Moved HOL/List to HOL/ex/SList (strict list).
authornipkow
Fri, 02 Dec 1994 16:09:49 +0100
changeset 195 df6b3bd14dcb
parent 194 b93cc55cb7ab
child 196 61620d959717
Moved HOL/List to HOL/ex/SList (strict list). Modified sons on (S)List accordingly.
ex/InSort.ML
ex/InSort.thy
ex/LList.thy
ex/Qsort.ML
ex/ROOT.ML
ex/SList.ML
ex/SList.thy
ex/Simult.thy
ex/Sorting.ML
ex/Term.thy
--- a/ex/InSort.ML	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/InSort.ML	Fri Dec 02 16:09:49 1994 +0100
@@ -20,27 +20,27 @@
 qed "transfD";
 
 goal InSort.thy "list_all(p,ins(f,x,xs)) = (list_all(p,xs) & p(x))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(asm_simp_tac insort_ss 1);
 by(asm_simp_tac (insort_ss setloop (split_tac [expand_if])) 1);
 by(fast_tac HOL_cs 1);
 val insort_ss = insort_ss addsimps [result()];
 
 goal InSort.thy "(!x. p(x) --> q(x)) --> list_all(p,xs) --> list_all(q,xs)";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (insort_ss setloop (split_tac [expand_if]))));
 qed "list_all_imp";
 
 val prems = goal InSort.thy
   "[| total(f); transf(f) |] ==>  sorted(f,ins(f,x,xs)) = sorted(f,xs)";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (insort_ss setloop (split_tac [expand_if]))));
 by(cut_facts_tac prems 1);
-by(cut_inst_tac [("p","f(xa)"),("q","f(x)")] list_all_imp 1);
+by(cut_inst_tac [("p","f(a)"),("q","f(x)")] list_all_imp 1);
 by(fast_tac (HOL_cs addDs [totalD,transfD]) 1);
 val insort_ss = insort_ss addsimps [result()];
 
 goal InSort.thy "!!f. [| total(f); transf(f) |] ==>  sorted(f,insort(f,xs))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac insort_ss));
 result();
--- a/ex/InSort.thy	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/InSort.thy	Fri Dec 02 16:09:49 1994 +0100
@@ -12,11 +12,10 @@
   ins :: "[['a,'a]=>bool, 'a, 'a list] => 'a list"
   insort :: "[['a,'a]=>bool, 'a list] => 'a list"
 
-rules
+primrec ins List.list
   ins_Nil  "ins(f,x,[]) = [x]"
-  ins_Cons "ins(f,x,y#ys) =   \
-\	       if(f(x,y), x#y#ys, y# ins(f,x,ys))"
-
+  ins_Cons "ins(f,x,y#ys) =  if(f(x,y), x#y#ys, y#ins(f,x,ys))"
+primrec insort List.list
   insort_Nil  "insort(f,[]) = []"
   insort_Cons "insort(f,x#xs) = ins(f,x,insort(f,xs))"
 end
--- a/ex/LList.thy	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/LList.thy	Fri Dec 02 16:09:49 1994 +0100
@@ -23,7 +23,7 @@
 \       (UN x. (split(%l1 l2.<LCons(x,l1),LCons(x,l2)>))``r)"
 *)
 
-LList = Gfp + List +
+LList = Gfp + SList +
 
 types
   'a llist
--- a/ex/Qsort.ML	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/Qsort.ML	Fri Dec 02 16:09:49 1994 +0100
@@ -15,13 +15,13 @@
 
 
 goal Qsort.thy "(Alls x:[x:xs.P(x)].Q(x)) = (Alls x:xs. P(x)-->Q(x))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (ss setloop (split_tac [expand_if]))));
 val ss = ss addsimps [result()];
 
 goal Qsort.thy
  "((Alls x:xs.P(x)) & (Alls x:xs.Q(x))) = (Alls x:xs. P(x)&Q(x))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac ss));
 val ss = ss addsimps [result()];
 
@@ -37,7 +37,7 @@
 goal Qsort.thy
  "sorted(le,xs@ys) = (sorted(le,xs) & sorted(le,ys) & \
 \                     (Alls x:xs. Alls y:ys. le(x,y)))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac ss));
 val ss = ss addsimps [result()];
 
@@ -69,7 +69,7 @@
 goal Qsort.thy
  "sorted(le,xs@ys) = (sorted(le,xs) & sorted(le,ys) & \
 \                     (!x. x mem xs --> (!y. y mem ys --> le(x,y))))";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (ss setloop (split_tac [expand_if]))));
 by(fast_tac HOL_cs 1);
 val ss = ss addsimps [result()];
--- a/ex/ROOT.ML	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/ROOT.ML	Fri Dec 02 16:09:49 1994 +0100
@@ -20,6 +20,7 @@
 time_use_thy "Puzzle";
 time_use_thy "NatSum";
 time_use     "ex/set.ML";
+time_use_thy "SList";
 time_use_thy "LList";
 time_use_thy "Acc";
 time_use_thy "PropLog";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ex/SList.ML	Fri Dec 02 16:09:49 1994 +0100
@@ -0,0 +1,397 @@
+(*  Title: 	HOL/ex/SList.ML
+    ID:         $Id$
+    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Definition of type 'a list by a least fixed point
+*)
+
+open SList;
+
+val list_con_defs = [NIL_def, CONS_def];
+
+goal SList.thy "list(A) = {Numb(0)} <+> (A <*> list(A))";
+let val rew = rewrite_rule list_con_defs in  
+by (fast_tac (univ_cs addSIs (equalityI :: map rew list.intrs)
+                      addEs [rew list.elim]) 1)
+end;
+qed "list_unfold";
+
+(*This justifies using list in other recursive type definitions*)
+goalw SList.thy list.defs "!!A B. A<=B ==> list(A) <= list(B)";
+by (rtac lfp_mono 1);
+by (REPEAT (ares_tac basic_monos 1));
+qed "list_mono";
+
+(*Type checking -- list creates well-founded sets*)
+goalw SList.thy (list_con_defs @ list.defs) "list(sexp) <= sexp";
+by (rtac lfp_lowerbound 1);
+by (fast_tac (univ_cs addIs sexp.intrs@[sexp_In0I,sexp_In1I]) 1);
+qed "list_sexp";
+
+(* A <= sexp ==> list(A) <= sexp *)
+val list_subset_sexp = standard ([list_mono, list_sexp] MRS subset_trans);
+
+(*Induction for the type 'a list *)
+val prems = goalw SList.thy [Nil_def,Cons_def]
+    "[| P(Nil);   \
+\       !!x xs. P(xs) ==> P(x # xs) |]  ==> P(l)";
+by (rtac (Rep_list_inverse RS subst) 1);   (*types force good instantiation*)
+by (rtac (Rep_list RS list.induct) 1);
+by (REPEAT (ares_tac prems 1
+     ORELSE eresolve_tac [rangeE, ssubst, Abs_list_inverse RS subst] 1));
+qed "list_induct";
+
+(*Perform induction on xs. *)
+fun list_ind_tac a M = 
+    EVERY [res_inst_tac [("l",a)] list_induct M,
+	   rename_last_tac a ["1"] (M+1)];
+
+(*** Isomorphisms ***)
+
+goal SList.thy "inj(Rep_list)";
+by (rtac inj_inverseI 1);
+by (rtac Rep_list_inverse 1);
+qed "inj_Rep_list";
+
+goal SList.thy "inj_onto(Abs_list,list(range(Leaf)))";
+by (rtac inj_onto_inverseI 1);
+by (etac Abs_list_inverse 1);
+qed "inj_onto_Abs_list";
+
+(** Distinctness of constructors **)
+
+goalw SList.thy list_con_defs "CONS(M,N) ~= NIL";
+by (rtac In1_not_In0 1);
+qed "CONS_not_NIL";
+val NIL_not_CONS = standard (CONS_not_NIL RS not_sym);
+
+val CONS_neq_NIL = standard (CONS_not_NIL RS notE);
+val NIL_neq_CONS = sym RS CONS_neq_NIL;
+
+goalw SList.thy [Nil_def,Cons_def] "x # xs ~= Nil";
+by (rtac (CONS_not_NIL RS (inj_onto_Abs_list RS inj_onto_contraD)) 1);
+by (REPEAT (resolve_tac (list.intrs @ [rangeI, Rep_list]) 1));
+qed "Cons_not_Nil";
+
+val Nil_not_Cons = standard (Cons_not_Nil RS not_sym);
+
+val Cons_neq_Nil = standard (Cons_not_Nil RS notE);
+val Nil_neq_Cons = sym RS Cons_neq_Nil;
+
+(** Injectiveness of CONS and Cons **)
+
+goalw SList.thy [CONS_def] "(CONS(K,M)=CONS(L,N)) = (K=L & M=N)";
+by (fast_tac (HOL_cs addSEs [Scons_inject, make_elim In1_inject]) 1);
+qed "CONS_CONS_eq";
+
+val CONS_inject = standard (CONS_CONS_eq RS iffD1 RS conjE);
+
+(*For reasoning about abstract list constructors*)
+val list_cs = set_cs addIs [Rep_list] @ list.intrs
+	             addSEs [CONS_neq_NIL,NIL_neq_CONS,CONS_inject]
+		     addSDs [inj_onto_Abs_list RS inj_ontoD,
+			     inj_Rep_list RS injD, Leaf_inject];
+
+goalw SList.thy [Cons_def] "(x#xs=y#ys) = (x=y & xs=ys)";
+by (fast_tac list_cs 1);
+qed "Cons_Cons_eq";
+val Cons_inject = standard (Cons_Cons_eq RS iffD1 RS conjE);
+
+val [major] = goal SList.thy "CONS(M,N): list(A) ==> M: A & N: list(A)";
+by (rtac (major RS setup_induction) 1);
+by (etac list.induct 1);
+by (ALLGOALS (fast_tac list_cs));
+qed "CONS_D";
+
+val prems = goalw SList.thy [CONS_def,In1_def]
+    "CONS(M,N): sexp ==> M: sexp & N: sexp";
+by (cut_facts_tac prems 1);
+by (fast_tac (set_cs addSDs [Scons_D]) 1);
+qed "sexp_CONS_D";
+
+
+(*Basic ss with constructors and their freeness*)
+val list_free_simps = [Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq,
+		       CONS_not_NIL, NIL_not_CONS, CONS_CONS_eq]
+                      @ list.intrs;
+val list_free_ss = HOL_ss  addsimps  list_free_simps;
+
+goal SList.thy "!!N. N: list(A) ==> !M. N ~= CONS(M,N)";
+by (etac list.induct 1);
+by (ALLGOALS (asm_simp_tac list_free_ss));
+qed "not_CONS_self";
+
+goal SList.thy "!x. l ~= x#l";
+by (list_ind_tac "l" 1);
+by (ALLGOALS (asm_simp_tac list_free_ss));
+qed "not_Cons_self";
+
+
+goal SList.thy "(xs ~= []) = (? y ys. xs = y#ys)";
+by(list_ind_tac "xs" 1);
+by(simp_tac list_free_ss 1);
+by(asm_simp_tac list_free_ss 1);
+by(REPEAT(resolve_tac [exI,refl,conjI] 1));
+qed "neq_Nil_conv";
+
+(** Conversion rules for List_case: case analysis operator **)
+
+goalw SList.thy [List_case_def,NIL_def] "List_case(c, h, NIL) = c";
+by (rtac Case_In0 1);
+qed "List_case_NIL";
+
+goalw SList.thy [List_case_def,CONS_def]  "List_case(c, h, CONS(M,N)) = h(M,N)";
+by (simp_tac (HOL_ss addsimps [Split,Case_In1]) 1);
+qed "List_case_CONS";
+
+(*** List_rec -- by wf recursion on pred_sexp ***)
+
+(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not
+   hold if pred_sexp^+ were changed to pred_sexp. *)
+
+val List_rec_unfold = [List_rec_def, wf_pred_sexp RS wf_trancl] MRS def_wfrec
+                      |> standard;
+
+(** pred_sexp lemmas **)
+
+goalw SList.thy [CONS_def,In1_def]
+    "!!M. [| M: sexp;  N: sexp |] ==> <M, CONS(M,N)> : pred_sexp^+";
+by (asm_simp_tac pred_sexp_ss 1);
+qed "pred_sexp_CONS_I1";
+
+goalw SList.thy [CONS_def,In1_def]
+    "!!M. [| M: sexp;  N: sexp |] ==> <N, CONS(M,N)> : pred_sexp^+";
+by (asm_simp_tac pred_sexp_ss 1);
+qed "pred_sexp_CONS_I2";
+
+val [prem] = goal SList.thy
+    "<CONS(M1,M2), N> : pred_sexp^+ ==> \
+\    <M1,N> : pred_sexp^+ & <M2,N> : pred_sexp^+";
+by (rtac (prem RS (pred_sexp_subset_Sigma RS trancl_subset_Sigma RS 
+		   subsetD RS SigmaE2)) 1);
+by (etac (sexp_CONS_D RS conjE) 1);
+by (REPEAT (ares_tac [conjI, pred_sexp_CONS_I1, pred_sexp_CONS_I2,
+		      prem RSN (2, trans_trancl RS transD)] 1));
+qed "pred_sexp_CONS_D";
+
+(** Conversion rules for List_rec **)
+
+goal SList.thy "List_rec(NIL,c,h) = c";
+by (rtac (List_rec_unfold RS trans) 1);
+by (simp_tac (HOL_ss addsimps [List_case_NIL]) 1);
+qed "List_rec_NIL";
+
+goal SList.thy "!!M. [| M: sexp;  N: sexp |] ==> \
+\    List_rec(CONS(M,N), c, h) = h(M, N, List_rec(N,c,h))";
+by (rtac (List_rec_unfold RS trans) 1);
+by (asm_simp_tac
+    (HOL_ss addsimps [List_case_CONS, list.CONS_I, pred_sexp_CONS_I2, 
+		      cut_apply])1);
+qed "List_rec_CONS";
+
+(*** list_rec -- by List_rec ***)
+
+val Rep_list_in_sexp =
+    [range_Leaf_subset_sexp RS list_subset_sexp, Rep_list] MRS subsetD;
+
+local
+  val list_rec_simps = list_free_simps @
+	          [List_rec_NIL, List_rec_CONS, 
+		   Abs_list_inverse, Rep_list_inverse,
+		   Rep_list, rangeI, inj_Leaf, Inv_f_f,
+		   sexp.LeafI, Rep_list_in_sexp]
+in
+  val list_rec_Nil = prove_goalw SList.thy [list_rec_def, Nil_def]
+      "list_rec(Nil,c,h) = c"
+   (fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]);
+
+  val list_rec_Cons = prove_goalw SList.thy [list_rec_def, Cons_def]
+      "list_rec(a#l, c, h) = h(a, l, list_rec(l,c,h))"
+   (fn _=> [simp_tac (HOL_ss addsimps list_rec_simps) 1]);
+end;
+
+val list_simps = [List_rec_NIL, List_rec_CONS,
+		  list_rec_Nil, list_rec_Cons];
+val list_ss = list_free_ss addsimps list_simps;
+
+
+(*Type checking.  Useful?*)
+val major::A_subset_sexp::prems = goal SList.thy
+    "[| M: list(A);    	\
+\       A<=sexp;      	\
+\       c: C(NIL);      \
+\       !!x y r. [| x: A;  y: list(A);  r: C(y) |] ==> h(x,y,r): C(CONS(x,y)) \
+\    |] ==> List_rec(M,c,h) : C(M :: 'a item)";
+val sexp_ListA_I = A_subset_sexp RS list_subset_sexp RS subsetD;
+val sexp_A_I = A_subset_sexp RS subsetD;
+by (rtac (major RS list.induct) 1);
+by (ALLGOALS(asm_simp_tac (list_ss addsimps ([sexp_A_I,sexp_ListA_I]@prems))));
+qed "List_rec_type";
+
+(** Generalized map functionals **)
+
+goalw SList.thy [Rep_map_def] "Rep_map(f,Nil) = NIL";
+by (rtac list_rec_Nil 1);
+qed "Rep_map_Nil";
+
+goalw SList.thy [Rep_map_def]
+    "Rep_map(f, x#xs) = CONS(f(x), Rep_map(f,xs))";
+by (rtac list_rec_Cons 1);
+qed "Rep_map_Cons";
+
+goalw SList.thy [Rep_map_def] "!!f. (!!x. f(x): A) ==> Rep_map(f,xs): list(A)";
+by (rtac list_induct 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+qed "Rep_map_type";
+
+goalw SList.thy [Abs_map_def] "Abs_map(g,NIL) = Nil";
+by (rtac List_rec_NIL 1);
+qed "Abs_map_NIL";
+
+val prems = goalw SList.thy [Abs_map_def]
+    "[| M: sexp;  N: sexp |] ==> \
+\    Abs_map(g, CONS(M,N)) = g(M) # Abs_map(g,N)";
+by (REPEAT (resolve_tac (List_rec_CONS::prems) 1));
+qed "Abs_map_CONS";
+
+(*These 2 rules ease the use of primitive recursion.  NOTE USE OF == *)
+val [rew] = goal SList.thy
+    "[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f([]) = c";
+by (rewtac rew);
+by (rtac list_rec_Nil 1);
+qed "def_list_rec_Nil";
+
+val [rew] = goal SList.thy
+    "[| !!xs. f(xs) == list_rec(xs,c,h) |] ==> f(x#xs) = h(x,xs,f(xs))";
+by (rewtac rew);
+by (rtac list_rec_Cons 1);
+qed "def_list_rec_Cons";
+
+fun list_recs def =
+      [standard (def RS def_list_rec_Nil),
+       standard (def RS def_list_rec_Cons)];
+
+(*** Unfolding the basic combinators ***)
+
+val [null_Nil,null_Cons] = list_recs null_def;
+val [_,hd_Cons] = list_recs hd_def;
+val [_,tl_Cons] = list_recs tl_def;
+val [ttl_Nil,ttl_Cons] = list_recs ttl_def;
+val [append_Nil,append_Cons] = list_recs append_def;
+val [mem_Nil, mem_Cons] = list_recs mem_def;
+val [map_Nil,map_Cons] = list_recs map_def;
+val [list_case_Nil,list_case_Cons] = list_recs list_case_def;
+val [filter_Nil,filter_Cons] = list_recs filter_def;
+val [list_all_Nil,list_all_Cons] = list_recs list_all_def;
+
+val list_ss = arith_ss addsimps
+  [Cons_not_Nil, Nil_not_Cons, Cons_Cons_eq,
+   list_rec_Nil, list_rec_Cons,
+   null_Nil, null_Cons, hd_Cons, tl_Cons, ttl_Nil, ttl_Cons,
+   mem_Nil, mem_Cons,
+   list_case_Nil, list_case_Cons,
+   append_Nil, append_Cons,
+   map_Nil, map_Cons,
+   list_all_Nil, list_all_Cons,
+   filter_Nil, filter_Cons];
+
+
+(** @ - append **)
+
+goal SList.thy "(xs@ys)@zs = xs@(ys@zs)";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+qed "append_assoc";
+
+goal SList.thy "xs @ [] = xs";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+qed "append_Nil2";
+
+(** mem **)
+
+goal SList.thy "x mem (xs@ys) = (x mem xs | x mem ys)";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
+qed "mem_append";
+
+goal SList.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
+qed "mem_filter";
+
+(** list_all **)
+
+goal SList.thy "(Alls x:xs.True) = True";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+qed "list_all_True";
+
+goal SList.thy "list_all(p,xs@ys) = (list_all(p,xs) & list_all(p,ys))";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+qed "list_all_conj";
+
+goal SList.thy "(Alls x:xs.P(x)) = (!x. x mem xs --> P(x))";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac (list_ss setloop (split_tac [expand_if]))));
+by(fast_tac HOL_cs 1);
+qed "list_all_mem_conv";
+
+
+(** The functional "map" **)
+
+val map_simps = [Abs_map_NIL, Abs_map_CONS, 
+		 Rep_map_Nil, Rep_map_Cons, 
+		 map_Nil, map_Cons];
+val map_ss = list_free_ss addsimps map_simps;
+
+val [major,A_subset_sexp,minor] = goal SList.thy 
+    "[| M: list(A);  A<=sexp;  !!z. z: A ==> f(g(z)) = z |] \
+\    ==> Rep_map(f, Abs_map(g,M)) = M";
+by (rtac (major RS list.induct) 1);
+by (ALLGOALS (asm_simp_tac(map_ss addsimps [sexp_A_I,sexp_ListA_I,minor])));
+qed "Abs_map_inverse";
+
+(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*)
+
+(** list_case **)
+
+goal SList.thy
+ "P(list_case(a,f,xs)) = ((xs=[] --> P(a)) & \
+\                         (!y ys. xs=y#ys --> P(f(y,ys))))";
+by(list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac list_ss));
+by(fast_tac HOL_cs 1);
+qed "expand_list_case";
+
+
+(** Additional mapping lemmas **)
+
+goal SList.thy "map(%x.x, xs) = xs";
+by (list_ind_tac "xs" 1);
+by (ALLGOALS (asm_simp_tac map_ss));
+qed "map_ident";
+
+goal SList.thy "map(f, xs@ys) = map(f,xs) @ map(f,ys)";
+by (list_ind_tac "xs" 1);
+by (ALLGOALS (asm_simp_tac (map_ss addsimps [append_Nil,append_Cons])));
+qed "map_append";
+
+goalw SList.thy [o_def] "map(f o g, xs) = map(f, map(g, xs))";
+by (list_ind_tac "xs" 1);
+by (ALLGOALS (asm_simp_tac map_ss));
+qed "map_compose";
+
+goal SList.thy "!!f. (!!x. f(x): sexp) ==> \
+\	Abs_map(g, Rep_map(f,xs)) = map(%t. g(f(t)), xs)";
+by (list_ind_tac "xs" 1);
+by(ALLGOALS(asm_simp_tac(map_ss addsimps
+       [Rep_map_type,list_sexp RS subsetD])));
+qed "Abs_Rep_map";
+
+val list_ss = list_ss addsimps
+  [mem_append, mem_filter, append_assoc, append_Nil2, map_ident,
+   list_all_True, list_all_conj];
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ex/SList.thy	Fri Dec 02 16:09:49 1994 +0100
@@ -0,0 +1,120 @@
+(*  Title:      HOL/ex/SList.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1993  University of Cambridge
+
+Definition of type 'a list (strict lists) by a least fixed point
+
+We use          list(A) == lfp(%Z. {NUMB(0)} <+> A <*> Z)
+and not         list    == lfp(%Z. {NUMB(0)} <+> range(Leaf) <*> Z)
+so that list can serve as a "functor" for defining other recursive types
+*)
+
+SList = Sexp +
+
+types
+  'a list
+
+arities
+  list :: (term) term
+
+
+consts
+
+  list      :: "'a item set => 'a item set"
+  Rep_list  :: "'a list => 'a item"
+  Abs_list  :: "'a item => 'a list"
+  NIL       :: "'a item"
+  CONS      :: "['a item, 'a item] => 'a item"
+  Nil       :: "'a list"
+  "#"       :: "['a, 'a list] => 'a list"                   	(infixr 65)
+  List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b"
+  List_rec  :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b"
+  list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b"
+  list_rec  :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b"
+  Rep_map   :: "('b => 'a item) => ('b list => 'a item)"
+  Abs_map   :: "('a item => 'b) => 'a item => 'b list"
+  null      :: "'a list => bool"
+  hd        :: "'a list => 'a"
+  tl,ttl    :: "'a list => 'a list"
+  mem		:: "['a, 'a list] => bool"			(infixl 55)
+  list_all  :: "('a => bool) => ('a list => bool)"
+  map       :: "('a=>'b) => ('a list => 'b list)"
+  "@"	    :: "['a list, 'a list] => 'a list"			(infixr 65)
+  filter    :: "['a => bool, 'a list] => 'a list"
+
+  (* list Enumeration *)
+
+  "[]"      :: "'a list"                            ("[]")
+  "@list"   :: "args => 'a list"                    ("[(_)]")
+
+  (* Special syntax for list_all and filter *)
+  "@Alls"	:: "[idt, 'a list, bool] => bool"	("(2Alls _:_./ _)" 10)
+  "@filter"	:: "[idt, 'a list, bool] => 'a list"	("(1[_:_ ./ _])")
+
+translations
+  "[x, xs]"     == "x#[xs]"
+  "[x]"         == "x#[]"
+  "[]"          == "Nil"
+
+  "case xs of Nil => a | y#ys => b" == "list_case(a, %y ys.b, xs)"
+
+  "[x:xs . P]"	== "filter(%x.P,xs)"
+  "Alls x:xs.P"	== "list_all(%x.P,xs)"
+
+defs
+  (* Defining the Concrete Constructors *)
+  NIL_def       "NIL == In0(Numb(0))"
+  CONS_def      "CONS(M, N) == In1(M $ N)"
+
+inductive "list(A)"
+  intrs
+    NIL_I  "NIL: list(A)"
+    CONS_I "[| a: A;  M: list(A) |] ==> CONS(a,M) : list(A)"
+
+rules
+  (* Faking a Type Definition ... *)
+  Rep_list          "Rep_list(xs): list(range(Leaf))"
+  Rep_list_inverse  "Abs_list(Rep_list(xs)) = xs"
+  Abs_list_inverse  "M: list(range(Leaf)) ==> Rep_list(Abs_list(M)) = M"
+
+
+defs
+  (* Defining the Abstract Constructors *)
+  Nil_def       "Nil == Abs_list(NIL)"
+  Cons_def      "x#xs == Abs_list(CONS(Leaf(x), Rep_list(xs)))"
+
+  List_case_def "List_case(c, d) == Case(%x.c, Split(d))"
+
+  (* list Recursion -- the trancl is Essential; see list.ML *)
+
+  List_rec_def
+   "List_rec(M, c, d) == wfrec(trancl(pred_sexp), M, \
+\                         List_case(%g.c, %x y g. d(x, y, g(y))))"
+
+  list_rec_def
+   "list_rec(l, c, d) == \
+\   List_rec(Rep_list(l), c, %x y r. d(Inv(Leaf, x), Abs_list(y), r))"
+
+  (* Generalized Map Functionals *)
+
+  Rep_map_def "Rep_map(f, xs) == list_rec(xs, NIL, %x l r. CONS(f(x), r))"
+  Abs_map_def "Abs_map(g, M) == List_rec(M, Nil, %N L r. g(N)#r)"
+
+  null_def      "null(xs)            == list_rec(xs, True, %x xs r.False)"
+  hd_def        "hd(xs)              == list_rec(xs, @x.True, %x xs r.x)"
+  tl_def        "tl(xs)              == list_rec(xs, @xs.True, %x xs r.xs)"
+  (* a total version of tl: *)
+  ttl_def	"ttl(xs)             == list_rec(xs, [], %x xs r.xs)"
+
+  mem_def	"x mem xs            == \
+\		   list_rec(xs, False, %y ys r. if(y=x, True, r))"
+  list_all_def  "list_all(P, xs)     == list_rec(xs, True, %x l r. P(x) & r)"
+  map_def       "map(f, xs)          == list_rec(xs, [], %x l r. f(x)#r)"
+  append_def	"xs@ys               == list_rec(xs, ys, %x l r. x#r)"
+  filter_def	"filter(P,xs)        == \
+\                  list_rec(xs, [], %x xs r. if(P(x), x#r, r))"
+
+  list_case_def "list_case(a, f, xs) == list_rec(xs, a, %x xs r.f(x, xs))"
+
+end
--- a/ex/Simult.thy	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/Simult.thy	Fri Dec 02 16:09:49 1994 +0100
@@ -13,7 +13,7 @@
 recursive data structure because it uses Inl, Inr instead of In0, In1.
 *)
 
-Simult = List +
+Simult = SList +
 
 types    'a tree
          'a forest
--- a/ex/Sorting.ML	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/Sorting.ML	Fri Dec 02 16:09:49 1994 +0100
@@ -12,13 +12,13 @@
        Sorting.sorted1_Nil,Sorting.sorted1_One,Sorting.sorted1_Cons];
 
 goal Sorting.thy "!x.mset(xs@ys,x) = mset(xs,x)+mset(ys,x)";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (sorting_ss setloop (split_tac [expand_if]))));
 qed "mset_app_distr";
 
 goal Sorting.thy "!x. mset([x:xs. ~p(x)], x) + mset([x:xs.p(x)], x) = \
 \                     mset(xs, x)";
-by(list_ind_tac "xs" 1);
+by(list.induct_tac "xs" 1);
 by(ALLGOALS(asm_simp_tac (sorting_ss setloop (split_tac [expand_if]))));
 qed "mset_compl_add";
 
--- a/ex/Term.thy	Fri Dec 02 11:43:20 1994 +0100
+++ b/ex/Term.thy	Fri Dec 02 16:09:49 1994 +0100
@@ -9,7 +9,7 @@
 There is no constructor APP because it is simply cons ($) 
 *)
 
-Term = List +
+Term = SList +
 
 types   'a term