Theory Rank_Separation
section ‹Separation for Facts About Order Types, Rank Functions and
Well-Founded Relations›
theory Rank_Separation imports Rank Rec_Separation begin
text‹This theory proves all instances needed for locales
‹M_ordertype› and ‹M_wfrank›. But the material is not
needed for proving the relative consistency of AC.›
subsection‹The Locale ‹M_ordertype››
subsubsection‹Separation for Order-Isomorphisms›
lemma well_ord_iso_Reflects:
"REFLECTS[λx. x∈A ⟶
(∃y[L]. ∃p[L]. fun_apply(L,f,x,y) & pair(L,y,x,p) & p ∈ r),
λi x. x∈A ⟶ (∃y ∈ Lset(i). ∃p ∈ Lset(i).
fun_apply(##Lset(i),f,x,y) & pair(##Lset(i),y,x,p) & p ∈ r)]"
by (intro FOL_reflections function_reflections)
lemma well_ord_iso_separation:
"[| L(A); L(f); L(r) |]
==> separation (L, λx. x∈A ⟶ (∃y[L]. (∃p[L].
fun_apply(L,f,x,y) & pair(L,y,x,p) & p ∈ r)))"
apply (rule gen_separation_multi [OF well_ord_iso_Reflects, of "{A,f,r}"],
auto)
apply (rule_tac env="[A,f,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done
subsubsection‹Separation for \<^term>‹obase››
lemma obase_reflects:
"REFLECTS[λa. ∃x[L]. ∃g[L]. ∃mx[L]. ∃par[L].
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
order_isomorphism(L,par,r,x,mx,g),
λi a. ∃x ∈ Lset(i). ∃g ∈ Lset(i). ∃mx ∈ Lset(i). ∃par ∈ Lset(i).
ordinal(##Lset(i),x) & membership(##Lset(i),x,mx) & pred_set(##Lset(i),A,a,r,par) &
order_isomorphism(##Lset(i),par,r,x,mx,g)]"
by (intro FOL_reflections function_reflections fun_plus_reflections)
lemma obase_separation:
"[| L(A); L(r) |]
==> separation(L, λa. ∃x[L]. ∃g[L]. ∃mx[L]. ∃par[L].
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &
order_isomorphism(L,par,r,x,mx,g))"
apply (rule gen_separation_multi [OF obase_reflects, of "{A,r}"], auto)
apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule ordinal_iff_sats sep_rules | simp)+
done
subsubsection‹Separation for a Theorem about \<^term>‹obase››
lemma obase_equals_reflects:
"REFLECTS[λx. x∈A ⟶ ~(∃y[L]. ∃g[L].
ordinal(L,y) & (∃my[L]. ∃pxr[L].
membership(L,y,my) & pred_set(L,A,x,r,pxr) &
order_isomorphism(L,pxr,r,y,my,g))),
λi x. x∈A ⟶ ~(∃y ∈ Lset(i). ∃g ∈ Lset(i).
ordinal(##Lset(i),y) & (∃my ∈ Lset(i). ∃pxr ∈ Lset(i).
membership(##Lset(i),y,my) & pred_set(##Lset(i),A,x,r,pxr) &
order_isomorphism(##Lset(i),pxr,r,y,my,g)))]"
by (intro FOL_reflections function_reflections fun_plus_reflections)
lemma obase_equals_separation:
"[| L(A); L(r) |]
==> separation (L, λx. x∈A ⟶ ~(∃y[L]. ∃g[L].
ordinal(L,y) & (∃my[L]. ∃pxr[L].
membership(L,y,my) & pred_set(L,A,x,r,pxr) &
order_isomorphism(L,pxr,r,y,my,g))))"
apply (rule gen_separation_multi [OF obase_equals_reflects, of "{A,r}"], auto)
apply (rule_tac env="[A,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done
subsubsection‹Replacement for \<^term>‹omap››
lemma omap_reflects:
"REFLECTS[λz. ∃a[L]. a∈B & (∃x[L]. ∃g[L]. ∃mx[L]. ∃par[L].
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g)),
λi z. ∃a ∈ Lset(i). a∈B & (∃x ∈ Lset(i). ∃g ∈ Lset(i). ∃mx ∈ Lset(i).
∃par ∈ Lset(i).
ordinal(##Lset(i),x) & pair(##Lset(i),a,x,z) &
membership(##Lset(i),x,mx) & pred_set(##Lset(i),A,a,r,par) &
order_isomorphism(##Lset(i),par,r,x,mx,g))]"
by (intro FOL_reflections function_reflections fun_plus_reflections)
lemma omap_replacement:
"[| L(A); L(r) |]
==> strong_replacement(L,
λa z. ∃x[L]. ∃g[L]. ∃mx[L]. ∃par[L].
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))"
apply (rule strong_replacementI)
apply (rule_tac u="{A,r,B}" in gen_separation_multi [OF omap_reflects], auto)
apply (rule_tac env="[A,B,r]" in DPow_LsetI)
apply (rule sep_rules | simp)+
done
subsection‹Instantiating the locale ‹M_ordertype››
text‹Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.›
lemma M_ordertype_axioms_L: "M_ordertype_axioms(L)"
apply (rule M_ordertype_axioms.intro)
apply (assumption | rule well_ord_iso_separation
obase_separation obase_equals_separation
omap_replacement)+
done
theorem M_ordertype_L: "M_ordertype(L)"
apply (rule M_ordertype.intro)
apply (rule M_basic_L)
apply (rule M_ordertype_axioms_L)
done
subsection‹The Locale ‹M_wfrank››
subsubsection‹Separation for \<^term>‹wfrank››
lemma wfrank_Reflects:
"REFLECTS[λx. ∀rplus[L]. tran_closure(L,r,rplus) ⟶
~ (∃f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)),
λi x. ∀rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) ⟶
~ (∃f ∈ Lset(i).
M_is_recfun(##Lset(i), %x f y. is_range(##Lset(i),f,y),
rplus, x, f))]"
by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)
lemma wfrank_separation:
"L(r) ==>
separation (L, λx. ∀rplus[L]. tran_closure(L,r,rplus) ⟶
~ (∃f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)))"
apply (rule gen_separation [OF wfrank_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done
subsubsection‹Replacement for \<^term>‹wfrank››
lemma wfrank_replacement_Reflects:
"REFLECTS[λz. ∃x[L]. x ∈ A &
(∀rplus[L]. tran_closure(L,r,rplus) ⟶
(∃y[L]. ∃f[L]. pair(L,x,y,z) &
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
is_range(L,f,y))),
λi z. ∃x ∈ Lset(i). x ∈ A &
(∀rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) ⟶
(∃y ∈ Lset(i). ∃f ∈ Lset(i). pair(##Lset(i),x,y,z) &
M_is_recfun(##Lset(i), %x f y. is_range(##Lset(i),f,y), rplus, x, f) &
is_range(##Lset(i),f,y)))]"
by (intro FOL_reflections function_reflections fun_plus_reflections
is_recfun_reflection tran_closure_reflection)
lemma wfrank_strong_replacement:
"L(r) ==>
strong_replacement(L, λx z.
∀rplus[L]. tran_closure(L,r,rplus) ⟶
(∃y[L]. ∃f[L]. pair(L,x,y,z) &
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &
is_range(L,f,y)))"
apply (rule strong_replacementI)
apply (rule_tac u="{r,B}"
in gen_separation_multi [OF wfrank_replacement_Reflects],
auto)
apply (rule_tac env="[r,B]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done
subsubsection‹Separation for Proving ‹Ord_wfrank_range››
lemma Ord_wfrank_Reflects:
"REFLECTS[λx. ∀rplus[L]. tran_closure(L,r,rplus) ⟶
~ (∀f[L]. ∀rangef[L].
is_range(L,f,rangef) ⟶
M_is_recfun(L, λx f y. is_range(L,f,y), rplus, x, f) ⟶
ordinal(L,rangef)),
λi x. ∀rplus ∈ Lset(i). tran_closure(##Lset(i),r,rplus) ⟶
~ (∀f ∈ Lset(i). ∀rangef ∈ Lset(i).
is_range(##Lset(i),f,rangef) ⟶
M_is_recfun(##Lset(i), λx f y. is_range(##Lset(i),f,y),
rplus, x, f) ⟶
ordinal(##Lset(i),rangef))]"
by (intro FOL_reflections function_reflections is_recfun_reflection
tran_closure_reflection ordinal_reflection)
lemma Ord_wfrank_separation:
"L(r) ==>
separation (L, λx.
∀rplus[L]. tran_closure(L,r,rplus) ⟶
~ (∀f[L]. ∀rangef[L].
is_range(L,f,rangef) ⟶
M_is_recfun(L, λx f y. is_range(L,f,y), rplus, x, f) ⟶
ordinal(L,rangef)))"
apply (rule gen_separation [OF Ord_wfrank_Reflects], simp)
apply (rule_tac env="[r]" in DPow_LsetI)
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+
done
subsubsection‹Instantiating the locale ‹M_wfrank››
lemma M_wfrank_axioms_L: "M_wfrank_axioms(L)"
apply (rule M_wfrank_axioms.intro)
apply (assumption | rule
wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
done
theorem M_wfrank_L: "M_wfrank(L)"
apply (rule M_wfrank.intro)
apply (rule M_trancl_L)
apply (rule M_wfrank_axioms_L)
done
lemmas exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]
and M_wellfoundedrank = M_wfrank.M_wellfoundedrank [OF M_wfrank_L]
and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]
and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF M_wfrank_L]
and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF M_wfrank_L]
and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_L]
and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]
and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank_L]
and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]
and wellfoundedrank_lt = M_wfrank.wellfoundedrank_lt [OF M_wfrank_L]
and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage [OF M_wfrank_L]
and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]
and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF M_wfrank_L]
and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]
and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank_L]
end