ex/Simult.thy
author clasohm
Wed, 02 Mar 1994 12:26:55 +0100
changeset 48 21291189b51e
parent 0 7949f97df77a
child 72 30e80f028c57
permissions -rw-r--r--
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     1
(*  Title: 	HOL/ex/simult
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     2
    ID:         $Id$
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     4
    Copyright   1993  University of Cambridge
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     5
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     6
Primitives for simultaneous recursive type definitions
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     7
  includes worked example of trees & forests
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     8
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     9
This is essentially the same data structure that on ex/term.ML, which is
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    10
simpler because it uses List as a new type former.  The approach in this
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    11
file may be superior for other simultaneous recursions.
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    12
*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    13
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    14
Simult = List +
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    15
types tree,forest 1
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    16
arities tree,forest :: (term)term
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    17
consts
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    18
  Part        :: "['a set, 'a=>'a] => 'a set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    19
  TF          :: "'a node set set => 'a node set set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    20
  FNIL        :: "'a node set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    21
  TCONS,FCONS :: "['a node set, 'a node set] => 'a node set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    22
  Rep_Tree    :: "'a tree => 'a node set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    23
  Abs_Tree    :: "'a node set => 'a tree"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    24
  Rep_Forest  :: "'a forest => 'a node set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    25
  Abs_Forest  :: "'a node set => 'a forest"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    26
  Tcons       :: "['a, 'a forest] => 'a tree"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    27
  Fcons       :: "['a tree, 'a forest] => 'a forest"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    28
  Fnil        :: "'a forest"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    29
  TF_rec      :: "['a node set, ['a node set , 'a node set, 'b]=>'b,     \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    30
\                 'b, ['a node set , 'a node set, 'b, 'b]=>'b] => 'b"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    31
  tree_rec    :: "['a tree, ['a, 'a forest, 'b]=>'b,          \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    32
\                 'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    33
  forest_rec  :: "['a forest, ['a, 'a forest, 'b]=>'b,        \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    34
\                  'b, ['a tree, 'a forest, 'b, 'b]=>'b] => 'b"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    35
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    36
rules
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    37
    (*operator for selecting out the various types*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    38
  Part_def	"Part(A,h) == {x. x:A & (? z. x = h(z))}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    39
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    40
  TF_def	"TF(A) == lfp(%Z. A <*> Part(Z,In1) \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    41
\                           <+> ({Numb(0)} <+> Part(Z,In0) <*> Part(Z,In1)))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    42
    (*faking a type definition for tree...*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    43
  Rep_Tree 	   "Rep_Tree(n): Part(TF(range(Leaf)),In0)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    44
  Rep_Tree_inverse "Abs_Tree(Rep_Tree(t)) = t"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    45
  Abs_Tree_inverse "z: Part(TF(range(Leaf)),In0) ==> Rep_Tree(Abs_Tree(z)) = z"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    46
    (*faking a type definition for forest...*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    47
  Rep_Forest 	     "Rep_Forest(n): Part(TF(range(Leaf)),In1)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    48
  Rep_Forest_inverse "Abs_Forest(Rep_Forest(ts)) = ts"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    49
  Abs_Forest_inverse 
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    50
	"z: Part(TF(range(Leaf)),In1) ==> Rep_Forest(Abs_Forest(z)) = z"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    51
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    52
     (*the concrete constants*)
48
21291189b51e changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents: 0
diff changeset
    53
  TCONS_def 	"TCONS(M,N) == In0(M $ N)"
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    54
  FNIL_def	"FNIL       == In1(NIL)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    55
  FCONS_def	"FCONS(M,N) == In1(CONS(M,N))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    56
     (*the abstract constants*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    57
  Tcons_def 	"Tcons(a,ts) == Abs_Tree(TCONS(Leaf(a), Rep_Forest(ts)))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    58
  Fnil_def  	"Fnil        == Abs_Forest(FNIL)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    59
  Fcons_def 	"Fcons(t,ts) == Abs_Forest(FCONS(Rep_Tree(t), Rep_Forest(ts)))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    60
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    61
     (*recursion*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    62
  TF_rec_def	
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    63
   "TF_rec(M,b,c,d) == wfrec(trancl(pred_Sexp), M, 			\
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    64
\               %Z g. Case(Z, %U. Split(U, %x y. b(x,y,g(y))),		\
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    65
\			      %V. List_case(V, c, 			\
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    66
\                                           %x y. d(x,y,g(x),g(y)))))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    67
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    68
  tree_rec_def
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    69
   "tree_rec(t,b,c,d) == \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    70
\   TF_rec(Rep_Tree(t), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    71
\          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    72
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    73
  forest_rec_def
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    74
   "forest_rec(tf,b,c,d) == \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    75
\   TF_rec(Rep_Forest(tf), %x y r. b(Inv(Leaf,x), Abs_Forest(y), r), \
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    76
\          c, %x y rt rf. d(Abs_Tree(x), Abs_Forest(y), rt, rf))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    77
end