Theory Domain_ex
section ‹Domain package examples›
theory Domain_ex
imports HOLCF
begin
text ‹Domain constructors are strict by default.›
domain d1 = d1a | d1b "d1" "d1"
lemma "d1b⋅⊥⋅y = ⊥" by simp
text ‹Constructors can be made lazy using the ‹lazy› keyword.›
domain d2 = d2a | d2b (lazy "d2")
lemma "d2b⋅x ≠ ⊥" by simp
text ‹Strict and lazy arguments may be mixed arbitrarily.›
domain d3 = d3a | d3b (lazy "d2") "d2"
lemma "P (d3b⋅x⋅y = ⊥) ⟷ P (y = ⊥)" by simp
text ‹Selectors can be used with strict or lazy constructor arguments.›
domain d4 = d4a | d4b (lazy d4b_left :: "d2") (d4b_right :: "d2")
lemma "y ≠ ⊥ ⟹ d4b_left⋅(d4b⋅x⋅y) = x" by simp
text ‹Mixfix declarations can be given for data constructors.›
domain d5 = d5a | d5b (lazy "d5") "d5" (infixl ":#:" 70)
lemma "d5a ≠ x :#: y :#: z" by simp
text ‹Mixfix declarations can also be given for type constructors.›
domain ('a, 'b) lazypair (infixl ":*:" 25) =
lpair (lazy lfst :: 'a) (lazy lsnd :: 'b) (infixl ":*:" 75)
lemma "∀p::('a :*: 'b). p ⊑ lfst⋅p :*: lsnd⋅p"
by (rule allI, case_tac p, simp_all)
text ‹Non-recursive constructor arguments can have arbitrary types.›
domain ('a, 'b) d6 = d6 "int lift" "'a ⊕ 'b u" (lazy "('a :*: 'b) × ('b → 'a)")
text ‹
Indirect recusion is allowed for sums, products, lifting, and the
continuous function space. However, the domain package does not
generate an induction rule in terms of the constructors.
›
domain 'a d7 = d7a "'a d7 ⊕ int lift" | d7b "'a ⊗ 'a d7" | d7c (lazy "'a d7 → 'a")
text ‹Note that ‹d7.induct› is absent.›
text ‹
Indirect recursion is also allowed using previously-defined datatypes.
›
domain 'a slist = SNil | SCons 'a "'a slist"
domain 'a stree = STip | SBranch "'a stree slist"
text ‹Mutually-recursive datatypes can be defined using the ‹and› keyword.›
domain d8 = d8a | d8b "d9" and d9 = d9a | d9b (lazy "d8")
text ‹Non-regular recursion is not allowed.›
text ‹
Mutually-recursive datatypes must have all the same type arguments,
not necessarily in the same order.
›
domain ('a, 'b) list1 = Nil1 | Cons1 'a "('b, 'a) list2"
and ('b, 'a) list2 = Nil2 | Cons2 'b "('a, 'b) list1"
text ‹Induction rules for flat datatypes have no admissibility side-condition.›
domain 'a flattree = Tip | Branch "'a flattree" "'a flattree"
lemma "⟦P ⊥; P Tip; ⋀x y. ⟦x ≠ ⊥; y ≠ ⊥; P x; P y⟧ ⟹ P (Branch⋅x⋅y)⟧ ⟹ P x"
by (rule flattree.induct)
text ‹Trivial datatypes will produce a warning message.›
domain triv = Triv triv triv
lemma "(x::triv) = ⊥" by (induct x, simp_all)
text ‹Lazy constructor arguments may have unpointed types.›
domain natlist = nnil | ncons (lazy "nat discr") natlist
text ‹Class constraints may be given for type parameters on the LHS.›
domain ('a::predomain) box = Box (lazy 'a)
domain ('a::countable) stream = snil | scons (lazy "'a discr") "'a stream"
subsection ‹Generated constants and theorems›
domain 'a tree = Leaf (lazy 'a) | Node (left :: "'a tree") (right :: "'a tree")
lemmas tree_abs_bottom_iff =
iso.abs_bottom_iff [OF iso.intro [OF tree.abs_iso tree.rep_iso]]
text ‹Rules about ismorphism›
term tree_rep
term tree_abs
thm tree.rep_iso
thm tree.abs_iso
thm tree.iso_rews
text ‹Rules about constructors›
term Leaf
term Node
thm Leaf_def Node_def
thm tree.nchotomy
thm tree.exhaust
thm tree.compacts
thm tree.con_rews
thm tree.dist_les
thm tree.dist_eqs
thm tree.inverts
thm tree.injects
text ‹Rules about case combinator›
term tree_case
thm tree.tree_case_def
thm tree.case_rews
text ‹Rules about selectors›
term left
term right
thm tree.sel_rews
text ‹Rules about discriminators›
term is_Leaf
term is_Node
thm tree.dis_rews
text ‹Rules about monadic pattern match combinators›
term match_Leaf
term match_Node
thm tree.match_rews
text ‹Rules about take function›
term tree_take
thm tree.take_def
thm tree.take_0
thm tree.take_Suc
thm tree.take_rews
thm tree.chain_take
thm tree.take_take
thm tree.deflation_take
thm tree.take_below
thm tree.take_lemma
thm tree.lub_take
thm tree.reach
thm tree.finite_induct
text ‹Rules about finiteness predicate›
term tree_finite
thm tree.finite_def
thm tree.finite
text ‹Rules about bisimulation predicate›
term tree_bisim
thm tree.bisim_def
thm tree.coinduct
text ‹Induction rule›
thm tree.induct
subsection ‹Known bugs›
text ‹Declaring a mixfix with spaces causes some strange parse errors.›
end