Theory NS_Public
section‹Verifying the Needham-Schroeder-Lowe Public-Key Protocol›
theory NS_Public imports Public begin
inductive_set ns_public :: "event list set"
where
Nil: "[] ∈ ns_public"
| Fake: "⟦evsf ∈ ns_public; X ∈ synth (analz (spies evsf))⟧
⟹ Says Spy B X # evsf ∈ ns_public"
| NS1: "⟦evs1 ∈ ns_public; Nonce NA ∉ used evs1⟧
⟹ Says A B (Crypt (pubEK B) ⦃Nonce NA, Agent A⦄)
# evs1 ∈ ns_public"
| NS2: "⟦evs2 ∈ ns_public; Nonce NB ∉ used evs2;
Says A' B (Crypt (pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs2⟧
⟹ Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄)
# evs2 ∈ ns_public"
| NS3: "⟦evs3 ∈ ns_public;
Says A B (Crypt (pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs3;
Says B' A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄)
∈ set evs3⟧
⟹ Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 ∈ ns_public"
declare knows_Spy_partsEs [elim]
declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
lemma "∃NB. ∃evs ∈ ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
apply (intro exI bexI)
apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2,
THEN ns_public.NS3], possibility)
done
lemma Spy_see_priEK [simp]:
"evs ∈ ns_public ⟹ (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)"
by (erule ns_public.induct, auto)
lemma Spy_analz_priEK [simp]:
"evs ∈ ns_public ⟹ (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto
subsection‹Authenticity properties obtained from NS2›
lemma no_nonce_NS1_NS2 [rule_format]:
"evs ∈ ns_public
⟹ Crypt (pubEK C) ⦃NA', Nonce NA, Agent D⦄ ∈ parts (spies evs) ⟶
Crypt (pubEK B) ⦃Nonce NA, Agent A⦄ ∈ parts (spies evs) ⟶
Nonce NA ∈ analz (spies evs)"
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done
lemma unique_NA:
"⟦Crypt(pubEK B) ⦃Nonce NA, Agent A ⦄ ∈ parts(spies evs);
Crypt(pubEK B') ⦃Nonce NA, Agent A'⦄ ∈ parts(spies evs);
Nonce NA ∉ analz (spies evs); evs ∈ ns_public⟧
⟹ A=A' ∧ B=B'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done
theorem Spy_not_see_NA:
"⟦Says A B (Crypt(pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
⟹ Nonce NA ∉ analz (spies evs)"
apply (erule rev_mp)
apply (erule ns_public.induct, simp_all, spy_analz)
apply (blast dest: unique_NA intro: no_nonce_NS1_NS2)+
done
lemma A_trusts_NS2_lemma [rule_format]:
"⟦A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
⟹ Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄ ∈ parts (spies evs) ⟶
Says A B (Crypt(pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs ⟶
Says B A (Crypt(pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs"
apply (erule ns_public.induct, simp_all)
apply (blast dest: Spy_not_see_NA)+
done
theorem A_trusts_NS2:
"⟦Says A B (Crypt(pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs;
Says B' A (Crypt(pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
⟹ Says B A (Crypt(pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs"
by (blast intro: A_trusts_NS2_lemma)
lemma B_trusts_NS1 [rule_format]:
"evs ∈ ns_public
⟹ Crypt (pubEK B) ⦃Nonce NA, Agent A⦄ ∈ parts (spies evs) ⟶
Nonce NA ∉ analz (spies evs) ⟶
Says A B (Crypt (pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs"
apply (erule ns_public.induct, simp_all)
apply (blast intro!: analz_insertI)
done
subsection‹Authenticity properties obtained from NS2›
lemma unique_NB [dest]:
"⟦Crypt(pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄ ∈ parts(spies evs);
Crypt(pubEK A') ⦃Nonce NA', Nonce NB, Agent B'⦄ ∈ parts(spies evs);
Nonce NB ∉ analz (spies evs); evs ∈ ns_public⟧
⟹ A=A' ∧ NA=NA' ∧ B=B'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done
theorem Spy_not_see_NB [dest]:
"⟦Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
⟹ Nonce NB ∉ analz (spies evs)"
apply (erule rev_mp)
apply (erule ns_public.induct, simp_all, spy_analz)
apply (blast intro: no_nonce_NS1_NS2)+
done
lemma B_trusts_NS3_lemma [rule_format]:
"⟦A ∉ bad; B ∉ bad; evs ∈ ns_public⟧ ⟹
Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) ⟶
Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs ⟶
Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
by (erule ns_public.induct, auto)
theorem B_trusts_NS3:
"⟦Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs;
Says A' B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public⟧
⟹ Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
by (blast intro: B_trusts_NS3_lemma)
subsection‹Overall guarantee for B›
theorem B_trusts_protocol:
"⟦A ∉ bad; B ∉ bad; evs ∈ ns_public⟧ ⟹
Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) ⟶
Says B A (Crypt (pubEK A) ⦃Nonce NA, Nonce NB, Agent B⦄) ∈ set evs ⟶
Says A B (Crypt (pubEK B) ⦃Nonce NA, Agent A⦄) ∈ set evs"
by (erule ns_public.induct, auto)
end