Theory Presburger
section ‹Decision Procedure for Presburger Arithmetic›
theory Presburger
imports Groebner_Basis Set_Interval
keywords "try0" :: diag
begin
ML_file ‹Tools/Qelim/qelim.ML›
ML_file ‹Tools/Qelim/cooper_procedure.ML›
subsection‹The ‹-∞› and ‹+∞› Properties›
lemma minf:
"⟦∃(z ::'a::linorder).∀x<z. P x = P' x; ∃z.∀x<z. Q x = Q' x⟧
⟹ ∃z.∀x<z. (P x ∧ Q x) = (P' x ∧ Q' x)"
"⟦∃(z ::'a::linorder).∀x<z. P x = P' x; ∃z.∀x<z. Q x = Q' x⟧
⟹ ∃z.∀x<z. (P x ∨ Q x) = (P' x ∨ Q' x)"
"∃(z ::'a::{linorder}).∀x<z.(x = t) = False"
"∃(z ::'a::{linorder}).∀x<z.(x ≠ t) = True"
"∃(z ::'a::{linorder}).∀x<z.(x < t) = True"
"∃(z ::'a::{linorder}).∀x<z.(x ≤ t) = True"
"∃(z ::'a::{linorder}).∀x<z.(x > t) = False"
"∃(z ::'a::{linorder}).∀x<z.(x ≥ t) = False"
"∃z.∀(x::'b::{linorder,plus,Rings.dvd})<z. (d dvd x + s) = (d dvd x + s)"
"∃z.∀(x::'b::{linorder,plus,Rings.dvd})<z. (¬ d dvd x + s) = (¬ d dvd x + s)"
"∃z.∀x<z. F = F"
proof safe
fix z1 z2
assume "∀x<z1. P x = P' x" and "∀x<z2. Q x = Q' x"
then have "∀x < min z1 z2. (P x ∧ Q x) = (P' x ∧ Q' x)"
by simp
then show "∃z. ∀x<z. (P x ∧ Q x) = (P' x ∧ Q' x)"
by blast
next
fix z1 z2
assume "∀x<z1. P x = P' x" and "∀x<z2. Q x = Q' x"
then have "∀x < min z1 z2. (P x ∨ Q x) = (P' x ∨ Q' x)"
by simp
then show "∃z. ∀x<z. (P x ∨ Q x) = (P' x ∨ Q' x)"
by blast
next
have "∀x<t. x ≤ t"
by fastforce
then show "∃z. ∀x<z. (x ≤ t) = True"
by auto
next
have "∀x<t. ¬ t < x"
by fastforce
then show "∃z. ∀x<z. (t < x) = False"
by auto
next
have "∀x<t. ¬ t ≤ x"
by fastforce
then show "∃z. ∀x<z. (t ≤ x) = False"
by auto
qed auto
lemma pinf:
"⟦∃(z ::'a::linorder).∀x>z. P x = P' x; ∃z.∀x>z. Q x = Q' x⟧
⟹ ∃z.∀x>z. (P x ∧ Q x) = (P' x ∧ Q' x)"
"⟦∃(z ::'a::linorder).∀x>z. P x = P' x; ∃z.∀x>z. Q x = Q' x⟧
⟹ ∃z.∀x>z. (P x ∨ Q x) = (P' x ∨ Q' x)"
"∃(z ::'a::{linorder}).∀x>z.(x = t) = False"
"∃(z ::'a::{linorder}).∀x>z.(x ≠ t) = True"
"∃(z ::'a::{linorder}).∀x>z.(x < t) = False"
"∃(z ::'a::{linorder}).∀x>z.(x ≤ t) = False"
"∃(z ::'a::{linorder}).∀x>z.(x > t) = True"
"∃(z ::'a::{linorder}).∀x>z.(x ≥ t) = True"
"∃z.∀(x::'b::{linorder,plus,Rings.dvd})>z. (d dvd x + s) = (d dvd x + s)"
"∃z.∀(x::'b::{linorder,plus,Rings.dvd})>z. (¬ d dvd x + s) = (¬ d dvd x + s)"
"∃z.∀x>z. F = F"
proof safe
fix z1 z2
assume "∀x>z1. P x = P' x" and "∀x>z2. Q x = Q' x"
then have "∀x > max z1 z2. (P x ∧ Q x) = (P' x ∧ Q' x)"
by simp
then show "∃z. ∀x>z. (P x ∧ Q x) = (P' x ∧ Q' x)"
by blast
next
fix z1 z2
assume "∀x>z1. P x = P' x" and "∀x>z2. Q x = Q' x"
then have "∀x > max z1 z2. (P x ∨ Q x) = (P' x ∨ Q' x)"
by simp
then show "∃z. ∀x>z. (P x ∨ Q x) = (P' x ∨ Q' x)"
by blast
next
have "∀x>t. ¬ x < t"
by fastforce
then show "∃z. ∀x>z. x < t = False"
by blast
next
have "∀x>t. ¬ x ≤ t"
by fastforce
then show "∃z. ∀x>z. x ≤ t = False"
by blast
next
have "∀x>t. t ≤ x"
by fastforce
then show "∃z. ∀x>z. t ≤ x = True"
by blast
qed auto
lemma inf_period:
"⟦∀x k. P x = P (x - k*D); ∀x k. Q x = Q (x - k*D)⟧
⟹ ∀x k. (P x ∧ Q x) = (P (x - k*D) ∧ Q (x - k*D))"
"⟦∀x k. P x = P (x - k*D); ∀x k. Q x = Q (x - k*D)⟧
⟹ ∀x k. (P x ∨ Q x) = (P (x - k*D) ∨ Q (x - k*D))"
"(d::'a::{comm_ring,Rings.dvd}) dvd D ⟹ ∀x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
"(d::'a::{comm_ring,Rings.dvd}) dvd D ⟹ ∀x k. (¬d dvd x + t) = (¬d dvd (x - k*D) + t)"
"∀x k. F = F"
apply (auto elim!: dvdE simp add: algebra_simps)
unfolding mult.assoc [symmetric] distrib_right [symmetric] left_diff_distrib [symmetric]
unfolding dvd_def mult.commute [of d]
by auto
subsection‹The A and B sets›
lemma bset:
"⟦∀x.(∀j ∈ {1 .. D}. ∀b∈B. x ≠ b + j)⟶ P x ⟶ P(x - D) ;
∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ Q x ⟶ Q(x - D)⟧ ⟹
∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j) ⟶ (P x ∧ Q x) ⟶ (P(x - D) ∧ Q (x - D))"
"⟦∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ P x ⟶ P(x - D) ;
∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ Q x ⟶ Q(x - D)⟧ ⟹
∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (P x ∨ Q x) ⟶ (P(x - D) ∨ Q (x - D))"
"⟦D>0; t - 1∈ B⟧ ⟹ (∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x = t) ⟶ (x - D = t))"
"⟦D>0 ; t ∈ B⟧ ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≠ t) ⟶ (x - D ≠ t))"
"D>0 ⟹ (∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x < t) ⟶ (x - D < t))"
"D>0 ⟹ (∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≤ t) ⟶ (x - D ≤ t))"
"⟦D>0 ; t ∈ B⟧ ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x > t) ⟶ (x - D > t))"
"⟦D>0 ; t - 1 ∈ B⟧ ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≥ t) ⟶ (x - D ≥ t))"
"d dvd D ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (d dvd x+t) ⟶ (d dvd (x - D) + t))"
"d dvd D ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (¬d dvd x+t) ⟶ (¬ d dvd (x - D) + t))"
"∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j) ⟶ F ⟶ F"
proof (blast, blast)
assume dp: "D > 0" and tB: "t - 1∈ B"
show "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x = t) ⟶ (x - D = t))"
apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"])
apply algebra using dp tB by simp_all
next
assume dp: "D > 0" and tB: "t ∈ B"
show "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≠ t) ⟶ (x - D ≠ t))"
apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
apply algebra
using dp tB by simp_all
next
assume dp: "D > 0" thus "(∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x < t) ⟶ (x - D < t))" by arith
next
assume dp: "D > 0" thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≤ t) ⟶ (x - D ≤ t)" by arith
next
assume dp: "D > 0" and tB:"t ∈ B"
{fix x assume nob: "∀j∈{1 .. D}. ∀b∈B. x ≠ b + j" and g: "x > t" and ng: "¬ (x - D) > t"
hence "x -t ≤ D" and "1 ≤ x - t" by simp+
hence "∃j ∈ {1 .. D}. x - t = j" by auto
hence "∃j ∈ {1 .. D}. x = t + j" by (simp add: algebra_simps)
with nob tB have "False" by simp}
thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x > t) ⟶ (x - D > t)" by blast
next
assume dp: "D > 0" and tB:"t - 1∈ B"
{fix x assume nob: "∀j∈{1 .. D}. ∀b∈B. x ≠ b + j" and g: "x ≥ t" and ng: "¬ (x - D) ≥ t"
hence "x - (t - 1) ≤ D" and "1 ≤ x - (t - 1)" by simp+
hence "∃j ∈ {1 .. D}. x - (t - 1) = j" by auto
hence "∃j ∈ {1 .. D}. x = (t - 1) + j" by (simp add: algebra_simps)
with nob tB have "False" by simp}
thus "∀x.(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (x ≥ t) ⟶ (x - D ≥ t)" by blast
next
assume d: "d dvd D"
{fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra}
thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (d dvd x+t) ⟶ (d dvd (x - D) + t)" by simp
next
assume d: "d dvd D"
{fix x assume H: "¬(d dvd x + t)" with d have "¬ d dvd (x - D) + t"
by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: algebra_simps)}
thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈B. x ≠ b + j)⟶ (¬d dvd x+t) ⟶ (¬d dvd (x - D) + t)" by auto
qed blast
lemma aset:
"⟦∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ P x ⟶ P(x + D) ;
∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ Q x ⟶ Q(x + D)⟧ ⟹
∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j) ⟶ (P x ∧ Q x) ⟶ (P(x + D) ∧ Q (x + D))"
"⟦∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ P x ⟶ P(x + D) ;
∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ Q x ⟶ Q(x + D)⟧ ⟹
∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (P x ∨ Q x) ⟶ (P(x + D) ∨ Q (x + D))"
"⟦D>0; t + 1∈ A⟧ ⟹ (∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x = t) ⟶ (x + D = t))"
"⟦D>0 ; t ∈ A⟧ ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≠ t) ⟶ (x + D ≠ t))"
"⟦D>0; t∈ A⟧ ⟹(∀(x::int). (∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x < t) ⟶ (x + D < t))"
"⟦D>0; t + 1 ∈ A⟧ ⟹ (∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≤ t) ⟶ (x + D ≤ t))"
"D>0 ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x > t) ⟶ (x + D > t))"
"D>0 ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≥ t) ⟶ (x + D ≥ t))"
"d dvd D ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (d dvd x+t) ⟶ (d dvd (x + D) + t))"
"d dvd D ⟹(∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (¬d dvd x+t) ⟶ (¬ d dvd (x + D) + t))"
"∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j) ⟶ F ⟶ F"
proof (blast, blast)
assume dp: "D > 0" and tA: "t + 1 ∈ A"
show "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x = t) ⟶ (x + D = t))"
apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"])
using dp tA by simp_all
next
assume dp: "D > 0" and tA: "t ∈ A"
show "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≠ t) ⟶ (x + D ≠ t))"
apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"])
using dp tA by simp_all
next
assume dp: "D > 0" thus "(∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x > t) ⟶ (x + D > t))" by arith
next
assume dp: "D > 0" thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≥ t) ⟶ (x + D ≥ t)" by arith
next
assume dp: "D > 0" and tA:"t ∈ A"
{fix x assume nob: "∀j∈{1 .. D}. ∀b∈A. x ≠ b - j" and g: "x < t" and ng: "¬ (x + D) < t"
hence "t - x ≤ D" and "1 ≤ t - x" by simp+
hence "∃j ∈ {1 .. D}. t - x = j" by auto
hence "∃j ∈ {1 .. D}. x = t - j" by (auto simp add: algebra_simps)
with nob tA have "False" by simp}
thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x < t) ⟶ (x + D < t)" by blast
next
assume dp: "D > 0" and tA:"t + 1∈ A"
{fix x assume nob: "∀j∈{1 .. D}. ∀b∈A. x ≠ b - j" and g: "x ≤ t" and ng: "¬ (x + D) ≤ t"
hence "(t + 1) - x ≤ D" and "1 ≤ (t + 1) - x" by (simp_all add: algebra_simps)
hence "∃j ∈ {1 .. D}. (t + 1) - x = j" by auto
hence "∃j ∈ {1 .. D}. x = (t + 1) - j" by (auto simp add: algebra_simps)
with nob tA have "False" by simp}
thus "∀x.(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (x ≤ t) ⟶ (x + D ≤ t)" by blast
next
assume d: "d dvd D"
have "⋀x. d dvd x + t ⟹ d dvd x + D + t"
proof -
fix x
assume H: "d dvd x + t"
then obtain ka where "x + t = d * ka"
unfolding dvd_def by blast
moreover from d obtain k where *:"D = d * k"
unfolding dvd_def by blast
ultimately have "x + d * k + t = d * (ka + k)"
by (simp add: algebra_simps)
then show "d dvd (x + D) + t"
using * unfolding dvd_def by blast
qed
thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (d dvd x+t) ⟶ (d dvd (x + D) + t)" by simp
next
assume d: "d dvd D"
{fix x assume H: "¬(d dvd x + t)" with d have "¬d dvd (x + D) + t"
by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: algebra_simps)}
thus "∀(x::int).(∀j∈{1 .. D}. ∀b∈A. x ≠ b - j)⟶ (¬d dvd x+t) ⟶ (¬d dvd (x + D) + t)" by auto
qed blast
subsection‹Cooper's Theorem ‹-∞› and ‹+∞› Version›
subsubsection‹First some trivial facts about periodic sets or predicates›
lemma periodic_finite_ex:
assumes dpos: "(0::int) < d" and modd: "∀x k. P x = P(x - k*d)"
shows "(∃x. P x) = (∃j ∈ {1..d}. P j)"
(is "?LHS = ?RHS")
proof
assume ?LHS
then obtain x where P: "P x" ..
have "x mod d = x - (x div d)*d" by(simp add:mult_div_mod_eq [symmetric] ac_simps eq_diff_eq)
hence Pmod: "P x = P(x mod d)" using modd by simp
show ?RHS
proof (cases)
assume "x mod d = 0"
hence "P 0" using P Pmod by simp
moreover have "P 0 = P(0 - (-1)*d)" using modd by blast
ultimately have "P d" by simp
moreover have "d ∈ {1..d}" using dpos by simp
ultimately show ?RHS ..
next
assume not0: "x mod d ≠ 0"
have "P(x mod d)" using dpos P Pmod by simp
moreover have "x mod d ∈ {1..d}"
proof -
from dpos have "0 ≤ x mod d" by(rule pos_mod_sign)
moreover from dpos have "x mod d < d" by(rule pos_mod_bound)
ultimately show ?thesis using not0 by simp
qed
ultimately show ?RHS ..
qed
qed auto
subsubsection‹The ‹-∞› Version›
lemma decr_lemma: "0 < (d::int) ⟹ x - (¦x - z¦ + 1) * d < z"
by (induct rule: int_gr_induct) (simp_all add: int_distrib)
lemma incr_lemma: "0 < (d::int) ⟹ z < x + (¦x - z¦ + 1) * d"
by (induct rule: int_gr_induct) (simp_all add: int_distrib)
lemma decr_mult_lemma:
assumes dpos: "(0::int) < d" and minus: "∀x. P x ⟶ P(x - d)" and knneg: "0 <= k"
shows "∀x. P x ⟶ P(x - k*d)"
using knneg
proof (induct rule:int_ge_induct)
case base thus ?case by simp
next
case (step i)
{fix x
have "P x ⟶ P (x - i * d)" using step.hyps by blast
also have "… ⟶ P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"]
by (simp add: algebra_simps)
ultimately have "P x ⟶ P(x - (i + 1) * d)" by blast}
thus ?case ..
qed
lemma minusinfinity:
assumes dpos: "0 < d" and
P1eqP1: "∀x k. P1 x = P1(x - k*d)" and ePeqP1: "∃z::int. ∀x. x < z ⟶ (P x = P1 x)"
shows "(∃x. P1 x) ⟶ (∃x. P x)"
proof
assume eP1: "∃x. P1 x"
then obtain x where P1: "P1 x" ..
from ePeqP1 obtain z where P1eqP: "∀x. x < z ⟶ (P x = P1 x)" ..
let ?w = "x - (¦x - z¦ + 1) * d"
from dpos have w: "?w < z" by(rule decr_lemma)
have "P1 x = P1 ?w" using P1eqP1 by blast
also have "… = P(?w)" using w P1eqP by blast
finally have "P ?w" using P1 by blast
thus "∃x. P x" ..
qed
lemma cpmi:
assumes dp: "0 < D" and p1:"∃z. ∀ x< z. P x = P' x"
and nb:"∀x.(∀ j∈ {1..D}. ∀(b::int) ∈ B. x ≠ b+j) ⟶ P (x) ⟶ P (x - D)"
and pd: "∀ x k. P' x = P' (x-k*D)"
shows "(∃x. P x) = ((∃j ∈ {1..D} . P' j) ∨ (∃j ∈ {1..D}. ∃ b ∈ B. P (b+j)))"
(is "?L = (?R1 ∨ ?R2)")
proof-
{assume "?R2" hence "?L" by blast}
moreover
{assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
moreover
{ fix x
assume P: "P x" and H: "¬ ?R2"
{fix y assume "¬ (∃j∈{1..D}. ∃b∈B. P (b + j))" and P: "P y"
hence "¬(∃(j::int) ∈ {1..D}. ∃(b::int) ∈ B. y = b+j)" by auto
with nb P have "P (y - D)" by auto }
hence "∀x. ¬(∃(j::int) ∈ {1..D}. ∃(b::int) ∈ B. P(b+j)) ⟶ P (x) ⟶ P (x - D)" by blast
with H P have th: " ∀x. P x ⟶ P (x - D)" by auto
from p1 obtain z where z: "∀x. x < z ⟶ (P x = P' x)" by blast
let ?y = "x - (¦x - z¦ + 1)*D"
have zp: "0 <= (¦x - z¦ + 1)" by arith
from dp have yz: "?y < z" using decr_lemma[OF dp] by simp
from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
with periodic_finite_ex[OF dp pd]
have "?R1" by blast}
ultimately show ?thesis by blast
qed
subsubsection ‹The ‹+∞› Version›
lemma plusinfinity:
assumes dpos: "(0::int) < d" and
P1eqP1: "∀x k. P' x = P'(x - k*d)" and ePeqP1: "∃ z. ∀ x>z. P x = P' x"
shows "(∃ x. P' x) ⟶ (∃ x. P x)"
proof
assume eP1: "∃x. P' x"
then obtain x where P1: "P' x" ..
from ePeqP1 obtain z where P1eqP: "∀x>z. P x = P' x" ..
let ?w' = "x + (¦x - z¦ + 1) * d"
let ?w = "x - (- (¦x - z¦ + 1)) * d"
have ww'[simp]: "?w = ?w'" by (simp add: algebra_simps)
from dpos have w: "?w > z" by(simp only: ww' incr_lemma)
hence "P' x = P' ?w" using P1eqP1 by blast
also have "… = P(?w)" using w P1eqP by blast
finally have "P ?w" using P1 by blast
thus "∃x. P x" ..
qed
lemma incr_mult_lemma:
assumes dpos: "(0::int) < d" and plus: "∀x::int. P x ⟶ P(x + d)" and knneg: "0 <= k"
shows "∀x. P x ⟶ P(x + k*d)"
using knneg
proof (induct rule:int_ge_induct)
case base thus ?case by simp
next
case (step i)
{fix x
have "P x ⟶ P (x + i * d)" using step.hyps by blast
also have "… ⟶ P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"]
by (simp add:int_distrib ac_simps)
ultimately have "P x ⟶ P(x + (i + 1) * d)" by blast}
thus ?case ..
qed
lemma cppi:
assumes dp: "0 < D" and p1:"∃z. ∀ x> z. P x = P' x"
and nb:"∀x.(∀ j∈ {1..D}. ∀(b::int) ∈ A. x ≠ b - j) ⟶ P (x) ⟶ P (x + D)"
and pd: "∀ x k. P' x= P' (x-k*D)"
shows "(∃x. P x) = ((∃j ∈ {1..D} . P' j) ∨ (∃ j ∈ {1..D}. ∃ b∈ A. P (b - j)))" (is "?L = (?R1 ∨ ?R2)")
proof-
{assume "?R2" hence "?L" by blast}
moreover
{assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
moreover
{ fix x
assume P: "P x" and H: "¬ ?R2"
{fix y assume "¬ (∃j∈{1..D}. ∃b∈A. P (b - j))" and P: "P y"
hence "¬(∃(j::int) ∈ {1..D}. ∃(b::int) ∈ A. y = b - j)" by auto
with nb P have "P (y + D)" by auto }
hence "∀x. ¬(∃(j::int) ∈ {1..D}. ∃(b::int) ∈ A. P(b-j)) ⟶ P (x) ⟶ P (x + D)" by blast
with H P have th: " ∀x. P x ⟶ P (x + D)" by auto
from p1 obtain z where z: "∀x. x > z ⟶ (P x = P' x)" by blast
let ?y = "x + (¦x - z¦ + 1)*D"
have zp: "0 <= (¦x - z¦ + 1)" by arith
from dp have yz: "?y > z" using incr_lemma[OF dp] by simp
from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto
with periodic_finite_ex[OF dp pd]
have "?R1" by blast}
ultimately show ?thesis by blast
qed
lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
apply(simp add:atLeastAtMost_def atLeast_def atMost_def)
apply(fastforce)
done
theorem unity_coeff_ex: "(∃(x::'a::{semiring_0,Rings.dvd}). P (l * x)) ≡ (∃x. l dvd (x + 0) ∧ P x)"
unfolding dvd_def by (rule eq_reflection, rule iffI) auto
lemma zdvd_mono:
fixes k m t :: int
assumes "k ≠ 0"
shows "m dvd t ≡ k * m dvd k * t"
using assms by simp
lemma uminus_dvd_conv:
fixes d t :: int
shows "d dvd t ≡ - d dvd t" and "d dvd t ≡ d dvd - t"
by simp_all
text ‹\bigskip Theorems for transforming predicates on nat to predicates on ‹int››
lemma zdiff_int_split: "P (int (x - y)) =
((y ≤ x ⟶ P (int x - int y)) ∧ (x < y ⟶ P 0))"
by (cases "y ≤ x") (simp_all add: of_nat_diff)
text ‹
\medskip Specific instances of congruence rules, to prevent
simplifier from looping.›
theorem imp_le_cong:
"⟦x = x'; 0 ≤ x' ⟹ P = P'⟧ ⟹ (0 ≤ (x::int) ⟶ P) = (0 ≤ x' ⟶ P')"
by simp
theorem conj_le_cong:
"⟦x = x'; 0 ≤ x' ⟹ P = P'⟧ ⟹ (0 ≤ (x::int) ∧ P) = (0 ≤ x' ∧ P')"
by (simp cong: conj_cong)
ML_file ‹Tools/Qelim/cooper.ML›
method_setup presburger = ‹
let
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K ()
fun simple_keyword k = Scan.lift (Args.$$$ k) >> K ()
val addN = "add"
val delN = "del"
val elimN = "elim"
val any_keyword = keyword addN || keyword delN || simple_keyword elimN
val thms = Scan.repeats (Scan.unless any_keyword Attrib.multi_thm)
in
Scan.optional (simple_keyword elimN >> K false) true --
Scan.optional (keyword addN |-- thms) [] --
Scan.optional (keyword delN |-- thms) [] >>
(fn ((elim, add_ths), del_ths) => fn ctxt =>
SIMPLE_METHOD' (Cooper.tac elim add_ths del_ths ctxt))
end
› "Cooper's algorithm for Presburger arithmetic"
declare mod_eq_0_iff_dvd [presburger]
declare mod_by_Suc_0 [presburger]
declare mod_0 [presburger]
declare mod_by_1 [presburger]
declare mod_self [presburger]
declare div_by_0 [presburger]
declare mod_by_0 [presburger]
declare mod_div_trivial [presburger]
declare mult_div_mod_eq [presburger]
declare div_mult_mod_eq [presburger]
declare mod_mult_self1 [presburger]
declare mod_mult_self2 [presburger]
declare mod2_Suc_Suc [presburger]
declare not_mod_2_eq_0_eq_1 [presburger]
declare nat_zero_less_power_iff [presburger]
lemma [presburger, algebra]: "m mod 2 = (1::nat) ⟷ ¬ 2 dvd m " by presburger
lemma [presburger, algebra]: "m mod 2 = Suc 0 ⟷ ¬ 2 dvd m " by presburger
lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) ⟷ ¬ 2 dvd m " by presburger
lemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 ⟷ ¬ 2 dvd m " by presburger
lemma [presburger, algebra]: "m mod 2 = (1::int) ⟷ ¬ 2 dvd m " by presburger
context semiring_parity
begin
declare even_mult_iff [presburger]
declare even_power [presburger]
lemma [presburger]:
"even (a + b) ⟷ even a ∧ even b ∨ odd a ∧ odd b"
by auto
end
context ring_parity
begin
declare even_minus [presburger]
end
context linordered_idom
begin
declare zero_le_power_eq [presburger]
declare zero_less_power_eq [presburger]
declare power_less_zero_eq [presburger]
declare power_le_zero_eq [presburger]
end
declare even_Suc [presburger]
lemma [presburger]:
"Suc n div Suc (Suc 0) = n div Suc (Suc 0) ⟷ even n"
by presburger
declare even_diff_nat [presburger]
lemma [presburger]:
fixes k :: int
shows "(k + 1) div 2 = k div 2 ⟷ even k"
by presburger
lemma [presburger]:
fixes k :: int
shows "(k + 1) div 2 = k div 2 + 1 ⟷ odd k"
by presburger
lemma [presburger]:
"even n ⟷ even (int n)"
by simp
subsection ‹Nice facts about division by \<^term>‹4››
lemma even_even_mod_4_iff:
"even (n::nat) ⟷ even (n mod 4)"
by presburger
lemma odd_mod_4_div_2:
"n mod 4 = (3::nat) ⟹ odd ((n - Suc 0) div 2)"
by presburger
lemma even_mod_4_div_2:
"n mod 4 = Suc 0 ⟹ even ((n - Suc 0) div 2)"
by presburger
subsection ‹Try0›
ML_file ‹Tools/try0.ML›
end