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Abstract

Monadic second-order logic on finite words (MSO) is a decidable yet expressive logic into which
many decision problems can be encoded. Since MSO formulas correspond to regular languages,
equivalence of MSO formulas can be reduced to the equivalence of some regular structures (e.g.
automata). This paper presents a verified functional decision procedure for MSO formulas that is
not based on automata but on regular expressions. Functional languages are ideally suited for this
task: regular expressions are data types and functions on them are defined by pattern matching and
recursion and are verified by structural induction.

Decision procedures for regular expression equivalence have been formalized before, usually
based on Brzozowski derivatives. Yet, for a straightforward embedding of MSO formulas into regular
expressions an extension of regular expressions with a projection operation is required. We prove
total correctness and completeness of an equivalence checker for regular expressions extended in
that way. We also define a language-preserving translation of formulas into regular expressions
with respect to two different semantics of MSO. Our results have been formalized and verified in
the theorem prover Isabelle. Using Isabelle’s code generation facility, this yields purely functional,
formally verified programs that decide equivalence of MSO formulas.

1 Introduction

Many decision procedures for logical theories are based on the famous logic-automaton
connection. That is, they reduce the decision problem for some logical theory to a decidable
question about some class of automata. Automata are usually implemented with the help
of imperative data structures for efficiency reasons.

In functional languages, automata are not an ideal abstraction because they are graphs
rather than trees. In contrast, regular expressions are perfect for functional languages and
they are equally expressive. In fact, Brzozowski (1964) showed how automata-based al-
gorithms can be recast as recursive algebraic manipulations of regular expressions. His
derivatives can be seen as a way of simulating automaton states with regular expressions
and computing the next-state function symbolically.

Recently Brzozowski’s derivatives were discovered by functional programmers and the-
orem provers. Owens et al. (2009) realized that regular expressions and their derivatives fit
perfectly with data types and recursive functions. Their paper explores regular expression
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matching based directly on regular expressions rather than automata. Fischer et al. (2010)
also explore regular expression matching, but by means of marked regular expressions
rather than derivatives. Slightly later, the interactive theorem proving community woke
up to the beauty of derivatives, too. This resulted in four papers about verified decision
procedures for the equivalence of regular expressions based on derivatives and on marked
regular expressions (see Related Work below). In one of these four papers, Coquand and
Siles (2011) state that “A more ambitious project will be to use this work for writing a
decision procedure for WS1S”, a monadic second-order logic. Our paper does just that
(and more).

Monadic second-order logic on finite words (MSO) is a decidable yet expressive logic
into which many decision problems can be encoded (Thomas, 1997). MSO allows only
monadic predicates but quantification both over numbers and finite sets of numbers. Two
closely related but subtly different semantics can be found in the literature. One of the two,
WS1S—the Weak monadic Second-order logic of 1 Successor, is based on arithmetic.
The other, M2L(Str) (Henriksen et al., 1995), is more closely related to formal languages.
There seems to be some disagreement as to which semantics is the more appropriate one
for verification purposes (Klarlund, 1999; Ayari & Basin, 2000). Hence we cover both.

Essentially, MSO formulas describe regular languages. Therefore MSO formulas can be
decided by translating them into automata. This is the basis of the highly successful MONA
tool (Elgaard et al., 1998) for deciding WS1S. MONA’s success is due to its (in practical
terms) highly efficient implementation and to the ease with which very different verifi-
cation problems can be encoded in monadic second-order logic, for example Presburger
arithmetic and Hoare logic for pointer programs.

The contribution of this paper is the presentation of the first purely functional decision
procedures for two interpretations of MSO based on derivatives of regular expressions.
These decision procedures have been verified in Isabelle/HOL and we sketch their cor-
rectness proofs. We are not aware of any previous decision procedure for MSO based on
regular expressions (as opposed to automata), let alone a verified program.

It is instructive to compare our decision procedure for WS1S with MONA. MONA is
a highly tuned implementation using cache-conscious data structures including a BDD-
based automaton representation. Ours is a (by comparison tiny) purely functional program
that operates on regular expressions and can only cope with small examples. MONA is not
verified (and the prospect of doing so is daunting), whereas our code is.

In this paper we distinguish ordinary regular expressions that contain only concatena-
tion, union, and iteration from extended regular expressions that also provide complement
and intersection. The rest of the paper is organized as follows. Section 2 gives an overview
of related work. Section 3 introduces some basic notations. Sections 4 and 5 constitute
the main contribution of our paper—the first shows how to decide equivalence of extended
regular expressions with an additional projection operation, the second reduces equivalence
of MSO formulas to equivalence of exactly those regular expressions with respect to both
semantics, M2L and WS1S. In total this yields a decision procedure for MSO on words. A
short case study of the decision procedure is given in Section 6.

This paper is an extended and revised version of the homonymous ICFP 2013 functional
pearl (Traytel & Nipkow, 2013). The new contributions are mostly actual changes to the
decision procedure aiming to improve on both, performance and presentation:
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• Picking up an idea from Owens et al. (2009), we change the semantics of atomic
regular expressions to represent sets of alphabet letters rather than single letters
(Section 4.4).

• Based on earlier experimental results (Nipkow & Traytel, 2014) we change the back-
end decision procedure for regular expression equivalence to use partial derivatives
instead of Brzozowski derivatives (Section 4.5).

• We improve the translations of M2L(Str) formulas to regular expressions by re-
moving redundancies and expand on the previously omitted implementation of the
translation of WS1S formulas to regular expressions (Section 5.4).

• A reevaluation of the performance shows a sizable improvement, yet still far away
from competing with MONA (Section 6).

While the paper is intended to be self contained with respect to the presented functional
program deciding equivalence of MSO formulas, we deliberately give only rough intuitions
instead of detailed proofs. The proofs are where they truly belong: in the publicly available
formalization (Traytel & Nipkow, 2014).

2 Related Work

Brzozowski (1964) introduced the notion of derivatives of extended regular expressions
and Ginzburg (1967) employed them in an algorithm for deciding language equivalence
that we essentially are using here. Antimirov (1996) devised the related notion of partial
derivatives of ordinary regular expressions. Caron et al. (2011) extended partial derivatives
to extended regular expressions. The concept of derivatives as means to compute the next
state symbolically goes beyond regular expressions—as witnessed by libraries for pars-
ing developed by Danielsson (2010) in Agda and by Might et al. (2011) in Lisp using
lazily evaluated variations of Brzozowski derivatives for parser combinators. Furthermore,
Kozen (2008) lifted derivatives to expressions of Kleene algebra with tests.

MONA was linked to Isabelle by Basin and Friedrich (2000) and to PVS by Owre and
Rueß (2000). In both cases, MONA is used as a trusted oracle for deciding formulas in the
respective theorem prover.

Now we discuss work on verified decision procedures for regular expressions. The
first verified equivalence checker for regular expressions was published by Braibant and
Pous (2010). They worked with automata, not regular expressions, their theory was large
and their algorithm efficient. In response, Krauss and Nipkow (2012) gave a much sim-
pler partial correctness proof for an equivalence checker for regular expressions based
on derivatives. Coquand and Siles (2011) showed total correctness of their equivalence
checker for extended regular expressions based on derivatives. Asperti (2012) presented an
equivalence checker for regular expressions via marked regular expressions (as previously
used by Fischer et al.(2010)) and showed total correctness. Moreira et al. (2012) presented
an equivalence checker for regular expressions based on partial derivatives and showed its
total correctness. Recently, we have devised a general framework that unifies the different
approaches based on derivatives, partial derivatives, and marked regular expressions under
one roof (Nipkow & Traytel, 2014). Berghofer and Reiter (2009) formalized a decision
procedure for Presburger arithmetic via automata in Isabelle/HOL.
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Outside of the application area of equivalence checking, Wu et al. (2014) benefited
from the inductive structure of regular expressions to formally verify the Myhill-Nerode
theorem.

3 Preliminaries

Although we formalized everything in this paper in the theorem prover Isabelle/HOL (Nip-
kow et al., 2002; Nipkow & Klein, 2014), no knowledge of theorem provers or Isabelle/HOL
is required because we employ mostly ordinary mathematical notation in our presentation.
Some specific notations are summarized below.

The symbol B represents the type of Booleans, where > and ⊥ represent true and false.
The type of sets and the type of lists over some type τ are written τ set and τ list. In general,
type constructors follow their arguments. The letters α and β represent type variables. The
notation t :: τ means that term t has type τ.

Many of our functions are curried. In some cases we write the first argument as an index:
instead of f a b we write fa(b) (in preference to just fa b). The projection functions on pairs
are called fst and snd. The image of a function f over a set S is written f • S .

Lists are built up from the empty list [ ] via the infix # operator that prepends an element
x to a list xs: x # xs. Two lists are concatenated with the infix @ operator. Accessing the
nth element of a list xs is denoted by xs[n]; the indexing is zero-based. The length of the
list xs is written |xs|.

Finite words as in formal language theory are modeled as finite lists, i.e. type α list.
The empty word is the empty list. As is customary, concatenation of two words u and v is
denoted by their juxtaposition uv; similarly for a single letter a of the alphabet and a word
w: aw. That is, the operators # and @ remain implicit (for words, not for arbitrary lists).

4 Extended Regular Expressions

In Section 5, MSO formulas are translated into regular expressions such that encodings
of models of a formula correspond exactly to words in the regular language. Thereby,
equivalence of formulas is reduced to the equivalence of regular expressions.

Decision procedures for equivalence of regular expression have been formalized earlier
in theorem provers. Here, we extend the existing formalization and the soundness proof in
Isabelle/HOL by Krauss and Nipkow (2012) with negation and intersection operation on
regular expressions, as well as with a nonstandard projection operation. Additionally, we
provide proofs of termination and completeness.

4.1 Syntax and Semantics

Regular expressions extended with intersection and complement allow us to encode Bool-
ean operators on formulas in a straightforward fashion. A further operation—the projection
Π—plays the crucial role of encoding existential quantifiers. These Π-extended regular
expressions (to distinguish them from mere extended regular expressions) are defined as a
recursive data type α RE, where α is the type of the underlying alphabet. In conventional
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concrete syntax, α RE is defined by the grammar

r = 0 | 1 | a
| r + s | r · s | r∗

| r ∩ s | ¬ r | Π r

where r, s :: α RE and a :: α. Note that much of the time we will omit the “Π-extended” and
simply speak of regular expressions if there is no danger of confusion.

We assume that type α is partitioned into a family of alphabets Σn that depend on
a natural number n and there is a function π :: Σn+1 → Σn

1 that translates between the
different alphabets. In our application, n will represent the number of free variables of the
translated MSO formula. For now Σn and π are just parameters of our setup.

We focus on wellformed regular expressions where all atoms come from the same
alphabet Σn. This will guarantee that the language of such a wellformed expression is
a subset of Σ∗n. The projection operation complicates wellformedness a little. Because
projection is meant to encode existential quantifiers, projection should transform a regular
expression over Σn+1 into a regular expression over Σn, just as the existential quantifier
transforms a formula with n+ 1 free variables into a formula with n free variables. Thus
projection changes the alphabet. Wellformedness is defined as the recursive predicate wf ::
N→ α RE→ B.

wfn(0) => wfn(1) =>
wfn(a) = a ∈ Σn wfn(r + s) = wfn(r) ∧ wfn(s)

wfn(r · s) = wfn(r) ∧ wfn(s) wfn(r∗) = wfn(r)

wfn(r ∩ s) = wfn(r) ∧ wfn(s) wfn(¬ r) = wfn(r)

wfn(Π r) = wfn+1(r)

We call a regular expression r n-wellformed if wfn(r) holds.
The language L :: N→ α RE→ (α list) set of a regular expression is defined as usual,

except for the equations for complement and projection. For an n-wellformed regular
expression the definition yields a subset of Σ∗n.

Ln(0) = {} Ln(1) = {[ ]}
Ln(a) = {a} Ln(r + s) = Ln(r) ∪Ln(s)

Ln(r · s) = Ln(r) ·Ln(s) Ln(r∗) = Ln(r)∗

Ln(r ∩ s) = Ln(r) ∩Ln(s) Ln(¬ r) = Σ∗n \Ln(r)

Ln(Π r) = map π • Ln+1(r)

The first unusual point is the parametrization with n. It expresses that we expect a regular
expression over Σn and is necessary for the definition Ln(¬ r) = Σ∗n \Ln(r).

The definition Ln(Π r) = map π • Ln+1(r) is parameterized by the fixed parameter
π :: Σn+1→ Σn. The projection Π denotes the homomorphic image under π. In more detail:

1 Due to Isabelle’s lack of dependent types the actual type of π is α→α. The more refined dependent
type Σn+1→ Σn is realized via Isabelle’s tool for modeling parameterized systems with additional
assumptions: locales (Ballarin, 2006). A locale fixes parameters and states assumptions about
them. Hence, we use the locale assumption π • Σn+1 ⊆ Σn to relate locale parameters π and Σ.
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map lifts π homomorphically to words (lists), and • lifts it to sets of words. Therefore Π

transforms a language over Σn+1 into a language over Σn.
To understand the “projection” terminology, it is helpful to think of elements of Σn as

lists of fixed length n over some alphabet Σ and of π as the tail function on lists that
drops the first element of the list. A word over Σn is then a list of lists. Though this is a
good intuition, the actual encoding of formulas later on will be slightly more complicated.
Fortunately we can ignore these complications for now by working with arbitrary but fixed
Σn and π in the current section. Specific instantiations for them are given in Section 5.

4.2 Deciding Language Equivalence

Now we turn our attention to deciding equivalence of Π-extended regular expressions. The
key concepts required for this are nullability and derivatives. We call a regular expression
nullable if its language contains the empty word [ ]. Nullability can be easily checked
syntactically by the following recursive function ε :: α RE→ B.

ε(0) = ⊥ ε(1) = >
ε(a) = ⊥ ε(r + s) = ε(r) ∨ ε(s)

ε(r · s) = ε(r) ∧ ε(s) ε(r∗) = >
ε(r ∩ s) = ε(r) ∧ ε(s) ε(¬ r) = ¬ε(r)
ε(Π r) = ε(r)

The characteristic property—ε(r) iff [ ] ∈Ln(r) for any regular expression r and n :: N—
follows by structural induction on r.

The second key concept—the derivative of a regular expression D :: α→ α RE→ α RE

and its lifting to words D∗ :: α list→ α RE→ α RE—semantically corresponds to left
quotients of regular languages with respect to a fixed letter or word. Just as before, the
recursive definition is purely syntactic and the semantic correspondence is established by
a straightforward structural induction.

Db(0) = 0 Db(1) = 0
Db(a) = if a = b then 1 else 0 Db(r + s) = Db(r) + Db(s)

Db(r · s) = Db(r∗) = Db(r) · r∗

if ε(r) then Db(r) · s + Db(s)

else Db(r) · s
Db(r ∩ s) = Db(r) ∩Db(s) Db(¬ r) = ¬Db(r)

Db(Π r) = Π

( ⊕
c∈π−b

Dc(r)
)

D∗[ ](r) = r D∗bw(r) = D∗w(Db(r))

Lemma 1
Assume b∈ Σn, v∈ Σ∗n and let r be an n-wellformed regular expression. Then Ln(Db(r)) =
{w | bw ∈Ln(r)} and wfn(Db(r)), and consequently Ln(D∗v (r)) = {w | vw ∈Ln(r)} and
wfn(D∗v (r)).
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The projection case introduced some new syntax that deserves some explanation. The
preimage π− applied to a letter b ∈ Σn denotes the set {c ∈ Σn+1 | π c = b}. Our alphabets
Σn are finite for each n, hence so is the preimage of a letter. The summation

⊕
over a finite

set denotes the iterated application of the +-constructor of regular expressions. Summation
over the empty set is defined as 0.

Derivatives of extended regular expressions were introduced by Brzozowski (1964) fifty
years ago. Our contribution is the extension of the concept to handle the projection oper-
ation. Since the projection acts homomorphically on words, it is clear that the derivative
of Π r with respect to a letter b can be expressed as a projection of derivatives of r. The
concrete definition is a consequence of the following identity of left quotients for b ∈ Σn

and A⊆ Σ∗n+1:

{w | bw ∈map π • A}= map π •
⋃

c∈π−b

{w | cw ∈ A}

Although we completely avoid automata in the formalization, a derivative with respect
to the letter b can be seen as a transition labeled by b in a deterministic automaton, the
states of which are labeled by regular expressions. The automaton accepting the language
of a regular expression r can be thus constructed iteratively by exploring all derivatives of
r and defining exactly those states as accepting, which are labeled by a nullable regular
expression. However, the set {D∗w(r) | w :: α list} of states reachable in this manner is
infinite in general. To obtain a finite automaton, the states must be partitioned into classes
of regular expressions that are ACI-equivalent, i.e. syntactically equal modulo associativity,
commutativity and idempotence of the +-constructor or more formally related by the
following inductively defined congruence ∼.

r + (s + t)∼ (r + s) + t r + s∼ s + r r + r ∼ r

r ∼ r r ∼ s
s∼ r

r ∼ s s∼ t
r ∼ t

r1 ∼ s1 r2 ∼ s2
r1 + r2 ∼ s1 + s2

r1 ∼ s1 r2 ∼ s2
r1 · r2 ∼ s1 · s2

r ∼ s
r∗ ∼ s∗

Brzozowski showed that the number of∼-equivalence classes for a fixed regular expres-
sion r is finite by structural induction on r. The inductive steps require proving finiteness by
representing equivalence classes of derivatives of the expression in terms of equivalence
classes of derivatives of subexpressions. This is technically complicated, especially for
concatenation, iteration and projection, since it requires a careful choice of representatives
of equivalence classes to reason about them, and Isabelle’s automation can not help much
with the finiteness arguments—indeed the verification of Theorem 2 constitutes the most
intricate proof in the present work.

Theorem 2
{〈D∗w(r)〉 | w :: α list} is finite for any regular expression r.

The function 〈−〉 :: α RE→ α RE is the ACI normalization function, which maps ACI-
equivalent regular expressions to the same representative, i.e., defines a particular exe-
cutable choice of representatives of ∼-equivalence classes. It is defined by means of a
normalizing constructor ⊕ :: α RE→ α RE→ α RE and an arbitrary linear order � on
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regular expressions. The equations for ⊕ are matched sequentially.

〈0〉 = 0 〈1〉 = 1
〈a〉 = a 〈r + s〉 = 〈r〉 ⊕ 〈s〉
〈r · s〉 = 〈r〉 · 〈s〉 〈r∗〉 = 〈r〉∗

〈r ∩ s〉 = 〈r〉 ∩ 〈s〉 〈¬ r〉 = ¬ 〈r〉
〈Π r〉 = Π 〈r〉

(r + s)⊕ t = r ⊕ (s⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r � s then r + s

else s + r
When proving Theorem 2 by induction, on a high-level most cases follow Brzozowski’s

original proof (1964). The only exception is the newly introduced constructor Π r, where
we proceed as follows: By induction hypothesis we know that r has a finite set D of
distinct derivatives modulo ACI. Some of the formulas in D can have a sum as the topmost
constructor. If we repeatedly split such outermost sums in D until none are left, we obtain a
finite set X of expressions. Each word derivative D∗w(r) is ACI equivalent to some Π (

⊕
Y)

for some Y ⊆ X. Since X is finite, its powerset is also finite. Hence, there are only finitely
many distinct D∗w(r) modulo ACI.

The above proof sketch is very informal. The corresponding formal proof is technically
more challenging, e.g., we need to define precisely in which way D∗w(r) is ACI equivalent
to Π (

⊕
Y) for arbitrary words w. Here we employ the ACI normalization function and its

equivalent abstract characterization: After the application of 〈−〉 all sums in the expression
are associated to the right and the summands are sorted with respect to � and duplicated
summands are removed. From this, further later on useful properties of 〈−〉 can be derived:

Lemma 3
Let r be a regular expression, n :: N and b ∈ Σn. Then Ln〈r〉 = Ln(r), 〈〈r〉〉 = 〈r〉 and
〈Db〈r〉〉= 〈Db(r)〉.

So far, ACI normalization only connects Brzozowski derivatives to deterministic finite
automata. Furthermore, it will ensure termination of our decision procedure even with-
out ever entering the world of automata. Instead we follow Rutten (1998), who gives an
alternative view on deterministic automata as coalgebras. In the coalgebraic setting the
function λr. (ε(r), λb. Db(r)) :: α RE→ B× (α→ α RE) is a D-coalgebra for the functor
D(S) = B× (α→ S). The final coalgebra of D exists and corresponds exactly to the set of
all languages. Therefore, we obtain the powerful coinduction principle, reducing language
equality to bisimilarity. We phrase this general theorem instantiated to our concrete setting.
The formalized proof itself does not require any category theory; it resembles the reasoning
in § 4 of Rutten (1998).

Theorem 4 (Coinduction)

8
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Let R :: (α RE×α RE) set be a relation, such that for all (r, s) ∈ R we have:

1. wfn(r) ∧ wfn(s);
2. ε(r)↔ ε(s);
3. (〈Db(r)〉, 〈Db(s)〉) ∈ R for all b ∈ Σn.

Then for all (r, s) ∈ R, Ln(r) = Ln(s) holds.

From Lemma 1 and Lemma 3, we know that the relation

B = {(〈D∗w(r)〉,〈D∗w(s)〉) | w ∈ Σ
∗
n}

contains (〈r〉, 〈s〉) and fulfills the assumptions 1 and 3 of the coinduction theorem, as-
suming that r and s are both n-wellformed. Moreover, using Theorem 2 it follows that
this relation is finite. Thus, checking assumption 2 for every pair of this finite relation is
sufficient to prove language equality of r and s by coinduction. We obtain the following
abstract specification of a language equivalence checking algorithm.

Theorem 5
Let r and s be n-wellformed regular expressions. Then Ln(r) =Ln(s) iff we have ε(r′)↔
ε(s′) for all (r′, s′) ∈B.

4.3 Executable Algorithm from a Theorem

Our goal is not only to prove some abstract theorems about a decision procedure, but also
to extract executable code in some functional programming language (e.g. Standard ML,
Haskell, OCaml) using the code generation facility of Isabelle/HOL (Haftmann & Nipkow,
2010). Theorem 5 is not enough to do so: it contains a set comprehension ranging over the
infinite set Σ∗n, which is not executable as such. We need to instruct the system how to
enumerate B.

We start with the pair (〈r〉,〈s〉) and compute its pairwise derivatives for all letters of
the alphabet. For the computed pairs of regular expressions we proceed by computing
their derivatives and so on. This of course does not terminate. However, if we stop our
exploration at pairs that we have seen before it does, since we are exploring a finite set.

In more detail, we use a worklist algorithm that iteratively adds not yet inspected pairs
of regular expressions while exhausting words of increasing length until no new pairs are
generated. Saturation is reached by means of the executable combinator while :: (α→B)→
(α→ α)→ α→ α option from the Isabelle/HOL library. The option type α option has two
constructors None :: α option and Some :: α→ α option. Some lifts elements from the
base type α to the option type, while None is usually used to indicate some exceptional
behavior. The definition of while

while b c s = if ∃k.¬b(ck(s)) then Some (cLeast k.¬b(ck(s))(s)) else None

is not executable, but the following key lemma is:

while b c s = if b s then while b c (c s) else Some s

The code generated from this recursive equation will return Some s in case the definition
of while says so, but instead of returning None, it will not terminate. Thus we can prove
termination if we can show that the result is 6= None.

9
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In our case, the state s of the while loop consists of a worklist ws :: (α RE×α RE) list

of unprocessed pairs of regular expressions together with a set N :: (γ×γ) set of already
seen pairs modulo a normalization function norm :: αRE→ γ. This normalization function
(which is a parameter of our setup) is applied to already ACI-normalized expressions, to
syntactically identify further language equivalent expressions. This makes the bisimulation
relation that must be exhausted smaller, thus saturation is reached faster. The range type
of the normalization is not fixed, but we require a notion of languages L γ :: N→ γ→
(α list) set to be available for it, such that L γ

n (norm r) = Ln(r) holds. In the simplest
case norm can be the identity function and L γ = L . More interesting is a function on
regular expressions that eliminates 0 from unions, concatenations and intersections and 1
from concatenations. Other regular structures such as automata or different kinds of regular
expressions as instantiations for γ might enable even more sophisticated simplifications.

We define the arguments to the while combinator b :: (α RE×α RE) list× (γ×γ) set→
B and c :: N→ (α RE×α RE) list× (γ×γ) set→ (α RE×α RE) list× (γ×γ) set.

b ([ ], _) = ⊥
b ((r, s) # _, _) = ε(r)↔ ε(s)

cn ((r, s) # ws, N) =

let
succs = map (λb.

let
r′ = 〈Db(r)〉; s′ = 〈Db(s)〉

in ((r′, s′), (norm r′, norm s′))) Σn;
new = remdups snd (filter (λ(_, rs). rs /∈ N) succs)

in (ws @ map fst new, set (map snd new) ∪ N)

The function set :: α list→ α set maps a list to the set of its elements, filter :: (α→ B)→
α list→ α list removes elements that do not fulfill the given predicate, while remdups ::
(α→ β)→ α list→ α list is used to keep the worklist as small as possible. remdups f xs
removes duplicates from xs modulo the function f , e.g. remdups snd [(0, 0), (1,0)] =
[(1, 0)] (which element is actually kept is irrelevant; the result [(0, 0)] would also be valid).

Finally, a wellformedness check completes the now executable algorithm eqvRE :: N→
α RE→ α RE→ B.

eqvRE
n r s =

wfn(r) ∧ wfn(s) ∧
(case while b cn ([(〈r〉,〈s〉)],{(norm〈r〉,norm〈s〉)}) of

Some ([ ],_)⇒>
| Some (_ # _,_)⇒⊥)

The termination of eqvRE for any input is guaranteed by two facts: (1) all recursively
defined functions in Isabelle/HOL terminate by their definitional principle (either primitive
or wellfounded recursion) and (2) the termination of while follows from Theorem 2 and the
fact that the set N of already seen pairs in the state is a subset of (λ(r, s). (norm r, norm s)) •
{(〈D∗w(r)〉, 〈D∗w(s)〉) | w ∈ Σ∗n}.
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Theorem 6 (Termination)
Let r and s be n-wellformed regular expressions. Then

while b cn ([(〈r〉,〈s〉)],{(norm〈r〉,norm〈s〉)}) 6= None.

Function eqvRE deserves the name decision procedure since it constitutes a refinement
of the algorithm abstractly stated in Theorem 5, and is therefore sound and complete. The
refinement follows from proving the following predicate being an invariant for the states
(ws, N) of the while-loop given two initial n-wellformed regular expressions r and s:

inv (ws, N) =

(∀(r′, s′) ∈ set ws. (norm r′, norm s′) ∈ N) ∧
(∀(r′, s′) ∈ N. ∃w ∈ Σ∗n.D

∗
w(r) = r′ ∧D∗w(r) = s′) ∧

(∀(r′, s′) ∈ N \ ((λ(r, s). (norm r, norm s)) • (set ws)) . ε(r′)↔ ε(s′) ∧
(∀a ∈ Σn. (norm (Da(r′)), norm (Da(s′))) ∈ N))

For an execution of eqvRE, either ws is eventually emptied—in which case the last conjunct
of inv corresponds to N being a bisimulation modulo norm—or the test b fails for pair in
ws yielding a counterexample to language equivalence using the first two conjuncts of inv.

Theorem 7 (Soundness)
Let r and s be regular expressions such that eqvRE

n r s. Then Ln(r) = Ln(s).

Theorem 8 (Completeness)
Let r and s be n-wellformed regular expressions such that Ln(r) = Ln(s). Then eqvRE

n r s.

Let us observe the decision procedure at work by looking at the regular expressions
a∗ and 1 + a · a∗ for some a ∈ Σn = {a,b} for some n. For presentation purposes, the
correspondence of derivatives to automata is useful. Figure 1 shows two automata, the
states of which are equivalence classes of pairs of regular expressions indicated by a dashed
fringe (which is omitted for singleton classes). The equivalence classes of automaton (a)
are modulo plain ACI normalization, while those of automaton (b) are modulo a stronger
normalization function, making the automaton smaller. Transitions correspond to pairwise
derivatives and doubled margins denote states for which the associated pairs of regular
expressions are pairwise nullable. Both automata are the result of our decision procedure
performing a breadth-first exploration starting with the initially given pair and ignoring
states that are in the equivalence class of already visited states. The absence of pairs (r, s)
for which r is nullable and s is not nullable (or vice versa) proves the equivalence of all
pairs in the automaton, including the pair (a∗, 1 + a · a∗).

Let us mention two obvious performance deficits of our algorithm. First, the ACI nor-
malization is sorting the summands in expressions basically using bubble-sort. Using a set
data structure instead of binary sums would improve this to merge-sort and is certainly
desirable. Second, the algorithm constructs a bisimulation (not even a bisimulation up to
equality). This effectively means that even when applied on two identical expressions, the
algorithm would still enumerate all derivatives. There is a whole hierarchy of possible
improvements: bisimulation up to equality, equivalence, congruence, and congruence and
context, which have been successfully employed in unverified derivative-based decision
procedures (Bonchi & Pous, 2013; Pous, 2015). However, when verifying an algorithm
one has to settle for a solution somewhere in between of efficiency and simplicity.

11
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a∗
1 + a · a∗

1 · a∗
0 + 1 · a∗

0 · a∗ + 1 · a∗
0 + 0 · a∗ + 1 · a∗

0 · a∗ + 0 · a∗ + 1 · a∗
0 + 0 · a∗ + 0 · a∗ + 1 · a∗

0 · a∗
0 + 0 · a∗

0 · a∗ + 0 · a∗
0 + 0 · a∗ + 0 · a∗

0 · a∗ + 0 · a∗ + 0 · a∗
0 + 0 · a∗ + 0 · a∗ + 0 · a∗

Da

Da

Da ACI

Db

Db

Db

ACI ACI

Da
Db

(a) norm is identity function

1 · a∗
0 + 1 · a∗

0 · a∗ + 1 · a∗
0 + 0 · a∗ + 1 · a∗

a∗
1 + a · a∗

0 · a∗
0 + 0 · a∗

0 · a∗ + 0 · a∗
0 + 0 · a∗ + 0 · a∗

a∗
a∗

0
0

Da

Da

Db

Db
norm

norm

norm

normDa
Db

(b) norm unfolds 0 + r = r, 0 · r = 0 and 1 · r = r

Fig. 1. Checking the equivalence of a∗ and 1 + a · a∗ for Σn = {a,b}

4.4 Atoms with More Structure

Owens et al. (2009) advocate a more compact regular expression structure where the
language of an atom denotes a set of one letter words. The gained compactness is beneficial
especially for expressions over a large alphabet. In our setting, this would mean using the
type (α set)RE instead of αRE (without changing the underlying alphabet type α). We will
see later that our alphabet is indeed large—exponential in the number of free variables.

We generalize this idea without committing to a fixed type for the atoms yet. Instead
of α RE, the regular expressions over the alphabet type α on which the algorithm operates
will be of type β RE, where the relationship between α and the new atoms β is given
by a function memA :: β→ α→ B. The new semantics L :: N→ β RE→ (α list) set of
such regular expressions is defined just as the old L except for the atom case. A similar
adjustment is required for the new derivative D :: α→ β RE→ β RE.

Ln(b) = {a |memA b a} Da(b) = if memA b a then 1 else 0

Furthermore, the function wfA :: nat → β→ B is used to detect whether a β-atom is
wellformed. The wellformedness check for regular expressions wf :: nat→ β RE→ B will
use wfA in the atom case: wfn(b) = wfA n b. The functions memA and wfA are two further
parameters of our procedure. We obtain the original procedure by instantiating βwith α and
defining memA (b :: α) a↔ (a = b) and wfA n b↔ (b ∈ Σn). For the data structure from
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Owens et al. (2009), one would instantiate β with α set and define memA (B :: α set) a↔
(a ∈ B) and wfA n B↔ (∀a ∈ B. a ∈ Σn).

The benefit of the abstract formulation is the fact that β can be instantiated with a set
representation tailored to the particularities of the used regular expressions. In our case,
the regular expressions are translated MSO formulas and a few very particular sets of
letters arise from the translation. Therefore, in Section 5 we will define a data type α atom

matching exactly those particularities and instantiate β, memA, and wfA accordingly.

4.5 Alternatives to Brzozowski Derivatives

The example from Figure 1 shows that the choice of the normalization is crucial for the size
of the bisimulation relation. In prior work (Nipkow & Traytel, 2014) we show that partial
derivatives2 of ordinary regular expressions can be represented by a composition 〈〈−〉〉◦Da

where 〈〈−〉〉 is a particular normalization function defined using smart constructors and
observe that 〈〈−〉〉 tends to maintain a better balance between the size of the resulting
bisimulation and the ease to compute the normal form than other ad hoc choices. To
use partial derivatives here, we extend this particular function 〈〈−〉〉 to Π-extended regular
expressions as follows. The equations for the smart constructors + , · , ∩ , ¬ , and Π are
matched sequentially.

〈〈0〉〉 = 0
〈〈1〉〉 = 1
〈〈a〉〉 = a
〈〈r + s〉〉 = 〈〈r〉〉 + 〈〈s〉〉
〈〈r · s〉〉 = 〈〈r〉〉 · s
〈〈r∗〉〉 = r∗

〈〈r ∩ s〉〉 = 〈〈r〉〉 ∩ 〈〈s〉〉
〈〈¬ r〉〉 = ¬ 〈〈r〉〉
〈〈Π r〉〉 = Π 〈〈r〉〉

0 · r = 0
1 · r = r
(r + s) · t = (r · s) + (s · t)
r · s = s · t

¬ (r + s) = (¬ r) ∩ (¬ s)
¬ (r ∩ s) = (¬ r) + (¬ s)
¬ (¬ r) = r
¬ r = ¬ r

Π 0 = 0
Π 1 = 1
Π (r + s) = (Π r) + (Π s)
Π r = Π r

0 + r = r
r + 0 = r
(r + s) + t = r + (s + t)
r + (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r + t)

r + s = if r = s then r
else if r � s then r + s

else s + r

0 ∩ r = 0
r ∩ 0 = 0
(¬ 0) ∩ r = r
r ∩ (¬ 0) = r
(r + s) ∩ t = (r ∩ t) + (s ∩ t)
r ∩ (s + t) = (r ∩ s) + (r ∩ t)
(r ∩ s) ∩ t = r ∩ (s ∩ t)
r ∩ (s ∩ t) = if r = s then s ∩ t

else if r � s then r ∩ (s ∩ t)
else s ∩ (r ∩ t)

r ∩ s = if r = s then r
else if r � s then r ∩ s

else s ∩ r

2 Partial derivatives (Antimirov, 1996) refine Brzozowski derivatives by splitting the derivation
result at some +-constructors into a finite set of regular expressions. Partial derivatives correspond
to nondeterministic automata in the same way derivatives correspond to deterministic ones.
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It is worth noticing that 〈〈−〉〉 does not descend recursively into right hand side of con-
catenation and into iteration. Also, ∩ distributes over + , which establishes something
like a disjunctive normal form with respect to intersection (conjunction) and union (dis-
junction). Our motivation for this design goes back to Caron et al. (2011), who show
how to extend partial derivatives to negation and intersection using sets of sets of regular
expressions. The outer level of sets there represents unions, the inner intersections. We
conjecture that the usage of our 〈〈−〉〉 as the normalization function produces isomorphic
bisimulations to those obtained by working with the extended partial derivatives by Caron
et al. (2011) directly, but do not attempt to prove it. This conjecture is irrelevant for our
purpose, since there is anyway only empirical evidence that partial derivatives perform
better than other normalizations for Π-extended regular expression, yet it is an interesting
problem to work on in the future. To employ 〈〈−〉〉 in the algorithm, it is sufficient to prove
that it preserves wellformedness and languages—an easy exercise in induction.

Lemma 9
Let r be an n-wellformed regular expression. Then wfn〈〈r〉〉 and Ln〈〈r〉〉= Ln(r).

We remark that the normalization 〈〈−〉〉 does not enjoy nice algebraic properties. The
source of the problem is that our smart constructor ∩ is not idempotent. To see this,
assuming a� b� a ∩ b, we calculate: (a + b) ∩ (a + b)= a + b + (a ∩ b). Consequently,
the de Morgan law 〈〈¬ (r + s)〉〉 = 〈〈¬ r ∩ ¬ s〉〉 does not hold. One could argue that this is
a bad design of the normalization, which is modeled after the operations on sets of sets of
expressions given elsewhere (Caron et al., 2011). (Those operations suffer from the same
limitations.) However, the performance when using this normalization in practice seems
reasonable and our attempts in changing the normalization function to make ∩ idempotent
(for example by giving up distributivity of ∩ over + or by adding more equality checks in
the definition of ∩) resulted in a perceivable decrease in performance.

Nevertheless, an interesting question is whether one can find a fast normalization func-
tion that decides equivalence under the following inductively defined equivalence relation
≈, which is modeled after what the normalization function 〈〈−〉〉 attempts (but fails) to
equate. Note that, unlike ∼ (ACI), the relation ≈ is only an equivalence, not a congruence.
Not being able to find such a normalization we leave this question as future work.

0 + r ≈ r r + 0≈ r 0 · r ≈ 0 1 · r ≈ r

(¬ 0) ∩ r ≈ r r ∩ (¬ 0)≈ r 0 ∩ r ≈ 0 r ∩ 0≈ 0
r + (s + t)≈ (r + s) + t r + s≈ s + r r + r ≈ r

r ∩ (s ∩ t)≈ (r ∩ s) ∩ t r ∩ s≈ s ∩ r r ∩ r ≈ r

r ∩ (s + t)≈ (r ∩ s) + (r ∩ t) (r + s) ∩ t ≈ (r ∩ t) + (s ∩ t)

(r + s) · t ≈ (r · t) + (s · t) ¬ (¬ r)≈ r

¬ (r + s)≈ (¬ r) ∩ (¬ s) ¬ (r ∩ s)≈ (¬ r) + (¬ s)

Π (r + s)≈Π r + Π s Π 0≈ 0 Π 1≈ 1

r ≈ r r ≈ s
s≈ r

r ≈ s s≈ t
r ≈ t

r1 ≈ s1 r2 ≈ s2
r1 + r2 ≈ s1 + s2

r1 ≈ s1 r2 ≈ s2
r1 ∩ r2 ≈ s1 ∩ s2

r1 ≈ s1
r1 · t ≈ s1 · t

r ≈ s
¬ r ≈ ¬ s

r ≈ s
Π r ≈Π s

14



ZU064-05-FPR main 5 October 2015 10:53

Another promising alternative to Brzozowski derivatives is the data type α REop of
dual regular expressions (Okhotin, 2005). The data type is obtained by modifying α RE

as following: drop the negation and intersection constructors and add to every remaining
n-ary constructor a Boolean flag b with the following semantics L op ::N→ αREop→B.

L op
n ( b r1 · · ·rn) = Ln(if b then r1 · · ·rn else ¬ ( (¬ r1) · · ·(¬ rn)))

In the formalization (Traytel & Nipkow, 2014) we define wellformedness, derivatives
and some ad hoc normalization on α REop and generalize the bisimulation construction to
work on αREop as well. The evaluation will show that the decision procedure we obtain by
using dual regular expression performs better for the WS1S semantics of MSO, but worse
for the M2L semantics—a phenomenon for which we do not have an explanation yet.

5 MSO on Finite Words

Logics on finite words consider formulas in the context of a formal word, with variables
representing positions in the word. In the first-order logic on words a variable always
denotes a single position, while in monadic second-order logic on finite words (MSO)
variables come in two flavors: first-order variables for single positions and second-order
variables for finite sets of positions.

In the next subsections we first define the syntax of formulas and give them a semantics
that is related to formal languages: M2L(Str). The second semantics, WS1S, is introduced
as a relaxation of M2L (we drop the “(Str)” from now on). Both semantics are equally
expressive and deciding both is of nonelementary complexity. The benefits and drawbacks
of the two semantics are discussed elsewhere (Klarlund, 1999; Ayari & Basin, 2000).

5.1 Syntax and M2L Semantics

MSO formulas are syntactically represented by the recursive data type αΦ using de Bruijn
indices for variable bindings. Terms of α Φ are generated by the grammar

ϕ= Q a m | m1<m2 | m∈M | ϕ∧ψ | ϕ∨ψ | ¬ ϕ | ∃ ϕ | ∃∃∃∃∃∃∃∃∃ ϕ

where ϕ,ψ :: α Φ, m,m1,m2,M :: N and a :: α. Lower-case variables m,m1,m2 denote first-
order variables, M denotes a second order variable. The atomic formula Q a m requires the
letter of the word at the position represented by variable m to be a; the constructors < and
∈ compare positions; Boolean operators are interpreted as usual.

The bold existential quantifier ∃∃∃∃∃∃∃∃∃ binds second-order variables, ∃ binds first-order vari-
ables. Occurrences of bound variables represented as de Bruijn indices refer to their binders
by counting the number of nested existential quantifier between the binder and the occur-
rence. For example, the formula ∃ (Q a 0∧ (∃∃∃∃∃∃∃∃∃ 1∈0)) translates to ∃x.(Q a x∧ (∃X. x∈X))
when using names. The first 0 in the nameless formula refers to the outermost first-order
quantifier. Inside of the inner second-order quantifier, index 1 refers to the outermost quan-
tifier and index 0 to the inner quantifier. The nameless representation simplifies reasoning
by implicitly capturing α-equivalence of formulas. On the downside, de Bruijn indices are
less readable and must be manipulated with care.
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Formulas may have free variables. The functions V1 ::αΦ→N set and V2 :: αΦ→N set

collect the free first-order and second-order variables:

V1(Q a m) = {m} V2(Q a m) = {}
V1(m1<m2)= {m1, m2} V2(m1<m2)= {}
V1(m∈M) = {m} V2(m∈M) = {M}
V1(ϕ∧ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ∧ψ) = V2(ϕ) ∪ V2(ψ)

V1(ϕ∨ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ∨ψ) = V2(ϕ) ∪ V2(ψ)

V1(¬ ϕ) = V1(ϕ) V2(¬ ϕ) = V2(ϕ)

V1(∃ ϕ) = bV1(ϕ)\{0}c V2(∃ ϕ) = bV2(ϕ)c
V1(∃∃∃∃∃∃∃∃∃ ϕ) = bV1(ϕ)c V2(∃∃∃∃∃∃∃∃∃ ϕ) = bV2(ϕ)\{0}c

The notation bXc is shorthand for (λx. x−1) • X, which reverts the increasing effect of an
existential quantifier on previously bound or free variables. To obtain only free variables,
bound variables are removed when their quantifier is processed, at which point the bound
variable has index 0.

Just as for Π-extended regular expressions, not all formulas in αΦ are meaningful. Con-
sider 0∈0, where 0 is both a first-order and a second-order variable. To exclude such for-
mulas, we define the predicate wfΦ :: N→ α Φ→ B as wfΦ

n (ϕ) = (V1(ϕ)∩V2(ϕ) = {}) ∧
pre_wfΦ

n (ϕ) and call a formula ϕ n-wellformed if wfΦ
n (ϕ) holds. The recursively defined

predicate pre_wfΦ :: N→ α Φ→ B is used for further assumptions on the structure of
n-wellformed formulas, which will simplify our proofs:

pre_wfΦ
n (Q a m) = a ∈ Σ ∧ m < n

pre_wfΦ
n (m1<m2) = m1 < n ∧ m2 < n

pre_wfΦ
n (m∈M) = m < n ∧ M < n

pre_wfΦ
n (ϕ∧ψ) = pre_wfΦ

n (ϕ) ∧ pre_wfΦ
n (ψ)

pre_wfΦ
n (ϕ∨ψ) = pre_wfΦ

n (ϕ) ∧ pre_wfΦ
n (ψ)

pre_wfΦ
n (¬ ϕ) = pre_wfΦ

n (ϕ)

pre_wfΦ
n (∃ ϕ) = pre_wfΦ

n+1(ϕ) ∧ 0 ∈ V1(ϕ) ∧ 0 /∈ V2(ϕ)

pre_wfΦ
n (∃∃∃∃∃∃∃∃∃ ϕ) = pre_wfΦ

n+1(ϕ) ∧ 0 /∈ V1(ϕ) ∧ 0 ∈ V2(ϕ)

pre_wfΦ
n (ϕ) ensures that the index of every free variable in ϕ is below n and the values of

type α come from a fixed alphabet Σ. Note that Σ is really just a fixed set of letters of type α,
independent of any n and is a parameter of our setup. Moreover, pre_wfΦ checks that bound
variables are correctly used as first-order or second-order with respect to their binders and
excludes formulas with unused binders; unused binders are obviously superfluous.

An interpretation of an MSO formula is a pair of a word w :: α list from Σ∗ and an
assignment I :: (N+N set) list for free variables. The latter essentially consists of two
functions with finite domain: one from first-order variables to positions and the other from
second-order variables to sets of positions. We represent those two functions by a list, once
again benefiting from de Bruijn indices—the value lookup for a variable with de Bruijn
index i corresponds to inspecting the assignment I at position i, i.e. I [i]. The range of
I is a sum type, denoting the disjoint union of its two argument types. The sum type has
two constructors Inl :: α→ α+β and Inr :: β→ α+β, such that for a first-order variable m
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there is a position p with I [m] = Inl p and for a second-order variable M there is a finite
set of positions P with I [M] = Inr P.

An interpretation that satisfies a formula is called a model. Satisfiability for M2L, de-
noted by infix � :: α list× (N+N set) list→ α Φ→ B, is defined recursively on α Φ. To
simplify the notation, the constructors Inl and Inr are stripped implicitly in the definition.

(w,I ) � Q a m ↔ w[I [m]] = a

(w,I ) � m1<m2↔ I [m1] <I [m2]

(w,I ) � m∈M ↔ I [m] ∈I [M]

(w,I ) � ϕ∧ψ ↔ (w,I ) � ϕ ∧ (w,I ) � ψ

(w,I ) � ϕ∨ψ ↔ (w,I ) � ϕ ∨ (w,I ) � ψ

(w,I ) � ¬ ϕ ↔ (w,I ) 6 � ϕ
(w,I ) � ∃ ϕ ↔ ∃p ∈ {0, . . . , |w|−1}. (w, Inl p # I ) � ϕ

(w,I ) � ∃∃∃∃∃∃∃∃∃ ϕ ↔ ∃P⊆ {0, . . . , |w|−1}. (w, Inr P # I ) � ϕ

For the definition to make sense, I must correctly map first-order variables to positions
(i.e. I [m] = Inl p) and second-order variables to sets of positions (i.e. I [M] = Inr P).
Furthermore, all positions in I should be below the length of the word, and for technical
reasons the word should not be empty. We formalize these assumptions by the predicate
wfM2L :: αΦ→ α list× (N+N set) list→ B and call an interpretation M2L-wellformed for
ϕ if wfM2L

ϕ (w,I ) holds:

wfM2L
ϕ (w,I ) = w 6= [ ] ∧ w ∈ Σ∗ ∧

∀ Inl p ∈ set I . p < |w| ∧
∀Inr P ∈ set I . (∀p ∈ P. p < |w|) ∧
∀m ∈ V1(ϕ). (∃p.I [m ] = Inl p) ∧
∀M ∈ V2(ϕ). (∃P.I [M] = Inr P)

5.2 WS1S Semantics

In an M2L-wellformed model, positions are restricted by the length of the word. This is
the key difference compared to WS1S. In WS1S no a priori restrictions on the variable
ranges are made, although all second-order variables still represent finite sets. The subtle
difference is illustrated by the formula ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) (with names: ∃X.∀x. x∈X), where
∀ ϕ is just an abbreviation for ¬ ∃ ¬ ϕ. In the M2L semantics ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) is satisfied by
all wellformed interpretations—the witness set for the outer existential quantifier is for a
wellformed interpretation (w,I ) just the set {0, . . . , |w|−1}. In contrast, in WS1S, there is
no finite set which contains all arbitrarily large positions, thus ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) is unsatisfiable.

Formally, satisfiability for WS1S, denoted by infix �◦◦◦ :: α list×(N+N set) list→ αΦ→
B, is defined just as for M2L (replacing � by �◦◦◦ ) except for the following equations.

(w,I )�◦◦◦ Q a m↔ (if I [m] < |w| then w[I [m]] else z) = a

(w,I )�◦◦◦ ∃ ϕ ↔ ∃p. (w, Inl p # I )�◦◦◦ ϕ

(w,I )�◦◦◦ ∃∃∃∃∃∃∃∃∃ ϕ ↔ ∃P. (w, Inr P # I )�◦◦◦ ϕ∧finite P
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Here, z is a distinguished letter from Σ. WS1S as defined in the literature does not handle
the Q a m case at all, usually interpreting formulas only with respect to the assignment I .
In order to be able to use the same syntax and the same type of interpretations for both
semantics, we have made the above choice. This also allows us to translate Q a m into the
same regular expression irrespective of the intended semantics.

Besides the mentioned relaxation of WS1S-wellformedness regarding variable ranges,
the empty word also does not impose technical complications as in M2L. Therefore, the
predicate wfWS1S :: α Φ→ α list× (N+N set) list→ B is defined as follows.

wfWS1S
ϕ (w,I ) = w ∈ Σ∗∧

∀Inr P ∈ set I . finite P ∧
∀m ∈ V1(ϕ). (∃p.I [m ] = Inl p) ∧
∀M ∈ V2(ϕ). (∃P.I [M] = Inr P)

5.3 Encoding Interpretations as Words

Formulas are equivalent if they have the same set of wellformed models. To relate equiva-
lent formulas with language equivalent regular expressions, the set of wellformed models
must be represented as a formal language by encoding interpretations as words. As before,
we cover the encoding of the M2L semantics first.

To simplify the formalization, we choose a very simple encoding using Boolean vectors.
For an interpretation (w,I ), we associate with every position p in the word w a Boolean
vector bs of length |I |, such that bs[m] => iff the mth variable in I is first-order and its
value is p or it is second-order and its value contains p. For example, for Σ = {a,b} the
interpretation (w,I )= (aba, Inl 0 # Inr {1,2} # Inl 2 # [ ]) can be written in two dimensions
as follows:

a b a

Inl 0 > ⊥ ⊥
Inr {1,2} ⊥ > >
Inl 2 ⊥ ⊥ >

In the first row, the value > is placed only in the first column because the first variable of
I is the first-order position 0. In general, the columns correspond to the Boolean vectors
associated with positions in the word, while every row corresponds to one variable. For
first-order variables there must be exactly one > per row. The first row encodes the value
of the most recently bound variable. Now, we consider every column as a letter of a new
alphabet, which is the underlying alphabet Σn = Σ×Bn of regular expressions of Section 4.
This transformation of interpretations into words over Σn is performed by the function
encM2L :: α list× (N+N set) list→ (α×B list) list; we omit its obvious definition.

Furthermore, the second parameter π :: Σn+1→ Σn of our decision procedure for regular
expressions can now be instantiated as the function that maps (a, b # bs) to (a, bs). Thus,
the projection Π operates on words by removing the first row from words in the language
of the body expression, reflecting the semantics of an existential quantifier.
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Finally, the M2L-language L M2L ::N→αΦ→ (α×B list) set of an MSO formula is the
set of encodings of its wellformed models, i.e. L M2L

n (ϕ) = {encM2L(w,I ) |wfM2L
ϕ (w,I )∧

|I |= n ∧ (w,I ) � ϕ}.
Concerning WS1S, the encoding is slightly more complicated due to the following

observation: Interpretations (w,I ) and (wzn,I ) for all n :: N behave the same when
considering satisfiability and wellformedness with respect to a formula (zn denotes n-
fold repetition of the letter z as a word). That suggests that the example interpretation
(w,I ) = (aba, Inl 0 # Inr {1,2} # Inl 2 # [ ]) from above can be encoded as

a b a zm

Inl 0 > ⊥ ⊥ ⊥m

Inr {1,2} ⊥ > > ⊥m

Inl 2 ⊥ ⊥ > ⊥m

for every m :: N. Hence, the a single WS1S interpretation is translated into a countably
infinite set of words by a function encWS1S :: α list× (N+N set) list→ (α×B list) list set;
we again omit its formal definition. Accordingly, the WS1S-language L WS1S ::N→ αΦ→
(α×B list) set of an MSO formula is defined as the union of all encodings of its well-
formed models: L WS1S

n (ϕ) =
⋃
{encWS1S(w,I ) | wfWS1S

ϕ (w,I ) ∧ |I |= n ∧ (w,I )�◦◦◦ ϕ}.

5.4 From M2L Formulas to Regular Expressions

We have fixed the underlying alphabet type α×B list of the language of a formula. In
principle, we could start translating formulas of type α Φ into regular expressions of
type (α×B list) RE. However, the abstraction for atoms introduced in Section 4.4 caters
for a more efficient encoding of formulas. We define the data type α atom as

atm = A a_bs | AQ m a | ANth m b | ANth2 m M

where atm :: α atom, a_bs :: α×B list, m,m1,m2,M :: N, a :: α, and b :: B. Each constructor
of α atom represents a set of elements of type α×B list. The constructor A represents the
singleton set containing the constructor’s argument, AQ m a encodes all pairs whose first
element is a and whose second element (a Boolean vector) has > at index m. Both, this
informal description as well as the constructor name should indicate that AQ m a is closely
related to the formula Q a m. The remaining two constructors have a similar purpose, being
related to the other base cases of the formula type. Let us make this precise by instantiating
the two parameters memA :: α atom→ α×B list→ B and wfA :: N→ α atom→ B.

memA (A a_bs) a_bs′ ↔ a_bs = a_bs′ wfA n (A a_bs) ↔ a_bs ∈ Σn

memA (AQ m a) (a′, bs) ↔ a = a′ ∧ bs[m] wfA n (AQ m a) ↔ a ∈ Σ ∧ m < n
memA (ANth m b) (_, bs) ↔ bs[m] = b wfA n (ANth m b) ↔ m < n
memA (ANth2 m M) (_, bs)↔ bs[m] ∧ bs[M] wfA n (ANth2 m M)↔ m < n ∧ M < n

Now, we are set to tackle the translations of formulas into regular expressions. MSO
formulas interpreted in M2L are translated by means of the primitive recursive function

19



ZU064-05-FPR main 5 October 2015 10:53

mkREM2L :: N→ α Φ→ (α atom) RE.

mkREM2L
n (Q a m) = ¬ 0 · AQ m a · ¬ 0

mkREM2L
n (m1<m2) = ¬ 0 · ANth m1 > · ¬ 0 · ANth m2 > · ¬ 0

mkREM2L
n (m∈M) = ¬ 0 · ANth2 m M · ¬ 0

mkREM2L
n (ϕ∧ψ) = mkREM2L

n (ϕ) ∩mkREM2L
n (ψ)

mkREM2L
n (ϕ∨ψ) = mkREM2L

n (ϕ) + mkREM2L
n (ψ)

mkREM2L
n (¬ ϕ) = ¬mkREM2L

n (ϕ)

mkREM2L
n (∃ ϕ) = Π

(
mkREM2L

n+1(ϕ) ∩WFn+1{0}
)

mkREM2L
n (∃∃∃∃∃∃∃∃∃ ϕ) = Π

(
mkREM2L

n+1(ϕ)
)

At first, we ignore the function WF that is used in the case of the first-order quantifier.
The natural number parameter of mkREM2L indicates the number for free variables for the
processed formula. The parameter is increased when entering recursively the scope of an
existential quantifier.

The intuition behind the translation is demonstrated by the case Q a m. We fix a well-
formed model (w,I ) of Q a m. This model must satisfy w[I [m]] = a, or equivalently the
fact that there exists a Boolean vector bs of length n such that encM2L(w,I )[I [m]] = (a, bs)
and bs[m] = >. Therefore, the letter at position I [m] of encM2L(w,I ) is matched by the
“middle” part AQ m a of mkREM2L

n (Q a m), while the subexpressions ¬ 0 (whose language
is Σ∗n) match the first I [m] and the last n−I [m] letters of encM2L(w,I ).

Conversely, if we fix a word from mkREM2L
n (Q a m), it will be equal to an encoding

of an interpretation that satisfies Q a m by a similar argument. However, the interpreta-
tion might be not wellformed for Q a m. This happens because the regular expression
mkREM2L

n (Q a m) does not capture the distinction between first-order and second-order
variables: it accepts encodings of interpretations that have the value > more than once
at different positions representing the same first-order variable. This indicates that the
subexpressions ¬ 0 in the base cases are not precise enough, but also in the case of Boolean
operators similar issues arise. So instead of tinkering with the base cases, it is better to
separate the generation a regular expression that encodes models from the one that encodes
wellformed interpretations.

To rule out not wellformed interpretations is exactly the purpose of the WF :: N →
N set→ (α atom) RE function.

WFn(X) =
⋂

m∈X

(ANth m⊥)∗ · ANth m> · (ANth m⊥)∗

The regular expression WFn(V1(ϕ)) accepts exactly the encodings of wellformed inter-
pretations (both models and non-models) for ϕ by ensuring that first-order variables are
encoded correctly (i.e., forcing the encoding of an interpretation to contain exactly one >
in rows belonging to a first-order variable).

Lemma 10
Let ϕ be an n-wellformed formula. Then

• Ln(WFn(V1(ϕ)))\{[ ]}= {encM2L(w,I ) | wfM2L
ϕ (w,I )∧|I |=n}, and

• Ln(WFn(V1(ϕ))) = {encWS1S(w,I ) | wfWS1S
ϕ (w,I )∧|I |=n}.
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Using WF in every case of the recursive definition of mkREM2L is sound but very redun-
dant—instead it is enough to perform the intersection once globally for the entire formula
and additionally for every variable introduced by the first-order existential quantifier.

MSO formulas interpreted in WS1S are translated into regular expressions by means of
the function mkREWS1S :: N→ α Φ→ (α atom) RE.

The definition of mkREWS1S coincides with the one of mkREM2L except for the existential
quantifier cases:

mkREWS1S
n (∃ ϕ) = Q (z,⊥n)

(
Π
(
mkREWS1S

n+1 (ϕ) ∩WFn+1{0}
))

mkREWS1S
n (∃∃∃∃∃∃∃∃∃ ϕ) = Q (z,⊥n)

(
Π
(
mkREWS1S

n+1 (ϕ)
))

The regular operation Q :: α×B list→ (α atom) RE→ (α atom) RE reestablishes the
invariant of having all words terminated with a suffix (z,⊥n)m for every m :: N in the
WS1S language encoding of a formula as required by definition of encWS1S (this invariant
might be violated by the projection). More precisely, the following language identity holds
for an n-wellformed regular expression r:

Ln(Q a r) =
{

xam | ∃l. xal ∈Ln(r)
}

The concrete executable definition of Q is more involved. On a high-level, Q is com-
puted by repeatedly deriving from the right by a via the function D

←
a (followed by ACI-

normalization) until a repetition is encountered. The definition of D
← is identical to the

familiar D which derives from the left except for the concatenation and iteration cases (in
which it is dual).

D
←
b (0) = 0 D

←
b (1) = 0

D
←
b (a) = if a = b then 1 else 0 D

←
b (r + s) = D

←
b (r) + D

←
b (s)

D
←
b (r · s) = D

←
b (r∗) = r∗ ·D←

b (r)

if ε(s) then r ·D←
b (s) + D

←
b (r)

else r ·D←
b (s)

D
←
b (r ∩ s) = D

←
b (r) ∩D

←
b (s) D

←
b (¬ r) = ¬D

←
b (r)

D
←
b (Π r) = Π

( ⊕
c∈π−b

D
←
c (r)

)

Repeated derivation is implemented using the while combinator. The state over which
the combinator iterates is of type B×α RE list. The Boolean component simply indicates
whether the loop should be executed once more, while the list contains all the derivatives
computed so far in reversed order (i.e. the last element of the list is the initial regular
expression). The loop is exited on the first déjà vu. The termination of this procedure is
established by the dual of Theorem 2 for ACI-equivalent “right derivatives”. After exiting
the while loop, the operation Q unions all the expressions computed so far, yielding an
operation whose language is

{
x | ∃l. xal ∈Ln(r)

}
. To obtain the desired semantics the
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iteration of a (lifted to the α atom type by A) is concatenated to the union.

b
←
(continue, _) = continue

c
←
a (_, rs) =

let s = 〈D←
a (head rs)〉

in if s ∈ set rs then (⊥, rs) else (>, s # rs)

Q a r =

let R = case while b
←

c
←
a (>, 〈r〉) of Some (_, rs)⇒ set rs

in
(⊕

r∈R
r
)
· (A a)∗

Finally, we can establish the language correspondence between formulas and generated
regular expressions.

Theorem 11
Let ϕ be an n-wellformed formula. Then

• L M2L
n (ϕ) = Ln(mkREM2L

n (ϕ) ∩WFn(ϕ))\{[ ]}, and
• L WS1S

n (ϕ) = Ln(mkREWS1S
n (ϕ) ∩WFn(ϕ)).

The proof is by structural induction on ϕ. Above we have seen the argument for the base
case Q a m, other base cases follow similarly. The cases ∃ ϕ and ∃∃∃∃∃∃∃∃∃ ϕ follow easily from
the semantics of Π given by our concrete instantiation for π and Σn and the induction
hypothesis. The most interesting cases are, somehow unexpectedly, those for Boolean op-
erators. Although the definitions are purely structural, sets of encodings of models must be
composed or, even worse, complemented in the inductive steps. The key property required
here is that encM2L (and encWS1S) do not identify models and non-models: two different
wellformed interpretations for a formula—one being a model, the other being a non-
model—are encoded into different words (sets of words). This is again established by
structural induction on formulas for both semantics.

Lemma 12
Let (w1,I1) and (w2,I2) be two M2L-wellformed interpretations for a formula ϕ such
that encM2L(w1,I1) = encM2L(w2,I2). Then (w1,I1) � ϕ↔ (w2,I2) � ϕ.
Let (w1,I1) and (w2,I2) be two WS1S-wellformed interpretations for a formula ϕ such
that encWS1S(w1,I1) = encWS1S(w2,I2). Then (w1,I1)�

◦◦◦ ϕ↔ (w2,I2)�
◦◦◦ ϕ.

5.5 Deciding Language Equivalence of Formulas

The algorithms eqvM2L :: N → α Φ → α Φ → B and eqvWS1S :: N → α Φ → α Φ → B
that decide language equivalence of MSO formulas check wellformedness of the input
formulas, translate the formulas into regular expressions and let eqvRE do the work:

eqvM2L
n ϕ ψ = wfΦ

n (ϕ∨ψ) ∧ eqvRE
n (mkREM2L

n (ϕ) + 1) (mkREM2L
n (ψ) + 1)

eqvWS1S
n ϕ ψ = wfΦ

n (ϕ∨ψ) ∧ eqvRE
n (mkREWS1S

n (ϕ)) (mkREWS1S
n (ψ))

Note that wellformedness is checked on the disjunction of both formulas to ensure that they
agree on free variables (i.e. no first-order free variable of ϕ is used as a second-order free

22



ZU064-05-FPR main 5 October 2015 10:53

variable in ψ and vice versa). Further, we add the empty word into both regular expression
when working with the M2L semantics. This is allowed, since [ ] is not a valid encoding
of an interpretation, and necessary because Theorem 11 does not give us any information
whether the empty word is contained in the output of mkREM2L or not.

Termination of eqvRE is ensured by Theorem 6 and the definition principle of primitive
recursion for wfΦ, mkREM2L and mkREWS1S. Soundness and completeness follow easily
from Theorems 7, 8 and 11.

Theorem 13 (Soundness)
Let ϕ and ψ be MSO formulas.

• If eqvM2L
n ϕ ψ, then L M2L

n (ϕ) = L M2L
n (ψ).

• If eqvWS1S
n ϕ ψ, then L WS1S

n (ϕ) = L WS1S
n (ψ).

Theorem 14 (Completeness)
Let ϕ∨ψ be an n-wellformed MSO formula.

• If L M2L
n (ϕ) = L M2L

n (ψ), then eqvM2L
n ϕ ψ.

• If L WS1S
n (ϕ) = L WS1S

n (ψ), then eqvWS1S
n ϕ ψ.

As a sanity check let us apply our translation for M2L to the formula ϕ = ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1)
(with names: ∃X.∀x. x∈X), that is valid under the M2L semantics (but unsatisfiable under
the WS1S semantics as discussed earlier). Since ϕ is closed, it is 0-wellformed and our
underlying alphabet is Σ0 = Σ×B0 for some base alphabet Σ. E.g. we can take Σ = {a}
and write the unique element of Σ0 as â. The function 〈〈mkREM2L

0 (ϕ)〉〉 translates ϕ to the
accepting Π-extended regular expression Π r over Σ0 where r is an abbreviation:

r = ¬Π (((ANth 0⊥)∗ · ANth 0> · (ANth 0⊥)∗) ∩ ¬ (¬ 0 · ANth2 0 1 · ¬ 0))

Derivatives of Π r by words of the form ân for n > 0 are all ≈-equivalent to a single (also
accepting) expression. More precisely, for all w ∈ Σ∗0 \{[ ]} we have:

D∗w(Π r) = Π r + Π (r ∩ ¬Π ((ANth 0⊥∗) ∩ ¬ (¬ 0 · ANth2 0 1 · ¬ 0)))

Because all derivatives of its translation are accepting, the formula ϕ must be valid. We
would have loved to include the same example using the WS1S semantics as well, but
unfortunately the output of the translation (and normalization) is a regular expression with
more than 2000 constructors (which the decision procedure still can handle).

6 Application: Finite-Word LTL

We want to execute the code generated by Isabelle/HOL for our decision procedures on
some larger examples. For simplicity, we first focus on M2L.

In order to create larger formulas, it is helpful to introduce some syntactic abbreviations.
We define the unsatisfiable formula ⊥ as ∃ 0<0 and the valid formula > as ¬ ⊥. Now,
checking that a formula is valid amounts to checking its equivalence to >. We call the
function that performs this check Thm. Implication ϕ→ ψ is defined as (¬ ϕ)∨ψ and
universal quantification ∀ ϕ as before as ¬ ∃ ¬ ϕ. Next, we introduce temporal logical
operators always �P :: N→ α Φ and eventually ♦P :: N→ α Φ depending on P :: N→
αΦ—a formula parameterized by a single variable indicating the time. The operators have
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their usual meaning except that with the given M2L semantics the time variable ranges
over a fixed set determined by the interpretation. Additionally, we lift the disjunction and
implication to time-parameterized formulas.

�P t = ∀ (¬ t+1<0→P 0)

♦P t = ∃ (¬ t+1<0∧P 0)

(P⇒ Q) t = P t→ Q t

(P ∨ Q) t = P t∨Q t

Note that t+1 has nothing to do with the next time step. It is just the lifting of the de Bruijn
index under a single quantifier.

Formulas of linear temporal logic also contain atomic predicates for which the interpre-
tation must specify at which points in time they are true. This information can be encoded
in two ways, which we compare in the following.

The first possibility is to encode atomic predicates in the word of the interpretation. This
is done by identifying Σ with the powerset P of atomic predicates. For every point in time,
that is for every position in the word, the letter is the set of predicates that are true at this
point. Using this encoding we can prove the validity of the following closed formulas over
the alphabet P{P}= {{P}, {}} automatically within a few milliseconds.

∀ (�(Q{P})⇒ ♦(Q{P})) 0

∀ (�(Q{P})⇒�♦(Q{P})) 0

Alternatively, a free second-order variable can be used to encode an atomic predicate
directly. The variable denotes the set of points in time for which the atomic predicate holds.
The alphabet Σ can then be trivial, i.e. Σ = {a} for an arbitrary a. Using this encoding the
above two formulas correspond to

∀ (�(λt. t∈2)⇒ ♦(λt. t∈2)) 0

∀ (�(λt. t∈2)⇒�♦(λt. t∈3)) 0

Both formulas have one free second-order variable 0 that is lifted when passing two or three
quantifiers. The generated algorithm shows the equivalence to> again within milliseconds.

In order to explore the limits of our decision procedure, formulas over more atomic
predicates are required. Therefore, we consider the distributivity theorems of � over impli-
cation for both representations of atomic predicates as shown in Figure 2. When the number
of predicates n is increased, the size of ϕn grows exponentially: to express that a predicate
P holds at some position we need the disjunction of all atoms containing P. In contrast, the
size of ψn grows linearly. The complexity of ψn is hidden in the number of variables and
therefore in its encoding—the latter also grows exponentially with increasing n.

Both, ϕi and ψi are theorems under both semantics. The running times of the decision
procedure Thm in seconds are summarized in Figures 3 and 4 (column Thm, first number
refers to the M2L semantics, the second to WS1S). Thereby, ψ1, ψ2 and ψ3 were processed
over Σ = {a}, ϕ1 was processed over Σ = P{P}, ϕ2 over Σ = P{P1,P2} and finally ϕ3

over Σ = P{P1,P2,P3}. The column “ICFP 2013” recapitulates the running times from
the earlier unoptimized version of this procedure (Traytel & Nipkow, 2013).
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ϕ1 = ∀ (�(Q{P})⇒�(Q{P})) 0
ϕ2 = ∀ (�(Q{P1} ∨ Q{P1, P2}⇒Q{P2} ∨ Q{P1, P2})⇒

�(Q{P1} ∨ Q{P1, P2})⇒�(Q{P2} ∨ Q{P1, P2})) 0
ϕ3 = ∀ (�(Q{P1} ∨ Q{P1, P2} ∨ Q{P1, P3} ∨ Q{P1, P2, P3}⇒

Q{P2} ∨ Q{P1, P2} ∨ Q{P2, P3} ∨ Q{P1, P2, P3}⇒
Q{P3} ∨ Q{P1, P3} ∨ Q{P2, P3} ∨ Q{P1, P2, P3})⇒

�(Q{P1} ∨ Q{P1, P2} ∨ Q{P1, P3} ∨ Q{P1, P2, P3})⇒
�(Q{P2} ∨ Q{P1, P2} ∨ Q{P2, P3} ∨ Q{P1, P2, P3})⇒
�(Q{P3} ∨ Q{P1, P3} ∨ Q{P2, P3} ∨ Q{P1, P2, P3})) 0

ψ1 = ∀ (�(λt. t∈2)⇒�(λt. t∈2)) 0
ψ2 = ∀ (�(λt. t∈2→ t∈3)⇒�(λt. t∈2)⇒�(λt. t∈3)) 0
ψ3 = ∀ (�(λt. t∈2→ t∈3→ t∈4)⇒�(λt. t∈2)⇒�(λt. t∈3)⇒�(λt. t∈4)) 0

Fig. 2. Definition of ϕn and ψn

n size ICFP 2013 Thm Thminterm Thmdual

1 54/ 31907 0/− 0/230.9 0/ 17.1 0/ 0.4
2 100/ 60045 2/− 0.7/ − 0/711.6 0/21.1
3 192/114857 4860/− 964.4/ − 30.4/ − 31.7/ −

Fig. 3. Benchmarks for ϕn (under M2L/WS1S semantics)

n size ICFP 2013 Thm Thminterm Thmdual

1 54/31907 0/− 0/224.4 0/ 22.6 0/ 0.4
2 81/48797 2/− 0.3/ − 0/434.1 0/14.4
3 108/65687 2640/− 64.4/ − 3.9/ − 17.8/ −

Fig. 4. Benchmarks for ψn (under M2L/WS1S semantics)

Figures 3 and 4 also shows the sizes (column size counting the number of constructors)
of the regular expressions generated from the input formulas. These numbers show a huge
gap between WS1S and M2L that also shows up in the runtime results. Our implementation
of Q is very inefficient. As future work, we plan to investigate the addition of this regular
operator as a constructor to the data type of regular expressions, similarly to our addition
of the projection operator.

The last two columns show the running times of two variations of Thm: Thminterm and
Thmdual. One remaining source of inefficiency in Thm is the fact that, although it con-
structs a bisimulation modulo 〈〈−〉〉, the intermediate expressions on which the derivatives
are computed are only ACI-normalized (i.e. they might contain redundant subexpressions
like 0 ∩ r and the derivative would needlessly recurse in r). The algorithm Thminterm

addresses this inefficiency by normalizing the intermediate expressions with 〈〈−〉〉. This
intermediate normalization might seem harmless, but it is not clear anymore that the num-
ber of derivatives interspersed with normalization is finite3. We were not able to prove
finiteness of such derivatives interspersed with 〈〈−〉〉 (although we conjecture that it holds).
However, we have proved that under the condition that Thminterm terminates, its output—
namely > if the input formula is valid, ⊥ otherwise—is correct.

3 For example, using the terminating normalization function that does the same ACI simplifications
as 〈−〉, but additionally soundly rewrites 1 · a∗ to a∗ · a∗ for a fixed symbol a will result in an
infinite number of derivatives when applied at intermediate steps to the initial expression a∗.
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The algorithm Thmdual is similar to Thminterm in the respect that it normalizes intermedi-
ate expressions. Therefore, we again guarantee only partial correctness. Unlike Thminterm,
Thmdual works with dual regular expressions (Section 4.5). It seems to be the better choice
for the WS1S semantics.

The attentive reader will have noticed that we have said nothing about how sets are
represented in the code generated from our mathematical definitions. We use the default
implementation as lists (with a linear membership test) from Isabelle’s library for our
measurements. We have also experimented with an existing verified red–black tree imple-
mentation. Isabelle’s code generator supports the transparent replacement of sets by some
verified implementation (Haftmann et al., 2013). Unfortunately, the overhead incurred by
the trees outweighed the gain of a logarithmic membership test instead of a linear one.

The performance of our automatically generated code may appear disappointing but that
would be a misunderstanding of our intentions. We see our work primarily as a succinct and
elegant functional program that may pave the way towards verified and efficient decision
procedures. As a bonus, the generated code is applicable to small examples. In the context
of interactive theorem proving, this is primarily what one encounters: small formulas. Any
automation is welcome here because it saves the user time and effort. Automatic verifica-
tion of larger systems is the domain of highly tuned implementations such as MONA.

7 Conclusion

We have presented functional programs that decide equivalence of MSO formulas for two
different semantics in Isabelle/HOL. They come with formal proofs of termination, sound-
ness and completeness. The programs operate by translating formulas into Π-extended
regular expressions and deciding the language equivalence of the latter using Brzozowski
derivatives. Although formalized in Isabelle/HOL’s functional programming language, we
can automatically generate code from them in different functional target languages. The
development amounts to roughly 500 lines of functional programs and 6500 lines of proofs,
of which 3000 lines are devoted to deciding equivalence of Π-extended regular expressions.
The functional programs are completely contained in this paper. The Isabelle scripts are
publicly available (Traytel & Nipkow, 2014).

Our work can be continued in two dimensions. First, our algorithm still offers much room
for optimization. Especially, the inefficient formalization of Q should be revised. Second,
several related decidable logics can be formalized and verified using similar technology. A
related logic is MSO on infinite words (also called S1S). S1S formulas can be translated
intoω-regular expressions representingω-regular languages. A verified decision procedure
for deciding equivalence of ω-regular expressions without constructing ω-automata is an
interesting challenge. A similarly ambitious goal is to move from words to trees (or even
from ω-words to ω-trees) and decide equivalence of MSO formulas on (in)finite trees (or
alternatively (W)S2S formulas) by translating them into (ω-)regular tree expressions.
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