195
|
1 |
(* Title: HOL/ex/SList.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Definition of type 'a list by a least fixed point
|
|
7 |
*)
|
|
8 |
|
|
9 |
open SList;
|
|
10 |
|
|
11 |
val list_con_defs = [NIL_def, CONS_def];
|
|
12 |
|
|
13 |
goal SList.thy "list(A) = {Numb(0)} <+> (A <*> list(A))";
|
|
14 |
let val rew = rewrite_rule list_con_defs in
|
|
15 |
by (fast_tac (univ_cs addSIs (equalityI :: map rew list.intrs)
|
|
16 |
addEs [rew list.elim]) 1)
|
|
17 |
end;
|
|
18 |
qed "list_unfold";
|
|
19 |
|
|
20 |
(*This justifies using list in other recursive type definitions*)
|
|
21 |
goalw SList.thy list.defs "!!A B. A<=B ==> list(A) <= list(B)";
|
|
22 |
by (rtac lfp_mono 1);
|
|
23 |
by (REPEAT (ares_tac basic_monos 1));
|
|
24 |
qed "list_mono";
|
|
25 |
|
|
26 |
(*Type checking -- list creates well-founded sets*)
|
|
27 |
goalw SList.thy (list_con_defs @ list.defs) "list(sexp) <= sexp";
|
|
28 |
by (rtac lfp_lowerbound 1);
|
|
29 |
by (fast_tac (univ_cs addIs sexp.intrs@[sexp_In0I,sexp_In1I]) 1);
|
|
30 |
qed "list_sexp";
|
|
31 |
|
|
32 |
(* A <= sexp ==> list(A) <= sexp *)
|
202
|
33 |
bind_thm ("list_subset_sexp", ([list_mono, list_sexp] MRS subset_trans));
|
195
|
34 |
|
|
35 |
(*Induction for the type 'a list *)
|
|
36 |
val prems = goalw SList.thy [Nil_def,Cons_def]
|
|
37 |
"[| P(Nil); \
|
|
38 |
\ !!x xs. P(xs) ==> P(x # xs) |] ==> P(l)";
|
|
39 |
by (rtac (Rep_list_inverse RS subst) 1); (*types force good instantiation*)
|
|
40 |
by (rtac (Rep_list RS list.induct) 1);
|
|
41 |
by (REPEAT (ares_tac prems 1
|
|
42 |
ORELSE eresolve_tac [rangeE, ssubst, Abs_list_inverse RS subst] 1));
|
|
43 |
qed "list_induct";
|
|
44 |
|
|
45 |
(*Perform induction on xs. *)
|
|
46 |
fun list_ind_tac a M =
|
|
47 |
EVERY [res_inst_tac [("l",a)] list_induct M,
|
|
48 |
rename_last_tac a ["1"] (M+1)];
|
|
49 |
|
|
50 |
(*** Isomorphisms ***)
|
|
51 |
|
|
52 |
goal SList.thy "inj(Rep_list)";
|
|
53 |
by (rtac inj_inverseI 1);
|
|
54 |
by (rtac Rep_list_inverse 1);
|
|
55 |
qed "inj_Rep_list";
|
|
56 |
|
|
57 |
goal SList.thy "inj_onto(Abs_list,list(range(Leaf)))";
|
|
58 |
by (rtac inj_onto_inverseI 1);
|
|
59 |
by (etac Abs_list_inverse 1);
|
|
60 |
qed "inj_onto_Abs_list";
|
|
61 |
|
|
62 |
(** Distinctness of constructors **)
|
|
63 |
|
|
64 |
goalw SList.thy list_con_defs "CONS(M,N) ~= NIL";
|
|
65 |
by (rtac In1_not_In0 1);
|
|
66 |
qed "CONS_not_NIL";
|
202
|
67 |
bind_thm ("NIL_not_CONS", (CONS_not_NIL RS not_sym));
|
195
|
68 |
|
202
|
69 |
bind_thm ("CONS_neq_NIL", (CONS_not_NIL RS notE));
|
195
|
70 |
val NIL_neq_CONS = sym RS CONS_neq_NIL;
|
|
71 |
|
|
72 |
goalw SList.thy [Nil_def,Cons_def] "x # xs ~= Nil";
|
|
73 |
by (rtac (CONS_not_NIL RS (inj_onto_Abs_list RS inj_onto_contraD)) 1);
|
|
74 |
by (REPEAT (resolve_tac (list.intrs @ [rangeI, Rep_list]) 1));
|
|
75 |
qed "Cons_not_Nil";
|
|
76 |
|
202
|
77 |
bind_thm ("Nil_not_Cons", (Cons_not_Nil RS not_sym));
|
195
|
78 |
|
202
|
79 |
bind_thm ("Cons_neq_Nil", (Cons_not_Nil RS notE));
|
195
|
80 |
val Nil_neq_Cons = sym RS Cons_neq_Nil;
|
|
81 |
|
|
82 |
(** Injectiveness of CONS and Cons **)
|
|
83 |
|
|
84 |
goalw SList.thy [CONS_def] "(CONS(K,M)=CONS(L,N)) = (K=L & M=N)";
|
|
85 |
by (fast_tac (HOL_cs addSEs [Scons_inject, make_elim In1_inject]) 1);
|
|
86 |
qed "CONS_CONS_eq";
|
|
87 |
|
202
|
88 |
bind_thm ("CONS_inject", (CONS_CONS_eq RS iffD1 RS conjE));
|
195
|
89 |
|
|
90 |
(*For reasoning about abstract list constructors*)
|
|
91 |
val list_cs = set_cs addIs [Rep_list] @ list.intrs
|
|
92 |
addSEs [CONS_neq_NIL,NIL_neq_CONS,CONS_inject]
|
|
93 |
addSDs [inj_onto_Abs_list RS inj_ontoD,
|
|
94 |
inj_Rep_list RS injD, Leaf_inject];
|
|
95 |
|
|
96 |
goalw SList.thy [Cons_def] "(x#xs=y#ys) = (x=y & xs=ys)";
|
|
97 |
by (fast_tac list_cs 1);
|
|
98 |
qed "Cons_Cons_eq";
|
202
|
99 |
bind_thm ("Cons_inject", (Cons_Cons_eq RS iffD1 RS conjE));
|
195
|
100 |
|
|
101 |
val [major] = goal SList.thy "CONS(M,N): list(A) ==> M: A & N: list(A)";
|
|
102 |
by (rtac (major RS setup_induction) 1);
|
|
103 |
by (etac list.induct 1);
|
|
104 |
by (ALLGOALS (fast_tac list_cs));
|
|
105 |
qed "CONS_D";
|
|
106 |
|
|
107 |
val prems = goalw SList.thy [CONS_def,In1_def]
|
|
108 |
"CONS(M,N): sexp ==> M: sexp & N: sexp";
|
|
109 |
by (cut_facts_tac prems 1);
|
|
110 |
by (fast_tac (set_cs addSDs [Scons_D]) 1);
|
|
111 |
qed "sexp_CONS_D";
|
|
112 |
|
|
113 |
|
|
114 |
(*Basic ss with constructors and their freeness*)
|
|
115 |
val list_free_simps = [Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq,
|
|
116 |
CONS_not_NIL, NIL_not_CONS, CONS_CONS_eq]
|
|
117 |
@ list.intrs;
|
|
118 |
val list_free_ss = HOL_ss addsimps list_free_simps;
|
|
119 |
|
|
120 |
goal SList.thy "!!N. N: list(A) ==> !M. N ~= CONS(M,N)";
|
|
121 |
by (etac list.induct 1);
|
|
122 |
by (ALLGOALS (asm_simp_tac list_free_ss));
|
|
123 |
qed "not_CONS_self";
|
|
124 |
|
|
125 |
goal SList.thy "!x. l ~= x#l";
|
|
126 |
by (list_ind_tac "l" 1);
|
|
127 |
by (ALLGOALS (asm_simp_tac list_free_ss));
|
|
128 |
qed "not_Cons_self";
|
|
129 |
|
|
130 |
|
|
131 |
goal SList.thy "(xs ~= []) = (? y ys. xs = y#ys)";
|
|
132 |
by(list_ind_tac "xs" 1);
|
|
133 |
by(simp_tac list_free_ss 1);
|
|
134 |
by(asm_simp_tac list_free_ss 1);
|
|
135 |
by(REPEAT(resolve_tac [exI,refl,conjI] 1));
|
|
136 |
qed "neq_Nil_conv";
|
|
137 |
|
|
138 |
(** Conversion rules for List_case: case analysis operator **)
|
|
139 |
|
|
140 |
goalw SList.thy [List_case_def,NIL_def] "List_case(c, h, NIL) = c";
|
|
141 |
by (rtac Case_In0 1);
|
|
142 |
qed "List_case_NIL";
|
|
143 |
|
|
144 |
goalw SList.thy [List_case_def,CONS_def] "List_case(c, h, CONS(M,N)) = h(M,N)";
|
|
145 |
by (simp_tac (HOL_ss addsimps [Split,Case_In1]) 1);
|
|
146 |
qed "List_case_CONS";
|
|
147 |
|
|
148 |
(*** List_rec -- by wf recursion on pred_sexp ***)
|
|
149 |
|
|
150 |
(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not
|
|
151 |
hold if pred_sexp^+ were changed to pred_sexp. *)
|
|
152 |
|
|
153 |
val List_rec_unfold = [List_rec_def, wf_pred_sexp RS wf_trancl] MRS def_wfrec
|
|
154 |
|> standard;
|
|
155 |
|
|
156 |
(** pred_sexp lemmas **)
|
|
157 |
|
|
158 |
goalw SList.thy [CONS_def,In1_def]
|
|
159 |
"!!M. [| M: sexp; N: sexp |] ==> <M, CONS(M,N)> : pred_sexp^+";
|
|
160 |
by (asm_simp_tac pred_sexp_ss 1);
|
|
161 |
qed "pred_sexp_CONS_I1";
|
|
162 |
|
|
163 |
goalw SList.thy [CONS_def,In1_def]
|
|
164 |
"!!M. [| M: sexp; N: sexp |] ==> <N, CONS(M,N)> : pred_sexp^+";
|
|
165 |
by (asm_simp_tac pred_sexp_ss 1);
|
|
166 |
qed "pred_sexp_CONS_I2";
|
|
167 |
|
|
168 |
val [prem] = goal SList.thy
|
|
169 |
"<CONS(M1,M2), N> : pred_sexp^+ ==> \
|
|
170 |
\ <M1,N> : pred_sexp^+ & <M2,N> : pred_sexp^+";
|
|
171 |
by (rtac (prem RS (pred_sexp_subset_Sigma RS trancl_subset_Sigma RS
|
|
172 |
subsetD RS SigmaE2)) 1);
|
|
173 |
by (etac (sexp_CONS_D RS conjE) 1);
|
|
174 |
by (REPEAT (ares_tac [conjI, pred_sexp_CONS_I1, pred_sexp_CONS_I2,
|
|
175 |
prem RSN (2, trans_trancl RS transD)] 1));
|
|
176 |
qed "pred_sexp_CONS_D";
|
|
177 |
|
|
178 |
(** Conversion rules for List_rec **)
|
|
179 |
|
|
180 |
goal SList.thy "List_rec(NIL,c,h) = c";
|
|
181 |
by (rtac (List_rec_unfold RS trans) 1);
|
|
182 |
by (simp_tac (HOL_ss addsimps [List_case_NIL]) 1);
|
|
183 |
qed "List_rec_NIL";
|
|
184 |
|
|
185 |
goal SList.thy "!!M. [| M: sexp; N: sexp |] ==> \
|
|
186 |
\ List_rec(CONS(M,N), c, h) = h(M, N, List_rec(N,c,h))";
|
|
187 |
by (rtac (List_rec_unfold RS trans) 1);
|
|
188 |
by (asm_simp_tac
|
|
189 |
(HOL_ss addsimps [List_case_CONS, list.CONS_I, pred_sexp_CONS_I2,
|
|
190 |
cut_apply])1);
|
|
191 |
qed "List_rec_CONS";
|
|
192 |
|
|
193 |
(*** list_rec -- by List_rec ***)
|
|
194 |
|
|
195 |
val Rep_list_in_sexp =
|
|
196 |
[range_Leaf_subset_sexp RS list_subset_sexp, Rep_list] MRS subsetD;
|
|
197 |
|
|
198 |
local
|
|
199 |
val list_rec_simps = list_free_simps @
|
|
200 |
[List_rec_NIL, List_rec_CONS,
|
|
201 |
Abs_list_inverse, Rep_list_inverse,
|
|
202 |
Rep_list, rangeI, inj_Leaf, Inv_f_f,
|
|
203 |
sexp.LeafI, Rep_list_in_sexp]
|
|
204 |
in
|
|
205 |
val list_rec_Nil = prove_goalw SList.thy [list_rec_def, Nil_def]
|
|
206 |
"list_rec(Nil,c,h) = c"
|
|
207 |
(fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]);
|
|
208 |
|
|
209 |
val list_rec_Cons = prove_goalw SList.thy [list_rec_def, Cons_def]
|
|
210 |
"list_rec(a#l, c, h) = h(a, l, list_rec(l,c,h))"
|
|
211 |
(fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]);
|
|
212 |
end;
|
|
213 |
|
|
214 |
val list_simps = [List_rec_NIL, List_rec_CONS,
|
|
215 |
list_rec_Nil, list_rec_Cons];
|
|
216 |
val list_ss = list_free_ss addsimps list_simps;
|
|
217 |
|
|
218 |
|
|
219 |
(*Type checking. Useful?*)
|
|
220 |
val major::A_subset_sexp::prems = goal SList.thy
|
|
221 |
"[| M: list(A); \
|
|
222 |
\ A<=sexp; \
|
|
223 |
\ c: C(NIL); \
|
|
224 |
\ !!x y r. [| x: A; y: list(A); r: C(y) |] ==> h(x,y,r): C(CONS(x,y)) \
|
|
225 |
\ |] ==> List_rec(M,c,h) : C(M :: 'a item)";
|
|
226 |
val sexp_ListA_I = A_subset_sexp RS list_subset_sexp RS subsetD;
|
|
227 |
val sexp_A_I = A_subset_sexp RS subsetD;
|
|
228 |
by (rtac (major RS list.induct) 1);
|
|
229 |
by (ALLGOALS(asm_simp_tac (list_ss addsimps ([sexp_A_I,sexp_ListA_I]@prems))));
|
|
230 |
qed "List_rec_type";
|
|
231 |
|
|
232 |
(** Generalized map functionals **)
|
|
233 |
|
|
234 |
goalw SList.thy [Rep_map_def] "Rep_map(f,Nil) = NIL";
|
|
235 |
by (rtac list_rec_Nil 1);
|
|
236 |
qed "Rep_map_Nil";
|
|
237 |
|
|
238 |
goalw SList.thy [Rep_map_def]
|
|
239 |
"Rep_map(f, x#xs) = CONS(f(x), Rep_map(f,xs))";
|
|
240 |
by (rtac list_rec_Cons 1);
|
|
241 |
qed "Rep_map_Cons";
|
|
242 |
|
|
243 |
goalw SList.thy [Rep_map_def] "!!f. (!!x. f(x): A) ==> Rep_map(f,xs): list(A)";
|
|
244 |
by (rtac list_induct 1);
|
|
245 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
246 |
qed "Rep_map_type";
|
|
247 |
|
|
248 |
goalw SList.thy [Abs_map_def] "Abs_map(g,NIL) = Nil";
|
|
249 |
by (rtac List_rec_NIL 1);
|
|
250 |
qed "Abs_map_NIL";
|
|
251 |
|
|
252 |
val prems = goalw SList.thy [Abs_map_def]
|
|
253 |
"[| M: sexp; N: sexp |] ==> \
|
|
254 |
\ Abs_map(g, CONS(M,N)) = g(M) # Abs_map(g,N)";
|
|
255 |
by (REPEAT (resolve_tac (List_rec_CONS::prems) 1));
|
|
256 |
qed "Abs_map_CONS";
|
|
257 |
|
|
258 |
(*These 2 rules ease the use of primitive recursion. NOTE USE OF == *)
|
|
259 |
val [rew] = goal SList.thy
|
|
260 |
"[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f([]) = c";
|
|
261 |
by (rewtac rew);
|
|
262 |
by (rtac list_rec_Nil 1);
|
|
263 |
qed "def_list_rec_Nil";
|
|
264 |
|
|
265 |
val [rew] = goal SList.thy
|
|
266 |
"[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f(x#xs) = h(x,xs,f(xs))";
|
|
267 |
by (rewtac rew);
|
|
268 |
by (rtac list_rec_Cons 1);
|
|
269 |
qed "def_list_rec_Cons";
|
|
270 |
|
|
271 |
fun list_recs def =
|
|
272 |
[standard (def RS def_list_rec_Nil),
|
|
273 |
standard (def RS def_list_rec_Cons)];
|
|
274 |
|
|
275 |
(*** Unfolding the basic combinators ***)
|
|
276 |
|
|
277 |
val [null_Nil,null_Cons] = list_recs null_def;
|
|
278 |
val [_,hd_Cons] = list_recs hd_def;
|
|
279 |
val [_,tl_Cons] = list_recs tl_def;
|
|
280 |
val [ttl_Nil,ttl_Cons] = list_recs ttl_def;
|
|
281 |
val [append_Nil,append_Cons] = list_recs append_def;
|
|
282 |
val [mem_Nil, mem_Cons] = list_recs mem_def;
|
|
283 |
val [map_Nil,map_Cons] = list_recs map_def;
|
|
284 |
val [list_case_Nil,list_case_Cons] = list_recs list_case_def;
|
|
285 |
val [filter_Nil,filter_Cons] = list_recs filter_def;
|
|
286 |
val [list_all_Nil,list_all_Cons] = list_recs list_all_def;
|
|
287 |
|
|
288 |
val list_ss = arith_ss addsimps
|
|
289 |
[Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq,
|
|
290 |
list_rec_Nil, list_rec_Cons,
|
|
291 |
null_Nil, null_Cons, hd_Cons, tl_Cons, ttl_Nil, ttl_Cons,
|
|
292 |
mem_Nil, mem_Cons,
|
|
293 |
list_case_Nil, list_case_Cons,
|
|
294 |
append_Nil, append_Cons,
|
|
295 |
map_Nil, map_Cons,
|
|
296 |
list_all_Nil, list_all_Cons,
|
|
297 |
filter_Nil, filter_Cons];
|
|
298 |
|
|
299 |
|
|
300 |
(** @ - append **)
|
|
301 |
|
|
302 |
goal SList.thy "(xs@ys)@zs = xs@(ys@zs)";
|
|
303 |
by(list_ind_tac "xs" 1);
|
|
304 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
305 |
qed "append_assoc";
|
|
306 |
|
|
307 |
goal SList.thy "xs @ [] = xs";
|
|
308 |
by(list_ind_tac "xs" 1);
|
|
309 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
310 |
qed "append_Nil2";
|
|
311 |
|
|
312 |
(** mem **)
|
|
313 |
|
|
314 |
goal SList.thy "x mem (xs@ys) = (x mem xs | x mem ys)";
|
|
315 |
by(list_ind_tac "xs" 1);
|
|
316 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
317 |
qed "mem_append";
|
|
318 |
|
|
319 |
goal SList.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
|
|
320 |
by(list_ind_tac "xs" 1);
|
|
321 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
322 |
qed "mem_filter";
|
|
323 |
|
|
324 |
(** list_all **)
|
|
325 |
|
|
326 |
goal SList.thy "(Alls x:xs.True) = True";
|
|
327 |
by(list_ind_tac "xs" 1);
|
|
328 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
329 |
qed "list_all_True";
|
|
330 |
|
|
331 |
goal SList.thy "list_all(p,xs@ys) = (list_all(p,xs) & list_all(p,ys))";
|
|
332 |
by(list_ind_tac "xs" 1);
|
|
333 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
334 |
qed "list_all_conj";
|
|
335 |
|
|
336 |
goal SList.thy "(Alls x:xs.P(x)) = (!x. x mem xs --> P(x))";
|
|
337 |
by(list_ind_tac "xs" 1);
|
|
338 |
by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
|
|
339 |
by(fast_tac HOL_cs 1);
|
|
340 |
qed "list_all_mem_conv";
|
|
341 |
|
|
342 |
|
|
343 |
(** The functional "map" **)
|
|
344 |
|
|
345 |
val map_simps = [Abs_map_NIL, Abs_map_CONS,
|
|
346 |
Rep_map_Nil, Rep_map_Cons,
|
|
347 |
map_Nil, map_Cons];
|
|
348 |
val map_ss = list_free_ss addsimps map_simps;
|
|
349 |
|
|
350 |
val [major,A_subset_sexp,minor] = goal SList.thy
|
|
351 |
"[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |] \
|
|
352 |
\ ==> Rep_map(f, Abs_map(g,M)) = M";
|
|
353 |
by (rtac (major RS list.induct) 1);
|
|
354 |
by (ALLGOALS (asm_simp_tac(map_ss addsimps [sexp_A_I,sexp_ListA_I,minor])));
|
|
355 |
qed "Abs_map_inverse";
|
|
356 |
|
|
357 |
(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*)
|
|
358 |
|
|
359 |
(** list_case **)
|
|
360 |
|
|
361 |
goal SList.thy
|
|
362 |
"P(list_case(a,f,xs)) = ((xs=[] --> P(a)) & \
|
|
363 |
\ (!y ys. xs=y#ys --> P(f(y,ys))))";
|
|
364 |
by(list_ind_tac "xs" 1);
|
|
365 |
by(ALLGOALS(asm_simp_tac list_ss));
|
|
366 |
by(fast_tac HOL_cs 1);
|
|
367 |
qed "expand_list_case";
|
|
368 |
|
|
369 |
|
|
370 |
(** Additional mapping lemmas **)
|
|
371 |
|
|
372 |
goal SList.thy "map(%x.x, xs) = xs";
|
|
373 |
by (list_ind_tac "xs" 1);
|
|
374 |
by (ALLGOALS (asm_simp_tac map_ss));
|
|
375 |
qed "map_ident";
|
|
376 |
|
|
377 |
goal SList.thy "map(f, xs@ys) = map(f,xs) @ map(f,ys)";
|
|
378 |
by (list_ind_tac "xs" 1);
|
|
379 |
by (ALLGOALS (asm_simp_tac (map_ss addsimps [append_Nil,append_Cons])));
|
|
380 |
qed "map_append";
|
|
381 |
|
|
382 |
goalw SList.thy [o_def] "map(f o g, xs) = map(f, map(g, xs))";
|
|
383 |
by (list_ind_tac "xs" 1);
|
|
384 |
by (ALLGOALS (asm_simp_tac map_ss));
|
|
385 |
qed "map_compose";
|
|
386 |
|
|
387 |
goal SList.thy "!!f. (!!x. f(x): sexp) ==> \
|
|
388 |
\ Abs_map(g, Rep_map(f,xs)) = map(%t. g(f(t)), xs)";
|
|
389 |
by (list_ind_tac "xs" 1);
|
|
390 |
by(ALLGOALS(asm_simp_tac(map_ss addsimps
|
|
391 |
[Rep_map_type,list_sexp RS subsetD])));
|
|
392 |
qed "Abs_Rep_map";
|
|
393 |
|
|
394 |
val list_ss = list_ss addsimps
|
|
395 |
[mem_append, mem_filter, append_assoc, append_Nil2, map_ident,
|
|
396 |
list_all_True, list_all_conj];
|
|
397 |
|