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Amortized Complexity Verified

Tobias Nipkow and Hauke Brinkop

Abstract A framework for the analysis of the amortized complexity of functional
data structures is formalized in the proof assistant Isabelle/HOL and applied to a
number of standard examples and to the following non-trivial ones: skew heaps, splay
trees, splay heaps and pairing heaps. The proofs are completely algebraic and are
presented in some detail.

1 Introduction

Amortized analysis [43,7] bounds the average cost of an operation in a sequence
of operations in the worst case. In this paper we formalize a simple framework for
amortized analysis of functional programs in the theorem prover Isabelle/HOL [37]
and apply it to both the easy standard examples and the more challenging examples of
skew heaps, splay trees, splay heaps and pairing heaps. This is an extended version
of a previous publication [32]: the framework is generalized from unary to n-ary
operations and an analysis of pairing heaps has been added.

We are aiming for a particularly lightweight framework that supports proofs at a
high level of abstraction. Therefore all algorithms are modeled as recursive functions
in the logic.

The contributions of the paper are as follows:

– A lightweight and flexible framework for amortized complexity analysis in a
theorem prover.

– The first complexity analyses for skew heaps, splay trees, splay heaps and pairing
heaps in a theorem prover.

– The first purely algebraic proof of the amortized complexity of pairing heaps.

The last point needs some explanation. For pairing heaps we had to recast the original
proof by Fredman et al. [13] into algebraic form where intuitive arguments about
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programs and algebraic proofs about numbers are fused into one. For the other non-
trivial data structures treated in our paper such proofs could already be found in the
literature.

All lemmas and proofs in this paper have been verified with Isabelle/HOL and
are available online [29]. The proofs from Sections 3 and 4 are simple and automatic.
Many other proofs are more complicated and require longer proof texts. Fortunately
Isabelle’s proof language Isar [47,36] supports readable proofs, in particular chains
of (in)equations. Therefore any such proof that you see in this paper is a faithful
rendering of the original Isabelle proof.

It should be noted that this article is not meant to supersede the existing literature
on splay trees etc., but to complement the intuition and the pictures already found in
the literature with precise notions, code and proofs not yet found in the literature.

1.1 Functions, Code, Time and Trust

We express all algorithms as functions in the logic. Because mathematical functions
do not have a complexity they need to be accompanied by definitions of the intended
cost functions. Where this cost function comes from is orthogonal to our work. In
this paper the cost functions are defined separately but follow the recursive structure
of the actual function definitions. Thus the cost function can be seen as an abstract
interpretation of the value function. The user is free to choose the granularity of the
abstraction and hence of the complexity analysis. In our examples we typically count
(recursive) function calls, which is similar to counting loop iterations. Of course sep-
arate user-defined cost functions need to be trusted. This is not an issue for our small
examples where the correspondence is easily checked by inspection but it becomes
one for larger amounts of code. There are two standard solutions. One can automate a
translation/abstraction from the definition of an operation to the definition of its cost
function. This translation becomes part of the trusted code basis. Alternatively one
can define the operations in a monadic style where the value and the cost are com-
puted simultaneously, but the cost is hidden. In a second step one can then project
the result of the monadic computation onto the value and the cost, which may also
involve trusted code. We have detailed a monadic approach for HOL elsewhere [35].
In the end, the actual means for defining the cost function are orthogonal to the aim
of this paper, namely amortized analysis.

Isabelle/HOL can generate code in Standard ML, OCaml, Haskell and Scala from
function definitions in the logic [15]. Therefore Isabelle/HOL is a high level program-
ming language and we verify code in that language. Of course at this point the com-
piler chain also becomes part of the trusted code basis. We have to trust the translation
from Isabelle/HOL to Standard ML and the Standard ML compiler w.r.t. functional
correctness and preservation of asymptotic upper complexity bounds. There is a veri-
fied (w.r.t. functional correctness) compilation chain from Isabelle/HOL via CakeML
to machine code [21,25].
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1.2 Related Work

References to the algorithms literature are spread throughout the paper. Here we con-
centrate on formal approaches to resource analysis, a rich area that we can only skim.

Early work on automatic complexity analysis includes Wegbreit’s METRIC sys-
tem [46] for LISP, Le Métayer’s ACE system [26] for FP, and Benzinger’s ACA
system [2] for NUPRL. Hickey and Cohen [17] and Flajolet et al. [12] focussed on
average-case complexity. The rest of the work we cite (with the exception of [46])
deals with worst-case complexity, possibly amortized.

Because of our simple examples (first-order functions, eager evaluation) it is
easy to derive the timing functions for our operations by hand (or automatically).
Sands [39] has shown how to infer cost functions for a lazy higher-order functional
language. Vasconcelos and Hammond [45] describe type-based inference of cost
functions for a strict higher-order functional language.

Rather than inferring and analyzing resource consumption externally one can also
use the programming language itself for that purpose. Type systems are a popular
framework for tracking resources, e.g. [8,9,28]. The last two papers follow the same
monadic, dependently typed approach in different theorem provers. Atkey [1] goes
one step further. He formalizes a separation logic that supports amortized resource
analysis for an imperative language in Coq and proves the logic correct w.r.t. a se-
mantics. Danner et al. [11] verify a cost analysis for a functional language; this work
was later generalized from lists to inductive types [10].

Hofmann and Jost [20] pioneered automatic type-based amortized analysis of
heap usage of functional programs. Particularly impressive are the later generaliza-
tions by Hoffmann et al. (e.g. [18,19], although currently restricted to polynomials).
Carbonneaux et al. [4] have implemented a system that goes one step further in that it
can generate Coq proof objects that certify the inferred polynomial resource bounds.
Madhavan et al. [27] can deal with many challenging lazy algorithms.

In summary one can say that there is a whole spectrum of approaches that differ
in expressive power, in the complexity of the examples that have been dealt with,
and in automation. Of the papers above, only [28,27] contain examples involving
logarithms (instead of merely polynomials) and they are simpler than the ones in this
paper and not amortized. Like our paper, the work of Charguéraud and Pottier [6,5] is
at the complex, interactive end: they verify the almost-linear amortized complexity of
an imperative Union-Find implementation in OCaml in Coq using a separation logic
with time credits. This is very impressive because of the challenging complexity ar-
gument and because the algorithm is imperative. Their approach is complementary to
ours: They start with an OCaml program, translate it automatically into a characteris-
tic formula that expresses the behaviour of the program (including time consumption)
and add this as an axiom to a Coq theory. We start with a program expressed in Isa-
belle/HOL and can translate it into multiple target languages.
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2 Basic Notation: Lists, Trees and Function Definitions

Lists (type 0a list) are constructed from the empty list [] via the infix cons-operator
“·”, |xs| is the length of xs, set converts a list into the set of its elements.

Binary trees are defined as the data type 0a tree with two constructors: the empty
tree or leaf hi and the node hl, a, ri with subtrees l, r :: 0a tree and contents a :: 0a.
The size of a tree is the number of its nodes:

|hi| = 0 |hl, , ri| = |l| + |r| + 1

For convenience there is also the modified size function |t|1 = |t| + 1.
Function set tree returns the set of elements in a tree:

set tree hi = /0
set tree hl, a, ri = set tree l [ {a} [ set tree r

Function bst wrt checks if a tree is a binary search tree w.r.t. a relation P on the
elements and bst is a specialization to a linear ordering “<” on the elements:

bst wrt P hi = True
bst wrt P hl, a, ri =
(bst wrt P l ^ bst wrt P r ^ (8x2set tree l. P x a) ^ (8x2set tree r. P a x))

bst = bst wrt (<)

In this paper we assume that all trees are over linearly ordered element types.
Function definitions with overlapping patterns follow the first-match rule: a rule

matches only if the previous rules do not match.

3 Amortized Analysis Formalized

We formalize a data type (data structure) and its associated set of operations as fol-
lows. Each operation combines n instances of the data type and may take additional
parameters of other types. The n input data structures are combined into a new output
data structure. Our model is purely functional, there is no mutation. The number n is
the arity of the operation. In practice, most operations act on a single data structure.
However, there are exceptions, for example union operations on data structures.

Our model of amortized analysis is a theory that is parameterized as follows:
0s is the type of the data structure
0op is the type of operation symbols
arity :: 0op ! nat is the arity of each operation
exec :: 0op ! 0s list ! 0s executes an operation
inv :: 0s ! bool is an invariant
cost :: 0op ! 0s list ! nat is the cost function

This theory comes with the assumption that inv is preserved by all operations:

(8s2set ss. inv s) ^ |ss| = arity f =) inv (exec f ss)
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This means that any instantiation of this theory also requires the user to prove this
proposition.

Type 0op will always be instantiated by an enumeration type representing the
signature, i.e. the set of operation symbols. Function exec maps operation symbols to
their meaning, which is a function from a list of data structures to a data structure. If
an operation symbol also takes arguments of types other than 0s, then the operation
symbol becomes a function. For example, the stack operation symbol Push will have
type 0a ! 0op where 0a is the type of stack elements. Thus pushing 1 onto a stack s
is denoted by exec (Push 1) [s]. Since functions are extensional, the execution cost
of an operation is modeled explicitly: cost f ss is the cost of running exec f ss. The
relationship between exec and cost has been discussed in Section 1.1. In particular,
cost need not be a closed form expression for the actual complexity. In the rest of
the paper, unless stated otherwise, cost is synonymous with time and is measured in
terms of the number of function calls.

We formalize the potential method for amortized analysis. That is, our theory has
another parameter, the potential:

F :: 0s ! real

We assume it never becomes negative:

inv s =) 0  F s

The potential of a data structure represents the savings that can pay for future re-
structurings of that data structure. Typically, the higher the potential, the more out
of balance the data structure is. Note that the potential is just a means to an end, the
analysis, but does not influence the actual operations.

The amortized complexity of an operation is defined as the actual cost plus the
difference in potential (where sum list adds up the elements of a list):

acost :: 0op ! 0s list ! real
acost f ss = cost f ss + F (exec f ss) � sum list (map F ss)

The essential prerequisite for amortized analysis is that data structures are used in
a single-threaded (or linear) manner [38], i.e. intermediate data structures cannot be
used more than once. To capture this in a functional model we assume that the graph
of operation calls is a tree. Formally, each node T f ts consists of an operation symbol
f :: 0op and a list of subtrees ts.

Let us now analyze the complexity of executing such a tree of operations. We
restrict to well-formed trees that respect the arity of each operation:

wf (T f ts) = (|ts| = arity f ^ (8 t 2 set ts. wf t))

Function state returns the data structure resulting from the execution of a tree of
operations:

state (T f ts) = exec f (map state ts)

We sum the actual and the amortized costs over a tree of operations:

acost sum (T f ts) = acost f (map state ts) + sum list (map acost sum ts)
cost sum (T f ts) = cost f (map state ts) + sum list (map cost sum ts)
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Induction yields
wf ot =) cost sum ot = acost sum ot � F (state ot)

Because all operations preserve the invariant, the invariant holds for state ot and thus
0  F (state ot) by assumption on F . Hence the amortized complexity is an upper
bound of the real complexity:

wf ot =) cost sum ot  acost sum ot
To complete our formalization we add one more parameter, an explicit upper

bound for the amortized complexity of each operation
U :: 0op ) 0s list ) real

subject to the following assumption:
(8s2set ss. inv s) ^ |ss| = arity f =) acost f ss  U f ss

Thus we obtain that U is indeed an upper bound of the real complexity:
wf ot =) cost sum ot  U sum ot (1)

where U sum is defined like cost sum and acost sum.
So far we have pretended that the computation whose complexity we want to

bound produces a single value and can therefore be represented by a tree. In general
there may be multiple computations that do not all join up. This situation is captured
by a multiset of trees of operations. The generalization of (1) to multisets is a trivial
consequence, where 2# is multiset membership:

8ot 2# M. wf ot =) (Âot 2# M. cost sum ot)  (Âot 2# M. U sum ot)
Note that our theory caters only for operations with result type 0s. So-called

observers, operations that return a different type, e.g. bool, are not suitable for amor-
tized analysis: there is no sequence of operations that act on a succession of data
structures because observers produce no new data structure. Hence observers require
worst-case analysis. In all our examples their worst-case running time is constant.
Sometimes an operation returns both a new data structure and an observable value.
For example, the delete minimum operation on a priority queue may return both the
new priority queue and the minimum element. This combination of a mutator and
observer can be modeled by dropping the observer result (but not its computation)
because the result is irrelevant for the complexity analysis. Now amortized analysis
applies again.

Instantiating this theory of amortized complexity means defining the parameters
and proving the assumptions above: all operations preserve inv, F is non-negative,
and U is an upper bound of the amortized cost of each operation. Clearly the key
property is the assumption about U. Our framework does not perform these proofs
automatically but in yields the following benefits:

– It ensures that the user proves exactly the right properties.
– It yields theorem (1) that bounds the cost of a computation tree involving a certain

data structure. This theorem may then be used in the complexity analysis of an
application that uses this data structure.

Thus the framework is similar to a verification condition generator.
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4 Easy Examples

The primary purpose of this section is to demonstrate the instantiation of the frame-
work. The examples come from a standard textbook [7], except for the functional
queue implementation (e.g. [38]). We do not discuss the proofs because they can be
found in many textbooks. Isabelle’s auto proof method (which combines rewriting
with a bit of first-order reasoning) performs them automatically.

4.1 Binary Counter

We begin with the classic binary counter where incrementation can take linear time
in the worst case but takes only constant amortized time because the worst case is
rare. The state space 0s is just a list of booleans, starting with the least significant bit.
There are two operations, initialization and increment, with arities 0 and 1:

datatype op = Empty | Incr

arity Empty = 0
arity Incr = 1

In the rest of the paper we do not show the arity function as it is always obvious.
Function exec maps syntax to semantics. In other words, it is a dispatcher that

calls the actual functions associated with each operation symbol. The initialization
function is inlined

exec Empty [] = []
exec Incr [bs] = incr bs

whereas incr is defined recursively:

incr [] = [True]
incr (False · bs) = True · bs
incr (True · bs) = False · incr bs

Analogously we have the cost function

cost Empty = 1
cost Incr [bs] = tincr bs

that dispatches to tincr which is defined in complete analogy to incr:

tincr [] = 1
tincr (False · ) = 1
tincr (True · bs) = tincr bs + 1

The (upper bounds for the) amortized complexities are constant:

U Empty = 1
U Incr = 2

The potential is the number of True bits:

F bs = |filter id bs|
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The higher the potential, the longer an increment may take (roughly speaking). This
concludes the instantiation of the parameters of our amortized analysis theory. It re-
mains to show that 2 is indeed an upper bound for the amortized complexity of incr.
This follows immediately from

tincr bs + F (incr bs) � F bs = 2
which is proved by induction. Isabelle needs to be told to perform induction on bs but
the base case and induction step are proved automatically. It is the only theorem in
this section that requires induction.

4.2 Dynamic Tables

Dynamic tables are tables where elements are added and deleted and the table grows
and shrinks accordingly. At any point the table has a fixed size l and contains n  l
elements. If the table overflows (upon insertion), the contents is copied into a larger
table; if it underflows (upon deletion), the contents is copied into a smaller table. We
ignore the actual elements because they are irrelevant for the complexity analysis.
Therefore the operations

datatype op = Empty | Ins | Del
do not have arguments. Similarly the state is merely a pair of natural numbers (n, l)
that abstracts a table of size l with n elements. That means we define an abstract
model rather than real code. This is how the operations behave:

exec Empty [] = (0, 0)
exec Ins [(n, l)] = (n + 1, if n < l then l else if l = 0 then 1 else 2 ⇤ l)
exec Del [(n, l)] =
(n � 1, if n  1 then 0 else if 4 ⇤ (n � 1) < l then l div 2 else l)

If the table overflows upon insertion, its size is doubled. If a table is less than one
quarter full after deletion, its size is halved. The transition from and to the empty
table is treated specially.

This is the corresponding cost function:
cost Empty = 1
cost Ins [(n, l)] = (if n < l then 1 else n + 1)
cost Del [(n, l)] = (if n  1 then 1 else if 4 ⇤ (n � 1) < l then n else 1)

The cost for the cases where the table expands or shrinks is determined by the number
of elements that need to be copied.

We did not show the invariant for the binary counter because it is True. This time
we have a non-trivial invariant:

inv (n,l) = (if l = 0 then n = 0 else n  l ^ l  4 ⇤ n)
The potential is also more complicated than before:

F (n,l) = (if 2 ⇤ n < l then l / 2 � n else 2 ⇤ n � l)
The amortized complexity bounds are:

U Empty = 1
U Ins = 3
U Del = 2
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4.3 Queues

Queues have one operation for enqueueing a new item and one for dequeueing the
oldest item:

datatype 0a op = Empty | Enq 0a | Deq

A simple yet amortized constant time implementation of functional queues con-
sists of two lists (stacks) (xs,ys):

adjust (xs, ys) = (if ys = [] then ([], rev xs) else (xs, ys))

exec Empty [] = ([], [])
exec (Enq x) [(xs, ys)] = adjust (x · xs, ys)
exec Deq [(xs, ys)] = adjust (xs, tl ys)

cost Empty = 0
cost (Enq ) [(xs, ys)] = 1 + (if ys = [] then |xs| + 1 else 0)
cost Deq [(xs, ys)] = (if tl ys = [] then |xs| else 0)

Function tl takes the tail and rev reverses a list. The cost function counts only alloca-
tions of list cells and assumes rev has linear complexity.

The potential and the amortized complexities are

F (xs,ys) = |xs|
U Empty = 0
U (Enq ) = 2
U Deq = 0

We ignore the observer operation that returns the oldest item, the head of ys,
which is a worst-case constant time operation.

5 Skew Heaps

This section analyzes a beautifully simple data structure for priority queues: skew
heaps [42]. Heaps are trees where the least element in each subtree is at the root.
Skew heaps provide the following operations:

datatype 0a op = Empty | Insert 0a | Del min | Merge

We ignore the observer operation that returns the minimal element because it runs in
worst-case constant time and does not modify the heap.

The central operation on skew heaps is merge. It merges two skew heaps and
swaps children along the merge path:

merge h1 h2 =
(case h1 of hi ) h2
| hl1, a1, r1i )

case h2 of hi ) h1
| hl2, a2, r2i )

if a1  a2 then hmerge h2 r1, a1, l1i else hmerge h1 r2, a2, l2i)
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The remaining operations are implemented via merge:

exec Empty [] = hi
exec (Insert a) [h] = merge hhi, a, hii h
exec Del min [h] = del min h
exec Merge [h1, h2] = merge h1 h2

del min hi = hi
del min hl, m, ri = merge l r

For the functional correctness proofs see [30].
Sleator and Tarjan show that merge (and hence insert and del min) has amortized

complexity of at most 3 log2 n. Their proof is mostly prose. Our amortized analysis
is based on the precise functional account by Kaldewaij and Schoenmakers [23] but
with three differences:

– Kaldewaij and Schoenmakers reduce the multiplicative constant from 3 to 1.44.
This complicates their proof considerably. We simplify their proof by aiming only
for the original factor of 3.

– Kaldewaij and Schoenmakers phrase their proof as a synthesis of F , we simplify
the proceedings by verifying a given fixed F .

– Our merge differs from theirs in that it stops as soon as one of the two arguments
is empty.

We adopt their cost measure that counts (in essence) the number of calls of merge:

tmerge hi h = 1
tmerge h hi = 1
tmerge hl1, a1, r1i hl2, a2, r2i =
(if a1  a2 then tmerge hl2, a2, r2i r1 else tmerge hl1, a1, r1i r2) + 1

cost Empty [] = 1
cost (Insert a) [h] = tmerge hhi, a, hii h
cost Del min [h] = (case h of hi ) 1

| ht1, a, t2i ) tmerge t1 t2)
cost Merge [h1, h2] = tmerge h1 h2

Our potential function is an instance of the one by Kaldewaij and Schoenmakers: it
counts the number of “right heavy” nodes. The reason is that merge descends along
the right spine and therefore right heavy nodes are bad.

rh l r = (if |l| < |r| then 1 else 0)

F hi = 0 F hl, , ri = F l + F r + rh l r

To prove the amortized complexity of merge we need some further notions that cap-
ture the ideas of Sleator and Tarjan in a concise manner:

G hi = 0 G hl, , ri = rh l r + G l
D hi = 0 D hl, , ri = 1 � rh l r + D r

We will need the following two properties below:
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G h  log2 |h|1 (2)
D h  log2 |h|1 (3)

On paper one can show them easily by induction. However, Isabelle is not able to
prove the induction step automatically. Hence we apply a simple and frequently suc-
cessful recipe: remove logarithms by exponentiation. That is, we prove 2G h  |h|
+ 1 and 2D h  |h| + 1 by induction and now the base case and induction step are
proved automatically, as are the consequences (2) and (3).

A third property is also be proved automatically by Isabelle but is less intuitive.
Hence we show the details.

Lemma 5.1
tmerge t1 t2 + F (merge t1 t2) � F t1 � F t2  G (merge t1 t2) + D t1 + D t2 + 1

Proof by induction on the computation of merge. We consider only the node-node
case: let t1 = hl1, a1, r1i and t2 = hl2, a2, r2i. W.l.o.g. assume a1  a2. Let m =
merge t2 r1.

tmerge t1 t2 + F (merge t1 t2) � F t1 � F t2
= tmerge t2 r1 + 1 + F m + F l1 + rh m l1 � F t1 � F t2
= tmerge t2 r1 + 1 + F m + rh m l1 � F r1 � rh l1 r1 � F t2
 G m + D t2 + D r1 + rh m l1 + 2 � rh l1 r1 by IH
= G m + D t2 + D t1 + rh m l1 + 1
= G (merge t1 t2) + D t1 + D t2 + 1

Now the logarithmic amortized complexity of merge follows:

tmerge t1 t2 + F (merge t1 t2) � F t1 � F t2
 G (merge t1 t2) + D t1 + D t2 + 1 by Lemma 5.1
 log2 |merge t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1 by (2), (3)
= log2 (|t1|1 + |t2|1 � 1) + log2 |t1|1 + log2 |t2|1 + 1

because |merge t1 t2| = |t1| + |t2|
 log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
 log2 (|t1|1 + |t2|1) + 2 ⇤ log2 (|t1|1 + |t2|1) + 1

because logb x + logb y  2 ⇤ logb (x + y) if x,y > 0
= 3 ⇤ log2 (|t1|1 + |t2|1) + 1

Now it is easy to verify the following upper bounds:

U Empty [] = 1
U (Insert ) [h] = 3 ⇤ log2 (|h|1 + 2) + 1
U Del min [h] = 3 ⇤ log2 (|h|1 + 2) + 3
U Merge [h1, h2] = 3 ⇤ log2 (|h1|1 + |h2|1) + 1

Note that Isabelle supports implicit coercions, in particular from nat to real, that are
inserted automatically [44].

In the calculation above we have used that log2 x + log2 y  2 ⇤ log2 (x + y) (if
x,y > 0). It, and a number of similar lemmas l  r used below, can all be proved by
showing 2l  2r: 2log2 x + log2 y = x ⇤ y  (x + y)2 = 22 ⇤ log2 (x + y). This is another
instance of the above recipe to remove logarithms by exponentiation.
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splay x hi = hi
splay x hAB, b, CDi =
(if x = b then hAB, b, CDi
else if x < b

then case AB of hi ) hAB, b, CDi
| hA, a, Bi )

if x = a then hA, a, hB, b, CDii
else if x < a

then if A = hi then hA, a, hB, b, CDii
else case splay x A of hA1, a 0, A2i ) hA1, a 0, hA2, a, hB, b, CDiii

else if B = hi then hA, a, hB, b, CDii
else case splay x B of hB1, b 0, B2i ) hhA, a, B1i, b 0, hB2, b, CDii

else case CD of hi ) hAB, b, CDi
| hC, c, Di )

if x = c then hhAB, b, Ci, c, Di
else if x < c

then if C = hi then hhAB, b, Ci, c, Di
else case splay x C of hC1, c 0, C2i ) hhAB, b, C1i, c 0, hC2, c, Dii

else if D = hi then hhAB, b, Ci, c, Di
else case splay x D of hD1, d, D2i ) hhhAB, b, Ci, c, D1i, d, D2i)

Fig. 1 Function splay

6 Splay Trees

A splay tree [41] is a subtle self-adjusting binary search tree. It achieves its amortized
logarithmic complexity by local rotations of subtrees along the access path. Its central
operation is splay of type 0a ! 0a tree ! 0a tree. It searches some element x of a
linearly ordered type 0a; on the way back up it rotates x to the root of the tree. Most
presentations of splay confine themselves to the case where the given element is in
the tree. If the given element is not in the tree, the last element found before a hi was
met is rotated to the root. The complete definition is shown in Figure 1.

Although it is perfectly possible to work with the definition in Figure 1, Isabelle’s
function definition command [24] proves an induction theorem that has only two
cases, leaf and node, corresponding to the two equations for splay. If a proof about
splay needs to examine further subcases, this needs to be done explicitly in the proof
text (unless the proof is automatic). In the worst case this leads to as many manual
case analyses as there are conditionals on the right-hand side of the equations. Luckily
the function definition command offers a better alternative: define the function by
conditional equations and obtain an induction principle with a separate case for each
defining equation. This is our actual definition and is shown in Figure 2, the one
in Figure 1 is merely a direct consequence. The resulting induction theorem leads
to more compact proofs (one third shorter in one instance) by reducing boiler plate
proof steps. Schoenmakers [40] also defines splay by conditional equations.

Given splaying, searching for an element in the tree is trivial: splay with the given
element and check if it ends up at the root. For insertion and deletion, algorithm texts
often show pictures only. In contrast, we show the code only, in Figure 3. To insert
a, you splay with a to see if it is already there, and if it is not, you insert it at the
top (which is the right place due to the previous splay action). To delete a, you splay
with a and if a ends up at the root, you replace it with the maximal element removed
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splay x hi = hi
splay x hA, x, Bi = hA, x, Bi

x < b =) splay x hhA, x, Bi, b, Ci = hA, x, hB, b, Cii
x < b =) splay x hhi, b, Ai = hhi, b, Ai

x < a ^ x < b =) splay x hhhi, a, Ai, b, Bi = hhi, a, hA, b, Bii
x < b ^ x < c ^ AB 6= hi =) splay x hhAB, b, Ci, c, Di

= case splay x AB of hA, a, Bi ) hA, a, hB, b, hC, c, Diii
a < x ^ x < b =) splay x hhA, a, hii, b, Bi = hA, a, hhi, b, Bii

a < x ^ x < c ^ BC 6= hi =) splay x hhA, a, BCi, c, Di
= case splay x BC of hB, b, Ci ) hhA, a, Bi, b, hC, c, Dii

a < x =) splay x hA, a, hB, x, Cii = hhA, a, Bi, x, Ci
a < x =) splay x hA, a, hii = hA, a, hii

a < x ^ x < c ^ BC 6= hi =) splay x hA, a, hBC, c, Dii
= case splay x BC of hB, b, Ci ) hhA, a, Bi, b, hC, c, Dii

a < x ^ x < b =) splay x hA, a, hhi, b, Cii = hhA, a, hii, b, Ci
a < x ^ b < x =) splay x hA, a, hB, b, hiii = hhA, a, Bi, b, hii

a < x ^ b < x ^ CD 6= hi =) splay x hA, a, hB, b, CDii
= case splay x CD of hC, c, Di ) hhhA, a, Bi, b, Ci, c, Di

Fig. 2 Conditional definition of function splay

insert x t =
(if t = hi then hhi, x, hii
else case splay x t of

hl, a, ri ) if x < a then hl, x, hhi, a, rii else if a < x then hhl, a, hii, x, ri else hl, a, ri)

delete x t =
(if t = hi then hi
else case splay x t of

hl, a, ri )
if x = a then if l = hi then r else case splay max l of hl 0, m, r 0i ) hl 0, m, ri
else hl, a, ri)

splay max hi = hi
splay max hA, a, hii = hA, a, hii
splay max hA, a, hB, b, CDii =
(if CD = hi then hhA, a, Bi, b, hii
else case splay max CD of hC, c, Di ) hhhA, a, Bi, b, Ci, c, Di)

Fig. 3 Functions insert, delete and splay max

from the left subtree. The latter step is performed by splay max that splays with the
maximal element.

6.1 Functional Correctness

So far we have ignored functional correctness but for splay trees we actually need
elements of it in the verification of the complexity. The key functional properties are
that splaying does not change the contents of the tree (it merely reorganizes it) and
that bst is an invariant of splaying:

set tree (splay a t) = set tree t bst t =) bst (splay a t)

Similar properties can be proved for insertion and deletion, e.g.,
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bst t =) set tree (delete a t) = set tree t � {a}

Automatic proofs of functional correctness are presented elsewhere [33]. In the com-
plexity proofs below we do not actually use functional correctness but we use bst and
set tree and the fact that bst is an invariant.

Now we present two amortized analyses: a simpler one that yields the bounds
proved by Sleator and Tarjan [41] and a more complicated and precise one due to
Schoenmakers [40].

6.2 Amortized Analysis

The timing functions shown in Figure 4 count only the number of splay steps:
tsplay counts the number of calls of splay; tsplay max counts the number of calls of
splay max; tdelete counts the time for both splay and splay max.

The potential of a tree is defined as a sum of logarithms as follows:

j t = log2 |t|1
F hi = 0
F hl, a, ri = F l + F r + j hl, a, ri

The amortized complexity of splaying, asplay, is defined as usual:

asplay a t = tsplay a t + F (splay a t) � F t

Let subtrees yield the set of all subtrees of a tree:

subtrees hi = {hi}
subtrees hl, a, ri = {hl, a, ri} [ (subtrees l [ subtrees r)

The following logarithmic bound is proved by induction on t according to the
recursion schema of splay: if bst t and hl, a, ri 2 subtrees t then

asplay a t  3 ⇤ (j t � j hl, a, ri) + 1 (4)

Let us look at one case of the inductive proof in detail. We pick the so-called zig-zig
case shown in Figure 5. Subtrees with root x are called X on the left and X 0 on the
right-hand side. Thus the figure depicts splay a C = A 0 assuming the recursive call
splay a R = hR1, a, R2i =: R 0.

asplay a C = asplay a R + j B 0+ j C 0 � j B � j R 0+ 1
 3 ⇤ (j R � j hl, a, ri) + j B 0+ j C 0 � j B � j R 0+ 2 by IH
= 2 ⇤ j R + j B 0+ j C 0 � j B � 3 ⇤ j hl, a, ri + 2 because j R = j R 0

< j R + j B 0+ j C 0 � 3 ⇤ j hl, a, ri + 2 because j R < j B
 j B 0+ 2 ⇤ j C � 3 ⇤ j hl, a, ri + 1

because 1 + log2 x + log2 y < 2 ⇤ log2 (x + y) if x,y > 0
 3 ⇤ (j C � j hl, a, ri) + 1 because j B 0  j C

From (4) we obtain in the worst case (l = r = hi):

bst t ^ a 2 set tree t =) asplay a t  3 ⇤ (j t � 1) + 1
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tsplay a hi = 1
tsplay a hl, b, ri =
(if a = b then 1
else if a < b

then case l of hi ) 1
| hll, c, lri )

if a = c then 1
else if a < c then if ll = hi then 1 else tsplay a ll + 1

else if lr = hi then 1 else tsplay a lr + 1
else case r of hi ) 1

| hrl, c, rri )
if a = c then 1
else if a < c then if rl = hi then 1 else tsplay a rl + 1

else if rr = hi then 1 else tsplay a rr + 1)

tsplay max hi = 1
tsplay max hl, b, hii = 1
tsplay max hl, b, hrl, c, rrii = (if rr = hi then 1 else tsplay max rr + 1)

tdelete a t =
(if t = hi then 0
else tsplay a t +

(case splay a t of
hl, x, ri ) if x = a then case l of hi ) 0

| htree1, a, tree2i ) tsplay max l
else 0))

Fig. 4 Running time functions for splay trees

c
/ \

b T
/ \

R S

;

a
/ \

R1 b
/ \

R2 c
/ \

S T

Fig. 5 Zig-zig case for splay: a < b < c

In the literature the case a /2 set tree t is treated informally by stating that it can be
reduced to a 0 2 set tree t: one could have called splay with some a 0 2 set tree t instead
of a and the behaviour would have been the same. Formally we prove by induction
that if t 6= hi and bst t then

9a 02set tree t. splay a 0 t = splay a t ^ tsplay a 0 t = tsplay a t

This gives us an upper bound for all binary search trees:

bst t =) asplay a t  3 ⇤ j t + 1 (5)

The j t � 1 was increased to j t because the former is negative if t = hi.
We also need to determine the amortized complexity asplay max of splay max

asplay max t = tsplay max t + F (splay max t) � F t
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A derivation similar to but simpler than the one for asplay yields the same upper
bound: bst t =) asplay max t  3 ⇤ j t + 1.

Now we can apply our amortized analysis theory:

datatype 0a op = Empty | Splay 0a | Insert 0a | Delete 0a

exec Empty [] = hi cost Empty [] = 1
exec (Splay a) [t] = splay a t cost (Splay a) [t] = tsplay a t
exec (Insert a) [t] = insert a t cost (Insert a) [t] = tsplay a t
exec (Delete a) [t] = delete a t cost (Delete a) [t] = tdelete a t

U Empty [] = 1
U (Splay ) [t] = 3 ⇤ j t + 1
U (Insert ) [t] = 4 ⇤ j t + 2
U (Delete ) [t] = 6 ⇤ j t + 2

The fact that the given U is indeed a correct upper bound follows from the upper
bounds for asplay and asplay max; for Insert and Delete the proof needs some more
case distinctions and log-manipulations.

Note that we have not provided a function for searching an element in a tree
because that function merely calls splay and checks if the given element has ended
up at the root. Hence its complexity is the same as that of splay.

6.3 Improved Amortized Analysis

This subsection follows Schoenmakers [40] (except that he confines himself to splay)
who improves upon the constants in the above analysis. His analysis is parameterized
by two constants a > 1 and b subject to three constraints where all the variables are
assumed to be � 1:

(x + y) ⇤ (y + z)b  (x + y)b ⇤ (x + y + z)

a ⇤ (l 0+ r 0) ⇤ (lr + r)b ⇤ (lr + r 0+ r)b

 (l 0+ r 0)b ⇤ (l 0+ lr + r 0)b ⇤ (l 0+ lr + r 0+ r)

a ⇤ (l 0+ r 0) ⇤ (l 0+ ll)b ⇤ (r 0+ r)b

 (l 0+ r 0)b ⇤ (l 0+ ll + r 0)b ⇤ (l 0+ ll + r 0+ r)

The constraints in [40] look different but are equivalent.
The definition of F now depends on a and b :

j l r = b ⇤ loga (|l|1 + |r|1)

F hi = 0
F hl, , ri = F l + F r + j l r

Functions asplay and asplay max are defined as before, but with the new F . The fol-
lowing upper bound is again proved by induction but this time with the help of the
above constraints:

bst t ^ hl, a, ri 2 subtrees t =) asplay a t  loga (|t|1 / (|l|1 + |r|1)) + 1
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From this we obtain the following main theorem just like before:

bst t =) asplay a t  loga |t|1 + 1

Now we instantiate the above abstract development with a = 3p4 and b = 1/3
(which includes proving the three constraints on a and b above) to obtain a bound
for splaying that is only half as large as in (5):

bst t =) asplay34 a t  3 / 2 ⇤ j t + 1

The subscript 34 is our indication that we refer to the a = 3p4 and b = 1/3 instance.
Schoenmakers additionally showed that this specific choice of a and b yields the
minimal upper bound.

A similar but simpler development leads to the same bound for asplay max34 as for
asplay34. Again we apply our amortized analysis theory to verify upper bounds for
Splay, Insert and Delete that are also only half as large as before:

U Empty [] = 1
U (Splay ) [t] = 3 / 2 ⇤ j t + 1
U (Insert ) [t] = 2 ⇤ j t + 3 / 2
U (Delete ) [t] = 3 ⇤ j t + 2

The proofs in this subsection require highly nonlinear arithmetic. Only some of
the polynomial inequalities can be automated with Harrison’s sum-of-squares method
[16].

7 Splay Heaps

Splay heaps are another self-adjusting data structure and were invented by Okasaki
[38]. Splay heaps are organized internally like splay trees but they implement a pri-
ority queue interface without Merge. When inserting an element x into a splay heap,
the splay heap is first partitioned (by rotations, like splay) into two trees, one  x and
one > x, and x becomes the new root:

insert x h = (let (l, r) = partition x h in hl, x, ri)

partition p hi = (hi, hi)
partition p hAB, ab, BCi =
(if ab  p
then case BC of hi ) (hAB, ab, BCi, hi)

| hB, b, Ci )
if b  p then let (C1, C2) = partition p C in (hhAB, ab, Bi, b, C1i, C2)
else let (B1, B2) = partition p B in (hAB, ab, B1i, hB2, b, Ci)

else case AB of hi ) (hi, hAB, ab, BCi)
| hA, a, Bi )

if a  p then let (B1, B2) = partition p B in (hA, a, B1i, hB2, ab, BCi)
else let (A1, A2) = partition p A in (A1, hA2, a, hB, ab, BCii))

Function del min removes the minimal element and is similar to splay max:
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Fig. 6 Zig-zag case for partition: b  p < a

del min hi = hi
del min hhi, , ri = r
del min hhA, a, Bi, b, Ci =
(if A = hi then hB, b, Ci else hdel min A, a, hB, b, Cii)

In contrast to search trees, priority queues may contain elements multiple times.
Therefore splay heaps satisfy bst wrt () instead of bst wrt (<). It is an invariant for
both partition and del min:

partition p t = (l, r) ^ bst wrt () t =) bst wrt () hl, p, ri
bst wrt () t =) bst wrt () (del min t)

Under this invariant we can prove the correctness of partition and del min:

bst wrt () t ^ partition p t = (l, r) =) mset tree t = mset tree l + mset tree r
mset tree (del min h) = mset tree h � {#get min h#}

where mset tree t is the multiset of elements in tree t, + and � are union and differ-
ence of multisets, {#x#} is a singleton multiset, and get min t is the leftmost element
of tree t. For the proofs see [31].

7.1 Amortized Analysis

Now we verify the amortized analysis due to Okasaki. The timing functions are
straightforward and not shown: tpart and tdm count the number of calls of partition
and del min. The potential of a tree is defined as for splay trees in Section 6.2. We
abbreviate the amortized complexity of a computation partition p t = (l 0, r 0) by

A p t = tpart p t + F l 0+ F r 0 � F t

The following logarithmic bound on A p t is proved by computation induction on
partition p t:

bst wrt () t =) A p t  2 ⇤ j t + 1

Okasaki [38] shows the zig-zig case of the induction, we show the zig-zag case in
Figure 6. Subtrees with root x are called X on the left and X 0 on the right-hand side.
Thus Figure 6 depicts partition p A = (B 0, A 0) assuming the recursive call partition p
S = (S1, S2).

A p A = tpart p A + F B 0+ F A 0 � F A by def. of A p A
= 1 + tpart p S + F B 0+ F A 0 � F A by def. of tpart
= 1 + A p S � F S1 � F S2 + F S + F B 0+ F A 0 � F A by def. of A p S
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= 1 + A p S + j B 0+ j A 0 � j B � j A by def. of F
 2 ⇤ j S + 2 + j B 0+ j A 0 � j B � j A by IH
< 2 + j B 0+ j A 0 because j S < j B and j S < j A
 2 ⇤ log2 (|R|1 + |S1|1 + |S2|1 + |T|1 � 1) + 1

because 1 + log2 x + log2 y  2 ⇤ log2 (x + y � 1) if x,y � 2
= 2 ⇤ j A + 1 because |S1| + |S2| = |S|

The proof of the amortized complexity of del min is similar to the proof for
splay max: tdm t + F (del min t) � F t  2 ⇤ j t + 1. Now it is routine to ver-
ify the following amortized complexities by instantiating our standard theory:

exec Empty [] = hi cost Empty [] = 1
exec (Insert a) [t] = insert a t cost (Insert a) [t] = tpart a t
exec Del min [t] = del min t cost Del min [t] = tdm t

U Empty [] = 1
U (Insert ) [t] = 3 ⇤ log2 (|t|1 + 1) + 1
U Del min [t] = 2 ⇤ j t + 1

8 Pairing Heaps

This section analyzes another easy-to-implement data structure for priority queues:
pairing heaps [13]. We follow the data structures, algorithms and roughly also the
proofs of the original publication, except that our implementation is not imperative
but functional.

Pairing heaps are represented as binary trees subject to a simple invariant: the root
is either empty or a node whose right child is empty:

is root h = (case h of hi ) True | hl, x, ri ) r = hi)

The left child can be viewed as a list (in binary tree form) of pairing heaps. Moreover,
a pairing heap should satisfy the heap condition:

pheap hi = True
pheap hl, x, ri = (pheap l ^ pheap r ^ (8y2set tree l. x  y))

It turns out that the proof of functional correctness requires both invariants, the proof
of amortized complexity only needs is root.

The central operation on pairing heaps is link. Called with the root of a pairing
heap it behaves like the identity function; called with a heap that has a non-empty
right child it permutes some nodes and subtrees (see Figure 7). Viewing link as an
operation on a list (in binary tree form) of heaps it merges the first two heaps in the
list by moving the one with the bigger root into the list of the other one.

link hi = hi
link hlx, x, hii = hlx, x, hii
link hlx, x, hly, y, ryii =
(if x < y then hhly, y, lxi, x, ryi else hhlx, x, lyi, y, ryi)
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Fig. 7 link visualized

Inserting an element is realized like for skew heaps

insert x h = merge hhi, x, hii h

where merge combines two heaps. Applied to two non-empty heaps, function merge
works in two steps: make one heap the right child of the root of the other heap, then
call link.

merge hi h = h
merge h hi = h
merge hlx, x, hii hly, y, hii = link hlx, x, hly, y, hiii

Let us now focus on del min which is defined as follows:

del min hi = hi
del min hl, , hii = pass2 (pass1 l)

pass1 hi = hi
pass1 hlx, x, hii = hlx, x, hii
pass1 hlx, x, hly, y, ryii = link hlx, x, hly, y, pass1 ryii

pass2 hi = hi
pass2 hl, x, ri = link hl, x, pass2 ri

Functions pass1/pass2 call link on every/every second node of the sequence of nodes
obtained by descending to the right from the root. Both operations work in a bottom-
up manner (otherwise the complexity is worse [13]). Note that the only purpose of
pass1 is the complexity: without pass1, del min is still correct but the amortized run-
ning times would be worse. Also note that both passes can be performed in a single
pass. We call this function merge pairs:

merge pairs hi = hi
merge pairs hlx, x, hii = hlx, x, hii
merge pairs hlx, x, hly, y, ryii = link (link hlx, x, hly, y, merge pairs ryii)

It can easily be shown that

pass2 (pass1 hs) = merge pairs hs
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Function merge pairs is more efficient than pass2 � pass1 by a constant factor, but we
follow [13] in separating the two passes because this seems to simplify the amortized
analysis.

The proof of functional correctness of pairing heaps is straightforward and can be
found elsewhere [3].

8.1 Amortized Analysis

The potential function is defined as

F hi = 0
F hl, , ri = F l + F r + log2 (1 + |l| + |r|)
Function insert can cause an at most logarithmic change in potential:

is root h =) F (insert x h) � F h  log2 (|h| + 1) (6)

Because none of the functions are recursive, this proof is automatic.
Now we analyze del min. Its running time is linear in the number of nodes reach-

able by descending to the right (starting from the left child of the root). We denote
this metric by | |R :

|hi|R = 0
|h , , ri|R = 1 + |r|R

Therefore we have to show that the potential change compensates for this linear work.
Our main goal is now to show that if lx 6= hi then

F (del min hlx, x, hii) � F hlx, x, hii  3 ⇤ log2 |lx| � |lx|R + 2

This will be done roughly in two steps: First we show that pass1 frees enough poten-
tial to compensate for the work linear in |lx|R and increases the potential only by a
logarithmic term. Then we show that the increase due to pass2 is also only at most
logarithmic. Combining these results one easily shows that the amortized running
time of del min is indeed logarithmic.

In the proofs below note that

|pass1 h| = |h| |pass2 h| = |h|
We define a recursive upper bound upperbound for the potential change of pass1

upperbound hi = 0
upperbound h , , hii = 0
upperbound hlx, , hly, , hiii = 2 ⇤ log2 (|lx| + |ly| + 2)
upperbound hlx, , hly, , ryii =
2 ⇤ log2 (|lx| + |ly| + |ry| + 2) � 2 ⇤ log2 |ry| � 2 + upperbound ry

and show that it is indeed an upper bound:

Lemma 8.1 F (pass1 hs) � F hs  upperbound hs

Proof by induction on the computation of upperbound. Thus there is one case for
each defining equation. Cases 1 and 2 are trivial. Case 3 needs some simple arithmetic
manipulations. Given hs = hlx, x, hly, y, hiii we can deduce
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F (pass1 hs) � F hs = log2 (|lx| + |ly| + 1) � log2 (|ly| + 1)
 2 ⇤ log2 (|lx| + |ly| + 2) = upperbound hs

For case 4, the induction step, we have hs = hlx, x, rxi, rx = hly, y, ryi and ry 6= hi.
First note

log2 (|lx| + |ly| + 1) + 2 ⇤ log2 |ry| + 2
 2 ⇤ log2 (|lx| + |ly| + |ry| + 1) + log2 |ry|

because log2 x + log2 y + 2  2 ⇤ log2 (x + y) if x,y > 0
 2 ⇤ log2 (|lx| + |ly| + |ry| + 2) + log2 |ry| by monotonicity of log
= 2 ⇤ log2 |hs| + log2 |ry|
 2 ⇤ log2 |hs| + log2 (|ly| + |ry| + 1) by monotonicity of log

which implies

log2 (|lx| + |ly| + 1) � log2 (|ly| + |ry| + 1)
 2 ⇤ log2 |hs| � 2 ⇤ log2 |ry| � 2
= upperbound hs � upperbound ry (⇤)

Using the definitions we obtain

F (pass1 hs) � F hs
= log2 (|lx| + |ly| + 1) � log2 (|lx| + |ry| + 1) + F (pass1 ry) � F ry
 log2 (|lx| + |ly| + 1) � log2 (|lx| + |ry| + 1) + upperbound ry by IH
 upperbound hs by (⇤) ut

Lemma 8.2 (Potential difference of pass1)
hs 6= hi =) F (pass1 hs) � F hs  2 ⇤ log2 |hs| � |hs|R + 2

Proof Show the following property by induction on the computation of upperbound

hs 6= hi =) upperbound hs  2 ⇤ log2 |hs| � |hs|R + 2

and apply Lemma 8.1. ut

Now we turn to pass2:

Lemma 8.3 (Potential difference of pass2)
hs 6= hi =) F (pass2 hs) � F hs  log2 |hs|

Proof by induction on hs. The base case is trivial. The induction step (where hs =
hlx, x, rxi) is trivial if rx = hi. Assume rx = hly, y, ryi. Now we need one more
property of pass2:

9 la a. pass2 hly, y, ryi = hla, a, hii

The proof is a straightforward induction on ry. Together with |pass2 rx| = |rx| this
implies |la|+ 1 = |rx|. Together with pass2 rx = hla, a, hii this implies (by definition
of the functions involved) that

F (link hlx, x, pass2 rxi) � F lx � F (pass2 rx)
= log2 (|lx| + |rx| + 1) + log2 (|lx| + |rx|) � log2 |rx| (⇤⇤)

Thus the overall claim follows:
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F (pass2 hs) � F hs
= F (link hlx, x, pass2 rxi) � F lx � F rx � log2 (|lx| + |rx| + 1)
= F (pass2 rx) � F rx + log2 (|lx| + |rx|) � log2 |rx| by (⇤⇤)
 log2 (|lx| + |rx|) by IH
 log2 |hs| ut

We can also prove a logarithmic bound for the amortized complexity of merge:

Lemma 8.4 If h1 = hlx, x, hii and h2 = hly, y, hii then

F (merge h1 h2) � F h1 � F h2  log2 (|h1| + |h2|) + 1

Proof From

F (merge h1 h2)
= F (link hlx, x, h2i)
= F lx + F ly + log2 (|lx| + |ly| + 1) + log2 (|lx| + |ly| + 2)
= F lx + F ly + log2 (|lx| + |ly| + 1) + log2 (|h1| + |h2|)

it follows that

F (merge h1 h2) � F h1 � F h2
= log2 (|lx| + |ly| + 1) + log2 (|h1| + |h2|) � log2 (|lx| + 1) � log2 (|ly| + 1)
 log2 (|h1| + |h2|) + 1

because log2 (1 + x + y)  1 + log2 (1 + x) + log2 (1 + y) if x,y � 0 ut

Now we integrate the analysis into our framework from Section 3. We reuse the
data type op from the section about skew heaps:

exec Empty [] = hi
exec Del min [h] = del min h
exec (Insert x) [h] = insert x h
exec Merge [h1, h2] = merge h1 h2

Running times are equated with the number of function calls, where non-recursive
calls are lumped together:

tpass1 hi = 1 tpass2 hi = 1
tpass1 h , , hii = 1 tpass2 h , , rxi = tpass2 rx + 1
tpass1 h , , h , , ryii = tpass1 ry + 1

cost Empty [] = 1
cost Del min [hi] = 1
cost Del min [hlx, , i] = tpass2 (pass1 lx) + tpass1 lx
cost (Insert ) = 1
cost Merge = 1

The upper bounds for the amortized complexities:

U Empty [] = 1
U (Insert ) [h] = log2 (|h| + 1) + 1
U Del min [h] = 3 ⇤ log2 (|h| + 1) + 4
U Merge [h1, h2] = log2 (|h1| + |h2| + 1) + 2



24 Tobias Nipkow and Hauke Brinkop

The upper bound for Insert follows directly from (6) because cost (Insert ) = 1.
The upper bound for Del min follows from Lemma 8.2 and Lemma 8.3 by this easy
inductive timing lemma:

tpass2 (pass1 lx) + tpass1 lx  |lx|R + 2
The upper bound for Merge follows from Lemma 8.4; the cases where one of the
heaps is empty are trivial.

8.2 Pairing Heaps via Lists

The above formulation of pairing heaps is not as readable as could be because every-
thing is a tree. We have already indicated that some trees should be viewed as lists.
Therefore Okasaki [38] represents pairing heaps as follows (in Isabelle notation):

datatype 0a heap = Empty | Hp 0a ( 0a heap list)
This representation comes with the invariant that Empty only occurs at the root. The
functional correctness proof does not require the invariant, but the amortized anal-
ysis seems to, to avoid log0; alternatively one may be able to add 1 to certain log-
arguments, but that also complicates the proofs. Therefore we tried a third alternative
that is free of structural invariants (of course one still needs the heap invariant for
functional correctness):

datatype 0a hp = Hp 0a ( 0a hp list)
type synonym 0a heap = 0a hp option

Although the proof text for this third alternative is slightly shorter than for the original
tree version, it becomes conceptually less appealing: because three types are involved
now ( 0a hp, 0a hp list and 0a heap), we need three potential and three size functions.
In contrast, the uniform binary tree representation also leads to uniform proofs.

As a final alternative we proved the complexity of Okasaki’s version as a conse-
quence of the complexity of the tree-based version. This proof relies on the following
general result. We assume we are given

– an amortized analysis involving exec, cost and U on type 0s,
– a second implementation of the same set of operations on type 0t involving exec 0,

cost 0 and (claimed) upper bounds U 0.
– a homomorphism hom from 0t to 0s such that hom (exec 0 f ts) = exec f (map hom

ts), cost 0 f ts = cost f (map hom ts) and U 0 f ts = U f (map hom ts).
Then U 0 states correct upper bounds on the amortized complexities of the second
implementation. Okasaki’s implementation is related back to the tree-based version
as follows:

hom Empty = hi
hom (Hp x hs) = hhoms hs, x, hii
homs [] = hi
homs (Hp x lhs · rhs) = hhoms lhs, x, homs rhsi

The required proofs are straightforward inductions.
This subsection has concentrated on the essence. For the details the reader should

consult the complete theories available online [29,34].
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8.3 Tighter bounds

Pairing Heaps have been designed in order to have the same (optimal) amortized
running times as Fibonacci Heaps, but without their big overhead. In the original
paper [13] the authors proved the logarithmic bounds verified above. Iacono [22]
proved that insert and merge do indeed have constant amortized complexity.

The picture becomes more complicated when decrease key is also supported, an
operation that is important in practice because it is used in Dijkstra’s algorithm. How-
ever, efficient implementations of decrease key rely on references. It turns out that the
precise amortized complexity of decrease key is still open.

A recent new variant of pairing heaps with perfect asymptotic running times
are rank-pairing heaps [14]. The introduction to that article also provides a good
overview of the state of the art in pairing heaps and their complexity.

9 Conclusion

This paper has presented a framework for amortized analysis and detailed, completely
algebraic proofs of amortized complexity of a range of nontrivial data structures.
Apart from the design of the framework, the main challenges were finding the alge-
braic proofs and verifying them in Isabelle. For skew heaps, splay trees and splay
heaps, algebraic proofs had already been given in the literature. For pairing heaps we
found that recasting the proof of Theorem 1 in [13] into purely algebraic form was
non-trivial. The verification in Isabelle was of average difficulty, except for the chal-
lenging nonlinear arithmetic in Section 6.3. Better automation of arithmetic is needed
to support algorithm analyses in theorem provers.

The following table shows the sizes (in number of lines) of the Isabelle theories
containing the amortized analyses of the four data structures we examined:

Skew heap Splay tree Splay heap Pairing heap
200 560 (640) 220 260

For splay trees, the number in parentheses refers to the theory for the optimal analysis
from Section 6.3. As is typical in mathematics, the size of the final proofs belies the
effort that went into constructing them. At the same time it is encouraging that the
formal proofs are of a size comparable to carefully written pen-and-paper proofs.

Although the focus of our analyses are functional programs, one can also view
these programs as models or abstractions. The dynamic table in Section 4.2 is a case
in point: it is not a useful functional data structure but a model of a dynamic ar-
ray where the indexing operations and the contents have been omitted because they
are irrelevant for the analysis. In general, the amortized analysis depends only on
the input-output behaviour and the complexity of each operation, given by exec and
cost. Hence the analysis is valid for any implementation that behaves like exec and
cost, regardless of the implementation language. In fact, the standard imperative im-
plementations of all of our examples have the same complexity as their functional
counterpart.
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