Theory AC18_AC19

(*  Title:      ZF/AC/AC18_AC19.thy
    Author:     Krzysztof Grabczewski

The proof of AC1 ==> AC18 ==> AC19 ==> AC1
*)

theory AC18_AC19
imports AC_Equiv
begin

definition
  uu    :: "i => i" where
    "uu(a) == {c  {0}. c  a}"


(* ********************************************************************** *)
(* AC1 ==> AC18                                                           *)
(* ********************************************************************** *)

lemma PROD_subsets:
     "[| f  (b  {P(a). a  A}. b);  a  A. P(a)<=Q(a) |]   
      ==> (λa  A. f`P(a))  (a  A. Q(a))"
by (rule lam_type, drule apply_type, auto)

lemma lemma_AC18:
     "[| A. 0  A  (f. f  (X  A. X)); A  0 |] 
      ==> (a  A. b  B(a). X(a, b))  
          (f  a  A. B(a). a  A. X(a, f`a))"
apply (rule subsetI)
apply (erule_tac x = "{{b  B (a) . x  X (a,b) }. a  A}" in allE)
apply (erule impE, fast)
apply (erule exE)
apply (rule UN_I)
 apply (fast elim!: PROD_subsets)
apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI])
done

lemma AC1_AC18: "AC1 ==> PROP AC18"
apply (unfold AC1_def)
apply (rule AC18.intro)
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I)
done

(* ********************************************************************** *)
(* AC18 ==> AC19                                                          *)
(* ********************************************************************** *)

theorem (in AC18) AC19
apply (unfold AC19_def)
apply (intro allI impI)
apply (rule AC18 [of _ "%x. x", THEN mp], blast)
done

(* ********************************************************************** *)
(* AC19 ==> AC1                                                           *)
(* ********************************************************************** *)

lemma RepRep_conj: 
        "[| A  0; 0  A |] ==> {uu(a). a  A}  0 & 0  {uu(a). a  A}"
apply (unfold uu_def, auto) 
apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]])
done

lemma lemma1_1: "[|c  a; x = c  {0}; x  a |] ==> x - {0}  a"
apply clarify 
apply (rule subst_elem, assumption)
apply (fast elim: notE subst_elem)
done

lemma lemma1_2: 
        "[| f`(uu(a))  a; f  (B  {uu(a). a  A}. B); a  A |]   
                ==> f`(uu(a))-{0}  a"
apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type)
done

lemma lemma1: "f. f  (B  {uu(a). a  A}. B) ==> f. f  (B  A. B)"
apply (erule exE)
apply (rule_tac x = "λaA. if (f` (uu(a))  a, f` (uu(a)), f` (uu(a))-{0})" 
       in exI)
apply (rule lam_type) 
apply (simp add: lemma1_2)
done

lemma lemma2_1: "a0 ==> 0  (b  uu(a). b)"
by (unfold uu_def, auto)

lemma lemma2: "[| A0; 0A |] ==> (x  {uu(a). a  A}. b  x. b)  0"
apply (erule not_emptyE) 
apply (rule_tac a = 0 in not_emptyI)
apply (fast intro!: lemma2_1)
done

lemma AC19_AC1: "AC19 ==> AC1"
apply (unfold AC19_def AC1_def, clarify)
apply (case_tac "A=0", force)
apply (erule_tac x = "{uu (a) . a  A}" in allE)
apply (erule impE)
apply (erule RepRep_conj, assumption)
apply (rule lemma1)
apply (drule lemma2, assumption, auto) 
done

end