
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Gale-Shapley Verified

Tobias Nipkow

Abstract This paper presents a detailed verification of the Gale-Shapley algo-
rithm for stable matching (or marriage). The verification proceeds by stepwise
transformation of programs and proofs. The initial steps are on the level of im-
perative programs, ending in a linear time algorithm. An executable functional
program is obtained in a last step. The emphasis is on the stepwise development
of the algorithm and the required invariants.

1 Introduction

The Gale-Shapley algorithm [8] solves a matching problem: it finds a stable match-
ing between two sets of elements given an ordering of preferences for each element.
This work spawned a subfield of research, stable matching. The algorithm is of
great practical importance: variations of it have been used for matching medi-
cal school students and hospital training programs since the 1950s [11] and are
used today for matching clients and servers in Akamai’s content delivery network
[20]. The textbook by Kleinberg and Tardos [14] presents the problem and the
algorithm as the first of five representative algorithm design problems. Shapley
and Roth were awarded the 2012 Prize in Economic Sciences in Memory of Al-
fred Nobel “for the theory of stable allocations”. Nevertheless, no formally verified
correctness proof of the algorithm can be found in the literature (see Section 14).

This paper presents the first formally verified development of a linear-time ex-
ecutable implementation of the Gale-Shapley algorithm (using the proof assistant
Isabelle [25,24]). The formalization is available online [23]. The development of the
final algorithm is by stepwise transformation. By accident we discovered a small
defect in a proof rule in a well-known program verification textbook [3,2] that had
gone unnoticed for 30 years (see Section 9).

Technical University of Munich, Germany
https://www.proof.cit.tum.de/~nipkow

https://orcid.org/0000-0003-0730-515X
https://www.proof.cit.tum.de/~nipkow

2 Tobias Nipkow

Algorithm 0 The informal Gale-Shapley algorithm as presented by Gusfield and Irving

assign each element to be free;
while some a in A is free do
begin
b := first B on a’s list to whom a has not yet tried to be matched;
if b is free then

assign a and b to be matched
else

if b prefers a to its current match a′ then
assign a and b to be matched and a′ to be free

else
b rejects the match with a and a remains free

end

2 Problem and Algorithm

We start with the informal presentation of the problem and algorithm by Gusfield
and Irving in their well-known monograph [11]. However, our terminology avoids
all reference to gender.1

There are two disjoint sets A and B with n elements each. Each element has
a strictly ordered preference list of all the members of the other set. Element p
prefers q to q′ iff q precedes q′ on p’s preference list. The problem is to find a stable
matching, i.e. a subset of A×B, with the following properties:

– Every a ∈ A is matched with exactly one b ∈ B and vice versa.
– The matching is stable: there are no two elements from opposite sets who would

rather be matched with each other than to the elements they are actually
matched with.

The Gale-Shapley algorithm (Algorithm 0) is guaranteed to find such a stable
matching in O(n2) iterations. Moreover, because the a ∈ A get to choose, the
resulting matching is A-optimal: there is no other stable matching between A and
B with the given preferences where some a ∈ A does better, i.e. is matched to a
b ∈ B that a prefers to the computed match.

3 Isabelle Notation

Isabelle types are built from type variables, e.g. ′a, and (postfix) type constructors,
e.g. ′a list . The infix function type arrow is⇒. The notation t :: τ means that term
t has type τ . Isabelle (more precisely Isabelle/HOL, the logic we work in) provides
types ′a set and ′a list of sets and lists of elements of type ′a. They come with the
following notations: f ‘ A (the image of set A under f), function set (conversion
from lists to sets), x · xs (list with head x and tail xs), |xs| (length of list xs),
xs ! i (the ith element of xs starting at 0), and xs[i := x] (list xs where the ith

1 Because Reviewer 2 of a draft version of this article was hurt by the gender-based ter-
minology and made a plea not to reproduce and disseminate such outdated terminology, I
have completely neutralized all reference to gender. I need to warn all sensitive persons that
reading references [8,11,15,16,13] may hurt or offend them. Citing those sources does in no
way constitute support for their outdated terminology.

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 3

element has been replaced by x). Throughout the paper, all numbers are of type
nat, the type of natural numbers.

Data type ′a option is also predefined:

datatype ′a option = None | Some ′a

4 Hoare Logic and Stepwise Development

Most of the work in this paper is carried out on the level of imperative programs.
The Hoare logic used for this purpose is based on work by Gordon [10] and was
added to Isabelle by Nipkow in 1998. Possibly the first published usage was by
Mehta and Nipkow [21]. Recently Guttmann and Nipkow added variants, i.e. ex-
pressions of type nat that should decrease with every iteration of a loop. Total
correctness Hoare triples have the syntax [P] c [Q] where P and Q are pre- and
post-conditions and c is the program. Loops must be annotated with invariants
and variants like this:

WHILE condition INV {invariant} VAR {variant} DO body OD

The implementation of the Hoare logic comes with a verification condition gener-
ator.

We progress from the first to the last algorithm by stepwise transformation.
In each step we restate the full modified algorithm, which is not an issue for algo-
rithms of 15-20 lines. Readjusting the proofs to a modified algorithm is reasonably
easy: the proofs of the verification conditions are all relatively short (about 60 lines
per algorithm), they are structured and readable [26,27], and our transformation
steps are small. Most importantly, the key steps in the proofs are formulated as
separate lemmas that are reused multiple times. For example, we may have an
algorithm with some set variable S, prove some lemma about S, refine the algo-
rithm by replacing S by a list variable L, and reuse the very same lemma with S
instantiated by set L.

Although this methodology is inspired by stepwise refinement, in particular
data refinement, we avoid the word refinement because it suggests a modular
development. Instead we speak of stepwise transformation or development and of
data concretisation.

This methodology is not intended for the development of large algorithms but
for small intricate ones. I can confidently say that it worked well for Gale-Shapley:
I spent most of my time on the core proofs and very little on copy-paste-modify.
Structured proofs helped to localize the effect of most changes. The problems of
code duplication in programming do not arise because the theorem prover keeps
you honest.

It should be mentioned that there is a refinement framework in Isabelle [18]
and it would be interesting to see how the development of Gale-Shapley plays out
in it.

5 Formalization of the Stable Matching Problem

We do not refer to the actual sets A and B and their elements directly but only to
their indices 0, . . . , n− 1. We use mnemonic names like a and b to indicate which

4 Tobias Nipkow

of the two sets these indices range over. We speak of a’s and b’s to mean sets of
indices. By {<n} we abbreviate the set of all i < n.

We fix the following variables:

– The cardinality n :: nat
– The preference lists P, Q :: nat list list. For each a ∈ {<n}, P ! a is the

preference list of a, i.e. a list of all b’s in decreasing order of preference. Dually
for Q. We assume that the preference lists have the right lengths and are
permutations of {<n}:

n = |P | = |Q |
a < n −→ |P ! a| = n ∧ set (P ! a) = {<n}
b < n −→ |Q ! b| = n ∧ set (Q ! b) = {<n}

Pref

These properties are used implicitly in proofs we discuss.

It is important to emphasize that although we model everything in terms of
lists, in a last step these lists will be implemented as arrays to obtain constant
time access to each element.

The notation P ` x < y means that x occurs before y (meaning x is preferred
to y) in the preference list P :

(P ` x < y) = (index P x < index P y)

index [] = 0
index (x · xs) y = (if x = y then 0 else index xs y + 1)

The algorithm tries to match each a first with P ! a ! 0, then with P ! a ! 1
etc. Thus we do not record a’s current match b = P ! a ! i but we record the i,
and increment i every time a match (a, b) has to be undone. A list A :: nat list (of
length n) will record the index for the current match of each a. The actual match
b is P ! a ! (A ! a) and we define

match A a = P ! a ! (A ! a)

Note that unless the algorithm has really matched a and b = match A a, then b
is merely the current top choice of a.

In the sequel, A will always represent such a list of indices into the preference
lists. The predicate wf A expresses that A associates every a < n with some b <
n:

wf A = (|A| = n ∧ set A ⊆ {<n})

This means that match A is a function from {<n} to {<n}.
To improve readability we introduce the following suggestive notation:

A〈a〉 = match A a
A〈M 〉 = match A ‘ M

where M :: nat set.

5.1 Stable Matchings

We are looking at the special case of bipartite matching where every a and b are
connected. A matching on M ⊆ {<n} is an injective function from M to {<n}.

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 5

matching A M = (wf A ∧ inj on (match A) M)

The predicate inj on f S means that f :: ′a ⇒ ′b is injective on S :: ′a set.
We want a stable matching, i.e. one where there are no “unstable” matches

(a, b) and (a ′, b ′) such that a prefers b ′ to b and b ′ prefers a to a ′:

stable A M = (¬ (∃ a∈M . ∃ a ′∈M . P ! a ` A〈a ′〉 < A〈a〉 ∧ Q ! A〈a ′〉 ` a < a ′))

We will not just show that the Gale-Shapley algorithm finds a stable matching
but also that this matching is A-optimal, i.e. there is no stable matching where
some a can do better:

optiA A =
(@A ′. matching A ′ {<n} ∧ stable A ′ {<n} ∧ (∃ a<n. P ! a ` A ′〈a〉 < A〈a〉))

The dual property is B-pessimality, i.e. no b can do worse:

pessiB A =
(@A ′. matching A ′ {<n} ∧ stable A ′ {<n}
∧ (∃ a<n. ∃ a ′<n. A〈a〉 = A ′〈a ′〉 ∧ Q ! A〈a〉 ` a < a ′))

Unsurprisingly, it is easy to prove that any A-optimal A is b-pessimal:

optiA A −→ pessiB A

5.2 Stepwise Development

The following points remain unchanged throughout the development process:

– The matchings are recorded as a variable A as described above. How it is
recorded if some a has been matched to A〈a〉 or not changes during the devel-
opment process.

– The precondition always assumes A = replicate n 0, where replicate m x is a
list of m x ’s. That is, all a’s start at the beginning of their preference list.
Making this assumption a precondition avoids a trivial initialization loop. We
will frequently deal with initializations like this.

– The postcondition is always matching A {<n} ∧ stable A {<n} ∧ optiA A

6 Algorithm 1

Algorithm 1 follows the informal algorithm by Gusfield and Irving [11] quite closely.
Variable M records the set of a’s that have been matched. Initially no a has been
matched.

At the beginning of each iteration an unmatched a is picked via Hilbert’s choice
operator: SOME x . P is some x that satisfies P. If there is no such x, we cannot
deduce anything (nontrivial) about SOME x . P. However, we only use the choice
operator in cases where there is a suitable x. If there are multiple x, SOME x .
P will return an arbitrary fixed one. Although the choice is deterministic, our
proofs work by merely assuming that some suitable x has been picked and thus
the algorithm would work just as well with a nondeterministic choice. In the end,
the exact nature of SOME is irrelevant: only the first two programs use SOME, it
is transformed away afterwards.

6 Tobias Nipkow

Algorithm 1

[M = ∅ ∧ A = replicate n 0]1

WHILE M 6= {<n} INV {invAM A M} VAR {var A M}2

DO a := (SOME a. a < n ∧ a /∈ M);3

b := A〈a〉;4

IF b /∈ A〈M 〉 THEN M := M ∪ {a}5

ELSE a ′ := (SOME a ′. a ′ ∈ M ∧ A〈a ′〉 = b);6

IF Q ! A〈a ′〉 ` a < a ′7

THEN A := A[a ′ := A ! a ′ + 1]; M := M − {a ′} ∪ {a}8

ELSE A := A[a := A ! a + 1] FI9

FI10

OD11

[matching A {<n} ∧ stable A {<n} ∧ optiA A]12

The term (SOME a ′. a ′ ∈ M ∧ A〈a ′〉 = b) expresses the inverse of match A
applied to b.

In each iteration, one of three possible basic actions is performed, where a is
unmatched and b = A〈a〉:

– match (line 5): b was unmatched; now a is matched (to b).
– swap (line 8): b was matched to some a ′ but b prefers a to a ′; now a ′ is un-

matched and moves to the next element on its preference list and a is matched
(to b)

– next (line 9): b was matched to some a ′ and b prefers a ′ to a; now a moves
to the next element on its preference list.

We will now detail the correctness proof, first of the invariant, then of the variant.

6.1 The Invariant

invAM A M = (matching A M ∧ M ⊆ {<n} ∧ pref match A M ∧ optiA A)

pref match A M =
(∀ a<n. ∀ b<n. P ! a ` b < A〈a〉 −→ (∃ a ′∈M . b = A〈a ′〉 ∧ Q ! b ` a ′ < a))

The predicate pref match says that if a prefers b to its match A〈a〉 then b is
matched to some a ′ who b prefers to a. This is the invariant way of expressing
this more operational or temporal property used by Knuth [16] (adapted):

Point 2. If a prefers b to its match b ′, it means that b has rejected a for another.

An alternative formulation of pref match is based directly on the indices below
A ! a:

pref match ′ A M =
(∀ a<n. ∀ b∈preferred A a. ∃ a ′∈M . b = A〈a ′〉 ∧ Q ! b ` a ′ < a)

preferred A a = (!) (P ! a) ‘ {< A ! a}

where (!) is the prefix version of the infix !. Both predicates are equivalent

wf A −→ pref match ′ A M = pref match A M

and we use whichever is more convenient in a given situation.

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 7

The invariant can be seen as a generalization of the postcondition. The missing
link is this lemma from which it follows directly that the invariant together with
M = {<n} implies the postcondition:

Lemma 1 matching A {<n} ∧ pref match A {<n} −→ stable A {<n}

Proof By contradiction. Assume there are a1, a2 < n, a1 6= a2 such that P ! a1 `
A〈a2〉 < A〈a1〉 and Q ! A〈a2〉 ` a1 < a2. Assumption pref match A {<n} implies
that there is an a ′ such that A〈a2〉 = A〈a ′〉 and Q ! A〈a2〉 ` a ′ < a1. Injectivity
of match A on M implies a2 = a ′ and thus we have both Q ! A〈a2〉 ` a1 < a2

and Q ! A〈a2〉 ` a2 < a1, a contradiction. ut

The precondition M = ∅ ∧ A = replicate n 0 is easily seen to establish the
invariant.

6.2 Preservation of the Invariant

We need to show that invAM is preserved by the basic actions match, swap and
next. For match this is easy and we concentrate on swap and next. We present
the proofs bottom up, starting with the key supporting lemmas.

We begin by showing that wf A is preserved. Both swap and next increment
some A ! a where a < n and A〈a〉 ∈ A〈M 〉 (swap: a ′ instead of a). We need to
show that the result is still < n. This is the corresponding lemma:

Lemma 2 wf A ∧ M ⊂ {<n} ∧ preferred A a ⊆ A〈M 〉 ∧ a < n ∧ A〈a〉 ∈ A〈M 〉
−→ A ! a + 1 < n

Proof By contradiction. If A ! a + 1 = n, then (!) (P ! a) ‘ {<n} ⊆ A〈M 〉
(by assumptions). Moreover (!) (P ! a) ‘ {<n} = {<n} because |P ! a| = n ∧
set (P ! a) = {<n}. Thus {<n} ⊆ A〈M 〉 and hence n ≤ |M |. This is a contra-
diction because M ⊂ {<n} implies |M | < n. ut

The following lemma (proof omitted) shows that optiA is preserved by swap
and next:

Lemma 3
wf A ∧ a < n ∧ a ′ < n ∧ A〈a ′〉 = A〈a〉 ∧ Q ! A〈a ′〉 ` a ′ < a ∧ optiA A
−→ optiA (A[a := A ! a + 1])

The following three lemmas (of which the first one is straightforward) express
that invAM is preserved by the three basic actions match, swap and next.

Lemma 4
invAM A M ∧ a < n ∧ a /∈ M ∧ A〈a〉 /∈ A〈M 〉 −→ invAM A (M ∪ {a})

Lemma 5
invAM A M ∧ a < n ∧ a /∈ M ∧ a ′ ∈ M ∧ A〈a ′〉 = A〈a〉 ∧ Q ! A〈a ′〉 ` a < a ′

−→ invAM (A[a ′ := A ! a ′ + 1]) (M − {a ′} ∪ {a})

Proof Preservation of wf A follows from Lemma 2, preservation of injectivity is
straightforward and preservation of optiA follows from Lemma 3. It remains to
prove pref match ′ A ′ M ′ where A ′ = A[a := A ! a + 1] and M ′ = M − {a ′} ∪
{a}:

8 Tobias Nipkow

∀ x<n. ∀ b∈preferred A ′ x . ∃ y∈M ′. b = A〈y〉 ∧ Q ! b ` y < x

where we have already replaced A ′〈y〉 by A〈y〉 because y ∈ M ′ implies y 6= a ′.
Now we distinguish if x = a ′ or not.

If x 6= a ′ then preferred A ′ x = preferred A x and we have to show

∀ b∈preferred A x . ∃ y∈M ′. b = A〈y〉 ∧ Q ! b ` y < x.

If b ∈ preferred A x, pref match A M yields a witness y ∈ M. It remains to show
that there is also a witness y ′ ∈ M ′. This follows in the critical case y = a ′ because
y ′ = a does the job: Q ! A〈a ′〉 ` a ′ < x and Q ! A〈a ′〉 ` a < a ′ imply Q ! A〈a〉
` a < x because A〈a ′〉 = A〈a〉.

If x = a ′ then b = preferred A ′ a ′ = preferred A a ′ ∪ {A〈a ′〉}. If b ∈
preferred A a ′ the claim follows from pref match A M. The fact that any wit-
ness y ∈ M is also in M ′ follows because y = a ′ would imply Q ! A〈a ′〉 ` a ′ <
a ′, a contradiction. If b = A〈a ′〉 then y = a is a suitable witness. ut

Lemma 6 invAM A M ∧ a < n ∧ a /∈ M ∧ a ′ ∈ M ∧ A〈a ′〉 = A〈a〉
∧ ¬ Q ! A〈a ′〉 ` a < a ′ −→ invAM (A[a := A ! a + 1]) M

The proof is similar to the one of the preceding lemma, but simpler.

6.3 The Variants

Our variants (see Section 4) are of the form ub − count where count counts the
number of iterations and ub is some upper bound. It will follow trivially from
our definitions of count that it increases with every iteration. Thus ub − count
decreases if the invariant and the loop condition imply count < ub; the latter is
required because subtraction on nat stops at 0.

The term ub is clearly an upper bound of the number of iterations. If the loop
body executes in constant time, we can conclude that the loop has complexity
O(ub).

6.3.1 A Simple Variant

Examining the loop body of Algorithm 1 we see that with each iteration either
|M | increases (action match) or it stays the same and one A ! a (where a < n)
increases (actions swap and next). Thus count is (

∑
a < n A ! a) + |M |. Because

|M | is bounded by n and we will prove that every A ! a (where a < n) is bounded
by n − 1, there is an obvious upper bound of n ∗ (n − 1) + n = n2. A possible
variant is given by the following function of A and M :

var0 A M = n2 − ((
∑

a < n A ! a) + |M |)

The following easy properties show that var0 is decreased by all three basic
actions:

wf A ∧ M ⊆ {<n} ∧ a < n ∧ a /∈ M −→ var0 A (M ∪ {a}) < var0 A M

wf A ∧ M ⊆ {<n} ∧ M 6= {<n} ∧ a ′ < n
−→ var0 (A[a ′ := A ! a ′ + 1]) M < var0 A M

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 9

This is the variant that Hamid and Castleberry [13] work with, except that
they do not have M but increment A ! a where we add a to M. However, we can
do better.

6.3.2 The Precise Variant

Knuth [16] improves the n2 bound to n2 − n + 1 based on this exercise:

Prove that at most one a obtains its last choice with the fundamental algorithm.

Gusfield and Irving [11] argue that this bound follows because “the algorithm
terminates when the last b is matched for the first time”. We will now give a
formal proof that is more in line with Knuth’s text and does not require the
temporal “first” and “last”.

Knuth’s exercise amounts to the following proposition: there is at most one
unmatched a that is down to its last preference.

Corollary 1
M ⊆ {<n} ∧ inj on (match A) M ∧ (∀ a<n. preferred A a ⊆ A〈M 〉)
−→ (∃≤1 a. a < n ∧ a /∈ M ∧ A ! a + 1 = n)

This is a corollary to the following lemma: if an unmatched a has arrived at the
end of its preference list, then all other a’s are matched.

Lemma 7 M ⊆ {<n} ∧ inj on (match A) M ∧ preferred A a ⊆ A〈M 〉 ∧ a < n
∧ a /∈ M ∧ A ! a + 1 = n −→ {a} ∪ M = {<n}

Proof From Pref it follows that (!) (P ! a) ‘ {<n} = {<n} and thus (!) (P ! a) is
injective on {<n} and thus in particular on {<A ! a} (because A ! a < n). Hence
|preferred A a| + 1 = n (1). Assumption preferred A a ⊆ A〈M 〉 implies |preferred
A a| ≤ |M | (2). From M ⊆ {<n} and a < n ∧ a /∈ M it follows that |M | < n (3).
Combining (1), (2) and (3) yields |M | + 1 = n and thus {a} ∪ M = {<n}. ut

Now we can prove the key upper bound for
∑

a < n A ! a:

Lemma 8 matching A M ∧ M ⊂ {<n} ∧ (∀ a<n. preferred A a ⊆ A〈M 〉)
−→ (

∑
a < n A ! a) ≤ (n − 1)2

Proof From Lemma 2 we have ∀ a∈M . A ! a + 1 < n. We distinguish two cases.
If there is an a ′ < n such that a ′ /∈ M and A ! a ′ + 1 = n then, because there is
at most one such a ′ (by Corollary 1), it follows that ∀ a<n. a 6= a ′ −→ A ! a ≤
n − 2 and thus (

∑
a < n A ! a) ≤ (n − 1) ∗ (n − 2) + (n − 1) = (n − 1)2. If

there is no such a ′, then ∀ a<n. A ! a + 1 < n and thus (
∑

a < n A ! a) ≤ n ∗
(n − 2) ≤ (n − 1)2. ut

The assumptions of Lemma 8 imply |M | < n and hence

(
∑

a < n A ! a) + |M | < n2 − n + 1

Thus the following definition of var makes sense:

var A M = n2 − n + 1 − ((
∑

a < n A ! a) + |M |)

The following easy properties (except that one has to be careful about subtrac-
tion) show that var is decreased by all three basic actions. The invariant together
with M 6= {<n} implies the assumptions of Lemma 8 which imply

10 Tobias Nipkow

a /∈ M −→ var A (M ∪ {a}) < var A M

a < n −→ var (A[a := A ! a + 1]) M < var A M

7 Algorithm 2

Algorithm 2 is the result of a data concretisation step: the set M of matched
a’s is replaced by a list as of unmatched a’s. Thus the abstraction function α
from lists to sets is α as = {<n} − set as. (Note that formally it is only an
abstraction function if the SOME -choice is nondeterministic.) The program treats
the list as like a stack: functions hd and tl return the head and the tail of the
stack. In addition to the invariant invAM A ({<n} − set as) we also need the
well-formedness of as:

invas as = (set as ⊆ {<n} ∧ distinct as)

Thus the complete invariant is invAM A ({<n} − set as) ∧ invas as.

Algorithm 2

[as = [0..<n] ∧ A = replicate n 0]1

WHILE as 6= [] INV {invAM A ({<n} − set as) ∧ invas as}2

VAR {var A ({<n} − set as)}3

DO a := hd as;4

b := A〈a〉;5

IF b /∈ A〈{<n} − set as〉 THEN as := tl as6

ELSE a ′ := (SOME a ′. a ′ ∈ {<n} − set as ∧ A〈a ′〉 = b);7

IF Q ! A〈a ′〉 ` a < a ′8

THEN A := A[a ′ := A ! a ′ + 1]; as := a ′ · tl as9

ELSE A := A[a := A ! a + 1] FI10

FI11

OD12

[matching A {<n} ∧ stable A {<n} ∧ optiA A]13

To exemplify our stepwise development approach we consider preservation of
the invariant invAM A M by the basic action match (line 6) where M abbreviates
{<n} − set as. That is, we assume invAM A M ∧ invas as, as 6= [], a = hd as
and A〈a〉 /∈ A〈{<n} − set as〉. Thus as = a · as ′ for some as ′, M ∪ {a} =
{<n} − set as ′ and a < n ∧ a /∈ M (using invas as). Now Lemma 4 applies
and we conclude invAM A (M ∪ {a}) which implies invAM A ({<n} − set as ′),
which is what we actually need to show. In summary, the translation between the
two state spaces requires some bridging properties, but then we can apply the
abstract lemmas.

From now on, we do not present correctness lemmas or proofs anymore but
only annotated programs because the annotations are the key. Of course we still
present all variants, invariants and non-trivial auxiliary definitions.

8 Algorithm 3

This data concretisation step addresses the issue that the algorithm needs to find
out if the prospective match of some a is already matched and to whom. Algo-

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 11

Algorithm 3

[as = [0..<n] ∧ A = replicate n 0 ∧ B = (λ . None)]
WHILE as 6= []
INV {invAM A ({<n} − set as) ∧ invAB A B ({<n} − set as) ∧ invas as}
VAR {var A ({<n} − set as)}
DO a := hd as;

b := A〈a〉;
IF B b = None THEN B := B(b 7→ a); as := tl as
ELSE a ′ := the (B b);

IF Q ! A〈a ′〉 ` a < a ′

THEN B := B(b 7→ a); A := A[a ′ := A ! a ′ + 1]; as := a ′ · tl as
ELSE A := A[a := A ! a + 1] FI

FI
OD
[matching A {<n} ∧ stable A {<n} ∧ optiA A]

rithm 3 records the inverse of match as a variable B :: nat ⇒ nat option. Even-
tually B will be implemented by arrays. We call a function m :: ′a ⇒ ′b option a
map. Maps come with an update notation:

m(a 7→ b) = (λx . if x = a then Some b else m x)

Function the :: ′a option ⇒ ′a inverts Some: the (Some x) = x. The notation
[m..<n] denotes the list [m, m+1, ..., n−1].

The new variable B requires its own invariant:

invAB A B M = (ran B = M ∧ (∀ b a. B b = Some a −→ A〈a〉 = b))

where ran m = {b | ∃ a. m a = Some b}. In a nutshell, B is the inverse of match.
Preservation of invAB A B ({<n} − set as) by all three basic actions is a one-liner.

9 Algorithm 4

In this step we eliminate the list as. The resulting algorithm is (more or less) the
one that Knuth [16] analyzes. The main idea: with each basic action, either the
top of as changes or it is popped. Thus we don’t need to record all of as but only
how far we have popped it. The new variable ai :: nat does just that. It starts
with 0 and is incremented after each match step. This can also be viewed as a
data concretisation: a and ai represent a · [ai + 1..<n].

Instead of one we now have two loops. In the inner loop, swap and match
actions are performed, followed by a single match action. That is, a is initialized
with ai and the inner loop tries to find an unmatched b for a, possibly unmatching
some a ′ in the process.

The invariants invAM and invAB are unchanged, and the set M of matched
a’s is simply {<ai}. In the inner loop, M = {<ai + 1} − {a} because we are
looking for a match for a.

The outer variant is n − ai. Note that the syntax permits us to remember
that value of the outer variant in an auxiliary variable, here z. The point is that
we need to show that the outer variant is not incremented by the inner loop.
Hence we remember its value in z and add the invariant z = n − ai. Although
Isabelle’s Hoare logic formalization goes back more than 20 years, it was only

12 Tobias Nipkow

Algorithm 4

[ai = 0 ∧ A = replicate n 0 ∧ B = (λ . None)]
WHILE ai < n INV {invAM A {<ai} ∧ invAB A B {<ai} ∧ ai ≤ n}
VAR {z = n − ai}
DO a := ai ;

WHILE B (A〈a〉) 6= None
INV {invAM A ({<ai + 1} − {a}) ∧ invAB A B ({<ai + 1} − {a})

∧ a ≤ ai ∧ ai < n ∧ z = n − ai}
VAR {var2 A}
DO a ′ := the (B (A〈a〉));

IF Q ! A〈a ′〉 ` a < a ′

THEN B := B(A〈a〉 7→ a); A := A[a ′ := A ! a ′ + 1]; a := a ′

ELSE A := A[a := A ! a + 1] FI
OD ;
B := B(A〈a〉 7→ a); ai := ai + 1

OD
[matching A {<n} ∧ stable A {<n} ∧ optiA A]

recently extended with variants for total correctness (by Walter Guttmann). In
the process of verifying the Gale-Shapely algorithm Nipkow noticed that invariants
need to refer to variants and generalized Guttmann’s extension. He also noticed
that the account in the textbook by De Boer et al. [2] (which has not changed
from the “first edition” [3]) is incomplete, which the authors confirmed (private
communication). Their definition of valid proof outlines (programs annotated with
(in)variants) [2, Definition 3.8] does not allow inner invariants to refer to outer
variants: replacing S∗∗ by S in the side condition for z fixes the problem.

Finally we consider the inner variant:

var2 A = (n − 1)2 − (
∑

a < n A ! a)

To show that var2 A decreases when A ! a (or A ! a ′) are incremented we consider
one loop iteration with initial value A and final value A ′. Note that because the
invariant again holds for A ′, Lemma 8 implies that (

∑
a < n A ′ ! a) ≤ (n − 1)2.

var2 A ′ = (n − 1)2 − (
∑

a < n A ′ ! a)

= (n − 1)2 − ((
∑

a < n A ! a) + 1)

< (n − 1)2 − (
∑

a < n A ! a) because (
∑

a < n A ′ ! a) ≤ (n − 1)2

= var2 A

The initial value of var2 A is (n − 1)2. Because the outer loop does not modify
A, (n − 1)2 is an upper bound on the total number of iterations of the inner loop,
i.e. the number of swap and next actions. To this we must add the exactly n
match actions of the outer loop to arrive at an upper bound of n2 − n + 1
actions, just like before.

10 Algorithm 5

In this step we implement B :: nat ⇒ nat option by two lists (think arrays): N ::
bool list records which b’s have been matched with some a and B :: nat list says
which a. This is expressed by the following abstraction function:

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 13

α B N = (λb. if b < n ∧ N ! b then Some (B ! b) else None)

Algorithm 5

[ai = 0 ∧ A = replicate n 0 ∧ |B | = n ∧ N = replicate n False]
WHILE ai < n INV {invar1 A B N ai} VAR {z = n − ai}
DO a := ai ;

WHILE N ! A〈a〉 INV {invar2 A B N ai a ∧ z = n − ai} VAR {var2 A}
DO a ′ := B ! A〈a〉;

IF Q ! A〈a ′〉 ` a < a ′

THEN B := B [A〈a〉 := a]; A := A[a ′ := A ! a ′ + 1]; a := a ′

ELSE A := A[a := A ! a + 1] FI
OD ;
B := B [A〈a〉 := a]; N := N [A〈a〉 := True]; ai := ai + 1

OD
[matching A {<n} ∧ stable A {<n} ∧ optiA A]

At this point it is helpful to introduce names for the two invariants:

invar1 A B N ai =
(invAM A {<ai} ∧ invAB A (α B N) {<ai} ∧ |B | = n ∧ |N | = n ∧ ai ≤ n)

invar2 A B N ai a =
(invAM A ({<ai + 1} − {a}) ∧ invAB A (α B N) ({<ai + 1} − {a})
∧ |B | = n ∧ |N | = n ∧ a ≤ ai ∧ ai < n)

11 Algorithm 6

In this step we implement the inefficient test Q ! A〈a ′〉 ` a < a ′. Instead of finding
the index of a and a ′ in the list Q ! A〈a ′〉 we replace Q by a list of lists that map
a’s to their index, i.e. their rank in the preference lists. From Q we construct the
new data structure R :: nat list list as R = map ranking Q where

ranking P = rk of pref 0 (replicate |P | 0) P

rk of pref r rs (n · ns) = (rk of pref (r + 1) rs ns)[n := r]
rk of pref r rs [] = rs

If the list update operation is constant-time (which it will be with arrays), ranking
is a linear-time algorithm and thus R can be computed in time O(n2). A more
intuitive but less efficient definition of ranking is

ranking P = map (index P) [0..<|P |]

The two definitions coincide if set P = {<|P |}.
In Algorithm 6, the only operations used are arithmetic, list indexing (!) and

pointwise list update xs[m := x]. If we implement the latter with constant-time
operations on arrays (as we will, in the next section), each assignment and each
test takes constant time. Thus the overall execution time of the algorithm is pro-
portional to the number of executed tests and assignments. Clearly the outer loop,
without the inner one, takes time O(n). As analyzed in the previous section, the
inner loop body is executed at most (n − 1)2 times. Thus the overall complexity

14 Tobias Nipkow

Algorithm 6

R = map ranking Q −→
[ai = 0 ∧ A = replicate n 0 ∧ |B | = n ∧ N = replicate n False]
WHILE ai < n INV {invar1 A B N ai} VAR {z = n − ai}
DO a := ai ;

b := A〈a〉;
WHILE N ! b INV {invar2 A B N ai a ∧ b = A〈a〉 ∧ z = n − ai}
VAR {var2 A}
DO a ′ := B ! b;

r := R ! A〈a ′〉;
IF r ! a < r ! a ′

THEN B := B [b := a]; A := A[a ′ := A ! a ′ + 1]; a := a ′

ELSE A := A[a := A ! a + 1] FI ;
b := A〈a〉

OD ;
B := B [b := a]; N := N [b := True]; ai := ai + 1

OD
[matching A {<n} ∧ stable A {<n} ∧ optiA A]

of the algorithm is O(n) +O(n2) = O(n2). Because the input, P and R, is also of
size O(n2) we have a linear-time algorithm.

12 Algorithm 7

In a final step (on the imperative level) we implement lists by arrays. The basis
is Lammich’s and Lochbihler’s Collections library [17,19] that offers imperative
implementations of arrays with a purely functional, list-like interface specification.
The basic idea is due to Baker [4,5] and guarantees constant time access to arrays
provided they are used in a linear manner (i.e. no access to old versions), which
our arrays obviously are, because the programming language is imperative.

Algorithm 7 is not displayed because it is Algorithm 6 with xs ! i replaced by
array get xs i, xs[i := x] replaced by array set xs i x and replicate n x replaced by
new array x n, where array get (below: xs !! i), array set (below: xs[i ::= x]) and
new array (below: array x n) are defined in the Collections library. Correctness of
this data concretisation step is proved via the abstraction function list :: ′a array
⇒ ′a list and refinement lemmas like list (a[i ::= x]) = (list a)[i := x].

This is our final imperative algorithm. It has linear complexity, as explained
in the previous section. Although the programming language has a semantics that
can in principle be executed, Isabelle provides no support for that. Therefore we
now recast the last imperative algorithm as recursive functions in Isabelle’s logic,
which can be executed in Isabelle [1] or exported to standard functional languages
[12].

13 Algorithm 8, Functional Implementation

We translate the imperative code directly into two functions gs and gs inner (Al-
gorithm 8) using the combinator

while :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 15

Algorithm 8 Functional Implementation

gs n P R =
while (λ(A, B , N , ai). ai < n)
(λ(A, B , N , ai).

let (A, B , a, b) = gs inner P R N (A, B , ai , P !! ai !! (A !! ai))
in (A, B [b ::= a], N [b ::= True], ai + 1))

(array 0 n, array 0 n, array False n, 0)

gs inner P R N =
while (λ(A, B , a, b). N !! b)
(λ(A, B , a, b).

let a ′ = B !! b; r = R !! (P !! a ′ !! (A !! a ′));
(A, B , a) =
if r !! a < r !! a ′ then (A[a ′ ::= A !! a ′ + 1], B [b ::= a], a ′)
else (A[a ::= A !! a + 1], B , a)

in (A, B , a, P !! a !! (A !! a)))

from the Isabelle library [22]. It comes with the recursion equation

while b c s = (if b s then while b c (c s) else s)

for execution and a Hoare-like proof rule (not shown) for total correctness involving
a wellfounded relation on the state space. With its help and the lemmas used in
the proof of Algorithm 7 we can show the main correctness theorem: gs computes
a stable matching that is A-optimal:

gs n (pref array P) (rank array Q) = (A, B , N , ai)
−→ matching (list A) {<n} ∧ stable (list A) {<n} ∧ optiA (list A)

where pref array converts P from lists to arrays and rank array converts P into R
in array-form, i.e. rank array behaves like ranking, but on arrays. Both pref array
and rank array (which are straightforward and not shown) are linear-time func-
tions. Thus the conversion from lists to arrays does not influence the time and space
complexity of the algorithm. The complexity is still O(n2) because all basic opera-
tions are constant-time and the wellfounded relations used in the total-correctness
proofs are defined directly in terms of the variants of the imperative Algorithms 6
(and hence 7).

So far we have worked in the context of the assumptions Pref on P and Q
stated at the beginning of Section 5. In a final step, to obtain unconditional code
equations for the implementation, we move out of that context. The top-level Gale-
Shapley function checks well-formedness of the input explicitly by calling predicate
Pref before calling gs:

Gale Shapley P Q =
(if Pref P Q then Some (fst (gs |P | (pref array P) (rank array Q)))
else None)

where fst selects the first component of a tuple. Function Pref is executable but
not linear-time because it operates on lists. It would be simple to convert it to a
linear-time function on arrays, but because it is just boiler-plate and not part of
the actual Gale-Shapley algorithm we ignore that.

The correctness theorem for Gale Shapley follows directly from the one for gs:

16 Tobias Nipkow

Pref P Q ∧ n = |P |
−→ (∃A. Gale Shapley P Q = Some A ∧ matching P (list A) {<n}

∧ stable P Q (list A) {<n} ∧ optiA P Q (list A))

14 Related Work

Most proofs about stable matching algorithms, starting with Gale and Shapley,
omit formal treatments of the requisite assertions. However, there are noteworthy
exceptions.

Hamid and Castleberry [13] were the first to subject the Gale-Shapley algo-
rithm to a proof assistant treatment (in Coq). They present an implementation
(and termination proof) of the Gale-Shapley algorithm and an executable checker
for stability but no proof that the algorithm always returns a stable matching.
They do not comment on the complexity of their algorithm, but it is not linear,
not just because they do not refine it down to arrays, but also because of other
inefficiencies. Nor do they consider optimality.

Gammie [9] mechanizes (in Isabelle) proofs of several results from the matching-
with-contracts literature, which generalize those of the classical stable marriage
scenarios. Along the way he also develops executable algorithms for computing
optimal stable matches. The complexity of these algorithms is not analyzed (and
not clear even to the author, but not linear). The focus is on game theoretic issues,
not algorithm development.

Probably the first reasonably precise analysis of the algorithm is by Knuth [15,
16, Lecture 2]. His starting point is akin to our Algorithm 4, except that at this
point he is not precise about the representation of data structures and the opera-
tions on them. Moreover, his assertions are a mixture of purely state-based ones
and temporal ones (e.g. “has rejected”) and the proof is not expressed in some
fixed program logic. In a later chapter [15,16, Lecture 6] he shows an array-based
implementation and relates it informally to the algorithm from Lecture 2.

Bijlsma [6], in Dijkstra’s tradition and notation [7], derives in a completely
formal (but not machine-checked) manner an algorithm very close to our Algo-
rithm 7. The main difference is that he starts from a specification and we start
from an algorithm. Thus his and our development steps are largely incomparable.
He does not consider optimality.

15 Conclusion and Further Work

We have seen a step by step development of an efficient implementation of the Gale-
Shapley algorithm. It is desirable to cover more of the algorithmic content of the
stable matching area. A good starting point are the further problems covered by
Gusfield and Irving [11], e.g. the hospitals/residents problem (where m doctors are
matched with n hospitals with a fixed capacity) and the stable roommates problem
(where 2n people are matched with one another into pairs). A second avenue for
further work is the development of efficient code from the abstract fixpoint-based
algorithm for matching-with-contracts that was formalized by Gammie [9].

https://orcid.org/0000-0003-0730-515X

Gale-Shapley Verified 17

Acknowledgements I want to thank Reviewer 1 for very perceptive comments, in particular
a simplification of Lemma 2, and Katharina Kreuzer for proofreading.

References

1. Aehlig, K., Haftmann, F., Nipkow, T.: A compiled implementation of normalization by
evaluation. Journal of Functional Programming 22(1), 9–30 (2012)

2. Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and Concurrent Pro-
grams. Texts in Computer Science. Springer (2009). URL https://doi.org/10.1007/
978-1-84882-745-5

3. Apt, K.R., Olderog, E.: Verification of Sequential and Concurrent Programs. Texts and
Monographs in Computer Science. Springer (1991). URL https://doi.org/10.1007/
978-1-4757-4376-0

4. Baker, H.G.: Shallow binding in LISP 1.5. Commun. ACM 21(7), 565–569 (1978). URL
https://doi.org/10.1145/359545.359566

5. Baker, H.G.: Shallow binding makes functional arrays fast. ACM SIGPLAN Notices 26(8),
145–147 (1991). URL https://doi.org/10.1145/122598.122614

6. Bijlsma, A.: Formal derivation of a stable marriage algorithm. In: W. Feijen, A. van Gas-
treren (eds.) C.S. Scholten dedicata: van oude machines en nieuwe rekenwijzen. Academic
Service Schoonhoven (1991). URL https://dspace.library.uu.nl/handle/1874/19385

7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
8. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Math-

ematical Monthly 69(1), 9–15 (1962). URL https://doi.org/10.2307/2312726
9. Gammie, P.: Stable matching. Archive of Formal Proofs (2016). https://isa-afp.org/

entries/Stable_Matching.html, Formal proof development
10. Gordon, M.C.: Mechanizing programming logics in higher order logic. In: G. Birtwistle,

P. Subrahmanyam (eds.) Current Trends in Hardware Verification and Automated Theo-
rem Proving. Springer (1989)

11. Gusfield, D., Irving, R.W.: The Stable marriage problem - structure and algorithms. Foun-
dations of computing series. MIT Press (1989)

12. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
M. Blume, N. Kobayashi, G. Vidal (eds.) Functional and Logic Programming, 10th In-
ternational Symposium, FLOPS 2010, Lecture Notes in Computer Science, vol. 6009, pp.
103–117. Springer (2010). URL https://doi.org/10.1007/978-3-642-12251-4_9

13. Hamid, N.A., Castleberry, C.: Formally certified stable marriages. In: Proceedings of the
48th Annual Southeast Regional Conference, ACM SE ’10. ACM (2010). URL https:
//doi.org/10.1145/1900008.1900056

14. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley (2006)
15. Knuth, D.E.: Mariages Stables et leurs relations avec d’autres problèmes combinatoires.

Les Presses de l’Université de Montréal (1976)
16. Knuth, D.E.: Stable Marriage and its Relation to Other Combinatorial Problems. Amer-

ican Mathematical Society (1997). Translation of [15]
17. Lammich, P.: Collections framework. Archive of Formal Proofs (2009). https://isa-afp.

org/entries/Collections.html, Formal proof development
18. Lammich, P.: Refinement to imperative/hol. In: C. Urban, X. Zhang (eds.) Interactive

Theorem Proving - 6th International Conference, ITP 2015, LNCS, vol. 9236, pp. 253–269.
Springer (2015). URL https://doi.org/10.1007/978-3-319-22102-1_17

19. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: M. Kaufmann,
L.C. Paulson (eds.) Interactive Theorem Proving, First International Conference, ITP
2010, LNCS, vol. 6172, pp. 339–354. Springer (2010). URL https://doi.org/10.1007/
978-3-642-14052-5_24

20. Maggs, B.M., Sitaraman, R.K.: Algorithmic nuggets in content delivery. SIGCOMM
Comput. Commun. Rev. 45(3), 52–66 (2015). URL https://doi.org/10.1145/2805789.
2805800

21. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: F. Baader (ed.)
Automated Deduction — CADE-19, LNCS, vol. 2741, pp. 121–135. Springer (2003)

22. Nipkow, T.: Verified efficient enumeration of plane graphs modulo isomorphism. In:
M.C.J.D. van Eekelen, H. Geuvers, J. Schmaltz, F. Wiedijk (eds.) Interactive Theorem
Proving, ITP 2011, Lecture Notes in Computer Science, vol. 6898, pp. 281–296. Springer
(2011). URL https://doi.org/10.1007/978-3-642-22863-6_21

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.1007/978-1-4757-4376-0
https://doi.org/10.1145/359545.359566
https://doi.org/10.1145/122598.122614
https://dspace.library.uu.nl/handle/1874/19385
https://doi.org/10.2307/2312726
https://isa-afp.org/entries/Stable_Matching.html
https://isa-afp.org/entries/Stable_Matching.html
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1145/1900008.1900056
https://doi.org/10.1145/1900008.1900056
https://isa-afp.org/entries/Collections.html
https://isa-afp.org/entries/Collections.html
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1007/978-3-642-22863-6_21

18 Tobias Nipkow

23. Nipkow, T.: Gale-Shapley algorithm. Archive of Formal Proofs (2021). https://isa-afp.
org/entries/Gale_Shapley.html, Formal proof development

24. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014). http:
//concrete-semantics.org

25. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, LNCS, vol. 2283. Springer (2002)

26. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof documents.
In: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Thery (eds.) Theorem Proving in
Higher Order Logics, TPHOLs’99, LNCS, vol. 1690, pp. 167–183. Springer (1999)

27. Wenzel, M.: Isabelle/isar — a versatile environment for human-readable formal proof
documents. Ph.D. thesis, Institut für Informatik, Technische Universität München (2002).
Http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss2002020117092

https://orcid.org/0000-0003-0730-515X
https://isa-afp.org/entries/Gale_Shapley.html
https://isa-afp.org/entries/Gale_Shapley.html
http://concrete-semantics.org
http://concrete-semantics.org

	1 Introduction
	2 Problem and Algorithm
	3 Isabelle Notation
	4 Hoare Logic and Stepwise Development
	5 Formalization of the Stable Matching Problem
	5.1 Stable Matchings
	5.2 Stepwise Development

	6 Algorithm 1
	6.1 The Invariant
	6.2 Preservation of the Invariant
	6.3 The Variants

	7 Algorithm 2
	8 Algorithm 3
	9 Algorithm 4
	10 Algorithm 5
	11 Algorithm 6
	12 Algorithm 7
	13 Algorithm 8, Functional Implementation
	14 Related Work
	15 Conclusion and Further Work

