File ‹Tools/Metis/metis_tactic.ML›
signature METIS_TACTIC =
sig
type inst
val trace : bool Config.T
val verbose : bool Config.T
val instantiate : bool Config.T
val instantiate_undefined : bool Config.T
val new_skolem : bool Config.T
val advisory_simp : bool Config.T
val pretty_name_inst : Proof.context -> string * inst -> Pretty.T
val string_of_name_inst : Proof.context -> string * inst -> string
val metis_tac : string list -> string -> Proof.context -> thm list -> int -> tactic
val metis_method : (string list option * string option) * thm list -> Proof.context -> thm list ->
tactic
val metis_infer_thm_insts : (string list option * string option) * thm list -> Proof.context ->
thm list -> int -> thm -> (thm * inst) list option
val metis_lam_transs : string list
val parse_metis_options : (string list option * string option) parser
end
structure Metis_Tactic : METIS_TACTIC =
struct
open ATP_Problem_Generate
open ATP_Proof_Reconstruct
open Metis_Generate
open Metis_Reconstruct
open Metis_Instantiations
val new_skolem = Attrib.setup_config_bool \<^binding>‹metis_new_skolem› (K false)
val advisory_simp = Attrib.setup_config_bool \<^binding>‹metis_advisory_simp› (K true)
fun used_axioms axioms (th, Metis_Proof.Axiom _) = SOME (lookth axioms th)
| used_axioms _ _ = NONE
fun reflexive_or_trivial_of_metis ctxt type_enc sym_tab concealed mth =
(case hol_clause_of_metis ctxt type_enc sym_tab concealed mth of
\<^Const_>‹HOL.eq _ for _ t› =>
let
val ct = Thm.cterm_of ctxt t
val cT = Thm.ctyp_of_cterm ct
in refl |> Thm.instantiate' [SOME cT] [SOME ct] end
| \<^Const_>‹disj for t1 t2› =>
(if can HOLogic.dest_not t1 then t2 else t1)
|> HOLogic.mk_Trueprop |> Thm.cterm_of ctxt |> Thm.trivial
| _ => raise Fail "expected reflexive or trivial clause")
|> Meson.make_meta_clause ctxt
fun lam_lifted_of_metis ctxt type_enc sym_tab concealed mth =
let
val tac = rewrite_goals_tac ctxt @{thms lambda_def [abs_def]} THEN resolve_tac ctxt [refl] 1
val t = hol_clause_of_metis ctxt type_enc sym_tab concealed mth
val ct = Thm.cterm_of ctxt (HOLogic.mk_Trueprop t)
in
Goal.prove_internal ctxt [] ct (K tac)
|> Meson.make_meta_clause ctxt
end
fun add_vars_and_frees (t $ u) = fold (add_vars_and_frees) [t, u]
| add_vars_and_frees (Abs (_, _, t)) = add_vars_and_frees t
| add_vars_and_frees (t as Var _) = insert (op =) t
| add_vars_and_frees (t as Free _) = insert (op =) t
| add_vars_and_frees _ = I
fun introduce_lam_wrappers ctxt th =
if Meson_Clausify.is_quasi_lambda_free (Thm.prop_of th) then th
else
let
fun resolve_lambdaI th =
Meson.first_order_resolve ctxt th
(Thm.incr_indexes (Thm.maxidx_of th + 1) @{thm Metis.eq_lambdaI})
fun conv first ctxt ct =
if Meson_Clausify.is_quasi_lambda_free (Thm.term_of ct) then Thm.reflexive ct
else
(case Thm.term_of ct of
Abs (_, _, u) =>
if first then
(case add_vars_and_frees u [] of
[] =>
Conv.abs_conv (conv false o snd) ctxt ct
|> resolve_lambdaI
| v :: _ =>
Abs (Name.uu, fastype_of v, abstract_over (v, Thm.term_of ct)) $ v
|> Thm.cterm_of ctxt
|> Conv.comb_conv (conv true ctxt))
else Conv.abs_conv (conv false o snd) ctxt ct
| \<^Const_>‹Meson.skolem _ for _› => Thm.reflexive ct
| _ => Conv.comb_conv (conv true ctxt) ct)
val eq_th = conv true ctxt (Thm.cprop_of th)
val t0 $ _ $ t2 = Thm.prop_of eq_th
val eq_ct = t0 $ Thm.prop_of th $ t2 |> Thm.cterm_of ctxt
val eq_th' = Goal.prove_internal ctxt [] eq_ct (K (resolve_tac ctxt [eq_th] 1))
in Thm.equal_elim eq_th' th end
fun clause_params ordering =
{ordering = ordering,
orderLiterals = Metis_Clause.UnsignedLiteralOrder,
orderTerms = true}
fun active_params ordering =
{clause = clause_params ordering,
prefactor = #prefactor Metis_Active.default,
postfactor = #postfactor Metis_Active.default}
val waiting_params =
{symbolsWeight = 1.0,
variablesWeight = 0.05,
literalsWeight = 0.01,
models = []}
fun resolution_params ordering =
{active = active_params ordering, waiting = waiting_params}
fun kbo_advisory_simp_ordering ord_info =
let
fun weight (m, _) =
AList.lookup (op =) ord_info (Metis_Name.toString m) |> the_default 1
fun precedence p =
(case int_ord (apply2 weight p) of
EQUAL => #precedence Metis_KnuthBendixOrder.default p
| ord => ord)
in {weight = weight, precedence = precedence} end
exception METIS_UNPROVABLE of unit
fun FOL_SOLVE infer_params th_name type_encs lam_trans clausify_refl ctxt cls0 ths0 =
let
val thy = Proof_Context.theory_of ctxt
val new_skolem = Config.get ctxt new_skolem orelse null (Meson.choice_theorems thy)
val do_lams = lam_trans = liftingN ? introduce_lam_wrappers ctxt
val th_cls_pairs =
map_index (fn (j, th) =>
(th,
th
|> Drule.eta_contraction_rule
|> Meson_Clausify.cnf_axiom Meson.simp_options_all_true ctxt
{new_skolem = new_skolem, combs = (lam_trans = combsN), refl = clausify_refl} j
||> map do_lams))
ths0
val ths = maps (snd o snd) th_cls_pairs
val dischargers = map (fst o snd) th_cls_pairs
val cls = cls0 |> map (Drule.eta_contraction_rule #> do_lams)
val _ = trace_msg ctxt (K "FOL_SOLVE: CONJECTURE CLAUSES")
val _ = List.app (fn th => trace_msg ctxt (fn () => Thm.string_of_thm ctxt th)) cls
val type_enc_str :: fallback_type_encs = type_encs
val _ = trace_msg ctxt (fn () => "type_enc = " ^ type_enc_str)
val type_enc = type_enc_of_string Strict type_enc_str
val (sym_tab, axioms, ord_info, concealed) =
generate_metis_problem ctxt type_enc lam_trans cls ths
fun get_isa_thm mth Isa_Reflexive_or_Trivial =
reflexive_or_trivial_of_metis ctxt type_enc sym_tab concealed mth
| get_isa_thm mth Isa_Lambda_Lifted =
lam_lifted_of_metis ctxt type_enc sym_tab concealed mth
| get_isa_thm _ (Isa_Raw ith) = ith
val axioms = axioms |> map (fn (mth, ith) =>
(mth, get_isa_thm mth ith |> Thm.close_derivation ⌂))
val _ = trace_msg ctxt (K "ISABELLE CLAUSES")
val _ = List.app (fn (_, ith) => trace_msg ctxt (fn () => Thm.string_of_thm ctxt ith)) axioms
val _ = trace_msg ctxt (K "METIS CLAUSES")
val _ = List.app (fn (mth, _) => trace_msg ctxt (fn () => Metis_Thm.toString mth)) axioms
val _ = trace_msg ctxt (K "START METIS PROVE PROCESS")
val ordering =
if Config.get ctxt advisory_simp
then kbo_advisory_simp_ordering (ord_info ())
else Metis_KnuthBendixOrder.default
fun fall_back () =
(verbose_warning ctxt
("Falling back on " ^ quote (metis_call (hd fallback_type_encs) lam_trans) ^ "...");
FOL_SOLVE infer_params th_name fallback_type_encs lam_trans clausify_refl ctxt cls0 ths0)
in
(case filter (fn t => Thm.prop_of t aconv \<^prop>‹False›) cls of
false_th :: _ => [false_th RS @{thm FalseE}]
| [] =>
(case Metis_Resolution.loop (Metis_Resolution.new (resolution_params ordering)
{axioms = axioms |> map fst, conjecture = []}) of
Metis_Resolution.Contradiction mth =>
let
val _ = trace_msg ctxt (fn () => "METIS RECONSTRUCTION START: " ^ Metis_Thm.toString mth)
val ctxt' = fold Variable.declare_constraints (map Thm.prop_of cls) ctxt
val proof = Metis_Proof.proof mth
val result = fold (replay_one_inference ctxt' type_enc concealed sym_tab) proof axioms
val used = map_filter (used_axioms axioms) proof
val _ = trace_msg ctxt (K "METIS COMPLETED; clauses actually used:")
val _ = List.app (fn th => trace_msg ctxt (fn () => Thm.string_of_thm ctxt th)) used
val (used_ths, unused_ths) =
List.partition (have_common_thm ctxt used o #2 o #2) th_cls_pairs
|> apply2 (map #1)
val _ =
if exists is_some (map th_name used_ths) then
infer_params := SOME ({
ctxt = ctxt',
type_enc = type_enc_str,
lam_trans = lam_trans,
th_name = th_name,
new_skolem = new_skolem,
th_cls_pairs = map (apsnd snd) th_cls_pairs,
lifted = fst concealed,
sym_tab = sym_tab,
axioms = axioms,
mth = mth
})
else ();
val _ =
if not (null unused_ths) then
verbose_warning ctxt ("Unused theorems: " ^
commas_quote (unused_ths |> map (fn th =>
th_name th
|> the_default (Proof_Context.print_thm_name ctxt
(Thm.get_name_hint th)))))
else ();
val _ =
if not (null cls) andalso not (have_common_thm ctxt used cls) then
verbose_warning ctxt "The assumptions are inconsistent"
else ();
in
(case result of
(_, ith) :: _ =>
(trace_msg ctxt (fn () => "Success: " ^ Thm.string_of_thm ctxt ith);
[discharge_skolem_premises ctxt dischargers ith])
| _ => (trace_msg ctxt (K "Metis: No result"); []))
end
| Metis_Resolution.Satisfiable _ =>
(trace_msg ctxt (K "Metis: No first-order proof with the supplied lemmas");
raise METIS_UNPROVABLE ()))
handle METIS_UNPROVABLE () => if null fallback_type_encs then [] else fall_back ()
| METIS_RECONSTRUCT (loc, msg) =>
if null fallback_type_encs then
(verbose_warning ctxt ("Failed to replay Metis proof\n" ^ loc ^ ": " ^ msg); [])
else fall_back ())
end
fun neg_clausify ctxt combinators =
single
#> Meson.make_clauses_unsorted ctxt
#> combinators ? map (Meson_Clausify.introduce_combinators_in_theorem ctxt)
#> Meson.finish_cnf true
fun preskolem_tac ctxt st0 =
(if exists (Meson.has_too_many_clauses ctxt)
(Logic.prems_of_goal (Thm.prop_of st0) 1) then
Simplifier.full_simp_tac (Meson_Clausify.ss_only @{thms not_all not_ex} ctxt) 1
THEN CNF.cnfx_rewrite_tac ctxt 1
else
all_tac) st0
fun metis_tac_infer_params th_name type_encs0 lam_trans clausify_refl ctxt ths i =
let
val infer_params = Unsynchronized.ref NONE
val type_encs = if null type_encs0 then partial_type_encs else type_encs0
val _ = trace_msg ctxt (fn () =>
"Metis called with theorems\n" ^ cat_lines (map (Thm.string_of_thm ctxt) ths))
val type_encs = type_encs |> maps unalias_type_enc
val combs = (lam_trans = combsN)
fun tac clause = resolve_tac ctxt
(FOL_SOLVE infer_params th_name type_encs lam_trans clausify_refl ctxt clause ths) 1
in
Meson.MESON (preskolem_tac ctxt) (maps (neg_clausify ctxt combs)) tac ctxt i
#> Seq.map (fn st => (!infer_params, st))
end
val no_th_name = K NONE
fun th_name_hint ths =
Option.filter (member Thm.eq_thm ths)
#> Option.map (Thm_Name.print o Thm.get_name_hint)
fun th_name_multi_thm multi_ths th =
let
fun index_of_th ths = find_index (curry Thm.eq_thm th) ths + 1
fun make_name ([_], name) = name
| make_name (ths, name) = name ^ "(" ^ string_of_int (index_of_th ths) ^ ")"
in
List.find (fn (ths, _) => member Thm.eq_thm ths th) multi_ths
|> Option.map make_name
end
fun metis_tac' th_name type_encs lam_trans ctxt ths i =
let
val instantiate = Config.get ctxt instantiate
val instantiate_tac =
if instantiate then
(fn (NONE, st) => st
| (SOME infer_params, st) => tap (instantiate_call infer_params) st)
else
snd
in
metis_tac_infer_params th_name type_encs lam_trans (not instantiate) ctxt ths i
#> Seq.map instantiate_tac
end
val metis_tac = metis_tac' no_th_name
val has_tvar = exists_type (exists_subtype (fn TVar _ => true | _ => false)) o Thm.prop_of
fun metis_method' th_name ((override_type_encs, lam_trans), ths) ctxt facts =
let
val (schem_facts, nonschem_facts) = List.partition has_tvar facts
in
HEADGOAL (Method.insert_tac ctxt nonschem_facts THEN'
CHANGED_PROP o metis_tac' th_name (these override_type_encs)
(the_default default_metis_lam_trans lam_trans) ctxt (schem_facts @ ths))
end
val metis_method = metis_method' no_th_name
fun metis_method_multi_thms (opts, multi_ths) =
metis_method' (th_name_multi_thm multi_ths) (opts, maps fst multi_ths)
fun metis_infer_thm_insts ((override_type_encs, lam_trans), ths) ctxt facts i =
let
val (schem_facts, nonschem_facts) = List.partition has_tvar facts
val insert_tac = Method.insert_tac ctxt nonschem_facts i
val metis_tac =
metis_tac_infer_params (th_name_hint ths) (these override_type_encs)
(the_default default_metis_lam_trans lam_trans) false ctxt (schem_facts @ ths) i
in
Seq.THEN (insert_tac, metis_tac)
#> Seq.map (Option.mapPartial infer_thm_insts o fst)
#> Option.mapPartial fst o Seq.pull
end
val metis_lam_transs = [opaque_liftingN, liftingN, combsN]
fun set_opt _ x NONE = SOME x
| set_opt get x (SOME x0) =
error ("Cannot specify both " ^ quote (get x0) ^ " and " ^ quote (get x))
fun consider_opt s =
if s = "hide_lams" then
error "\"hide_lams\" has been renamed \"opaque_lifting\""
else if member (op =) metis_lam_transs s then
apsnd (set_opt I s)
else
apfst (set_opt hd [s])
val parse_metis_options =
Scan.optional
(Args.parens (Args.name -- Scan.option (\<^keyword>‹,› |-- Args.name))
>> (fn (s, s') =>
(NONE, NONE) |> consider_opt s
|> (case s' of SOME s' => consider_opt s' | _ => I)))
(NONE, NONE)
val parse_multi_thm =
let
val strip_spaces =
ATP_Util.strip_spaces false (not o member (op =) (String.explode "[]():,"))
in
ATP_Util.scan_and_trace_multi_thm
>> apsnd (map Token.unparse #> implode_space #> strip_spaces)
end
val _ =
Theory.setup
(Method.setup \<^binding>‹metis›
(Scan.lift parse_metis_options -- Scan.repeat parse_multi_thm
>> (METHOD oo metis_method_multi_thms))
"Metis for FOL and HOL problems")
end;