Theory Ordinal

(*  Title:      ZF/Ordinal.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge
*)

sectionTransitive Sets and Ordinals

theory Ordinal imports WF Bool equalities begin

definition
  Memrel        :: "ii"  where
    "Memrel(A)    {zA*A . x y. z=x,y  xy }"

definition
  Transset  :: "io"  where
    "Transset(i)  xi. x<=i"

definition
  Ord  :: "io"  where
    "Ord(i)       Transset(i)  (xi. Transset(x))"

definition
  lt        :: "[i,i]  o"  (infixl < 50)   (*less-than on ordinals*)  where
    "i<j          ij  Ord(j)"

definition
  Limit         :: "io"  where
    "Limit(i)     Ord(i)  0<i  (y. y<i  succ(y)<i)"

abbreviation
  le  (infixl  50) where
  "x  y  x < succ(y)"


subsectionRules for Transset

subsubsectionThree Neat Characterisations of Transset

lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)"
by (unfold Transset_def, blast)

lemma Transset_iff_Union_succ: "Transset(A) <-> (succ(A)) = A"
  unfolding Transset_def
apply (blast elim!: equalityE)
done

lemma Transset_iff_Union_subset: "Transset(A) <-> (A)  A"
by (unfold Transset_def, blast)

subsubsectionConsequences of Downwards Closure

lemma Transset_doubleton_D:
    "Transset(C); {a,b}: C  aC  bC"
by (unfold Transset_def, blast)

lemma Transset_Pair_D:
    "Transset(C); a,bC  aC  bC"
apply (simp add: Pair_def)
apply (blast dest: Transset_doubleton_D)
done

lemma Transset_includes_domain:
    "Transset(C); A*B  C; b  B  A  C"
by (blast dest: Transset_Pair_D)

lemma Transset_includes_range:
    "Transset(C); A*B  C; a  A  B  C"
by (blast dest: Transset_Pair_D)

subsubsectionClosure Properties

lemma Transset_0: "Transset(0)"
by (unfold Transset_def, blast)

lemma Transset_Un:
    "Transset(i);  Transset(j)  Transset(i  j)"
by (unfold Transset_def, blast)

lemma Transset_Int:
    "Transset(i);  Transset(j)  Transset(i  j)"
by (unfold Transset_def, blast)

lemma Transset_succ: "Transset(i)  Transset(succ(i))"
by (unfold Transset_def, blast)

lemma Transset_Pow: "Transset(i)  Transset(Pow(i))"
by (unfold Transset_def, blast)

lemma Transset_Union: "Transset(A)  Transset((A))"
by (unfold Transset_def, blast)

lemma Transset_Union_family:
    "i. iA  Transset(i)  Transset((A))"
by (unfold Transset_def, blast)

lemma Transset_Inter_family:
    "i. iA  Transset(i)  Transset((A))"
by (unfold Inter_def Transset_def, blast)

lemma Transset_UN:
     "(x. x  A  Transset(B(x)))  Transset (xA. B(x))"
by (rule Transset_Union_family, auto)

lemma Transset_INT:
     "(x. x  A  Transset(B(x)))  Transset (xA. B(x))"
by (rule Transset_Inter_family, auto)


subsectionLemmas for Ordinals

lemma OrdI:
    "Transset(i);  x. xi  Transset(x)    Ord(i)"
by (simp add: Ord_def)

lemma Ord_is_Transset: "Ord(i)  Transset(i)"
by (simp add: Ord_def)

lemma Ord_contains_Transset:
    "Ord(i);  ji  Transset(j) "
by (unfold Ord_def, blast)


lemma Ord_in_Ord: "Ord(i);  ji  Ord(j)"
by (unfold Ord_def Transset_def, blast)

(*suitable for rewriting PROVIDED i has been fixed*)
lemma Ord_in_Ord': "ji; Ord(i)  Ord(j)"
by (blast intro: Ord_in_Ord)

(* Ord(succ(j)) ⟹ Ord(j) *)
lemmas Ord_succD = Ord_in_Ord [OF _ succI1]

lemma Ord_subset_Ord: "Ord(i);  Transset(j);  j<=i  Ord(j)"
by (simp add: Ord_def Transset_def, blast)

lemma OrdmemD: "ji;  Ord(i)  j<=i"
by (unfold Ord_def Transset_def, blast)

lemma Ord_trans: "ij;  jk;  Ord(k)  ik"
by (blast dest: OrdmemD)

lemma Ord_succ_subsetI: "ij;  Ord(j)  succ(i)  j"
by (blast dest: OrdmemD)


subsectionThe Construction of Ordinals: 0, succ, Union

lemma Ord_0 [iff,TC]: "Ord(0)"
by (blast intro: OrdI Transset_0)

lemma Ord_succ [TC]: "Ord(i)  Ord(succ(i))"
by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset)

lemmas Ord_1 = Ord_0 [THEN Ord_succ]

lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)"
by (blast intro: Ord_succ dest!: Ord_succD)

lemma Ord_Un [intro,simp,TC]: "Ord(i); Ord(j)  Ord(i  j)"
  unfolding Ord_def
apply (blast intro!: Transset_Un)
done

lemma Ord_Int [TC]: "Ord(i); Ord(j)  Ord(i  j)"
  unfolding Ord_def
apply (blast intro!: Transset_Int)
done

textThere is no set of all ordinals, for then it would contain itself
lemma ON_class: "¬ (i. iX <-> Ord(i))"
proof (rule notI)
  assume X: "i. i  X  Ord(i)"
  have "x y. xX  yx  yX"
    by (simp add: X, blast intro: Ord_in_Ord)
  hence "Transset(X)"
     by (auto simp add: Transset_def)
  moreover have "x. x  X  Transset(x)"
     by (simp add: X Ord_def)
  ultimately have "Ord(X)" by (rule OrdI)
  hence "X  X" by (simp add: X)
  thus "False" by (rule mem_irrefl)
qed

subsection< is 'less Than' for Ordinals

lemma ltI: "ij;  Ord(j)  i<j"
by (unfold lt_def, blast)

lemma ltE:
    "i<j;  ij;  Ord(i);  Ord(j)  P  P"
  unfolding lt_def
apply (blast intro: Ord_in_Ord)
done

lemma ltD: "i<j  ij"
by (erule ltE, assumption)

lemma not_lt0 [simp]: "¬ i<0"
by (unfold lt_def, blast)

lemma lt_Ord: "j<i  Ord(j)"
by (erule ltE, assumption)

lemma lt_Ord2: "j<i  Ord(i)"
by (erule ltE, assumption)

(* @{term"ja ≤ j ⟹ Ord(j)"} *)
lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD]

(* i<0 ⟹ R *)
lemmas lt0E = not_lt0 [THEN notE, elim!]

lemma lt_trans [trans]: "i<j;  j<k  i<k"
by (blast intro!: ltI elim!: ltE intro: Ord_trans)

lemma lt_not_sym: "i<j  ¬ (j<i)"
  unfolding lt_def
apply (blast elim: mem_asym)
done

(* ⟦i<j;  ¬P ⟹ j<i⟧ ⟹ P *)
lemmas lt_asym = lt_not_sym [THEN swap]

lemma lt_irrefl [elim!]: "i<i  P"
by (blast intro: lt_asym)

lemma lt_not_refl: "¬ i<i"
apply (rule notI)
apply (erule lt_irrefl)
done


textRecall that  termi  j  abbreviates  termi<succ(j)!

lemma le_iff: "i  j <-> i<j | (i=j  Ord(j))"
by (unfold lt_def, blast)

(*Equivalently, i<j ⟹ i < succ(j)*)
lemma leI: "i<j  i  j"
by (simp add: le_iff)

lemma le_eqI: "i=j;  Ord(j)  i  j"
by (simp add: le_iff)

lemmas le_refl = refl [THEN le_eqI]

lemma le_refl_iff [iff]: "i  i <-> Ord(i)"
by (simp (no_asm_simp) add: lt_not_refl le_iff)

lemma leCI: "(¬ (i=j  Ord(j))  i<j)  i  j"
by (simp add: le_iff, blast)

lemma leE:
    "i  j;  i<j  P;  i=j;  Ord(j)  P  P"
by (simp add: le_iff, blast)

lemma le_anti_sym: "i  j;  j  i  i=j"
apply (simp add: le_iff)
apply (blast elim: lt_asym)
done

lemma le0_iff [simp]: "i  0 <-> i=0"
by (blast elim!: leE)

lemmas le0D = le0_iff [THEN iffD1, dest!]

subsectionNatural Deduction Rules for Memrel

(*The lemmas MemrelI/E give better speed than [iff] here*)
lemma Memrel_iff [simp]: "a,b  Memrel(A) <-> ab  aA  bA"
by (unfold Memrel_def, blast)

lemma MemrelI [intro!]: "a  b;  a  A;  b  A  a,b  Memrel(A)"
by auto

lemma MemrelE [elim!]:
    "a,b  Memrel(A);
        a  A;  b  A;  ab   P
      P"
by auto

lemma Memrel_type: "Memrel(A)  A*A"
by (unfold Memrel_def, blast)

lemma Memrel_mono: "A<=B  Memrel(A)  Memrel(B)"
by (unfold Memrel_def, blast)

lemma Memrel_0 [simp]: "Memrel(0) = 0"
by (unfold Memrel_def, blast)

lemma Memrel_1 [simp]: "Memrel(1) = 0"
by (unfold Memrel_def, blast)

lemma relation_Memrel: "relation(Memrel(A))"
by (simp add: relation_def Memrel_def)

(*The membership relation (as a set) is well-founded.
  Proof idea: show A<=B by applying the foundation axiom to A-B *)
lemma wf_Memrel: "wf(Memrel(A))"
  unfolding wf_def
apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast)
done

textThe premise termOrd(i) does not suffice.
lemma trans_Memrel:
    "Ord(i)  trans(Memrel(i))"
by (unfold Ord_def Transset_def trans_def, blast)

textHowever, the following premise is strong enough.
lemma Transset_trans_Memrel:
    "ji. Transset(j)  trans(Memrel(i))"
by (unfold Transset_def trans_def, blast)

(*If Transset(A) then Memrel(A) internalizes the membership relation below A*)
lemma Transset_Memrel_iff:
    "Transset(A)  a,b  Memrel(A) <-> ab  bA"
by (unfold Transset_def, blast)


subsectionTransfinite Induction

(*Epsilon induction over a transitive set*)
lemma Transset_induct:
    "i  k;  Transset(k);
        x.x  k;  yx. P(y)  P(x)
       P(i)"
apply (simp add: Transset_def)
apply (erule wf_Memrel [THEN wf_induct2], blast+)
done

(*Induction over an ordinal*)
lemma Ord_induct [consumes 2]:
  "i  k  Ord(k)  (x. x  k  (y. y  x  P(y))  P(x))  P(i)"
  using Transset_induct [OF _ Ord_is_Transset, of i k P] by simp

(*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
lemma trans_induct [consumes 1, case_names step]:
  "Ord(i)  (x. Ord(x)  (y. y  x  P(y))  P(x))  P(i)"
  apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption)
  apply (blast intro: Ord_succ [THEN Ord_in_Ord])
  done


sectionFundamental properties of the epsilon ordering (< on ordinals)


subsubsectionProving That < is a Linear Ordering on the Ordinals

lemma Ord_linear:
     "Ord(i)  Ord(j)  ij | i=j | ji"
proof (induct i arbitrary: j rule: trans_induct)
  case (step i)
  note step_i = step
  show ?case using Ord(j)
    proof (induct j rule: trans_induct)
      case (step j)
      thus ?case using step_i
        by (blast dest: Ord_trans)
    qed
qed

textThe trichotomy law for ordinals
lemma Ord_linear_lt:
 assumes o: "Ord(i)" "Ord(j)"
 obtains (lt) "i<j" | (eq) "i=j" | (gt) "j<i"
apply (simp add: lt_def)
apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE])
apply (blast intro: o)+
done

lemma Ord_linear2:
 assumes o: "Ord(i)" "Ord(j)"
 obtains (lt) "i<j" | (ge) "j  i"
apply (rule_tac i = i and j = j in Ord_linear_lt)
apply (blast intro: leI le_eqI sym o) +
done

lemma Ord_linear_le:
 assumes o: "Ord(i)" "Ord(j)"
 obtains (le) "i  j" | (ge) "j  i"
apply (rule_tac i = i and j = j in Ord_linear_lt)
apply (blast intro: leI le_eqI o) +
done

lemma le_imp_not_lt: "j  i  ¬ i<j"
by (blast elim!: leE elim: lt_asym)

lemma not_lt_imp_le: "¬ i<j;  Ord(i);  Ord(j)  j  i"
by (rule_tac i = i and j = j in Ord_linear2, auto)


subsubsection Some Rewrite Rules for <›, ≤›

lemma Ord_mem_iff_lt: "Ord(j)  ij <-> i<j"
by (unfold lt_def, blast)

lemma not_lt_iff_le: "Ord(i);  Ord(j)  ¬ i<j <-> j  i"
by (blast dest: le_imp_not_lt not_lt_imp_le)

lemma not_le_iff_lt: "Ord(i);  Ord(j)  ¬ i  j <-> j<i"
by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])

(*This is identical to 0<succ(i) *)
lemma Ord_0_le: "Ord(i)  0  i"
by (erule not_lt_iff_le [THEN iffD1], auto)

lemma Ord_0_lt: "Ord(i);  i0  0<i"
apply (erule not_le_iff_lt [THEN iffD1])
apply (rule Ord_0, blast)
done

lemma Ord_0_lt_iff: "Ord(i)  i0 <-> 0<i"
by (blast intro: Ord_0_lt)


subsectionResults about Less-Than or Equals

(** For ordinals, @{term"j⊆i"} implies @{term"j ≤ i"} (less-than or equals) **)

lemma zero_le_succ_iff [iff]: "0  succ(x) <-> Ord(x)"
by (blast intro: Ord_0_le elim: ltE)

lemma subset_imp_le: "j<=i;  Ord(i);  Ord(j)  j  i"
apply (rule not_lt_iff_le [THEN iffD1], assumption+)
apply (blast elim: ltE mem_irrefl)
done

lemma le_imp_subset: "i  j  i<=j"
by (blast dest: OrdmemD elim: ltE leE)

lemma le_subset_iff: "j  i <-> j<=i  Ord(i)  Ord(j)"
by (blast dest: subset_imp_le le_imp_subset elim: ltE)

lemma le_succ_iff: "i  succ(j) <-> i  j | i=succ(j)  Ord(i)"
apply (simp (no_asm) add: le_iff)
apply blast
done

(*Just a variant of subset_imp_le*)
lemma all_lt_imp_le: "Ord(i);  Ord(j);  x. x<j  x<i  j  i"
by (blast intro: not_lt_imp_le dest: lt_irrefl)

subsubsectionTransitivity Laws

lemma lt_trans1: "i  j;  j<k  i<k"
by (blast elim!: leE intro: lt_trans)

lemma lt_trans2: "i<j;  j  k  i<k"
by (blast elim!: leE intro: lt_trans)

lemma le_trans: "i  j;  j  k  i  k"
by (blast intro: lt_trans1)

lemma succ_leI: "i<j  succ(i)  j"
apply (rule not_lt_iff_le [THEN iffD1])
apply (blast elim: ltE leE lt_asym)+
done

(*Identical to  succ(i) < succ(j) ⟹ i<j  *)
lemma succ_leE: "succ(i)  j  i<j"
apply (rule not_le_iff_lt [THEN iffD1])
apply (blast elim: ltE leE lt_asym)+
done

lemma succ_le_iff [iff]: "succ(i)  j <-> i<j"
by (blast intro: succ_leI succ_leE)

lemma succ_le_imp_le: "succ(i)  succ(j)  i  j"
by (blast dest!: succ_leE)

lemma lt_subset_trans: "i  j;  j<k;  Ord(i)  i<k"
apply (rule subset_imp_le [THEN lt_trans1])
apply (blast intro: elim: ltE) +
done

lemma lt_imp_0_lt: "j<i  0<i"
by (blast intro: lt_trans1 Ord_0_le [OF lt_Ord])

lemma succ_lt_iff: "succ(i) < j <-> i<j  succ(i)  j"
apply auto
apply (blast intro: lt_trans le_refl dest: lt_Ord)
apply (frule lt_Ord)
apply (rule not_le_iff_lt [THEN iffD1])
  apply (blast intro: lt_Ord2)
 apply blast
apply (simp add: lt_Ord lt_Ord2 le_iff)
apply (blast dest: lt_asym)
done

lemma Ord_succ_mem_iff: "Ord(j)  succ(i)  succ(j) <-> ij"
apply (insert succ_le_iff [of i j])
apply (simp add: lt_def)
done

subsubsectionUnion and Intersection

lemma Un_upper1_le: "Ord(i); Ord(j)  i  i  j"
by (rule Un_upper1 [THEN subset_imp_le], auto)

lemma Un_upper2_le: "Ord(i); Ord(j)  j  i  j"
by (rule Un_upper2 [THEN subset_imp_le], auto)

(*Replacing k by succ(k') yields the similar rule for le!*)
lemma Un_least_lt: "i<k;  j<k  i  j < k"
apply (rule_tac i = i and j = j in Ord_linear_le)
apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord)
done

lemma Un_least_lt_iff: "Ord(i); Ord(j)  i  j < k  <->  i<k  j<k"
apply (safe intro!: Un_least_lt)
apply (rule_tac [2] Un_upper2_le [THEN lt_trans1])
apply (rule Un_upper1_le [THEN lt_trans1], auto)
done

lemma Un_least_mem_iff:
    "Ord(i); Ord(j); Ord(k)  i  j  k  <->  ik  jk"
apply (insert Un_least_lt_iff [of i j k])
apply (simp add: lt_def)
done

(*Replacing k by succ(k') yields the similar rule for le!*)
lemma Int_greatest_lt: "i<k;  j<k  i  j < k"
apply (rule_tac i = i and j = j in Ord_linear_le)
apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord)
done

lemma Ord_Un_if:
     "Ord(i); Ord(j)  i  j = (if j<i then i else j)"
by (simp add: not_lt_iff_le le_imp_subset leI
              subset_Un_iff [symmetric]  subset_Un_iff2 [symmetric])

lemma succ_Un_distrib:
     "Ord(i); Ord(j)  succ(i  j) = succ(i)  succ(j)"
by (simp add: Ord_Un_if lt_Ord le_Ord2)

lemma lt_Un_iff:
     "Ord(i); Ord(j)  k < i  j <-> k < i | k < j"
apply (simp add: Ord_Un_if not_lt_iff_le)
apply (blast intro: leI lt_trans2)+
done

lemma le_Un_iff:
     "Ord(i); Ord(j)  k  i  j <-> k  i | k  j"
by (simp add: succ_Un_distrib lt_Un_iff [symmetric])

lemma Un_upper1_lt: "k < i; Ord(j)  k < i  j"
by (simp add: lt_Un_iff lt_Ord2)

lemma Un_upper2_lt: "k < j; Ord(i)  k < i  j"
by (simp add: lt_Un_iff lt_Ord2)

(*See also Transset_iff_Union_succ*)
lemma Ord_Union_succ_eq: "Ord(i)  (succ(i)) = i"
by (blast intro: Ord_trans)


subsectionResults about Limits

lemma Ord_Union [intro,simp,TC]: "i. iA  Ord(i)  Ord((A))"
apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI])
apply (blast intro: Ord_contains_Transset)+
done

lemma Ord_UN [intro,simp,TC]:
     "x. xA  Ord(B(x))  Ord(xA. B(x))"
by (rule Ord_Union, blast)

lemma Ord_Inter [intro,simp,TC]:
    "i. iA  Ord(i)  Ord((A))"
apply (rule Transset_Inter_family [THEN OrdI])
apply (blast intro: Ord_is_Transset)
apply (simp add: Inter_def)
apply (blast intro: Ord_contains_Transset)
done

lemma Ord_INT [intro,simp,TC]:
    "x. xA  Ord(B(x))  Ord(xA. B(x))"
by (rule Ord_Inter, blast)


(* No < version of this theorem: consider that @{term"(⋃i∈nat.i)=nat"}! *)
lemma UN_least_le:
    "Ord(i);  x. xA  b(x)  i  (xA. b(x))  i"
apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le])
apply (blast intro: Ord_UN elim: ltE)+
done

lemma UN_succ_least_lt:
    "j<i;  x. xA  b(x)<j  (xA. succ(b(x))) < i"
apply (rule ltE, assumption)
apply (rule UN_least_le [THEN lt_trans2])
apply (blast intro: succ_leI)+
done

lemma UN_upper_lt:
     "aA;  i < b(a);  Ord(xA. b(x))  i < (xA. b(x))"
by (unfold lt_def, blast)

lemma UN_upper_le:
     "a  A;  i  b(a);  Ord(xA. b(x))  i  (xA. b(x))"
apply (frule ltD)
apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le])
apply (blast intro: lt_Ord UN_upper)+
done

lemma lt_Union_iff: "iA. Ord(i)  (j < (A)) <-> (iA. j<i)"
by (auto simp: lt_def Ord_Union)

lemma Union_upper_le:
     "j  J;  ij;  Ord((J))  i  J"
apply (subst Union_eq_UN)
apply (rule UN_upper_le, auto)
done

lemma le_implies_UN_le_UN:
    "x. xA  c(x)  d(x)  (xA. c(x))  (xA. d(x))"
apply (rule UN_least_le)
apply (rule_tac [2] UN_upper_le)
apply (blast intro: Ord_UN le_Ord2)+
done

lemma Ord_equality: "Ord(i)  (yi. succ(y)) = i"
by (blast intro: Ord_trans)

(*Holds for all transitive sets, not just ordinals*)
lemma Ord_Union_subset: "Ord(i)  (i)  i"
by (blast intro: Ord_trans)


subsectionLimit Ordinals -- General Properties

lemma Limit_Union_eq: "Limit(i)  (i) = i"
  unfolding Limit_def
apply (fast intro!: ltI elim!: ltE elim: Ord_trans)
done

lemma Limit_is_Ord: "Limit(i)  Ord(i)"
  unfolding Limit_def
apply (erule conjunct1)
done

lemma Limit_has_0: "Limit(i)  0 < i"
  unfolding Limit_def
apply (erule conjunct2 [THEN conjunct1])
done

lemma Limit_nonzero: "Limit(i)  i  0"
by (drule Limit_has_0, blast)

lemma Limit_has_succ: "Limit(i);  j<i  succ(j) < i"
by (unfold Limit_def, blast)

lemma Limit_succ_lt_iff [simp]: "Limit(i)  succ(j) < i <-> (j<i)"
apply (safe intro!: Limit_has_succ)
apply (frule lt_Ord)
apply (blast intro: lt_trans)
done

lemma zero_not_Limit [iff]: "¬ Limit(0)"
by (simp add: Limit_def)

lemma Limit_has_1: "Limit(i)  1 < i"
by (blast intro: Limit_has_0 Limit_has_succ)

lemma increasing_LimitI: "0<l; xl. yl. x<y  Limit(l)"
apply (unfold Limit_def, simp add: lt_Ord2, clarify)
apply (drule_tac i=y in ltD)
apply (blast intro: lt_trans1 [OF _ ltI] lt_Ord2)
done

lemma non_succ_LimitI:
  assumes i: "0<i" and nsucc: "y. succ(y)  i"
  shows "Limit(i)"
proof -
  have Oi: "Ord(i)" using i by (simp add: lt_def)
  { fix y
    assume yi: "y<i"
    hence Osy: "Ord(succ(y))" by (simp add: lt_Ord Ord_succ)
    have "¬ i  y" using yi by (blast dest: le_imp_not_lt)
    hence "succ(y) < i" using nsucc [of y]
      by (blast intro: Ord_linear_lt [OF Osy Oi]) }
  thus ?thesis using i Oi by (auto simp add: Limit_def)
qed

lemma succ_LimitE [elim!]: "Limit(succ(i))  P"
apply (rule lt_irrefl)
apply (rule Limit_has_succ, assumption)
apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl])
done

lemma not_succ_Limit [simp]: "¬ Limit(succ(i))"
by blast

lemma Limit_le_succD: "Limit(i);  i  succ(j)  i  j"
by (blast elim!: leE)


subsubsectionTraditional 3-Way Case Analysis on Ordinals

lemma Ord_cases_disj: "Ord(i)  i=0 | (j. Ord(j)  i=succ(j)) | Limit(i)"
by (blast intro!: non_succ_LimitI Ord_0_lt)

lemma Ord_cases:
 assumes i: "Ord(i)"
 obtains ("0") "i=0" | (succ) j where "Ord(j)" "i=succ(j)" | (limit) "Limit(i)"
by (insert Ord_cases_disj [OF i], auto)

lemma trans_induct3_raw:
     "Ord(i);
         P(0);
         x. Ord(x);  P(x)  P(succ(x));
         x. Limit(x);  yx. P(y)  P(x)
  P(i)"
apply (erule trans_induct)
apply (erule Ord_cases, blast+)
done

lemma trans_induct3 [case_names 0 succ limit, consumes 1]:
  "Ord(i)  P(0)  (x. Ord(x)  P(x)  P(succ(x)))  (x. Limit(x)  (y. y  x  P(y))  P(x))  P(i)"
  using trans_induct3_raw [of i P] by simp

textA set of ordinals is either empty, contains its own union, or its
union is a limit ordinal.

lemma Union_le: "x. xI  xj; Ord(j)  (I)  j"
  by (auto simp add: le_subset_iff Union_least)

lemma Ord_set_cases:
  assumes I: "iI. Ord(i)"
  shows "I=0  (I)  I  ((I)  I  Limit((I)))"
proof (cases "(I)" rule: Ord_cases)
  show "Ord(I)" using I by (blast intro: Ord_Union)
next
  assume "I = 0" thus ?thesis by (simp, blast intro: subst_elem)
next
  fix j
  assume j: "Ord(j)" and UIj:"(I) = succ(j)"
  { assume "iI. ij"
    hence "(I)  j"
      by (simp add: Union_le j)
    hence False
      by (simp add: UIj lt_not_refl) }
  then obtain i where i: "i  I" "succ(j)  i" using I j
    by (atomize, auto simp add: not_le_iff_lt)
  have "(I)  succ(j)" using UIj j by auto
  hence "i  succ(j)" using i
    by (simp add: le_subset_iff Union_subset_iff)
  hence "succ(j) = i" using i
    by (blast intro: le_anti_sym)
  hence "succ(j)  I" by (simp add: i)
  thus ?thesis by (simp add: UIj)
next
  assume "Limit(I)" thus ?thesis by auto
qed

textIf the union of a set of ordinals is a successor, then it is an element of that set.
lemma Ord_Union_eq_succD: "xX. Ord(x);  X = succ(j)  succ(j)  X"
  by (drule Ord_set_cases, auto)

lemma Limit_Union [rule_format]: "I  0;  (i. iI  Limit(i))  Limit(I)"
apply (simp add: Limit_def lt_def)
apply (blast intro!: equalityI)
done

end