author | clasohm |
Wed, 02 Mar 1994 12:26:55 +0100 | |
changeset 48 | 21291189b51e |
parent 0 | 7949f97df77a |
child 56 | 385d51d74f71 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: HOL/ex/prop-log |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Inductive definition of propositional logic. |
|
7 |
||
8 |
*) |
|
9 |
||
10 |
PL = Finite + |
|
11 |
types pl 1 |
|
12 |
arities pl :: (term)term |
|
13 |
consts |
|
14 |
false :: "'a pl" |
|
15 |
"->" :: "['a pl,'a pl] => 'a pl" (infixr 90) |
|
16 |
var :: "'a => 'a pl" ("#_") |
|
17 |
pl_rec :: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b" |
|
18 |
axK,axS,axDN:: "'a pl set" |
|
19 |
ruleMP,thms :: "'a pl set => 'a pl set" |
|
20 |
"|-" :: "['a pl set, 'a pl] => bool" (infixl 50) |
|
21 |
"|=" :: "['a pl set, 'a pl] => bool" (infixl 50) |
|
22 |
eval :: "['a set, 'a pl] => bool" ("_[_]" [100,0] 100) |
|
23 |
hyps :: "['a pl, 'a set] => 'a pl set" |
|
24 |
rules |
|
25 |
||
26 |
(** Proof theory for propositional logic **) |
|
27 |
||
28 |
axK_def "axK == {x . ? p q. x = p->q->p}" |
|
29 |
axS_def "axS == {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}" |
|
30 |
axDN_def "axDN == {x . ? p. x = ((p->false) -> false) -> p}" |
|
31 |
||
32 |
(*the use of subsets simplifies the proof of monotonicity*) |
|
33 |
ruleMP_def "ruleMP(X) == {q. ? p:X. p->q : X}" |
|
34 |
||
35 |
thms_def |
|
36 |
"thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))" |
|
37 |
||
38 |
conseq_def "H |- p == p : thms(H)" |
|
39 |
||
40 |
sat_def "H |= p == (!tt. (!q:H. tt[q]) --> tt[p])" |
|
41 |
||
42 |
pl_rec_var "pl_rec(#v,f,y,z) = f(v)" |
|
43 |
pl_rec_false "pl_rec(false,f,y,z) = y" |
|
44 |
pl_rec_imp "pl_rec(p->q,f,y,g) = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))" |
|
45 |
||
46 |
eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)" |
|
47 |
||
48 |
hyps_def |
|
48
21291189b51e
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents:
0
diff
changeset
|
49 |
"hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)" |
0 | 50 |
|
51 |
var_inject "(#v = #w) ==> v = w" |
|
52 |
imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R" |
|
53 |
var_neq_imp "(#v = (p -> q)) ==> R" |
|
54 |
pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)" |
|
55 |
end |