Theory Cardinal_aux

(*  Title:      ZF/AC/Cardinal_aux.thy
    Author:     Krzysztof Grabczewski

Auxiliary lemmas concerning cardinalities.
*)

theory Cardinal_aux imports AC_Equiv begin

lemma Diff_lepoll: "[| A  succ(m); B  A; B0 |] ==> A-B  m"
apply (rule not_emptyE, assumption)
apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll])
done


(* ********************************************************************** *)
(* Lemmas involving ordinals and cardinalities used in the proofs         *)
(* concerning AC16 and DC                                                 *)
(* ********************************************************************** *)


(* j=|A| *)
lemma lepoll_imp_ex_le_eqpoll:
     "[| A  i; Ord(i) |] ==> j. j  i & A  j"
by (blast intro!: lepoll_cardinal_le well_ord_Memrel
                  well_ord_cardinal_eqpoll [THEN eqpoll_sym]
          dest: lepoll_well_ord)

(* j=|A| *)
lemma lesspoll_imp_ex_lt_eqpoll:
     "[| A  i; Ord(i) |] ==> j. j<i & A  j"
by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE)

lemma Un_eqpoll_Inf_Ord:
  assumes A: "A  i" and B: "B  i" and NFI: "¬ Finite(i)" and i: "Ord(i)"
  shows "A  B  i"
proof (rule eqpollI)
  have AB: "A  B" using A B by (blast intro: eqpoll_sym eqpoll_trans) 
  have "2  nat" 
    by (rule subset_imp_lepoll) (rule OrdmemD [OF nat_2I Ord_nat]) 
  also have "...  i" 
    by (simp add: nat_le_infinite_Ord le_imp_lepoll NFI i)+
  also have "...  A" by (blast intro: eqpoll_sym A) 
  finally have "2  A" .
  have ICI: "InfCard(|i|)" 
    by (simp add: Inf_Card_is_InfCard Finite_cardinal_iff NFI i) 
  have "A  B  A + B" by (rule Un_lepoll_sum)
  also have "...  A × B"
    by (rule lepoll_imp_sum_lepoll_prod [OF AB [THEN eqpoll_imp_lepoll] 2  A])
  also have "...  i × i"
    by (blast intro: prod_eqpoll_cong eqpoll_imp_lepoll A B) 
  also have "...  i"
    by (blast intro: well_ord_InfCard_square_eq well_ord_Memrel ICI i) 
  finally show "A  B  i" .
next  
  have "i  A" by (blast intro: A eqpoll_sym)
  also have "...  A  B" by (blast intro: subset_imp_lepoll) 
  finally show "i  A  B" .
qed

schematic_goal paired_bij: "?f  bij({{y,z}. y  x}, x)"
apply (rule RepFun_bijective)
apply (simp add: doubleton_eq_iff, blast)
done

lemma paired_eqpoll: "{{y,z}. y  x}  x"
by (unfold eqpoll_def, fast intro!: paired_bij)

lemma ex_eqpoll_disjoint: "B. B  A & B  C = 0"
by (fast intro!: paired_eqpoll equals0I elim: mem_asym)

(*Finally we reach this result.  Surely there's a simpler proof?*)
lemma Un_lepoll_Inf_Ord:
     "[| A  i; B  i; ~Finite(i); Ord(i) |] ==> A  B  i"
apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE])
apply (erule conjE)
apply (drule lepoll_trans)
apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll])
apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+))
apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll)
done

lemma Least_in_Ord: "[| P(i); i  j; Ord(j) |] ==> (μ i. P(i))  j"
apply (erule Least_le [THEN leE])
apply (erule Ord_in_Ord, assumption)
apply (erule ltE)
apply (fast dest: OrdmemD)
apply (erule subst_elem, assumption)
done

lemma Diff_first_lepoll:
     "[| well_ord(x,r); y  x; y  succ(n); n  nat |]
      ==> y - {THE b. first(b,y,r)}  n"
apply (case_tac "y=0", simp add: empty_lepollI)
apply (fast intro!: Diff_sing_lepoll the_first_in)
done

lemma UN_subset_split:
     "(x  X. P(x))  (x  X. P(x)-Q(x))  (x  X. Q(x))"
by blast

lemma UN_sing_lepoll: "Ord(a) ==> (x  a. {P(x)})  a"
apply (unfold lepoll_def)
apply (rule_tac x = "λz  (x  a. {P (x) }) . (μ i. P (i) =z) " in exI)
apply (rule_tac d = "%z. P (z) " in lam_injective)
apply (fast intro!: Least_in_Ord)
apply (fast intro: LeastI elim!: Ord_in_Ord)
done

lemma UN_fun_lepoll_lemma [rule_format]:
     "[| well_ord(T, R); ~Finite(a); Ord(a); n  nat |]
      ==> f. (b  a. f`b  n & f`b  T)  (b  a. f`b)  a"
apply (induct_tac "n")
apply (rule allI)
apply (rule impI)
apply (rule_tac b = "b  a. f`b" in subst)
apply (rule_tac [2] empty_lepollI)
apply (rule equals0I [symmetric], clarify)
apply (fast dest: lepoll_0_is_0 [THEN subst])
apply (rule allI)
apply (rule impI)
apply (erule_tac x = "λx  a. f`x - {THE b. first (b,f`x,R) }" in allE)
apply (erule impE, simp)
apply (fast intro!: Diff_first_lepoll, simp)
apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans])
apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll)
done

lemma UN_fun_lepoll:
     "[| b  a. f`b  n & f`b  T; well_ord(T, R);
         ~Finite(a); Ord(a); n  nat |] ==> (b  a. f`b)  a"
by (blast intro: UN_fun_lepoll_lemma)

lemma UN_lepoll:
     "[| b  a. F(b)  n & F(b)  T; well_ord(T, R);
         ~Finite(a); Ord(a); n  nat |]
      ==> (b  a. F(b))  a"
apply (rule rev_mp)
apply (rule_tac f="λb  a. F (b)" in UN_fun_lepoll)
apply auto
done

lemma UN_eq_UN_Diffs:
     "Ord(a) ==> (b  a. F(b)) = (b  a. F(b) - (c  b. F(c)))"
apply (rule equalityI)
 prefer 2 apply fast
apply (rule subsetI)
apply (erule UN_E)
apply (rule UN_I)
 apply (rule_tac P = "%z. x  F (z) " in Least_in_Ord, (assumption+))
apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify)
apply (erule_tac P = "%z. x  F (z) " and i = c in less_LeastE)
apply (blast intro: Ord_Least ltI)
done

lemma lepoll_imp_eqpoll_subset:
     "a  X ==> Y. Y  X & a  Y"
apply (unfold lepoll_def eqpoll_def, clarify)
apply (blast intro: restrict_bij
             dest: inj_is_fun [THEN fun_is_rel, THEN image_subset])
done

(* ********************************************************************** *)
(* Diff_lesspoll_eqpoll_Card                                              *)
(* ********************************************************************** *)

lemma Diff_lesspoll_eqpoll_Card_lemma:
     "[| Aa; ~Finite(a); Card(a); B  a; A-B  a |] ==> P"
apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE)
apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption)
apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption)
apply (drule Un_least_lt, assumption)
apply (drule eqpoll_imp_lepoll [THEN lepoll_trans],
       rule le_imp_lepoll, assumption)+
apply (case_tac "Finite(x ∪ xa)")
txt‹finite case›
 apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+)
 apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite])
 apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite])
txt‹infinite case›
apply (drule Un_lepoll_Inf_Ord, (assumption+))
apply (blast intro: le_Ord2)
apply (drule lesspoll_trans1
             [OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans]
                 lt_Card_imp_lesspoll], assumption+)
apply (simp add: lesspoll_def)
done

lemma Diff_lesspoll_eqpoll_Card:
     "[| A  a; ~Finite(a); Card(a); B  a |] ==> A - B  a"
apply (rule ccontr)
apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+))
apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2]
                    subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans)
done

end