A proper password for the administrator can now be set, e.g. by the
following command:

isabelle phabricator bin/auth recover makarius

The printed URL gives access to a login and password dialog in the
web interface.
Any further users will be able to provide a password directly, because
the Auth Provider is already active.

• The list of Phabricator Setup Issues should be studied with some care,
to make sure that no serious problems are remaining. For example, the
request to lock the configuration can be fulfilled as follows:

isabelle phabricator bin/auth lock

A few other Setup Issues might be relevant as well, e.g. the timezone
of the server. Some more exotic points can be ignored: Phabricator
provides careful explanations about what it thinks could be wrong,
while leaving some room for interpretation.

CHAPTER 6. PHABRICATOR SERVER SETUP 69

6.1.2 Mailer configuration

The next important thing is messaging: Phabricator needs to be able to
communicate with users on its own account, e.g. to reset passwords. The
documentation has many variations on Configuring Outbound Email5, but a
conventional SMTP server with a dedicated phabricator user is sufficient.
There is no need to run a separate mail server on the self-hosted Linux ma-
chine: hosting providers often include such a service for free, e.g. as part
of a web-hosting package. As a last resort it is also possible to use a cor-
porate service like Gmail, but such dependency dilutes the whole effort of
self-hosting.

Mailer configuration requires a few command-line invocations as follows:

isabelle phabricator_setup_mail

This generates a JSON template file for the the mail account details. After
editing that, the subsequent command will add and test it with Phabricator:

isabelle phabricator_setup_mail -T makarius

This tells Phabricator to send a message to the administrator created before;
the output informs about success or errors.
The mail configuration process can be refined and repeated until it works
properly: host name, port number, protocol etc. all need to be correct. The
key field in the JSON file identifies the name of the configuration that will
be overwritten each time, when taking over the parameters via isabelle
phabricator_setup_mail.

The effective mail configuration can be queried like this:

isabelle phabricator bin/config get cluster.mailers

6.1.3 SSH configuration

SSH configuration is important to access hosted repositories with public-key
authentication. It is done by a separate tool, because it affects the operating-
system and all installations of Phabricator simultaneously.
The subsequent configuration is convenient (and ambitious): it takes away the
standard port 22 from the operating system and assigns it to Isabelle/Phabri-
cator.

5https://secure.phabricator.com/book/phabricator/article/configuring_outbound_
email

https://secure.phabricator.com/book/phabricator/article/configuring_outbound_email
https://secure.phabricator.com/book/phabricator/article/configuring_outbound_email

CHAPTER 6. PHABRICATOR SERVER SETUP 70

isabelle phabricator_setup_ssh -p 22 -q 222

Afterwards, remote login to the server host needs to use that alternative port
222. If there is a problem connecting again, the administrator can usually
access a remote console via some web interface of the virtual server provider.

The following alternative is more modest: it uses port 2222 for Phabricator,
and retains port 22 for the operating system.

isabelle phabricator_setup_ssh -p 2222 -q 22

The tool can be invoked multiple times with different parameters; ports are
changed back and forth each time and services restarted.

6.1.4 Internet domain name and HTTPS configuration

So far the Phabricator server has been accessible only on localhost (via the
alias lvh.me). Proper configuration of a public Internet domain name (with
HTTPS certificate from Let’s Encrypt) works as follows.

• Register a subdomain (e.g. vcs.example.org) as an alias for the IP
address of the underlying Linux host. This usually works by some web
interface of the hosting provider to edit DNS entries; it might require
some time for updated DNS records to become publicly available.

• Edit the Phabricator website configuration file in /etc/apache2/
sites-available/ to specify ServerName and ServerAdmin like this:

ServerName vcs.example.org
ServerAdmin webmaster@example.org

Then reload (or restart) Apache like this:

systemctl reload apache2

• Install certbot from https://certbot.eff.org following the description
for Apache and Ubuntu 18.04 or 20.04 on https://certbot.eff.org/
lets-encrypt/ubuntubionic-apache. Run certbot interactively and let
it operate on the domain vcs.example.org.

• Inform Phabricator about its new domain name like this:

https://certbot.eff.org
https://certbot.eff.org/lets-encrypt/ubuntubionic-apache
https://certbot.eff.org/lets-encrypt/ubuntubionic-apache

CHAPTER 6. PHABRICATOR SERVER SETUP 71

isabelle phabricator bin/config set \
phabricator.base-uri https://vcs.example.org

• Visit the website https://vcs.example.org and configure Phabrica-
tor as described before. The following options are particularly relevant
for a public website:

– Auth Provider / Username/Password : disable Allow Registration
to avoid uncontrolled registrants; users can still be invited via
email instead.

– Enable policy.allow-public to allow read-only access to re-
sources, without requiring user registration.

• Adjust phabricator.cookie-prefix for multiple installations with
overlapping domains (see also the documentation of this configuration
option within Phabricator).

6.2 Global data storage and backups

The global state of a Phabricator installation consists of two main parts:

1. The root directory according to /etc/isabelle-phabricator.conf or
isabelle phabricator -l: it contains the main PHP program suite
with administrative tools, and some configuration files. The default
setup also puts hosted repositories here (subdirectory repo).

2. Multiple MySQL databases with a common prefix derived from the
installation name — the same name is used as database user name.

The root user may invoke /usr/local/bin/isabelle-phabricator-dump
to create a complete database dump within the root directory. Af-
terwards it is sufficient to make a conventional file-system backup
of everything. To restore the database state, see the explanations
on mysqldump in https://secure.phabricator.com/book/phabricator/article/
configuring_backups; some background information is in https://secure.
phabricator.com/book/phabflavor/article/so_many_databases.

The following command-line tools are particularly interesting for advanced
database maintenance (within the Phabricator root directory):

https://secure.phabricator.com/book/phabricator/article/configuring_backups
https://secure.phabricator.com/book/phabricator/article/configuring_backups
https://secure.phabricator.com/book/phabflavor/article/so_many_databases
https://secure.phabricator.com/book/phabflavor/article/so_many_databases

CHAPTER 6. PHABRICATOR SERVER SETUP 72

phabricator/bin/storage help dump
phabricator/bin/storage help shell
phabricator/bin/storage help destroy
phabricator/bin/storage help renamespace

For example, copying a database snapshot from one installation to another
works as follows. Run on the first installation root directory:

phabricator/bin/storage dump > dump1.sql
phabricator/bin/storage renamespace --from phabricator_vcs \

--to phabricator_xyz --input dump1.sql --output dump2.sql

Them run on the second installation root directory:

phabricator/bin/storage destroy
phabricator/bin/storage shell < .../dump2.sql

Local configuration in phabricator/config/local/ and hosted repositories
need to be treated separately within the file-system. For the latter see also
these tools:

phabricator/bin/repository help list-paths
phabricator/bin/repository help move-paths

6.3 Upgrading Phabricator installations

The Phabricator developers publish a new version approx. every 1–4 weeks:
see also https://secure.phabricator.com/w/changelog. There is no need to
follow such frequent updates on the spot, but it is a good idea to upgrade
occasionally — with the usual care to avoid breaking a production system
(see also §6.2 for database dump and backup).
The Isabelle/Phabricator setup provides a convenience tool to upgrade all
installations uniformly:

/usr/local/bin/isabelle-phabricator-upgrade

This refers to the stable branch of the distribution repositories by default.
Alternatively, it also possible to use the master like this:

/usr/local/bin/isabelle-phabricator-upgrade master

See https://secure.phabricator.com/book/phabricator/article/upgrading for
further explanations on Phabricator upgrade.

https://secure.phabricator.com/w/changelog
https://secure.phabricator.com/book/phabricator/article/upgrading

CHAPTER 6. PHABRICATOR SERVER SETUP 73

6.4 Reference of command-line tools

The subsequent command-line tools usually require root user privileges on the
underlying Linux system (e.g. via sudo bash to open a subshell, or directly
via sudo isabelle phabricator ...).

6.4.1 isabelle phabricator

The isabelle phabricator tool invokes a GNU bash command-line within
the Phabricator home directory:
Usage: isabelle phabricator [OPTIONS] COMMAND [ARGS...]

Options are:
-l list available Phabricator installations
-n NAME Phabricator installation name (default: "vcs")

Invoke a command-line tool within the home directory of the named
Phabricator installation.

Isabelle/Phabricator installations are registered in the global configuration
file /etc/isabelle-phabricator.conf, with name and root directory sepa-
rated by colon (no extra whitespace). The home directory is the subdirectory
phabricator within the root.

Option -l lists the available Phabricator installations with name and root
directory — without invoking a command.
Option -n selects the explicitly named Phabricator installation.

Examples

Print the home directory of the Phabricator installation:
isabelle phabricator pwd

Print some Phabricator configuration information:
isabelle phabricator bin/config get phabricator.base-uri

The latter conforms to typical command templates seen in the original
Phabricator documentation:

phabricator/ $./bin/config get phabricator.base-uri

Here the user is meant to navigate to the Phabricator home manually, in con-
trast to isabelle phabricator doing it automatically thanks to the global
configuration /etc/isabelle-phabricator.conf.

CHAPTER 6. PHABRICATOR SERVER SETUP 74

6.4.2 isabelle phabricator_setup

The isabelle phabricator_setup tool installs a fresh Phabricator instance
on Ubuntu 18.04 or 20.04 LTS:

Usage: isabelle phabricator_setup [OPTIONS]

Options are:
-M SOURCE install Mercurial from source: local PATH, or URL, or ":"
-R DIR repository directory (default: "/var/www/phabricator-NAME/repo")
-U full update of system packages before installation
-n NAME Phabricator installation name (default: "vcs")
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-r DIR installation root directory (default: "/var/www/phabricator-NAME")

Install Phabricator as LAMP application (Linux, Apache, MySQL, PHP).

The installation name (default: "vcs") is mapped to a regular
Unix user; this is relevant for public SSH access.

Installation requires Linux root permissions. All required packages are in-
stalled automatically beforehand, this includes the Apache web server and
the MySQL database engine.
Global configuration in /etc or a few other directories like /var/www uses
name prefixes like isabelle-phabricator or phabricator. Local config-
uration for a particular installation uses more specific names derived from
phabricator-NAME, e.g. /var/www/phabricator-vcs for the default.
Knowing the naming conventions, it is possible to purge a Linux installation
from Isabelle/Phabricator with some effort, but there is no automated pro-
cedure for de-installation. In the worst case, it might be better to re-install
the virtual machine from a clean image.

Option -U ensures a full update of system packages, before installing further
packages required by Phabricator. This might require a reboot.
Option -M: installs a standard Mercurial release from source — the one that
is used by the Phabricator hosting service https://admin.phacility.com. This
avoids various problems with the package provided by Ubuntu 18.04 or 20.04.
Alternatively, an explicit file path or URL the source archive (.tar.gz) may
be given here. This option is recommended for production use, but it requires
to uninstall existing Mercurial packages provided by the operating system.
Option -n provides an alternative installation name. The default name vcs
means “version control system”. The name appears in the URL for SSH
access, and thus has some relevance to end-users. The initial server URL

https://admin.phacility.com

CHAPTER 6. PHABRICATOR SERVER SETUP 75

also uses the same suffix, but that can (and should) be changed later via
regular Apache configuration.
Option -o augments the environment of Isabelle system options: relevant
options for Isabelle/Phabricator have the prefix “phabricator_” (see also
the result of e.g. “isabelle options -l”).
Option -r specifies an alternative installation root directory: it needs to be
accessible for the Apache web server.
Option -R specifies an alternative directory for repositories that are hosted
by Phabricator. Provided that it is accessible for the Apache web server, the
directory can be reused for the hgweb view by Mercurial.6

6.4.3 isabelle phabricator_setup_mail

The isabelle phabricator_setup_mail tool provides mail configuration
for an existing Phabricator installation:

Usage: isabelle phabricator_setup_mail [OPTIONS]

Options are:
-T USER send test mail to Phabricator user
-f FILE config file (default: "mailers.json" within

Phabricator root)
-n NAME Phabricator installation name (default: "vcs")

Provide mail configuration for existing Phabricator installation.

Proper mail configuration is vital for Phabricator, but the details can be
tricky. A common approach is to re-use an existing SMTP mail service, as
is often included in regular web hosting packages. It is sufficient to create
one mail account for multiple Phabricator installations, but the configuration
needs to be set for each installation.
The first invocation of isabelle phabricator_setup_mail without options
creates a JSON template file. Its key entry should be changed to something
sensible to identify the configuration, e.g. the Internet Domain Name of the
mail address. The options specify the SMTP server address and account
information.
Another invocation of isabelle phabricator_setup_mail with updated
JSON file will change the underlying Phabricator installation. This can be
done repeatedly, until everything works as expected.

6See also the documentation https://www.mercurial-scm.org/wiki/PublishingRepositories
and the example https://isabelle.sketis.net/repos.

https://www.mercurial-scm.org/wiki/PublishingRepositories
https://isabelle.sketis.net/repos

CHAPTER 6. PHABRICATOR SERVER SETUP 76

Option -T invokes a standard Phabricator test procedure for the mail config-
uration. The argument needs to be a valid Phabricator user: the mail address
is derived from the user profile.
Option -f refers to an existing JSON configuration file, e.g. from a previ-
ous successful Phabricator installation: sharing mailers setup with the same
mail address is fine for outgoing mails; incoming mails are optional and not
configured here.

6.4.4 isabelle phabricator_setup_ssh

The isabelle phabricator_setup_ssh tool configures a special SSH ser-
vice for all Phabricator installations:

Usage: isabelle phabricator_setup_ssh [OPTIONS]

Options are:
-p PORT sshd port for Phabricator servers (default: 2222)
-q PORT sshd port for the operating system (default: 22)

Configure ssh service for all Phabricator installations: a separate sshd
is run in addition to the one of the operating system, and ports need to
be distinct.

A particular Phabricator installation is addressed by using its
name as the ssh user; the actual Phabricator user is determined via
stored ssh keys.

This is optional, but very useful. It allows to refer to hosted repositories via
ssh with the usual public-key authentication. It also allows to communicate
with a Phabricator server via the JSON API of Conduit7.

The Phabricator SSH server distinguishes installations by their name, e.g.
vcs as SSH user name. The public key that is used for authentication iden-
tifies the user within Phabricator: there is a web interface to provide that as
part of the user profile.
The operating system already has an SSH server (by default on port 22) that
remains important for remote administration of the machine.

Options -p and -q allow to change the port assignment for both servers. A
common scheme is -p 22 -q 222 to leave the standard port to Phabricator,
to simplify the ssh URL that users will see for remote repository clones.8

7https://secure.phabricator.com/book/phabricator/article/conduit
8For the rare case of hosting Subversion repositories, port 22 is de-facto required. Oth-

erwise Phabricator presents malformed svn+ssh URLs with port specification.

https://secure.phabricator.com/book/phabricator/article/conduit

CHAPTER 6. PHABRICATOR SERVER SETUP 77

Redirecting the operating system sshd to port 222 requires some care: it
requires to adjust the remote login procedure, e.g. in $HOME/.ssh/config to
add a Port specification for the server machine.

Chapter 7

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

7.1 Building Isabelle docker images

Docker1 provides a self-contained environment for complex applications
called container, although it does not fully contain the program in a strict
sense of the word. This includes basic operating system services (usually
based on Linux), shared libraries and other required packages. Thus Docker
is a light-weight alternative to regular virtual machines, or a heavy-weight
alternative to conventional self-contained applications.
Although Isabelle can be easily run on a variety of OS environments without
extra containment, Docker images may occasionally be useful when a stan-
dardized Linux environment is required, even on Windows2 and macOS3.
Further uses are in common cloud computing environments, where applica-
tions need to be submitted as Docker images in the first place.

The isabelle build_docker tool builds docker images from a standard
Isabelle application archive for Linux:

Usage: isabelle build_docker [OPTIONS] APP_ARCHIVE

Options are:
-B NAME base image (default "ubuntu")
-E set Isabelle/bin/isabelle as entrypoint
-P NAME additional Ubuntu package collection ("X11", "latex")
-l NAME default logic (default ISABELLE_LOGIC="HOL")
-n no docker build
-o FILE output generated Dockerfile
-p NAME additional Ubuntu package

1https://docs.docker.com
2https://docs.docker.com/docker-for-windows
3https://docs.docker.com/docker-for-mac

78

https://docs.docker.com
https://docs.docker.com/docker-for-windows
https://docs.docker.com/docker-for-mac

CHAPTER 7. MISCELLANEOUS TOOLS 79

-t TAG docker build tag
-v verbose

Build Isabelle docker image with default logic image, using a standard
Isabelle application archive for Linux (local file or remote URL).

Option -E sets bin/isabelle of the contained Isabelle distribution as the
standard entry point of the Docker image. Thus docker run will imitate
the isabelle command-line tool (§1.2) of a regular local installation, but
it lacks proper GUI support: isabelle jedit will not work without further
provisions. Note that the default entrypoint may be changed later via docker
run --entrypoint="...".
Option -t specifies the Docker image tag: this a symbolic name within the
local Docker name space, but also relevant for Docker Hub4.
Option -l specifies the default logic image of the Isabelle distribution con-
tained in the Docker environment: it will be produced by isabelle build
-b as usual (§2.3) and stored within the image.

Option -B specifies the Docker image taken as starting point for the Isabelle
installation: it needs to be a suitable version of Ubuntu Linux. The default
ubuntu refers to the latest LTS version provided by Canonical as the official
Ubuntu vendor5. For Isabelle2021 this should be Ubuntu 20.04 LTS.
Option -p includes additional Ubuntu packages, using the terminology of
apt-get install within the underlying Linux distribution.
Option -P refers to high-level package collections: X11 or latex as provided
by isabelle build_docker (assuming Ubuntu 18.04 LTS). This imposes
extra weight on the resulting Docker images. Note that X11 will only provide
remote X11 support according to the modest GUI quality standards of the
late 1990-ies.

Option -n suppresses the actual docker build process. Option -o outputs
the generated Dockerfile. Both options together produce a Dockerfile only,
which might be useful for informative purposes or other tools.
Option -v disables quiet-mode of the underlying docker build process.

Examples

Produce a Dockerfile (without image) from a remote Isabelle distribution:
4https://hub.docker.com
5https://hub.docker.com/_/ubuntu

https://hub.docker.com
https://hub.docker.com/_/ubuntu

CHAPTER 7. MISCELLANEOUS TOOLS 80

isabelle build_docker -E -n -o Dockerfile
https://isabelle.in.tum.de/website-Isabelle2021/dist/Isabelle2021_linux.tar.gz

Build a standard Isabelle Docker image from a local Isabelle distribution,
with bin/isabelle as executable entry point:

isabelle build_docker -E -t test/isabelle:Isabelle2021 Isabelle2021_linux.tar.gz

Invoke the raw Isabelle/ML process within that image:

docker run test/isabelle:Isabelle2021 process -e "Session.welcome ()"

Invoke a Linux command-line tool within the contained Isabelle system en-
vironment:

docker run test/isabelle:Isabelle2021 env uname -a

The latter should always report a Linux operating system, even when running
on Windows or macOS.

7.2 Managing Isabelle components

The isabelle components tool manages Isabelle components:

Usage: isabelle components [OPTIONS] [COMPONENTS ...]

Options are:
-I init user settings
-R URL component repository (default $ISABELLE_COMPONENT_REPOSITORY)
-a resolve all missing components
-l list status
-u DIR update $ISABELLE_HOME_USER/components: add directory
-x DIR update $ISABELLE_HOME_USER/components: remove directory

Resolve Isabelle components via download and installation: given COMPONENTS
are identified via base name. Further operations manage etc/settings and
etc/components in $ISABELLE_HOME_USER.

ISABELLE_COMPONENT_REPOSITORY="..."
ISABELLE_HOME_USER="..."

Components are initialized as described in §1.1.3 in a permissive manner,
which can mark components as “missing”. This state is amended by letting
isabelle components download and unpack components that are published

CHAPTER 7. MISCELLANEOUS TOOLS 81

on the default component repository https://isabelle.in.tum.de/components
in particular.
Option -R specifies an alternative component repository. Note that file:///
URLs can be used for local directories.
Option -a selects all missing components to be resolved. Explicit components
may be named as command line-arguments as well. Note that components
are uniquely identified by their base name, while the installation takes place
in the location that was specified in the attempt to initialize the component
before.

Option -l lists the current state of available and missing components with
their location (full name) within the file-system.

Option -I initializes the user settings file to subscribe to the standard com-
ponents specified in the Isabelle repository clone — this does not make any
sense for regular Isabelle releases. If the file already exists, it needs to be
edited manually according to the printed explanation.

Options -u and -x operate on user components listed in $ISABELLE_HOME_USER/
etc/components: this avoid manual editing if Isabelle configuration files.

7.3 Viewing documentation

The isabelle doc tool displays Isabelle documentation:

Usage: isabelle doc [DOC ...]

View Isabelle documentation.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as arguments, in order to display the corresponding docu-
ment.

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations.

7.4 Shell commands within the settings envi-
ronment

The isabelle env tool is a direct wrapper for the standard /usr/bin/env
command on POSIX systems, running within the Isabelle settings environ-

https://isabelle.in.tum.de/components

CHAPTER 7. MISCELLANEOUS TOOLS 82

ment (§1.1).
The command-line arguments are that of the underlying version of env. For
example, the following invokes an instance of the GNU Bash shell within the
Isabelle environment:

isabelle env bash

7.5 Inspecting the settings environment

The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the isabelle getenv
tool:

Usage: isabelle getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn’t work for -a)
-d FILE dump complete environment to FILE

(null terminated entries)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-
ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.
Option -d produces a dump of the complete environment to the specified
file. Entries are terminated by the ASCII null character, i.e. the C string
terminator.

Examples

Get the location of ISABELLE_HOME_USER where user-specific information is
stored:

isabelle getenv ISABELLE_HOME_USER

Get the value only of the same settings variable, which is particularly useful
in shell scripts:

isabelle getenv -b ISABELLE_HOME_USER

CHAPTER 7. MISCELLANEOUS TOOLS 83

7.6 Mercurial repository setup

The isabelle hg_setup tool simplifies the setup of Mercurial repositories,
with hosting via Phabricator (chapter 6) or SSH file server access.

Usage: isabelle hg_setup [OPTIONS] REMOTE LOCAL_DIR

Options are:
-n NAME remote repository name (default: base name of LOCAL_DIR)
-p PATH Mercurial path name (default: "default")
-r assume that remote repository already exists

Setup a remote vs. local Mercurial repository: REMOTE either refers to a
Phabricator server "user@host" or SSH file server "ssh://user@host/path".

The REMOTE repository specification excludes the actual repository name:
that is given by the base name of LOCAL_DIR, or via option -n.
By default, both sides of the repository are created on demand by default.
In contrast, option -r assumes that the remote repository already exists: it
avoids accidental creation of a persistent repository with unintended name.
The local .hg/hgrc file is changed to refer to the remote repository, usu-
ally via the symbolic path name “default”; option -p allows to provided a
different name.

Examples

Setup the current directory as a repository with Phabricator server hosting:

isabelle hg_setup vcs@vcs.example.org .

Setup the current directory as a repository with plain SSH server hosting:

isabelle hg_setup ssh://files.example.org/data/repositories .

Both variants require SSH access to the target server, via public key without
password.

7.7 Installing standalone Isabelle executables

By default, the main Isabelle binaries (isabelle etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
isabelle install tool:

CHAPTER 7. MISCELLANEOUS TOOLS 84

Usage: isabelle install [OPTIONS] BINDIR

Options are:
-d DISTDIR refer to DISTDIR as Isabelle distribution

(default ISABELLE_HOME)

Install Isabelle executables with absolute references to the
distribution directory.

The -d option overrides the current Isabelle distribution directory as deter-
mined by ISABELLE_HOME.
The BINDIR argument tells where executable wrapper scripts for isabelle
and isabelle_scala_script should be placed, which is typically a directory
in the shell’s PATH, such as $HOME/bin.

It is also possible to make symbolic links of the main Isabelle executables
manually, but making separate copies outside the Isabelle distribution direc-
tory will not work!

7.8 Creating instances of the Isabelle logo

The isabelle logo tool creates instances of the generic Isabelle logo, for
inclusion in PDFLATEX documents.

Usage: isabelle logo [OPTIONS] [XYZ]

Create instance XYZ of the Isabelle logo (PDF).

Options are:
-o FILE alternative output file (default "isabelle_xyx.pdf")
-q quiet mode

Option -o specifies an alternative output file: the default is
isabelle_xyz.pdf (in lower-case).
Option -q omits printing of the resulting output file name.

Implementors of Isabelle tools and applications are encouraged to make de-
rived Isabelle logos for their own projects using this template.

7.9 Output the version identifier of the Isabelle
distribution

The isabelle version tool displays Isabelle version information:

CHAPTER 7. MISCELLANEOUS TOOLS 85

Usage: isabelle version [OPTIONS]

Options are:
-i short identification (derived from Mercurial id)

Display Isabelle version information.

The default is to output the full version string of the Isabelle distribution,
e.g. “Isabelle2021: February 2021.
The -i option produces a short identification derived from the Mercurial id
of the ISABELLE_HOME directory.

Bibliography

[1] M. Wenzel. The Isabelle/Isar Implementation.
https://isabelle.in.tum.de/doc/implementation.pdf.

[2] M. Wenzel. The Isabelle/Isar Reference Manual.
https://isabelle.in.tum.de/doc/isar-ref.pdf.

[3] M. Wenzel. Isabelle/jEdit. https://isabelle.in.tum.de/doc/jedit.pdf.

86

https://isabelle.in.tum.de/doc/implementation.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/jedit.pdf

Index

bash (executable), 2, 2
browser_info (system option), 18
build (tool), 17, 20, 31, 33
build_docker (tool), 78

client (tool), 37
components (tool), 80
condition (system option), 19
console (tool), 4, 9

doc (tool), 81
document (system option), 18
document (tool), 31, 33
document_output (system option),

18
document_tags (system option), 18
document_variants (system option),

18
dump (tool), 26

env (tool), 81
export (tool), 17, 25

getenv (tool), 82

hg_setup (tool), 83

install (tool), 83
isabelle (executable), 1, 6
ISABELLE_BIBTEX (setting), 5
ISABELLE_BROWSER_INFO

(setting), 4, 22, 32
ISABELLE_BROWSER_INFO_

SYSTEM (setting), 4, 22
ISABELLE_BUILD_OPTIONS

(setting), 21
ISABELLE_DOCS (setting), 5

ISABELLE_HEAPS (setting), 4
ISABELLE_HEAPS_SYSTEM

(setting), 4
ISABELLE_HOME (setting), 1, 3
ISABELLE_HOME_USER (set-

ting), 3
ISABELLE_IDENTIFIER (setting),

4
isabelle_java (executable), 10
ISABELLE_JAVA_PLATFORM

(setting), 4
ISABELLE_JDK_HOME (setting),

4
ISABELLE_LINE_EDITOR (set-

ting), 4
ISABELLE_LOGIC (setting), 4
ISABELLE_PDFLATEX (setting),

5
ISABELLE_PLATFORM32 (set-

ting), 3
ISABELLE_PLATFORM64 (set-

ting), 3
ISABELLE_PLATFORM_FAMILY

(setting), 3
ISABELLE_TMP_PREFIX (set-

ting), 5
ISABELLE_TOOL (setting), 2
ISABELLE_TOOL_JAVA_OP-

TIONS (setting), 5
ISABELLE_TOOLS (setting), 5
ISABELLE_WINDOWS_PLAT-

FORM32 (setting), 3
ISABELLE_WINDOWS_PLAT-

FORM64 (setting), 3

87

INDEX 88

java (tool), 59

latex (tool), 31, 34
log (tool), 24
logo (tool), 84

mkroot (tool), 31, 32
ML_HOME (setting), 4
ML_IDENTIFIER (setting), 4
ML_OPTIONS (setting), 4
ML_PLATFORM (setting), 4
ML_SYSTEM (setting), 4

options (tool), 19

PDF_VIEWER (setting), 5
phabricator (tool), 73
phabricator_setup (tool), 74
phabricator_setup_mail (tool), 75
phabricator_setup_ssh (tool), 76
process (tool), 8
profiling (system option), 19

rlwrap (executable), 9

scala (antiquotation), 63
scala (ML antiquotation), 62
scala (tool), 59
scala_function (ML antiquotation),

62
scala_method (antiquotation), 63
scala_object (antiquotation), 63
scala_project (tool), 60
scala_thread (ML antiquotation), 62
scala_type (antiquotation), 63
scalac (tool), 60
server (tool), 36
session_chapter (syntax), 13
session_entry (syntax), 13
sessions (tool), 29
system_heaps (system option), 19

threads (system option), 18, 22

timeout (system option), 19
timeout_scale (system option), 19

update (tool), 27
USER_HOME (setting), 2

version (tool), 84

	The Isabelle system environment
	Isabelle settings
	Bootstrapping the environment
	Common variables
	Additional components

	The Isabelle tool wrapper
	The raw Isabelle ML process
	Batch mode
	Interactive mode

	The raw Isabelle Java process
	YXML versus XML

	Isabelle sessions and build management
	Session ROOT specifications
	System build options
	Invoking the build process
	Print messages from build database
	Retrieve theory exports
	Dump PIDE session database
	Update theory sources based on PIDE markup
	Explore sessions structure

	Presenting theories
	Generating HTML browser information
	Preparing session root directories
	Preparing Isabelle session documents
	Running LaTeX within the Isabelle environment

	The Isabelle server
	Command-line tools
	Server
	Client
	Examples

	Protocol messages
	Byte messages
	Text messages
	Input and output messages
	Initial password exchange
	Synchronous commands
	Asynchronous commands

	Types for JSON values
	Server commands and results
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 help
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 echo
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 shutdown
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cancel
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_build
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_start
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 session`_stop
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 use`_theories
	Command 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 purge`_theories

	Isabelle/Scala systems programming
	Command-line tools
	Java Runtime Environment
	Scala toplevel
	Scala compiler
	Scala script wrapper
	Project setup for common Scala IDEs

	Registered Isabelle/Scala functions
	Defining functions in Isabelle/Scala
	Invoking functions in Isabelle/ML

	Documenting Isabelle/Scala entities

	Phabricator server setup
	Quick start
	Initial setup
	Mailer configuration
	SSH configuration
	Internet domain name and HTTPS configuration

	Global data storage and backups
	Upgrading Phabricator installations
	Reference of command-line tools
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup`_mail
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isabelle phabricator`_setup`_ssh

	Miscellaneous tools
	Building Isabelle docker images
	Managing Isabelle components
	Viewing documentation
	Shell commands within the settings environment
	Inspecting the settings environment
	Mercurial repository setup
	Installing standalone Isabelle executables
	Creating instances of the Isabelle logo
	Output the version identifier of the Isabelle distribution

	Bibliography
	Index

