ex/pl.thy
author clasohm
Wed, 02 Mar 1994 12:26:55 +0100
changeset 48 21291189b51e
parent 0 7949f97df77a
child 56 385d51d74f71
permissions -rw-r--r--
changed "." to "$" and Cons to infix "#" to eliminate ambiguity
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     1
(*  Title: 	HOL/ex/prop-log
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     2
    ID:         $Id$
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     3
    Author: 	Tobias Nipkow
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     4
    Copyright   1991  University of Cambridge
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     5
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     6
Inductive definition of propositional logic.
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     7
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     8
*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
     9
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    10
PL = Finite +
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    11
types pl 1
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    12
arities pl :: (term)term
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    13
consts
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    14
    false	:: "'a pl"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    15
    "->"	:: "['a pl,'a pl] => 'a pl"	(infixr 90)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    16
    var		:: "'a => 'a pl"		("#_")
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    17
    pl_rec	:: "['a pl,'a => 'b, 'b, ['b,'b] => 'b] => 'b"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    18
    axK,axS,axDN:: "'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    19
    ruleMP,thms :: "'a pl set => 'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    20
    "|-" 	:: "['a pl set, 'a pl] => bool"	(infixl 50)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    21
    "|="	:: "['a pl set, 'a pl] => bool"	(infixl 50)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    22
    eval	:: "['a set, 'a pl] => bool"	("_[_]" [100,0] 100)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    23
    hyps	:: "['a pl, 'a set] => 'a pl set"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    24
rules
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    25
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    26
  (** Proof theory for propositional logic **)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    27
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    28
    axK_def   "axK ==  {x . ? p q.   x = p->q->p}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    29
    axS_def   "axS ==  {x . ? p q r. x = (p->q->r) -> (p->q) -> p->r}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    30
    axDN_def  "axDN == {x . ? p.     x = ((p->false) -> false) -> p}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    31
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    32
    (*the use of subsets simplifies the proof of monotonicity*)
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    33
    ruleMP_def  "ruleMP(X) == {q. ? p:X. p->q : X}"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    34
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    35
    thms_def
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    36
   "thms(H) == lfp(%X. H Un axK Un axS Un axDN Un ruleMP(X))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    37
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    38
    conseq_def  "H |- p == p : thms(H)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    39
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    40
    sat_def "H |= p  ==  (!tt. (!q:H. tt[q]) --> tt[p])"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    41
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    42
pl_rec_var   "pl_rec(#v,f,y,z)    = f(v)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    43
pl_rec_false "pl_rec(false,f,y,z) = y"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    44
pl_rec_imp   "pl_rec(p->q,f,y,g)  = g(pl_rec(p,f,y,g),pl_rec(q,f,y,g))"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    45
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    46
eval_def "tt[p] == pl_rec(p, %v.v:tt, False, op -->)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    47
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    48
hyps_def
48
21291189b51e changed "." to "$" and Cons to infix "#" to eliminate ambiguity
clasohm
parents: 0
diff changeset
    49
 "hyps(p,tt) == pl_rec(p, %a. {if(a:tt, #a, (#a)->false)}, {}, op Un)"
0
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    50
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    51
var_inject "(#v = #w) ==> v = w"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    52
imp_inject "[| (p -> q) = (p' -> q'); [| p = p'; q = q' |] ==> R |] ==> R"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    53
var_neq_imp "(#v = (p -> q)) ==> R"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    54
pl_ind "[| P(false); !!v. P(#v); !!p q. P(p)-->P(q)-->P(p->q)|] ==> !t.P(t)"
7949f97df77a Initial revision
clasohm
parents:
diff changeset
    55
end