Theory Chinese_Remainder

(*  Title:      HOL/Algebra/Chinese_Remainder.thy
    Author:     Paulo Emílio de Vilhena
*)

theory Chinese_Remainder
  imports Weak_Morphisms Ideal_Product
    
begin


section ‹Direct Product of Rings›

subsection ‹Definitions›

definition RDirProd :: "('a, 'n) ring_scheme  ('b, 'm) ring_scheme  ('a × 'b) ring"
  where "RDirProd R S = monoid.extend (R ×× S)
            zero = one ((add_monoid R) ×× (add_monoid S)),
              add = mult ((add_monoid R) ×× (add_monoid S))  "

abbreviation nil_ring :: "('a list) ring"
  where "nil_ring  monoid.extend nil_monoid  zero = [], add = (λa b. []) "

definition RDirProd_list :: "(('a, 'n) ring_scheme) list  ('a list) ring"
  where "RDirProd_list Rs = foldr (λR S. image_ring (λ(a, as). a # as) (RDirProd R S)) Rs nil_ring"


subsection ‹Basic Properties›

lemma RDirProd_carrier: "carrier (RDirProd R S) = carrier R × carrier S"
  unfolding RDirProd_def DirProd_def by (simp add: monoid.defs)

lemma RDirProd_add_monoid [simp]: "add_monoid (RDirProd R S) = (add_monoid R) ×× (add_monoid S)"
  by (simp add: RDirProd_def monoid.defs)

lemma RDirProd_ring:
  assumes "ring R" and "ring S" shows "ring (RDirProd R S)"
proof -
  have "monoid (RDirProd R S)"
    using DirProd_monoid[OF assms[THEN ring.axioms(2)]] unfolding monoid_def
    by (auto simp add: DirProd_def RDirProd_def monoid.defs)
  then interpret Prod: group "add_monoid (RDirProd R S)" + monoid "RDirProd R S"
    using DirProd_group[OF assms[THEN abelian_group.a_group[OF ring.is_abelian_group]]]
    unfolding RDirProd_add_monoid by auto
  show ?thesis
    by (unfold_locales, auto simp add: RDirProd_def DirProd_def monoid.defs assms ring.ring_simprules)
qed

lemma RDirProd_iso1:
  "(λ(x, y). (y, x))  ring_iso (RDirProd R S) (RDirProd S R)"
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
  by (auto simp add: RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_iso2:
  "(λ(x, (y, z)). ((x, y), z))  ring_iso (RDirProd R (RDirProd S T)) (RDirProd (RDirProd R S) T)"
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
  by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_iso3:
  "(λ((x, y), z). (x, (y, z)))  ring_iso (RDirProd (RDirProd R S) T) (RDirProd R (RDirProd S T))"
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
  by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_iso4:
  assumes "f  ring_iso R S" shows "(λ(r, t). (f r, t))  ring_iso (RDirProd R T) (RDirProd S T)"
  using assms unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
  by (auto simp add: image_iff RDirProd_def DirProd_def monoid.defs)+

lemma RDirProd_iso5:
  assumes "f  ring_iso S T" shows "(λ(r, s). (r, f s))  ring_iso (RDirProd R S) (RDirProd R T)"
  using ring_iso_set_trans[OF ring_iso_set_trans[OF RDirProd_iso1 RDirProd_iso4[OF assms]] RDirProd_iso1]
  by (simp add: case_prod_unfold comp_def)

lemma RDirProd_iso6:
  assumes "f  ring_iso R R'" and "g  ring_iso S S'"
  shows "(λ(r, s). (f r, g s))  ring_iso (RDirProd R S) (RDirProd R' S')"
  using ring_iso_set_trans[OF RDirProd_iso4[OF assms(1)] RDirProd_iso5[OF assms(2)]]
  by (simp add: case_prod_beta' comp_def)

lemma RDirProd_iso7:
  shows "(λa. (a, []))  ring_iso R (RDirProd R nil_ring)"
  unfolding ring_iso_def ring_hom_def bij_betw_def inj_on_def
  by (auto simp add: RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_hom1:
  shows "(λa. (a, a))  ring_hom R (RDirProd R R)"
  by (auto simp add: ring_hom_def RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_hom2:
  assumes "f  ring_hom S T"
  shows "(λ(x, y). (x, f y))  ring_hom (RDirProd R S) (RDirProd R T)"
    and "(λ(x, y). (f x, y))  ring_hom (RDirProd S R) (RDirProd T R)"
  using assms by (auto simp add: ring_hom_def RDirProd_def DirProd_def monoid.defs)

lemma RDirProd_hom3:
  assumes "f  ring_hom R R'" and "g  ring_hom S S'"
  shows "(λ(r, s). (f r, g s))  ring_hom (RDirProd R S) (RDirProd R' S')"
  using ring_hom_trans[OF RDirProd_hom2(2)[OF assms(1)] RDirProd_hom2(1)[OF assms(2)]]
  by (simp add: case_prod_beta' comp_def)


subsection ‹Direct Product of a List of Rings›

lemma RDirProd_list_nil [simp]: "RDirProd_list [] = nil_ring"
  unfolding RDirProd_list_def by simp

lemma nil_ring_simprules [simp]:
  "carrier nil_ring = { [] }" and "one nil_ring = []" and "zero nil_ring = []"
  by (auto simp add: monoid.defs)

lemma RDirProd_list_truncate:
  shows "monoid.truncate (RDirProd_list Rs) = DirProd_list Rs"
proof (induct Rs, simp add: RDirProd_list_def DirProd_list_def monoid.defs)
  case (Cons R Rs)
  have "monoid.truncate (RDirProd_list (R # Rs)) =
        monoid.truncate (image_ring (λ(a, as). a # as) (RDirProd R (RDirProd_list Rs)))"
    unfolding RDirProd_list_def by simp
  also have " ... = image_group (λ(a, as). a # as) (monoid.truncate (RDirProd R (RDirProd_list Rs)))"
  by (simp add: image_ring_def image_group_def monoid.defs)
  also have " ... = image_group (λ(a, as). a # as) (R ×× (monoid.truncate (RDirProd_list Rs)))"
    by (simp add: RDirProd_def DirProd_def monoid.defs)
  also have " ... = DirProd_list (R # Rs)"
    unfolding Cons DirProd_list_def by simp
  finally show ?case .
qed

lemma RDirProd_list_carrier_def':
  shows "carrier (RDirProd_list Rs) = carrier (DirProd_list Rs)"
proof -
  have "carrier (RDirProd_list Rs) = carrier (monoid.truncate (RDirProd_list Rs))"
    by (simp add: monoid.defs)
  thus ?thesis
    unfolding RDirProd_list_truncate .
qed

lemma RDirProd_list_carrier:
  shows "carrier (RDirProd_list (G # Gs)) = (λ(x, xs). x # xs) ` (carrier G × carrier (RDirProd_list Gs))"
  unfolding RDirProd_list_carrier_def' using DirProd_list_carrier .

lemma RDirProd_list_one:
  shows "one (RDirProd_list Rs) = foldr (λR tl. (one R) # tl) Rs []"
  unfolding RDirProd_list_def RDirProd_def image_ring_def image_group_def
  by (induct Rs) (auto simp add: monoid.defs)

lemma RDirProd_list_zero:
  shows "zero (RDirProd_list Rs) = foldr (λR tl. (zero R) # tl) Rs []"
  unfolding RDirProd_list_def RDirProd_def image_ring_def
  by (induct Rs) (auto simp add: monoid.defs)

lemma RDirProd_list_zero':
  shows "zero (RDirProd_list (R # Rs)) = (zero R) # (zero (RDirProd_list Rs))"
  unfolding RDirProd_list_zero by simp

lemma RDirProd_list_carrier_mem:
  assumes "as  carrier (RDirProd_list Rs)"
  shows "length as = length Rs" and "i. i < length Rs  (as ! i)  carrier (Rs ! i)"
  using assms DirProd_list_carrier_mem unfolding RDirProd_list_carrier_def' by auto

lemma RDirProd_list_carrier_memI:
  assumes "length as = length Rs" and "i. i < length Rs  (as ! i)  carrier (Rs ! i)"
  shows "as  carrier (RDirProd_list Rs)"
  using assms DirProd_list_carrier_memI unfolding RDirProd_list_carrier_def' by auto

lemma inj_on_RDirProd_carrier:
  shows "inj_on (λ(a, as). a # as) (carrier (RDirProd R (RDirProd_list Rs)))"
  unfolding RDirProd_def DirProd_def inj_on_def by auto

lemma RDirProd_list_is_ring:
  assumes "i. i < length Rs  ring (Rs ! i)" shows "ring (RDirProd_list Rs)"
  using assms
proof (induct Rs)
  case Nil thus ?case
    unfolding RDirProd_list_def by (unfold_locales, auto simp add: monoid.defs Units_def)
next
  case (Cons R Rs)
  hence is_ring: "ring (RDirProd R (RDirProd_list Rs))"
    using RDirProd_ring[of R "RDirProd_list Rs"] by force
  show ?case
    using ring.inj_imp_image_ring_is_ring[OF is_ring inj_on_RDirProd_carrier]
    unfolding RDirProd_list_def by auto 
qed

lemma RDirProd_list_iso1:
  "(λ(a, as). a # as)  ring_iso (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R # Rs))"
  using inj_imp_image_ring_iso[OF inj_on_RDirProd_carrier] unfolding RDirProd_list_def by auto

lemma RDirProd_list_iso2:
  "Hilbert_Choice.inv (λ(a, as). a # as)  ring_iso (RDirProd_list (R # Rs)) (RDirProd R (RDirProd_list Rs))"
  unfolding RDirProd_list_def by (auto intro: inj_imp_image_ring_inv_iso simp add: inj_def)

lemma RDirProd_list_iso3:
  "(λa. [ a ])  ring_iso R (RDirProd_list [ R ])"
proof -
  have [simp]: "(λa. [ a ]) = (λ(a, as). a # as)  (λa. (a, []))" by auto
  show ?thesis
    using ring_iso_set_trans[OF RDirProd_iso7] RDirProd_list_iso1[of R "[]"]
    unfolding RDirProd_list_def by simp
qed

lemma RDirProd_list_hom1:
  "(λ(a, as). a # as)  ring_hom (RDirProd R (RDirProd_list Rs)) (RDirProd_list (R # Rs))"
  using RDirProd_list_iso1 unfolding ring_iso_def by auto

lemma RDirProd_list_hom2:
  assumes "f  ring_hom R S" shows "(λa. [ f a ])  ring_hom R (RDirProd_list [ S ])"
proof -
  have hom1: "(λa. (a, []))  ring_hom R (RDirProd R nil_ring)"
    using RDirProd_iso7 unfolding ring_iso_def by auto
  have hom2: "(λ(a, as). a # as)  ring_hom (RDirProd S nil_ring) (RDirProd_list [ S ])"
    using RDirProd_list_hom1[of _ "[]"] unfolding RDirProd_list_def by auto
  have [simp]: "(λ(a, as). a # as)  ((λ(x, y). (f x, y))  (λa. (a, []))) = (λa. [ f a ])" by auto
  show ?thesis
    using ring_hom_trans[OF ring_hom_trans[OF hom1 RDirProd_hom2(2)[OF assms]] hom2] by simp
qed


section ‹Chinese Remainder Theorem›

subsection ‹Definitions›

abbreviation (in ring) canonical_proj :: "'a set  'a set  'a  'a set × 'a set"
  where "canonical_proj I J  (λa. (I +> a, J +> a))"

definition (in ring) canonical_proj_ext :: "(nat  'a set)  nat  'a  ('a set) list"
  where "canonical_proj_ext I n = (λa. map (λi. (I i) +> a) [0..< Suc n])"


subsection ‹Chinese Remainder Simple›

lemma (in ring) canonical_proj_is_surj:
  assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"
  shows "(canonical_proj I J) ` carrier R = carrier (RDirProd (R Quot I) (R Quot J))"
  unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def'
proof (auto simp add: monoid.defs)
  { fix I i assume "ideal I R" "i  I" hence "I +> i = 𝟬R Quot I⇙"
      using a_rcos_zero by (simp add: FactRing_def)
  } note aux_lemma1 = this

  { fix I i j assume A: "ideal I R" "i  I" "j  carrier R" "i  j = 𝟭"
    have "(I +> i) R Quot I(I +> j) = I +> 𝟭"
      using ring_hom_memE(3)[OF ideal.rcos_ring_hom ideal.Icarr[OF _ A(2)] A(3)] A(1,4) by simp
    moreover have "I +> i = I"
      using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]
      by (simp add: A(1-2) abelian_subgroup.a_rcos_const)
    moreover have "I +> j  carrier (R Quot I)" and "I = 𝟬R Quot I⇙" and "I +> 𝟭 = 𝟭R Quot I⇙"
      by (auto simp add: FactRing_def A_RCOSETS_def' A(3))
    ultimately have "I +> j = 𝟭R Quot I⇙"
      using ring.ring_simprules(8)[OF ideal.quotient_is_ring[OF A(1)]] by simp
  } note aux_lemma2 = this

  interpret I: ring "R Quot I" + J: ring "R Quot J"
    using assms(1-2)[THEN ideal.quotient_is_ring] by auto

  fix a b assume a: "a  carrier R" and b: "b  carrier R"
  have "𝟭  I <+> J"
    using assms(3) by blast
  then obtain i j where i: "i  carrier R" "i  I" and j: "j  carrier R" "j  J" and ij: "i  j = 𝟭"
    using assms(1-2)[THEN ideal.Icarr] unfolding set_add_def' by auto
  hence rcos_j: "I +> j = 𝟭R Quot I⇙" and rcos_i: "J +> i = 𝟭R Quot J⇙"
    using assms(1-2)[THEN aux_lemma2] a_comm by simp+

  define s where "s = (a  j)  (b  i)"
  hence "s  carrier R"
    using a b i j by simp

  have "I +> s = ((I +> a) R Quot I(I +> j)) R Quot I(I +> (b  i))"
    using ring_hom_memE(2-3)[OF ideal.rcos_ring_hom[OF assms(1)]]
    by (simp add: a b i(1) j(1) s_def)
  moreover have "I +> a  carrier (R Quot I)"
    by (auto simp add: FactRing_def A_RCOSETS_def' a)
  ultimately have "I +> s = I +> a"
    unfolding rcos_j aux_lemma1[OF assms(1) ideal.I_l_closed[OF assms(1) i(2) b]] by simp

  have "J +> s = (J +> (a  j)) R Quot J((J +> b) R Quot J(J +> i))"
    using ring_hom_memE(2-3)[OF ideal.rcos_ring_hom[OF assms(2)]]
    by (simp add: a b i(1) j(1) s_def)
  moreover have "J +> b  carrier (R Quot J)"
    by (auto simp add: FactRing_def A_RCOSETS_def' b)
  ultimately have "J +> s = J +> b"
    unfolding rcos_i aux_lemma1[OF assms(2) ideal.I_l_closed[OF assms(2) j(2) a]] by simp

  from I +> s = I +> a and J +> s = J +> b and s  carrier R
  show "(I +> a, J +> b)  (canonical_proj I J) ` carrier R" by blast
qed

lemma (in ring) canonical_proj_ker:
  assumes "ideal I R" and "ideal J R"
  shows "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J) = I  J"
proof
  show "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)  I  J"
    unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def'
    by (auto simp add: assms[THEN ideal.rcos_const_imp_mem] monoid.defs)
next
  show "I  J  a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"
  proof
    fix s assume s: "s  I  J" then have "I +> s = I" and "J +> s = J"
      using abelian_subgroupI3[OF ideal.axioms(1) is_abelian_group]
      by (simp add: abelian_subgroup.a_rcos_const assms)+
    thus "s  a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"
      unfolding FactRing_def RDirProd_def DirProd_def a_kernel_def'
      using ideal.Icarr[OF assms(1)] s by (simp add: monoid.defs)
  qed
qed

lemma (in ring) canonical_proj_is_hom:
  assumes "ideal I R" and "ideal J R"
  shows "(canonical_proj I J)  ring_hom R (RDirProd (R Quot I) (R Quot J))"
  unfolding RDirProd_def DirProd_def FactRing_def A_RCOSETS_def'
  by (auto intro!: ring_hom_memI
         simp add: assms[THEN ideal.rcoset_mult_add]
                   assms[THEN ideal.a_rcos_sum] monoid.defs)

lemma (in ring) canonical_proj_ring_hom:
  assumes "ideal I R" and "ideal J R"
  shows "ring_hom_ring R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I J)"
  using ring_hom_ring.intro[OF ring_axioms RDirProd_ring[OF assms[THEN ideal.quotient_is_ring]]]
  by (simp add: ring_hom_ring_axioms_def canonical_proj_is_hom[OF assms])

theorem (in ring) chinese_remainder_simple:
  assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"
  shows "R Quot (I  J)  RDirProd (R Quot I) (R Quot J)"
  using ring_hom_ring.FactRing_iso[OF canonical_proj_ring_hom canonical_proj_is_surj]
  by (simp add: canonical_proj_ker assms)


subsection ‹Chinese Remainder Generalized›

lemma (in ring) canonical_proj_ext_zero [simp]: "(canonical_proj_ext I 0) = (λa. [ (I 0) +> a ])"
  unfolding canonical_proj_ext_def by simp

lemma (in ring) canonical_proj_ext_tl:
  "(λa. canonical_proj_ext I (Suc n) a) = (λa. ((I 0) +> a) # (canonical_proj_ext (λi. I (Suc i)) n a))"
  unfolding canonical_proj_ext_def by (induct n) (auto, metis (lifting) append.assoc append_Cons append_Nil)

lemma (in ring) canonical_proj_ext_is_hom:
  assumes "i. i  n  ideal (I i) R"
  shows "(canonical_proj_ext I n)  ring_hom R (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n]))"
  using assms
proof (induct n arbitrary: I)
  case 0 thus ?case
    using RDirProd_list_hom2[OF ideal.rcos_ring_hom[of _ R]] by (simp add: canonical_proj_ext_def)
next
  let ?DirProd = "λI n. RDirProd_list (map (λi. R Quot (I i)) [0..<Suc n])"
  let ?proj = "λI n. canonical_proj_ext I n"

  case (Suc n)
  hence I: "ideal (I 0) R" by simp
  have hom: "(?proj (λi. I (Suc i)) n)  ring_hom R (?DirProd (λi. I (Suc i)) n)"
    using Suc(1)[of "λi. I (Suc i)"] Suc(2) by simp
  have [simp]:
    "(λ(a, as). a # as)  ((λ(r, s). (I 0 +> r, ?proj (λi. I (Suc i)) n s))  (λa. (a, a))) = ?proj I (Suc n)"
    unfolding canonical_proj_ext_tl by auto
  moreover have
    "(R Quot I 0) # (map (λi. R Quot I (Suc i)) [0..< Suc n]) = map (λi. R Quot (I i)) [0..< Suc (Suc n)]"
    by (induct n) (auto)
  moreover show ?case
    using ring_hom_trans[OF ring_hom_trans[OF RDirProd_hom1
          RDirProd_hom3[OF ideal.rcos_ring_hom[OF I] hom]] RDirProd_list_hom1]
    unfolding calculation(2) by simp
qed

lemma (in ring) RDirProd_Quot_list_is_ring:
  assumes "i. i  n  ideal (I i) R" shows "ring (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n]))"
proof -
  have ring_list: "i. i < Suc n  ring ((map (λi. R Quot I i) [0..< Suc n]) ! i)"
    using ideal.quotient_is_ring[OF assms]
    by (metis add.left_neutral diff_zero le_simps(2) nth_map_upt)
  show ?thesis
    using RDirProd_list_is_ring[OF ring_list] by simp
qed

lemma (in ring) canonical_proj_ext_ring_hom:
  assumes "i. i  n  ideal (I i) R"
  shows "ring_hom_ring R (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n])) (canonical_proj_ext I n)"
proof -
  have ring: "ring (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n]))"
    using RDirProd_Quot_list_is_ring[OF assms] by simp  
  show ?thesis
    using canonical_proj_ext_is_hom assms ring_hom_ring.intro[OF ring_axioms ring]
    unfolding ring_hom_ring_axioms_def by blast
qed

lemma (in ring) canonical_proj_ext_ker:
  assumes "i. i  (n :: nat)  ideal (I i) R"
  shows "a_kernel R (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n])) (canonical_proj_ext I n) = (i  n. I i)"
proof -
  let ?map_Quot = "λI n. map (λi. R Quot (I i)) [0..< Suc n]"
  let ?ker = "λI n. a_kernel R (RDirProd_list (?map_Quot I n)) (canonical_proj_ext I n)"

  from assms show ?thesis
  proof (induct n arbitrary: I)
    case 0 then have I: "ideal (I 0) R" by simp
    show ?case
      unfolding a_kernel_def' RDirProd_list_zero canonical_proj_ext_def FactRing_def
      using ideal.rcos_const_imp_mem a_rcos_zero ideal.Icarr I by auto 
  next
    case (Suc n)
    hence I: "ideal (I 0) R" by simp
    have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) # (?map_Quot (λi. I (Suc i)) n)"
      by (induct n) (auto)
    have ker_I0: "I 0 = a_kernel R (R Quot (I 0)) (λa. (I 0) +> a)"
      using ideal.rcos_const_imp_mem[OF I] a_rcos_zero[OF I] ideal.Icarr[OF I]
      unfolding a_kernel_def' FactRing_def by auto
    hence "?ker I (Suc n) = (?ker (λi. I (Suc i)) n)  (I 0)"
      unfolding a_kernel_def' map_simp RDirProd_list_zero' canonical_proj_ext_tl by auto
    moreover have "?ker (λi. I (Suc i)) n = (i  n. I (Suc i))"
      using Suc(1)[of "λi. I (Suc i)"] Suc(2) by auto
    ultimately show ?case
      by (auto simp add: INT_extend_simps(10) atMost_atLeast0)
         (metis atLeastAtMost_iff le_zero_eq not_less_eq_eq)
  qed
qed

lemma (in cring) canonical_proj_ext_is_surj:
  assumes "i. i  n  ideal (I i) R" and "i j.  i  n; j  n   i  j  I i <+> I j = carrier R"
  shows "(canonical_proj_ext I n) ` carrier R = carrier (RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n]))"
  using assms
proof (induct n arbitrary: I)
  case 0 show ?case
    by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')
next
  { fix S :: "'c ring" and T :: "'d ring" and f g
    assume A: "ring T" "f  ring_hom R S" "g  ring_hom R T" "f ` carrier R  f ` (a_kernel R T g)"
    have "(λa. (f a, g a)) ` carrier R = (f ` carrier R) × (g ` carrier R)"
    proof
      show "(λa. (f a, g a)) ` carrier R  (f ` carrier R) × (g ` carrier R)"
        by blast
    next
      show "(f ` carrier R) × (g ` carrier R)  (λa. (f a, g a)) ` carrier R"
      proof
        fix t assume "t  (f ` carrier R) × (g ` carrier R)"
        then obtain a b where a: "a  carrier R" "f a = fst t" and b: "b  carrier R" "g b = snd t"
          by auto
        obtain c where c: "c  a_kernel R T g" "f c = f (a  b)"
          using A(4) minus_closed[OF a(1) b (1)] by auto
        have "f (c  b) = f (a  b) Sf b"
          using ring_hom_memE(3)[OF A(2)] b c unfolding a_kernel_def' by auto
        hence "f (c  b) = f a"
          using ring_hom_memE(3)[OF A(2) minus_closed[of a b], of b] a b by algebra
        moreover have "g (c  b) = g b"
          using ring_hom_memE(1,3)[OF A(3)] b(1) c ring.ring_simprules(8)[OF A(1)]
          unfolding a_kernel_def' by auto
        ultimately have "(λa. (f a, g a)) (c  b) = t" and "c  b  carrier R"
          using a b c unfolding a_kernel_def' by auto
        thus "t  (λa. (f a, g a)) ` carrier R"
          by blast
      qed
    qed } note aux_lemma = this

  let ?map_Quot = "λI n. map (λi. R Quot (I i)) [0..< Suc n]"
  let ?DirProd = "λI n. RDirProd_list (?map_Quot I n)"
  let ?proj = "λI n. canonical_proj_ext I n"

  case (Suc n)
  interpret I: ideal "I 0" R + Inter: ideal "i  n. I (Suc i)" R
    using i_Intersect[of "(λi. I (Suc i)) ` {..n}"] Suc(2) by auto

  have map_simp: "?map_Quot I (Suc n) = (R Quot I 0) # (?map_Quot (λi. I (Suc i)) n)"
    by (induct n) (auto)

  have IH: "(?proj (λi. I (Suc i)) n) ` carrier R = carrier (?DirProd (λi. I (Suc i)) n)"
   and ring: "ring (?DirProd (λi. I (Suc i)) n)"
   and hom: "?proj (λi. I (Suc i)) n  ring_hom R (?DirProd (λi. I (Suc i)) n)"
    using RDirProd_Quot_list_is_ring[of n "λi. I (Suc i)"] Suc(1)[of "λi. I (Suc i)"]
           canonical_proj_ext_is_hom[of n "λi. I (Suc i)"] Suc(2-3) by auto

  have ker: "a_kernel R (?DirProd (λi. I (Suc i)) n) (?proj (λi. I (Suc i)) n) = (i  n. I (Suc i))"
    using canonical_proj_ext_ker[of n "λi. I (Suc i)"] Suc(2) by auto
  have carrier_Quot: "carrier (R Quot (I 0)) = (λa. (I 0) +> a) ` carrier R"
    by (auto simp add: RDirProd_list_carrier FactRing_def A_RCOSETS_def')
  have ring: "ring (?DirProd (λi. I (Suc i)) n)"
   and hom: "?proj (λi. I (Suc i)) n  ring_hom R (?DirProd (λi. I (Suc i)) n)"
    using RDirProd_Quot_list_is_ring[of n "λi. I (Suc i)"]
          canonical_proj_ext_is_hom[of n "λi. I (Suc i)"] Suc(2) by auto
  have "carrier (R Quot (I 0))  (λa. (I 0) +> a) ` (i  n. I (Suc i))"
  proof
    have "(i  {Suc 0.. Suc n}. I i) <+> (I 0) = carrier R"
      using inter_plus_ideal_eq_carrier_arbitrary[of n I 0]
      by (simp add: Suc(2-3) atLeast1_atMost_eq_remove0)
    hence eq_carrier: "(I 0) <+> (i  n. I (Suc i)) = carrier R"
      using set_add_comm[OF I.a_subset Inter.a_subset]
      by (metis INT_extend_simps(10) atMost_atLeast0 image_Suc_atLeastAtMost)

    fix b assume "b  carrier (R Quot (I 0))"
    hence "(b, (i  n. I (Suc i)))  carrier (R Quot I 0) × carrier (R Quot (in. I (Suc i)))"
      using ring.ring_simprules(2)[OF Inter.quotient_is_ring] by (simp add: FactRing_def)
    then obtain s
      where "s  carrier R" "(canonical_proj (I 0) (i  n. I (Suc i))) s = (b, (i  n. I (Suc i)))"
      using canonical_proj_is_surj[OF I.is_ideal Inter.is_ideal eq_carrier]
      unfolding RDirProd_carrier by (metis (no_types, lifting) imageE)
    hence "s  (i  n. I (Suc i))" and "(λa. (I 0) +> a) s = b"
      using Inter.rcos_const_imp_mem by auto
    thus "b  (λa. (I 0) +> a) ` (i  n. I (Suc i))"
      by auto
  qed
  hence "(λa. ((I 0) +> a, ?proj (λi. I (Suc i)) n a)) ` carrier R =
         carrier (R Quot (I 0)) × carrier (?DirProd (λi. I (Suc i)) n)"
    using aux_lemma[OF ring I.rcos_ring_hom hom] unfolding carrier_Quot ker IH by simp
  moreover show ?case
    unfolding map_simp RDirProd_list_carrier sym[OF calculation(1)] canonical_proj_ext_tl by auto 
qed

theorem (in cring) chinese_remainder:
  assumes "i. i  n  ideal (I i) R" and "i j.  i  n; j  n   i  j  I i <+> I j = carrier R"
  shows "R Quot (i  n. I i)  RDirProd_list (map (λi. R Quot (I i)) [0..< Suc n])"
  using ring_hom_ring.FactRing_iso[OF canonical_proj_ext_ring_hom, of n I]
        canonical_proj_ext_is_surj[of n I] canonical_proj_ext_ker[of n I] assms
  by auto

end