216
|
1 |
(* Title: Equiv.ML
|
|
2 |
ID: $Id$
|
|
3 |
Authors: Riccardo Mattolini, Dip. Sistemi e Informatica
|
|
4 |
Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
5 |
Copyright 1994 Universita' di Firenze
|
|
6 |
Copyright 1993 University of Cambridge
|
|
7 |
|
|
8 |
Equivalence relations in HOL Set Theory
|
|
9 |
*)
|
|
10 |
|
|
11 |
open Equiv;
|
|
12 |
|
|
13 |
(*** Suppes, Theorem 70: r is an equiv relation iff converse(r) O r = r ***)
|
|
14 |
|
|
15 |
(** first half: equiv(A,r) ==> converse(r) O r = r **)
|
|
16 |
|
|
17 |
goalw Equiv.thy [trans_def,sym_def,converse_def]
|
|
18 |
"!!r. [| sym(r); trans(r) |] ==> converse(r) O r <= r";
|
|
19 |
by (fast_tac (comp_cs addSEs [converseD]) 1);
|
|
20 |
qed "sym_trans_comp_subset";
|
|
21 |
|
|
22 |
val [major,minor]=goal Equiv.thy "[|<x,y>:r; z=<x,y>|] ==> z:r";
|
|
23 |
by (simp_tac (prod_ss addsimps [minor]) 1);
|
|
24 |
by (rtac major 1);
|
|
25 |
qed "BreakPair";
|
|
26 |
|
|
27 |
val [major]=goal Equiv.thy "[|? x y. <x,y>:r & z=<x,y>|] ==> z:r";
|
|
28 |
by (resolve_tac [major RS exE] 1);
|
|
29 |
by (etac exE 1);
|
|
30 |
by (etac conjE 1);
|
|
31 |
by (asm_simp_tac (prod_ss addsimps [minor]) 1);
|
|
32 |
qed "BreakPair1";
|
|
33 |
|
|
34 |
val [major,minor]=goal Equiv.thy "[|z:r; z=<x,y>|] ==> <x,y>:r";
|
|
35 |
by (simp_tac (prod_ss addsimps [minor RS sym]) 1);
|
|
36 |
by (rtac major 1);
|
|
37 |
qed "BuildPair";
|
|
38 |
|
|
39 |
val [major]=goal Equiv.thy "[|? z:r. <x,y>=z|] ==> <x,y>:r";
|
|
40 |
by (resolve_tac [major RS bexE] 1);
|
|
41 |
by (asm_simp_tac (prod_ss addsimps []) 1);
|
|
42 |
qed "BuildPair1";
|
|
43 |
|
|
44 |
val rel_pair_cs = rel_cs addIs [BuildPair1]
|
|
45 |
addEs [BreakPair1];
|
|
46 |
|
|
47 |
goalw Equiv.thy [refl_def,converse_def]
|
|
48 |
"!!A r. refl(A,r) ==> r <= converse(r) O r";
|
|
49 |
by (step_tac comp_cs 1);
|
|
50 |
by (dtac subsetD 1);
|
|
51 |
by (assume_tac 1);
|
|
52 |
by (etac SigmaE 1);
|
|
53 |
by (rtac BreakPair1 1);
|
|
54 |
by (fast_tac comp_cs 1);
|
|
55 |
qed "refl_comp_subset";
|
|
56 |
|
|
57 |
goalw Equiv.thy [equiv_def]
|
|
58 |
"!!A r. equiv(A,r) ==> converse(r) O r = r";
|
|
59 |
by (rtac equalityI 1);
|
|
60 |
by (REPEAT (ares_tac [sym_trans_comp_subset, refl_comp_subset] 1
|
|
61 |
ORELSE etac conjE 1));
|
|
62 |
qed "equiv_comp_eq";
|
|
63 |
|
|
64 |
(*second half*)
|
|
65 |
goalw Equiv.thy [equiv_def,refl_def,sym_def,trans_def]
|
|
66 |
"!!A r. [| converse(r) O r = r; Domain(r) = A |] ==> equiv(A,r)";
|
|
67 |
by (etac equalityE 1);
|
|
68 |
by (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r" 1);
|
|
69 |
by (safe_tac set_cs);
|
|
70 |
by (fast_tac (set_cs addSIs [converseI] addIs [compI]) 3);
|
|
71 |
by (fast_tac (set_cs addSIs [converseI] addIs [compI] addSEs [DomainE]) 2);
|
|
72 |
by (fast_tac (rel_pair_cs addSEs [SigmaE] addSIs [SigmaI]) 1);
|
|
73 |
by (dtac subsetD 1);
|
|
74 |
by (dtac subsetD 1);
|
|
75 |
by (fast_tac rel_cs 1);
|
|
76 |
by (fast_tac rel_cs 1);
|
|
77 |
by flexflex_tac;
|
|
78 |
by (dtac subsetD 1);
|
|
79 |
by (fast_tac converse_cs 2);
|
|
80 |
by (fast_tac converse_cs 1);
|
|
81 |
qed "comp_equivI";
|
|
82 |
|
|
83 |
(** Equivalence classes **)
|
|
84 |
|
|
85 |
(*Lemma for the next result*)
|
|
86 |
goalw Equiv.thy [equiv_def,trans_def,sym_def]
|
|
87 |
"!!A r. [| equiv(A,r); <a,b>: r |] ==> r^^{a} <= r^^{b}";
|
|
88 |
by (safe_tac rel_cs);
|
|
89 |
by (rtac ImageI 1);
|
|
90 |
by (fast_tac rel_cs 2);
|
|
91 |
by (fast_tac rel_cs 1);
|
|
92 |
qed "equiv_class_subset";
|
|
93 |
|
|
94 |
goal Equiv.thy "!!A r. [| equiv(A,r); <a,b>: r |] ==> r^^{a} = r^^{b}";
|
|
95 |
by (REPEAT (ares_tac [equalityI, equiv_class_subset] 1));
|
|
96 |
by (rewrite_goals_tac [equiv_def,sym_def]);
|
|
97 |
by (fast_tac rel_cs 1);
|
|
98 |
qed "equiv_class_eq";
|
|
99 |
|
|
100 |
val prems = goalw Equiv.thy [equiv_def,refl_def]
|
|
101 |
"[| equiv(A,r); a: A |] ==> a: r^^{a}";
|
|
102 |
by (cut_facts_tac prems 1);
|
|
103 |
by (fast_tac rel_cs 1);
|
|
104 |
qed "equiv_class_self";
|
|
105 |
|
|
106 |
(*Lemma for the next result*)
|
|
107 |
goalw Equiv.thy [equiv_def,refl_def]
|
|
108 |
"!!A r. [| equiv(A,r); r^^{b} <= r^^{a}; b: A |] ==> <a,b>: r";
|
|
109 |
by (fast_tac rel_cs 1);
|
|
110 |
qed "subset_equiv_class";
|
|
111 |
|
|
112 |
val prems = goal Equiv.thy
|
|
113 |
"[| r^^{a} = r^^{b}; equiv(A,r); b: A |] ==> <a,b>: r";
|
|
114 |
by (REPEAT (resolve_tac (prems @ [equalityD2, subset_equiv_class]) 1));
|
|
115 |
qed "eq_equiv_class";
|
|
116 |
|
|
117 |
(*thus r^^{a} = r^^{b} as well*)
|
|
118 |
goalw Equiv.thy [equiv_def,trans_def,sym_def]
|
|
119 |
"!!A r. [| equiv(A,r); x: (r^^{a} Int r^^{b}) |] ==> <a,b>: r";
|
|
120 |
by (fast_tac rel_cs 1);
|
|
121 |
qed "equiv_class_nondisjoint";
|
|
122 |
|
|
123 |
val [major] = goalw Equiv.thy [equiv_def,refl_def]
|
|
124 |
"equiv(A,r) ==> r <= Sigma(A,%x.A)";
|
|
125 |
by (rtac (major RS conjunct1 RS conjunct1) 1);
|
|
126 |
qed "equiv_type";
|
|
127 |
|
|
128 |
goal Equiv.thy
|
|
129 |
"!!A r. equiv(A,r) ==> (<x,y>: r) = (r^^{x} = r^^{y} & x:A & y:A)";
|
|
130 |
by (safe_tac rel_cs);
|
|
131 |
by ((rtac equiv_class_eq 1) THEN (assume_tac 1) THEN (assume_tac 1));
|
|
132 |
by ((rtac eq_equiv_class 3) THEN
|
|
133 |
(assume_tac 4) THEN (assume_tac 4) THEN (assume_tac 3));
|
|
134 |
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
|
|
135 |
(assume_tac 1) THEN (dtac SigmaD1 1) THEN (assume_tac 1));
|
|
136 |
by ((dtac equiv_type 1) THEN (dtac rev_subsetD 1) THEN
|
|
137 |
(assume_tac 1) THEN (dtac SigmaD2 1) THEN (assume_tac 1));
|
|
138 |
qed "equiv_class_eq_iff";
|
|
139 |
|
|
140 |
goal Equiv.thy
|
|
141 |
"!!A r. [| equiv(A,r); x: A; y: A |] ==> (r^^{x} = r^^{y}) = (<x,y>: r)";
|
|
142 |
by (safe_tac rel_cs);
|
|
143 |
by ((rtac eq_equiv_class 1) THEN
|
|
144 |
(assume_tac 1) THEN (assume_tac 1) THEN (assume_tac 1));
|
|
145 |
by ((rtac equiv_class_eq 1) THEN
|
|
146 |
(assume_tac 1) THEN (assume_tac 1));
|
|
147 |
qed "eq_equiv_class_iff";
|
|
148 |
|
|
149 |
(*** Quotients ***)
|
|
150 |
|
|
151 |
(** Introduction/elimination rules -- needed? **)
|
|
152 |
|
|
153 |
val prems = goalw Equiv.thy [quotient_def] "x:A ==> r^^{x}: A/r";
|
|
154 |
by (rtac UN_I 1);
|
|
155 |
by (resolve_tac prems 1);
|
|
156 |
by (rtac singletonI 1);
|
|
157 |
qed "quotientI";
|
|
158 |
|
|
159 |
val [major,minor] = goalw Equiv.thy [quotient_def]
|
|
160 |
"[| X:(A/r); !!x. [| X = r^^{x}; x:A |] ==> P |] \
|
|
161 |
\ ==> P";
|
|
162 |
by (resolve_tac [major RS UN_E] 1);
|
|
163 |
by (rtac minor 1);
|
|
164 |
by (assume_tac 2);
|
|
165 |
by (fast_tac rel_cs 1);
|
|
166 |
qed "quotientE";
|
|
167 |
|
|
168 |
(** Not needed by Theory Integ --> bypassed **)
|
|
169 |
(**goalw Equiv.thy [equiv_def,refl_def,quotient_def]
|
|
170 |
"!!A r. equiv(A,r) ==> Union(A/r) = A";
|
|
171 |
by (fast_tac eq_cs 1);
|
|
172 |
qed "Union_quotient";
|
|
173 |
**)
|
|
174 |
|
|
175 |
(** Not needed by Theory Integ --> bypassed **)
|
|
176 |
(*goalw Equiv.thy [quotient_def]
|
|
177 |
"!!A r. [| equiv(A,r); X: A/r; Y: A/r |] ==> X=Y | (X Int Y <= 0)";
|
|
178 |
by (safe_tac (ZF_cs addSIs [equiv_class_eq]));
|
|
179 |
by (assume_tac 1);
|
|
180 |
by (rewrite_goals_tac [equiv_def,trans_def,sym_def]);
|
|
181 |
by (fast_tac ZF_cs 1);
|
|
182 |
qed "quotient_disj";
|
|
183 |
**)
|
|
184 |
|
|
185 |
(**** Defining unary operations upon equivalence classes ****)
|
|
186 |
|
|
187 |
(* theorem needed to prove UN_equiv_class *)
|
|
188 |
goal Set.thy "!!A. [| a:A; ! y:A. b(y)=b(a) |] ==> (UN y:A. b(y))=b(a)";
|
|
189 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
190 |
qed "UN_singleton_lemma";
|
|
191 |
val UN_singleton = ballI RSN (2,UN_singleton_lemma);
|
|
192 |
|
|
193 |
|
|
194 |
(** These proofs really require as local premises
|
|
195 |
equiv(A,r); congruent(r,b)
|
|
196 |
**)
|
|
197 |
|
|
198 |
(*Conversion rule*)
|
|
199 |
val prems as [equivA,bcong,_] = goal Equiv.thy
|
|
200 |
"[| equiv(A,r); congruent(r,b); a: A |] ==> (UN x:r^^{a}. b(x)) = b(a)";
|
|
201 |
by (cut_facts_tac prems 1);
|
|
202 |
by (rtac UN_singleton 1);
|
|
203 |
by (rtac equiv_class_self 1);
|
|
204 |
by (assume_tac 1);
|
|
205 |
by (assume_tac 1);
|
|
206 |
by (rewrite_goals_tac [equiv_def,congruent_def,sym_def]);
|
|
207 |
by (fast_tac rel_cs 1);
|
|
208 |
qed "UN_equiv_class";
|
|
209 |
|
|
210 |
(*Resolve th against the "local" premises*)
|
|
211 |
val localize = RSLIST [equivA,bcong];
|
|
212 |
|
|
213 |
(*type checking of UN x:r``{a}. b(x) *)
|
|
214 |
val _::_::prems = goalw Equiv.thy [quotient_def]
|
|
215 |
"[| equiv(A,r); congruent(r,b); X: A/r; \
|
|
216 |
\ !!x. x : A ==> b(x) : B |] \
|
|
217 |
\ ==> (UN x:X. b(x)) : B";
|
|
218 |
by (cut_facts_tac prems 1);
|
|
219 |
by (safe_tac rel_cs);
|
|
220 |
by (rtac (localize UN_equiv_class RS ssubst) 1);
|
|
221 |
by (REPEAT (ares_tac prems 1));
|
|
222 |
qed "UN_equiv_class_type";
|
|
223 |
|
|
224 |
(*Sufficient conditions for injectiveness. Could weaken premises!
|
|
225 |
major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
|
|
226 |
*)
|
|
227 |
val _::_::prems = goalw Equiv.thy [quotient_def]
|
|
228 |
"[| equiv(A,r); congruent(r,b); \
|
|
229 |
\ (UN x:X. b(x))=(UN y:Y. b(y)); X: A/r; Y: A/r; \
|
|
230 |
\ !!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |] \
|
|
231 |
\ ==> X=Y";
|
|
232 |
by (cut_facts_tac prems 1);
|
|
233 |
by (safe_tac rel_cs);
|
|
234 |
by (rtac (equivA RS equiv_class_eq) 1);
|
|
235 |
by (REPEAT (ares_tac prems 1));
|
|
236 |
by (etac box_equals 1);
|
|
237 |
by (REPEAT (ares_tac [localize UN_equiv_class] 1));
|
|
238 |
qed "UN_equiv_class_inject";
|
|
239 |
|
|
240 |
|
|
241 |
(**** Defining binary operations upon equivalence classes ****)
|
|
242 |
|
|
243 |
|
|
244 |
goalw Equiv.thy [congruent_def,congruent2_def,equiv_def,refl_def]
|
|
245 |
"!!A r. [| equiv(A,r); congruent2(r,b); a: A |] ==> congruent(r,b(a))";
|
|
246 |
by (fast_tac rel_cs 1);
|
|
247 |
qed "congruent2_implies_congruent";
|
|
248 |
|
|
249 |
val equivA::prems = goalw Equiv.thy [congruent_def]
|
|
250 |
"[| equiv(A,r); congruent2(r,b); a: A |] ==> \
|
|
251 |
\ congruent(r, %x1. UN x2:r^^{a}. b(x1,x2))";
|
|
252 |
by (cut_facts_tac (equivA::prems) 1);
|
|
253 |
by (safe_tac rel_cs);
|
|
254 |
by (rtac (equivA RS equiv_type RS subsetD RS SigmaE2) 1);
|
|
255 |
by (assume_tac 1);
|
|
256 |
by (asm_simp_tac (prod_ss addsimps [equivA RS UN_equiv_class,
|
|
257 |
congruent2_implies_congruent]) 1);
|
|
258 |
by (rewrite_goals_tac [congruent2_def,equiv_def,refl_def]);
|
|
259 |
by (fast_tac rel_cs 1);
|
|
260 |
qed "congruent2_implies_congruent_UN";
|
|
261 |
|
|
262 |
val prems as equivA::_ = goal Equiv.thy
|
|
263 |
"[| equiv(A,r); congruent2(r,b); a1: A; a2: A |] \
|
|
264 |
\ ==> (UN x1:r^^{a1}. UN x2:r^^{a2}. b(x1,x2)) = b(a1,a2)";
|
|
265 |
by (cut_facts_tac prems 1);
|
|
266 |
by (asm_simp_tac (prod_ss addsimps [equivA RS UN_equiv_class,
|
|
267 |
congruent2_implies_congruent,
|
|
268 |
congruent2_implies_congruent_UN]) 1);
|
|
269 |
qed "UN_equiv_class2";
|
|
270 |
|
|
271 |
(*type checking*)
|
|
272 |
val prems = goalw Equiv.thy [quotient_def]
|
|
273 |
"[| equiv(A,r); congruent2(r,b); \
|
|
274 |
\ X1: A/r; X2: A/r; \
|
|
275 |
\ !!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) : B |] \
|
|
276 |
\ ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B";
|
|
277 |
by (cut_facts_tac prems 1);
|
|
278 |
by (safe_tac rel_cs);
|
|
279 |
by (REPEAT (ares_tac (prems@[UN_equiv_class_type,
|
|
280 |
congruent2_implies_congruent_UN,
|
|
281 |
congruent2_implies_congruent, quotientI]) 1));
|
|
282 |
qed "UN_equiv_class_type2";
|
|
283 |
|
|
284 |
|
|
285 |
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
|
|
286 |
than the direct proof*)
|
|
287 |
val prems = goalw Equiv.thy [congruent2_def,equiv_def,refl_def]
|
|
288 |
"[| equiv(A,r); \
|
|
289 |
\ !! y z w. [| w: A; <y,z> : r |] ==> b(y,w) = b(z,w); \
|
|
290 |
\ !! y z w. [| w: A; <y,z> : r |] ==> b(w,y) = b(w,z) \
|
|
291 |
\ |] ==> congruent2(r,b)";
|
|
292 |
by (cut_facts_tac prems 1);
|
|
293 |
by (safe_tac rel_cs);
|
|
294 |
by (rtac trans 1);
|
|
295 |
by (REPEAT (ares_tac prems 1
|
|
296 |
ORELSE etac (subsetD RS SigmaE2) 1 THEN assume_tac 2 THEN assume_tac 1));
|
|
297 |
qed "congruent2I";
|
|
298 |
|
|
299 |
val [equivA,commute,congt] = goal Equiv.thy
|
|
300 |
"[| equiv(A,r); \
|
|
301 |
\ !! y z. [| y: A; z: A |] ==> b(y,z) = b(z,y); \
|
|
302 |
\ !! y z w. [| w: A; <y,z>: r |] ==> b(w,y) = b(w,z) \
|
|
303 |
\ |] ==> congruent2(r,b)";
|
|
304 |
by (resolve_tac [equivA RS congruent2I] 1);
|
|
305 |
by (rtac (commute RS trans) 1);
|
|
306 |
by (rtac (commute RS trans RS sym) 3);
|
|
307 |
by (rtac sym 5);
|
|
308 |
by (REPEAT (ares_tac [congt] 1
|
|
309 |
ORELSE etac (equivA RS equiv_type RS subsetD RS SigmaE2) 1));
|
|
310 |
qed "congruent2_commuteI";
|
|
311 |
|